当前位置:文档之家› 最新人教版高中物理选修3-4:11.3 简谐运动的回复力和能量 知识点总结及同步课时练习

最新人教版高中物理选修3-4:11.3 简谐运动的回复力和能量 知识点总结及同步课时练习

最新人教版高中物理选修3-4:11.3 简谐运动的回复力和能量 知识点总结及同步课时练习
最新人教版高中物理选修3-4:11.3 简谐运动的回复力和能量 知识点总结及同步课时练习

3简谐运动的回复力和能量

记一记

简谐运动的回复力和能量知识体系

1个概念——回复力

1个特征量——简谐运动的动力学特征,回复力F=-kx

1个守恒——简谐运动的机械能守恒

辨一辨

1.简谐运动的回复力可以是恒力.(×)

2.回复力的方向总是与位移的方向相反.(√)

3.回复力的方向总是与加速度的方向相反.(×)

4.水平弹簧振子运动到平衡位置时,回复力为零,因此能量一定为零.(×)

5.回复力的大小与速度大小无关,速度增大时,回复力可能增大,也可能减小.(×)

6.弹簧振子每次经过平衡位置时,位移为零、动能最大.(√)

想一想

1.简谐运动的回复力F=-kx中,k一定是弹簧的劲度系数吗?

提示:不一定.k是一个常数,由简谐运动系统决定.对于一个特定的简谐运动系统来说k是不变的,但这个系统不一定是弹

簧振子,k也就不一定是劲度系数.

2.做简谐运动的物体除了受其他力外一定还受到一个回复力作用,对吗?

提示:简谐运动的回复力是根据效果命名的力,不是做简谐运动的物体受到的具体的力,它是由物体受到的具体的力所提供的.

3.判断一个振动是否为简谐运动有哪些方法?

提示:(1)通过对位移的分析,列出位移—时间表达式,利用位移—时间图象是否满足正弦规律来判断.

(2)对物体进行受力分析,求解物体所受力在振动方向上的合力,利用物体所受到的振动方向上合力是否满足F=-kx进行判断.

4.在弹簧振子的运动过程中,弹性势能最大的位置有几个?动能最大的位置有几个?

提示:在弹簧振子的运动过程中,弹性势能最大的位置有两个,分别对应于振子运动的最左端和最右端.动能最大的位置只有一个,就是弹簧振子的平衡位置.

思考感悟:

练一练

1.(多选)如图所示,弹簧振子在光滑水平杆上的A、B之间做往复运动,下列说法正确的是()

A.弹簧振子运动过程中受重力、支持力和弹簧弹力的作用B.弹簧振子运动过程中受重力、支持力、弹簧弹力和回复的力作用

C.振子由A向O运动过程中,回复力逐渐增大

D.振子由O向B运动过程中,回复力的方向指向平衡位置解析:回复力是根据效果命名的力,不是做简谐运动的物体受到的具体的力,它是由物体受到的具体的力所提供的,在此情景中弹簧的弹力充当回复力,故A项正确,B项错误;回复力与

位移的大小成正比,由A向O运动过程中位移的大小在减小,故此过程回复力逐渐减小,C项错误;回复力总是指向平衡位置,故D项正确.

答案:AD

2.对于弹簧振子的回复力和位移的关系,下列图中正确的

是()

解析:由简谐运动的回复力公式F=-kx可知,C项正确.

答案:C

3.如图所示是弹簧振子做简谐运动的振动图象,可以判定()

A.t1到t2时间内系统的动能不断增大,势能不断减小

B.0到t2时间内振子的位移增大,速度增大

C.t2到t3时间内振子的回复力先减小再增大,加速度的方向一直沿x轴正方向

D.t1、t4时刻振子的动能、速度都相同

解析:t1到t2时间内,x减小,弹力做正功,系统的动能不断增大,势能不断减小,A项正确;0到t2时间内,振子的位移减小,速度增大,B项错误;t2到t3时间内,振子的位移先增大再减小,所以回复力先增大再减小,C项错误;t1和t4时刻振子的位移相同,即位于同一位置,其速度等大反向,但动能相同,D项错误.答案:A

4.如图所示,一水平弹簧振子在A、B间做简谐运动,平衡位置为O,已知振子的质量为M.

(1)简谐运动的能量取决于________,振子振动时动能和________相互转化,总机械能________.

(2)(多选)振子在振动过程中,下列说法中正确的是()

A.振子在平衡位置,动能最大,弹性势能最小

B.振子在最大位移处,弹性势能最大,动能最小

C.振子在向平衡位置运动时,由于振子振幅减小,故总机械能减小

D.在任意时刻,动能与弹性势能之和保持不变

(3)(多选)若振子运动到B处时将一质量为m的物体放到M的上面,且m和M无相对滑动而一起运动,下列说法正确的是() A.振幅不变B.振幅减小

C.最大动能不变D.最大动能减小

解析:(1)简谐运动的能量取决于振幅,振子振动时动能和弹性势能相互转化,总机械能守恒.(2)振子在平衡位置两侧往复运动,在最大位移处速度为零,动能为零,此时弹簧的形变最大,弹性势能最大,故B项正确;在任意时刻只有弹簧的弹力做功,所以机械能守恒,D项正确;在平衡位置处速度达到最大,动能最大,弹性势能最小,故A项正确;振幅的大小与振子的位置无关,故C项错误.(3)振子运动到B点时速度恰为零,此时放上m,系统的总能量即为此时弹簧储存的弹性势能,由于简谐运动中机械能守恒,所以振幅保持不变,故A项正确,B项错误;由于机械能守恒,所以最大动能不变,C项正确,D项错误.答案:(1)振幅弹性势能守恒(2)ABD(3)AC

要点一简谐运动的回复力

1.(多选)关于简谐运动的回复力,以下说法正确的是()

A.简谐运动的回复力不可能是恒力

B.做简谐运动的物体的加速度方向与位移方向总是相反

C.简谐运动公式F=-kx中k是弹簧的劲度系数,x是弹簧的长度

D.做简谐运动的物体每次经过平衡位置合力一定为零

解析:根据简谐运动的定义可知,物体做简谐运动时,受到

的回复力为F=-kx,k是比例系数,x是物体相对平衡位置的位移,回复力不可能是恒力,故A项正确,C项错误;质点的回复力方向总是指向平衡位置,与位移方向相反,根据牛顿第二定律,加速度的方向与合外力的方向相同,所以做简谐运动的物体的加速度方向与位移方向总是相反,故B项正确;做简谐运动的物体每次经过平衡位置回复力为零,但是合力不一定为零,故D项错误.

答案:AB

2.(多选)如图所示,一竖直放置的轻弹簧下端固定在水平地面上,质量为m的小球从弹簧正上方高为h处自由下落到弹簧上端A点,然后压缩弹簧到最低点C,若小球放在弹簧上可静止在B 点,小球运动过程中空气阻力忽略不计,则下列说法正确的是()

A.B点位于AC连线中点的上方

B.B点位于AC连线中点的下方

C.小球在A点的回复力等于mg

D.小球在C点的回复力大于mg

解析:小球放在弹簧上,可以静止于B点,可知B点为平衡位置,若小球从A点由静止释放,平衡位置在A点和最低点的中点,而小球从弹簧的正上方自由下落,最低点需下移,但是平衡位置不变,可知B点位于AC连线中点的上方,故A项正确,B 项错误;小球在A点所受弹力为零,则小球在A点所受的合力为mg,即回复力为mg,故C项正确;若从A点由静止释放,到达最低点时,加速度与A点对称,大小为g,但是C点所处的位置在A点关于平衡位置对称点的下方,小球在C点的回复力大于mg,故D项正确.

答案:ACD

3.如图所示,弹簧劲度系数为k,在弹簧下端挂一个重物,

质量为m,重物静止.在竖直方向将重物下拉一段距离(没超过弹簧弹性限度),然后无初速度释放,重物在竖直方向上下振动.(不计空气阻力)

(1)试分析重物上下振动回复力的来源;

(2)试证明该重物做简谐运动.

解析:回复力是重物在振动方向上的合力,需要对重物进行受力分析.物体的振动是否为简谐运动的动力学依据是:回复力F 和偏离平衡位置的位移x是否满足F=-kx的关系.(1)重物在竖直方向上下振动过程中,在竖直方向上受到了重力和弹簧弹力的作用,振动的回复力是重力与弹簧弹力的合力.(2)重物静止时的位置即为振动的平衡位置,设此时弹簧的伸长量为x0,根据胡克定律和力的平衡有kx0=mg.设重物振动过程中某一位置偏离平衡位置的位移为x,并取竖直向下为正方向,如图所示,此时弹簧的形变量为x+x0,弹簧向上的弹力F弹=-k(x+x0),重物所受合力即回复力F=mg+F弹,联立以上各式可求得F=-kx.若x>0,则F<0,表示重物在平衡位置下方,回复力向上;若x<0,则F>0,表示重物在平衡位置上方,回复力向下,回复力F方向总指向平衡位置.根据重物的受力特点可以判断重物做简谐运动.答案:见解析

要点二简谐运动的能量

4.(多选)关于振幅,以下说法中正确的是()

A.物体振动的振幅越大,振动越强烈

B.一个确定的振动系统,振幅越大,振动系统的能量越大

C.振幅越大,物体振动的位移越大

D.振幅越大,物体振动的加速度越大

解析:振动物体的振动剧烈程度表现为振幅的大小,对一个确定的振动系统,振幅越大,振动越强烈,振动能量也就越大,A、B两项正确;在物体振动过程中振幅是最大位移的大小,而偏离平衡位置的位移是不断变化的,故C项错误;物体振动的加速度

是不断变化的,故D项错误.

答案:AB

5.如图所示,弹簧上面固定一质量为m的小球,小球在竖直方向上做振幅为A的简谐运动,当小球振动到最高点时弹簧正好为原长,则小球在振动过程中()

A.小球最大动能应等于mgA

B.弹簧的弹性势能和小球动能总和保持不变

C.弹簧最大弹性势能等于2mgA

D.小球在最低点时的弹力大于2mg

解析:小球平衡位置kx0=mg,x0=A=mg

k,当到达平衡位置

时,有mgA=1

2m v

2+E p,A项错误;机械能守恒,因此动能、重力势能和弹性势能之和保持不变,B项错误;从最高点到最低点,重力势能全部转化为弹性势能,E p=2mgA,C项正确;对最低点加速度等于最高点加速度g,据牛顿第二定律F-mg=mg,F=2mg,D项错误.

答案:C

6.如图所示为某个弹簧振子做简谐运动的振动图象,由图象可知()

A.在0.1 s时,由于位移为零,所以振动能量为零

B.在0.2 s时,振子具有最大势能

C.在0.35 s时,振子具有的能量尚未达到最大值

D.在0.4 s时,振子的动能最大

解析:弹簧振子做简谐运动,振动能量不变,A项错误;在0.2 s时位移最大,振子具有最大势能,B项正确;弹簧振子的振动能量不变,在0.35 s时振子具有的能量与其他时刻相同,C项错误;在0.4 s时振子的位移最大,动能为零,D项错误.

答案:B

要点三简谐运动中各物理量的变化规律

7.(多选)把一个小球套在光滑细杆上,球与轻弹簧相连组成弹簧振子,小球沿杆在水平方向做简谐运动,它围绕平衡位置O 在A、B间振动,如图所示,下列结论正确的是()

A.小球在O位置时,动能最大,加速度最小

B.小球在A、B位置时,势能最大,加速度最大

C.小球从A经O到B的过程中,回复力一直做正功

D.小球从B到O的过程中,振动的能量不断增加

解析:小球在平衡位置时动能最大,加速度为零,故A项正确;小球在A、B位置时,势能最大,加速度最大,故B项正确;小球靠近平衡位置时,回复力做正功;远离平衡位置时,回复力做负功.振动过程中总能量不变,故C、D两项错误.答案:AB

8.(多选)一个做简谐运动的物体,每次势能相同时,下列说法中正确的是()

A.有相同的动能B.有相同的位移

C.有相同的加速度D.有相同的速率

解析:做简谐运动的物体机械能守恒,当势能相同时,动能一定相同,A项正确;当势能相同时,物体位移、加速度和速度的大小相同,但方向无法确定,故B、C两项错误,D项正确.答案:AD

基础达标

1.(多选)关于简谐运动的动力学公式F =-kx ,以下说法正确的是( )

A .k 是弹簧的劲度系数,x 是弹簧长度

B .k 是回复力跟位移的比例常数,x 是做简谐运动的物体离开平衡位置的位移

C .对于弹簧振子系统,k 是劲度系数,它由弹簧的性质决定

D .因为k =F x ,所以k 与F 成正比

解析:k 是回复力跟位移的比例常数,对弹簧振子系统,k 是弹簧的劲度系数,由弹簧的性质决定,x 是弹簧形变的长度,也是做简谐运动的物体离开平衡位置的位移,故B 、C 两项正确.

答案:BC

2.如图甲所示,一弹簧振子在A 、B 间做简谐运动,O 为平衡位置,图乙是弹簧振子做简谐运动时的位移—时间图象,则关于弹簧振子的加速度随时间的变化规律,下列四个图象中正确的是( )

解析:加速度与位移的关系为a =-kx m ,而x =A sin ωt ,所以

a =-kA m sin ωt ,则可知C 项正确.

答案:C

3.(多选)如图所示,物体m 系在两弹簧之间,弹簧劲度系数

分别为k 1和k 2,且k 1=k ,k 2=2k ,两弹簧均处于自然状态,今向右拉动m ,然后释放,物体在B 、C 间振动,O 为平衡位置(不计

阻力),则下列判断正确的是()

A.m做简谐运动,OC=OB

B.m做简谐运动,OC≠OB

C.回复力F=-kx

D.回复力F=-3kx

解析:当物体位移是x时,物体受到的作用力F=F1+F2=-k1x-k2x=-3kx,符合简谐运动的动力学方程,m做简谐运动,所以OB、OC都是物体做简谐振动的振幅,OB=OC,综上所述,A、D两项正确.

答案:AD

4.做简谐运动的弹簧振子质量为0.2 kg,当它运动到平衡位置左侧20 cm时受到的回复力是4 N;当它运动到平衡位置右侧40 cm时,它的加速度为()

A.20 m/s2,向右B.20 m/s2,向左

C.40 m/s2,向右D.40 m/s2,向左

解析:加速度方向指向平衡位置,因此方向向左.由力和位

移的大小关系F=kx可知,当x=40 cm时,F=8 N,a=F

m=40 m/s

2,

方向指向平衡位置,故D项正确.

答案:D

5.(多选)如图所示,物体A与滑块B一起在光滑水平面上做简谐运动,A、B之间无相对滑动,已知轻质弹簧的劲度系数为k,A、B的质量分别为m和M,下列说法正确的是()

A.物体A的回复力是由滑块B对物体A的摩擦力提供

B.滑块B的回复力是由弹簧的弹力提供

C.物体A与滑块B(看成一个振子)的回复力大小跟位移大小之比为k

D.若A、B之间的最大静摩擦因数为μ,则A、B间无相对

滑动的最大振幅为μ(m+M)g

k

解析:物体A做简谐运动时回复力是由滑块B对物体A的摩

擦力提供的,故A项正确;滑块B做简谐运动的回复力是由弹簧的弹力和A对B的静摩擦力的合力提供的,故B项错误;物体A 与滑块B(看成一个振子)的回复力大小满足F=-kx,则回复力大小跟位移大小之比为k,故C项正确;当物体间的摩擦力达到最大静摩擦力时,其振幅最大,设为A.以整体为研究对象有:kA=(M+m)a,以物体A为研究对象,由牛顿第二定律得:μmg=ma,

联立解得,A=μ(m+M)g

k,故D项正确.

答案:ACD

6.(多选)如图所示,弹簧振子在C、B间做简谐运动,O点为其平衡位置,则()

A.振子在由C点运动到O点的过程中,回复力逐渐增大

B.振子在由O点运动到B点的过程中,速度不断增加

C.振子在O点加速度最小,在B点加速度最大

D.振子通过平衡位置O点时,动能最大,势能最小

解析:振子在由C点运动到O点的过程中靠近平衡位置,位移减小,由F=-kx可知回复力减小,故A项错误;振子在由O 点运动到B点的过程中,振子的速度不断减小,故B项错误;由

公式a=-kx

m分析可知,C项正确;振子通过平衡位置O点时,动

能最大,势能最小,故D项正确.

答案:CD

7.(多选)如图所示是某一质点做简谐运动的振动图象,下列说法正确的是()

A.在第1 s内,质点速度逐渐增大

B.在第1 s内,质点加速度逐渐增大

C.在第4 s内,质点的动能逐渐增大

D.在第4 s内,质点的势能逐渐增大

解析:在第1 s内,质点由平衡位置向正向最大位移处运动,速度减小,位移增大,回复力和加速度都增大,故A项错误,B

项正确;在第4 s内,质点由负向最大位移处向平衡位置运动,速度增大,位移减小,动能增大,势能减小,故C项正确,D项错误.

答案:BC

8.(多选)如图所示是质量相等的甲、乙两个物体分别做简谐运动时的图象,则()

A.甲、乙物体的振幅分别是2 m和1 m

B.甲的振动频率比乙的大

C.前2 s内两物体的加速度均为负值

D.第2 s末甲的速度最大,乙的加速度最大

解析:由图象知,甲、乙振幅分别为2 cm和1 cm,A项错误;

8 s内甲完成2次全振动,乙完成1次全振动,B项正确;前2 s 内,甲、乙的位移均为正,所以加速度均为负值,C项正确;第2 s末甲在平衡位置,速度最大,乙在最大位移处,加速度最大,D 项正确.

答案:BCD

9.(多选)如图所示是弹簧振子做简谐运动的振动图象,可以判定()

A.从t1到t2时间内系统的动能不断增大,势能不断减小

B.从t2到t3时间内振幅不断增大

C.t3时刻振子处于平衡位置处,动能最大

D.t1、t4时刻振子的动能、速度都相同

解析:t1到t2时间内,x减小,弹力做正功,系统的动能不断增大,势能不断减小,A项正确;振幅是离开平衡位置的最大距离,简谐运动的振幅保持不变,从t2到t3,变化的是位移而不是振幅,B项错误;t3时刻振子位移为零,处于平衡位置处,速度最大,动能最大,C项正确;t1、t4时刻位移相同,即振子处于同一位置,但运动方向相反,速度等大反向,动能相同,D项错误.

答案:AC

10.(多选)如图所示为某一质点的振动图象,由图象可知在t1和t2两时刻,质点的速度v1、v2,加速度a1、a2的大小关系为() A.v1v2,方向相反

C.a1>a2,方向相同D.a1>a2,方向相反

解析:在t1时刻质点向下向平衡位置运动,在t2时刻质点向下远离平衡位置运动,所以v1与v2的方向相同,但由于在t1时刻质点离开平衡位置较远,所以v1a2.质点的加速度方向总是指向平衡位置的,因而可知在t1时刻加速度方向向下,在t2时刻加速度方向向上,综上所述A、D两项正确.

答案:AD

能力达标

11.如图所示,竖直悬挂的弹簧振子做振幅为A的简谐运动,当物体到达最低点时,物体恰好掉下一半(即物体质量减少一半),此后振动系统的振幅的变化为()

A.振幅不变

B.振幅变大

C.振幅变小

D.条件不够,不能确定

解析:当物体到达最低点时掉下一半(即物体质量减少一半)后,新的系统将继续做简谐运动,机械能也是守恒的,所以还会到达原来的最低点.但是,由于振子质量的减少,新的平衡位置将比原来的平衡位置高,所以振幅变大.

答案:B

12.如图所示,一根用绝缘材料制成的劲度系数为k的轻质弹簧,左端固定,右端与质量为m、带电荷量为+q的小球相连,

静止在光滑、绝缘的水平面上.在施加一个场强为E 、方向水平向右的匀强电场后,小球开始做简谐运动.那么( )

A .小球到达最右端时,弹簧的形变量为2qE k

B .小球做简谐运动的振幅为2qE k

C .运动过程中小球的机械能守恒

D .运动过程中小球的电势能和弹簧的弹性势能的总量不变 解析:小球做简谐运动的平衡位置是弹簧拉力和电场力平衡

的位置,此时弹簧形变量为qE k ,小球到达最右端时,弹簧形变量

为2qE k ,A 项正确,B 项错误;电场力做功,故机械能不守恒,C 项错误;运动过程中,小球的动能、电势能和弹簧的弹性势能的总量不变,D 项错误.

答案:A

13.一质点做简谐运动,其位移和时间关系如图所示.

(1)求t =0.25×10-2 s 时的位移;

(2)在t =1.5×10-2 s 到2×10-2 s 的振动过程中,质点的位移、

回复力、速度、动能、势能如何变化?

(3)在t =0到8.5×10-2 s 时间内,质点通过的路程为多大?

解析:(1)由题图可知质点做简谐运动的振幅A =2 cm ,周期T

=2×10-2 s ,振动方程为x =A sin ? ??

??ωt -π2=-A cos ωt =-2cos 2π2×10-2

t cm =-2cos 100πt cm , 当t =0.25×10-2 s 时,x =-2cos π4 cm =- 2 cm.

(2)由题图可知在1.5×10-2~2×10-2 s 内,质点的位移变大,

回复力变大,速度变小,动能变小,势能变大.

(3)从t =0至8.5×10-2 s 的时间内为174个周期,质点通过的

路程为s =17A =34 cm.

答案:(1)- 2 cm (2)变大 变大 变小 变小 变大

(3)34 cm

14.如图所示,倾角为α的斜面体(斜面光滑且足够长)固定在

水平地面上,斜面顶端与劲度系数为k 、自然长度为L 的轻质弹簧相连,弹簧的另一端连接着质量为m 的物块.压缩弹簧使其长度为34L 时将物块由静止开始释放(物块做简谐运动),且物块在以后的运动中,斜面体始终处于

静止状态.重力加速度为g .

(1)求物块处于平衡位置时弹簧的长度;

(2)物块做简谐运动的振幅是多少;

(3)选物块的平衡位置为坐标原点,沿斜面向下为正方向建立坐标系,用x 表示物块相对于平衡位置的位移,证明物块做简谐运动.(已知做简谐运动的物体所受的回复力满足F =-kx )

解析:(1)物块平衡时,受重力、支持力和弹簧的弹力. 根据平衡条件,有: mg sin α=k ·Δx

解得Δx =mg sin αk

故弹簧的长度为L +mg sin αk

(2)物块做简谐运动的振幅为

A =Δx +14L =mg sin αk +L 4.

(3)物块到达平衡位置下方x 位置时,弹力为

k (x +Δx )=k ? ??

??x +mg sin αk 故合力为F =mg sin α-k ? ??

??x +mg sin αk =-kx 故物块做简谐运动.

答案:(1)L +mg sin αk '(2)mg sin αk +L 4'(3)见解析

高中物理选修3-3知识点整理

选修3—3考点汇编 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= === 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子 间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点: 永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对 固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运 动、扩散现象都有力地说明物体内大量的分子都在永不停息地

做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010 -m ,相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十分微弱,可以忽略不 计了 4、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。热力学温度与摄氏温度的关系:273.15T t K =+ 5、内能 ①分子势能 分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。(0r r =时分子势能最小) 当0r r >时,分子力为引力,当r 增大时,分子力做负功,分子势能增加 当0r r <时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加 ②物体的内能 物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。(理想气体的内能只取决于温度) ③改变内能的方式

人教版高中物理选修31知识点归纳总结.doc

物理选修3-1 知识总结 第一章 第1节 电荷及其守恒定律 一、电荷守恒定律 表述1:电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个 物体,或从物体的一部分转移到另一部分,在转移的过程中,电荷的总量保持不变。 表述2、在一个与外界没有电荷交换的系统内,正、负电荷的代数和保持不变。 二、电荷量 1、电荷量:电荷的多少。 2、元电荷:电子所带电荷的绝对值1.6×10-19 C 3、比荷:粒子的电荷量与粒子质量的比值。 第一章 第2节 库仑定律 一、电荷间的相互作用 1、点电荷:带电体的大小比带电体之间的距离小得多。 2、影响电荷间相互作用的因素 二、库仑定律:在真空中两个静止点电荷间的作用力跟它们的电荷的乘积成正比,跟它们距离的平方 成反比,作用力的方向在它们的连线上。 2 2 1r Q Q k F 注意(1)适用条件为真空中静止点电荷 (2)计算时各量带入绝对值,力的方向利用电性来判断 第一章 第3节 电场 电场强度 一、电场 电荷(带电体)周围存在着的一种物质,其基本性质就是对置于其中的电荷有力的作用。 二、电场强度 1、检验电荷与场源电荷 2、电场强度 检验电荷在电场中某点所受的电场力F 与检验电荷的电荷q 的比值。 q F E = 国际单位:N /C 电场强度是矢量。规定:正电荷在电场中某一点受到的电场力方向就是那一点的电场强度的方向。 三、点电荷的场强公式 2r Q k q F E == 四、电场的叠加 五、电场线 1、电场线:为了形象地描述电场而在电场中画出的一些曲线,曲线的疏密程度表示场强的大小,

曲线上某点的切线方向表示场强的方向。 2、几种典型电场的电场线 3、电场线的特点 (1)假想的 (2)起----正电荷;无穷远处 止----负电荷;无穷远处 (3)不闭合 (4)不相交 (5)疏密----强弱 切线方向---场强方向 第一章 第4节 电势能 电势 一、电势能 1、电势能:电荷处于电场中时所具有的,由其在电场中的位置决定的能量称为电势能. 注意:系统性、相对性 2、电势能的变化与电场力做功的关系 3、电势能大小的确定 电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处电场力所做的功 二、电势 1.电势:置于电场中某点的检验电荷具有的电势能与其电量的比叫做该点的电势 q E 电= ? 单位:伏特(V ) 标量 2.电势的相对性 3.顺着电场线的方向,电势越来越低。 三、等势面 1、等势面:电场中电势相等的各点构成的面。 2、等势面的特点 a:在同一等势面的两点间移动电荷,电场力不做功。 b:电场线总是由电势高的等势面指向电势低的等势面。 c:电场线总是与等势面垂直。 第一章 第5节 电势差 电场力的功 一、电势差:电势差等于电场中两点电势的差值 B A AB U ??-= 电电电电电电)=--=-(-=E E E E E W A B B A AB ?)(电势能为零的点点电=A A W E

高中物理选修32知识点详细汇总

电磁感应现象愣次定律 一、电磁感应 1.电磁感应现象 只要穿过闭合回路的磁通量发生变化,闭合回路中就有电流产生,这种利用磁场产生电流的现象叫做电磁感应。 产生的电流叫做感应电流. 2.产生感应电流的条件:闭合回路中磁通量发生变化 3. 磁通量变化的常见情况(Φ改变的方式): ①线圈所围面积发生变化,闭合电路中的部分导线做切割磁感线运动导致Φ变化;其实质也是B不变而S 增大或减小 ②线圈在磁场中转动导致Φ变化。线圈面积与磁感应强度二者之间夹角发生变化。如匀强磁场中转动的矩形线圈就是典型。 ③磁感应强度随时间(或位置)变化,磁感应强度是时间的函数;或闭合回路变化导致Φ变化 (Φ改变的结果):磁通量改变的最直接的结果是产生感应电动势,若线圈或线框是闭合的.则在线圈或线框中产生感应电流,因此产生感应电流的条件就是:穿过闭合回路的磁通量发生变化.4.产生感应电动势的条件: 无论回路是否闭合,只要穿过线圈的磁通量发生变化,线圈中就有感应电动势产生,产生感应电动势的那部分导体相当于电源. 电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,如果回路不闭合,则只能出现感应电动势, 而不会形成持续的电流.我们看变化是看回路中的磁通量变化,而不是看回路外面的磁通量变化 二、感应电流方向的判定 1.右手定则:伸开右手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,手 掌所在平面跟磁感线和导线所在平面垂直,大拇指指向导线运动的方向, 四指所指的方向即 为感应电流方向(电源). 用右手定则时应注意: ①主要用于闭合回路的一部分导体做切割磁感线运动时,产生的感应电动势与感应电流的方向判定, ②右手定则仅在导体切割磁感线时使用,应用时要注意磁场方向、运动方向、感应电流方向三者互相垂直. ③当导体的运动方向与磁场方向不垂直时,拇指应指向切割磁感线的分速度方向. ④若形成闭合回路,四指指向感应电流方向;若未形成闭合回路,四指指向高电势. ⑤“因电而动”用左手定则.“因动而电”用右手定则. ⑥应用时要特别注意:四指指向是电源内部电流的方向(负→正).因而也是电势升高的方向;即:四指指向正极。 导体切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的一个特例.用右手定则能判定的,一定也能用楞次定律判定,只是对导体在磁场中切割磁感线而产生感应电流方向的判定用右手定则更为简便. 2.楞次定律 (1)楞次定律(判断感应电流方向):感应电流具有这样的方向,感应电流的磁场总是阻碍引起感应电流的磁通量的变化. (感应电流的) 磁场 (总是) 阻碍 (引起感应电流的磁通量的)变化原因产生结果;结果阻碍原因。 (定语) 主语 (状语) 谓语 (补语) 宾语 (2)对“阻碍”的理解注意“阻碍”不是阻止,这里是阻而未止。阻碍磁通量变化指: 磁通量增加时,阻碍增加(感应电流的磁场和原磁场方向相反,起抵消作用); 磁通量减少时,阻碍减少(感应电流的磁场和原磁场方向一致,起补偿作用),简称“增反减同”. (3)楞次定律另一种表达:感应电流的效果总是要阻碍 ...).产生感应电流的原因. (F安方向就起到阻 ..(.或反抗

《简谐运动的回复力和能量》教案

11.3、简谐运动的回复力和能量示范教案 一、教学目的 1.掌握简谐运动的定义;了解简谐运动的运动特征;掌握简谐运动的动力学公式;了解简谐运动的能量变化规律。 2.引导学生通过实验观察,概括简谐运动的运动特征和简谐运动的能量变化规律,培养归纳总结能力。 3.结合旧知识进行分析,推理而掌握新知识,以培养其观察和逻辑思维能力。 二、教学难点 1.重点是简谐运动的定义; 2.难点是简谐运动的动力学分析和能量分析。 三、教具:弹簧振子,挂图。 四、主要教学过程 (一)引入新课 提问1:什么是机械振动? 答:物体在平衡位置附近做往复运动叫机械振动。 提问2:振子做什么运动? 日常生活中经常会遇到机械振动的情况:机器的振动,桥梁的振动,树枝的振动,乐器的发声,它们的振动比较复杂,但这些复杂的振动都是由简单的振动的组成的,因此,我们的研究仍从最简单、最基本的机械振动开始。刚才演示的就是一种最简单、最基本的机械振动,叫做简谐运动。 提问3:过去我们研究自由落体等匀变速直线运动是从哪几个角度进行研究的? 今天,我们仍要从运动学(位移、速度、加速度)研究简谐运动的运动性质;从动力学(力和运动的关系)研究简谐运动的特征,再研究能量变化的情况。 (二)新课教学 (第二次演示竖直方向的弹簧振子) 提问4:大家应明确观察什么?(物体) 提问5:上述四个物理量中,哪个比较容易观察? 提问6:做简谐运动的物体受的是恒力还是变力?力的大小、方向如何变? 小结:简谐运动的受力特点:回复力的大小与位移成正比,回复力的方向指向平衡位置 提问7:简谐运动是不是匀变速运动? 小结:简谐运动是变速运动,但不是匀变速运动。加速度最大时,速度等于零;速度最大时,加速度等于零。 提问8:从简谐运动的运动特点,我们来看它在运动过程中能量如何变化?让我们再来观察。提问9:振动前为什么必须将振子先拉离平衡位置?(外力对系统做功) 提问10:在A点,振子的动能多大?系统有势能吗? 提问11:在O点,振子的动能多大?系统有势能吗? 提问12:在D点,振子的动能多大?系统有势能吗? 提问13:在B,C点,振子有动能吗?系统有势能吗? 小结:简谐运动过程是一个动能和势能的相互转化过程。 (三)总结: (四)布置作业:

高中物理选修3-3知识点归纳

选修3-3知识点归纳 2017-11-15 一、分子动理论 1、物体是由大量分子组成:阿伏伽德罗第一个认识到物体是由 分子组成的。 ①分子大小数量级10-10m ②A N M m 摩分子=(对固体液体气体) A N V V 摩分子=(对固体和液体) 摩摩物物V M V m ==ρ 2、油膜法估测分子的大小: ①S V d 纯油酸=,V 为纯油酸体积,而不能是油酸溶液体积。 ②实验的三个假设(或近似):分子呈球形;一个一个整齐地紧密排列;形成单分子层油膜。 3、分子热运动: ①物体内部大量分子的无规则运动称为热运动,在电子显微镜才能观察得到。 ②扩散现象和布朗运动证实分子永不停息作无规则运动,扩散现象还说明了分子间存在间隙。 ③布朗运动是固体小颗粒在液体或气体中的运动,反映了液体分子或气体分子无规则运动。颗粒越小、 温度越高,现象越明显。从阳光中看到教室中尘埃的运动不是布朗运动。 4、分子力: ①分子间同时存在引力和斥力,都随距离的增大而减小,随距离的减小而增大,斥力总比引力变化得快。 ②当r=r 0=10-10m 时,引力=斥力,分子力为零;当r>r 0,表现为引力;当r

高中物理选修3-2知识点总结

高中物理选修3-2知识点总结 第一章 电磁感应 1.两个人物:a.法拉第:磁生电 b.奥期特:电生磁 2.产生条件:a.闭合电路 b.磁通量发生变化 注意:①产生感应电动势的条件是只具备 b ②产生感应电动势的那部分导体 相当于电源。 ③电源内部的电流从负极流向正 极。 3.感应电流方向的叛定: (1).方法一:右手定则 (2).方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同) ④面积有扩大与缩小的趋势(增缩减扩) 4. 感应电动势大小的计算: (1).法拉第电磁感应定律: a.内容: b.表达式:t n E ??? =φ (2).计算感应电动势的公式 ①求平均值:t n E ??? =φ_ ②求瞬时值:E=BLV (导线切割类) ③法拉第电机:ω2 2 1BL E = ④闭合电路殴姆定律:)r (R I E +=感 5.感应电流的计算: 平均电流:t r R r R E I ?+?=+= )(_ φ 瞬时电流:r R BLV r R E I +=+= 6.安培力计算: (1)平 均值: t BLq t r )(R BL L I B F ?=?+?= =φ_ _ (2). 瞬时值:r R V L B BIL F +==22 7.通过的电荷量:r R q t I +?= - = ??φ 注意:求电荷量只能用平均值,而不 能用瞬时值。 8.互感: 由于线圈A 中电流的变化,它产生的磁通量发生变化,磁通量的变化在线圈B 中 激发了感应电动势。这种现象叫互感。 9.自感现象: (1)定义:是指由于导体本身的电流发 生变化而产生的电磁感应现象。 (2)决定因素: 线圈越长, 单位长度上的匝数越多, 截面积越大, 它的自感系数就越大。另外, 有铁心的线圈的自感系数比没有铁心时要大得多。 (3)类型: 通电自感和断电自感 (4)单位:亨利(H )、毫亨(mH ),微 亨(μH )。 10.涡流及其应用 (1)定义:变压器在工作时,除了在原、副线圈产生感应电动势外,变化的磁通量也会在铁芯中产生感应电流。一般来说,只要空间有变化的磁通量,其中的导体就会产生感应电流,我们把这种感应电流叫做涡流 (2)应用: a.新型炉灶——电磁炉。 b.金属探测器:飞机场、火车站安全检查、扫雷、探矿。 第二章 交变电流 一.正弦交变电流 1.两个特殊的位置 a.中性面位置: 磁通量ф最大,磁通量的变化率为零,即感应电动势零。

课时分层作业 8 简谐运动的回复力和能量

课时分层作业(八)简谐运动的回复力 和能量 (建议用时:25分钟) 考点一简谐运动的回复力 1.简谐运动的回复力() A.可以是恒力 B.可以是方向不变而大小变化的力 C.可以是大小不变而方向改变的力 D.一定是变力 D[由F=-kx可知,由于位移的大小和方向在变化,因此回复力的大小和方向也在变化,一定是变力.] 2.如图所示,能正确反映做简谐运动的物体所受回复力与位移关系的图像是() A B C D B[由F=-kx可知,回复力F与位移大小x成正比,方向与位移方向相反,故选项B正确.] 3.关于简谐运动的回复力F=-kx的含义,下列说法正确的是() A.k是弹簧的劲度系数,x是弹簧的长度 B.k是回复力跟位移的比值,x是做简谐运动的物体离开平衡位置的位移 C.根据k=-F x,可以认为k与F成正比 D.表达式中的“-”号表示F始终阻碍物体的运动 B[对弹簧振子来说,k为劲度系数,x为质点离开平衡位置的位移,对于

其他简谐运动k不是劲度系数,而是一个比例系数,故A错误,B正确;该系数由系统本身结构决定,与力F和位移x无关,C错误;“-”只表示回复力与位移反向,回复力有时是动力,D错误.] 4.如图所示,在一倾角为θ的光滑斜板上,固定着一根原长为l0的轻质弹簧,其劲度系数为k,弹簧另一端连接着质量为m的小球,此时弹簧被拉长为l1.现把小球沿斜板向上推至弹簧长度恰好为原长,然后突然释放,求证小球的运动为简谐运动. [解析]松手释放,小球沿斜板往复运动——振动.而振动的平衡位置是小球开始时静止(合外力为零)的位置. mg sin θ=k(l1-l0) 小球离开平衡位置的距离为x,受力如图所示,小球受三个力作用,其合力F合=k(l1-l0-x)-mg sin θ,F合=-kx.由此可证小球的振动为简谐运动.[答案]见解析 考点二简谐运动的能量 5.(多选)一弹簧振子在水平方向上做简谐运动,其位移x与时间t的关系曲线如图所示,在t=3.2 s时,振子的() A.速度正在增大,加速度沿正方向且正在减小

高中物理选修3-1知识点归纳(完美版)

物理选修3-1 一、电场 1. 两种电荷、电荷守恒定律、 元电荷(e = 1.60 x 10-19C );带电体电荷量等于元电荷的 整数倍 2. 库仑定律:F =?2伞(真空中的点电荷){ F:点电荷间的作用力(N ); r k:静电力常量k = 9.0 x 109N?m/C 2; Q 、Q:两点电荷的电量(C ) ; r:两点电荷间的距离(m ); 作用力与反作用力;方向在它们的连线上;同种电荷互相排斥,异种电荷互相吸引 } 3. 电场强度:E 二匸(定义式、计算式){ E:电场强度(N/C ),是矢量(电场的叠加原理);q :检验 q 电荷的电量(C ) } 4. 真空点(源)电荷形成的电场 E =竽 {r :源电荷到该位置的距离(m ), Q :源电荷的电量} r 5. 匀强电场的场强 E =U AB { 3B :AB 两点间的电压(V ) , d:AB 两点在场强方向的距离 (m )} d 6. 电场力:F = qE {F:电场力(N ) , q:受到电场力的电荷的电量 (C ) , E:电场强度(N/C ) } A E P 减 7. 电势与电势差: L A B = $ A - $ B , U A B = W AB /q = △ q 8. 电场力做功:W A B = qL AB = qEd = △ E P 减{ W A B :带电体由A 到B 时电场力所做的功(J ) , q:带电量(C ) , L A B : 电 场中A 、B 两点间的电势差(V )(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m ); △曰减:带电体由A 到B 时势能的减少量} 9. 电势能:0A = q $ A {庄A :带电体在 A 点的电势能(J ) , q:电量(C ) , $ A :A 点的电势(V ) } 10. 电势能的变化 △曰减=E^A -E PB {带电体在电场中从 A 位置到B 位置时电势能的减少量} 11. 电场力做功与电势能变化 W A B = △ E P 减=qUk (电场力所做的功等于电势能的减少量 ) 12. 电容C = Q/U (定义式,计算式){ C:电容(F ) , Q:电量(C ) , U:电压(两极板电势差)(V ) } 13. 平行板电容器的电容 C =上匚(S:两极板正对面积,d:两极板间的垂直距离, 3 :介电常数) 4水d 常见电容器 类平抛运动(在带等量异种电荷的平行极板中: E = U d 垂直电场方向:匀速直线运动 L = V o t 注:(1)两个完全相同的带电金属小球接触时 ,电量分配规律:原带异种电荷的先中和后平分 的总量平分; 14.带电粒子在电场中的加速 (Vo = 0): W = △ E <增或 qU = mVt 2 15.带电粒子沿垂直电场方向以速度 V o 进入匀强电场时的偏转 (不考虑重力作用) 平行电场方向:初速度为零的匀加速直线运动 d at2 , F a=— =qE = qU 2 m m m ,原带同种电荷

高中物理选修32知识点详细讲解版

第一章电磁感应知识点总结 一、电磁感应现象 1、电磁感应现象与感应电流 . (1)利用磁场产生电流的现象,叫做电磁感应现象。 (2)由电磁感应现象产生的电流,叫做感应电流。 二、产生感应电流的条件 1、产生感应电流的条件:闭合电路 .......。 ....中磁通量发生变化 2、产生感应电流的方法 . (1)磁铁运动。 (2)闭合电路一部分运动。 (3)磁场强度B变化或有效面积S变化。 注:第(1)(2)种方法产生的电流叫“动生电流”,第(3)种方法产生的电流叫“感生电流”。不管是动生电流还是感生电流,我们都统称为“感应电流”。 3、对“磁通量变化”需注意的两点 . (1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。 (2)“运动不一定切割,切割不一定生电”。导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。 4、分析是否产生感应电流的思路方法 . (1)判断是否产生感应电流,关键是抓住两个条件: ①回路是闭合导体回路。 ②穿过闭合回路的磁通量发生变化。 注意:第②点强调的是磁通量“变化”,如果穿过闭合导体回路的磁通量很大但不变化,那么不论低通量有多大,也不会产生感应电流。 (2)分析磁通量是否变化时,既要弄清楚磁场的磁感线分布,又要注意引起磁通量变化的三种情况: ①穿过闭合回路的磁场的磁感应强度B发生变化。②闭合回路的面积S发生变化。 ③磁感应强度B和面积S的夹角发生变化。 三、感应电流的方向 1、楞次定律. (1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。 ①凡是由磁通量的增加引起的感应电流,它所激发的磁场阻碍原来磁通量的增加。 ②凡是由磁通量的减少引起的感应电流,它所激发的磁场阻碍原来磁通量的减少。 (2)楞次定律的因果关系: 闭合导体电路中磁通量的变化是产生感应电流的原因,而感应电流的磁场的出现是感应电流存在的结果,简要地说,只有当闭合电路中的磁通量发生变化时,才会有感应电流的磁场出现。 (3)“阻碍”的含义 . ①“阻碍”可能是“反抗”,也可能是“补偿”. 当引起感应电流的磁通量(原磁通量)增加时,感应电流的磁场就与原磁场的方向相反,感应电流的磁场“反抗”原磁通量的增加;当原磁通量减少时,感应电流的磁场就与原磁场的方向相同,感应电流的磁场“补偿”原磁通量的减少。(“增反减同”) ②“阻碍”不等于“阻止”,而是“延缓”. 感应电流的磁场不能阻止原磁通量的变化,只是延缓了原磁通量的变化。当由于原磁通量的增加引

高中物理选修3-1知识点汇总

第一章 电场 1. 电荷 自然界只存在正、负两种电荷;单位是库伦,符号C ;元电荷电量e=1.6?10 19 -C ;电荷产生方 法有摩擦起电、接触起电、感应起电。 2. 电荷守恒定律 电荷既不能创造,也不能消失,它只能从一个物体转移到另一个物体,或从物体的这一部分转移到另一部分,转移过程中总电荷数不变。 3. 点电荷 当带电体的尺寸和形状对所研究的问题影响不大时,可将此带电体看成点电荷;对于电荷分布均匀的球体,可认为是电荷集中在球心的点电荷;检验电荷一般也可看成点电荷;点电荷实际上是一种理想化模型,并不存在。 4. 库伦定律 在真空中两个点电荷的相互作用力跟它们电荷量的乘积成正比,跟它们间距离的平方成反比, 作用力的方向在它们的连线上;F=k 2 21r Q Q , k=9?109N ·m 2/C 2 .。 5. 电场 带电体周围存在的一种特殊物质,对放入其中的电荷有力的作用;客观存在的;具有力的特性和能的特性。 6. 电场强度 放入电场中某一点的电荷受到的电场力跟它的电荷量的比值;E= q F ;方向是正电荷在该点的 受力方向;矢量,遵循矢量运算原理;点电荷场强F=k 2 r Q 。 7. 电势 描述电场能的性质;?= q E p ,E p 为电荷的 电势能;标量,正负表示大小;数值与零电势的选取有关,一般选择无穷远处为电势零点。 8. 电势差 描述电场做功的本领;U AB = q W AB ;标量, 正负表示电势的高低;也被称作电压。 9. 电势能 描述电荷在电场中的能量,电荷做功的本领;E p =?q ;标量。 10.电场线 从正电荷出发,到负电荷终止的曲线,曲线上每一点的切线方向都跟该点的场强方向一致;虚构的;永不相交;疏密表示电场强度的强弱;沿电场方向电势减小。 11.等势面 电场中电势相等的点构成的面;空间中没有电荷的地方等势面不相交;在平面中构成的是等势线;等差等势面的疏密程度反映电场的强弱。 12.匀强电场 电场强度大小处处相等;E=d U 。 13.电场力做功情况 只与始末位置有关,与路径无关;W=Uq ;匀强电场中W=Fs ·cos θ=Eqs ·cos θ;电场力做的正功等于电势能的减少,W=-?E 。 14.电容器 两个互相靠近又彼此绝缘的导体组成电容器;电容器能充电和放电。 15.电容 电容器所带电荷量与两极板间的电压的比值;单位是法,符号F ;C=U Q 。 16.平行板电容器 高中阶段主要接触的电容器;平行板电容器的电容C= kd S πε4;平行板电容器两极板间的电场可 认为是匀强电场。 17.带电粒子在匀强电场中的运动 加速或者偏转;a=m Eq =md Uq 。 第二章 磁场 1. 磁场 存在与磁体、电流或运动电荷周围的一种物质;对放入其中的磁极或电流有磁场力的作用;规

简谐运动的回复力和能量

简谐运动的回复力和能量 一、简谐运动的回复力 1.简谐运动 如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。 2.回复力 使振动物体回到平衡位置的力。 3.回复力的方向 总是指向平衡位置。 4.回复力的表达式 F=-kx。即回复力与物体的位移大小成正比,“-”表明回复力与位移方向始终相反,k是一个常数,由简谐运动系统决定。 二、简谐运动的能量 1.振动系统(弹簧振子)的状态与能量的对应关系:弹簧振子运动的过程就是动能和势能互相转化的过程。 (1)在最大位移处,势能最大,动能为零。 (2)在平衡位置处,动能最大,势能最小。 2.简谐运动的能量特点:在简谐运动中,振动系统的机械能守恒,而在实际运动中都有一定的能量损耗,因此简谐运动是一种理想化的模型。 1.回复力的来源 (1)回复力是指将振动的物体拉回到平衡位置的力,同向心力一样是按照力的作用效果来命名的。 (2)回复力可以由某一个力提供,如水平弹簧振子的回复力即为弹簧的弹力;也可能是几个力的合力,如竖直悬挂的弹簧振子的回复力是弹簧弹力和重力的合力;还可能是某一力的分力。归纳起来,回复力一定等于振动物体在振动方向上所受的合力。分析物体的受力时不能再加上回复力。 2.关于k值:公式F=-kx中的k指的是回复力与位移的比例系数,而不一定是弹簧的

劲度系数,系数k由振动系统自身决定。 3.加速度的特点:根据牛顿第二定律得a =F m=-k m x,表明弹簧振子做简谐运动时,振 子的加速度大小与位移大小成正比,加速度方向与位移方向相反。 4.回复力的规律:因x=A sin(ωt+φ),故回复力F=-kx=-kA sin(ωt+φ),可见回复力随时间按正弦规律变化。 1.根据水平弹簧振子图,可分析各个物理量的变化关系如下: 图11-3-4 振子的运动A→O O→A′A′→O O→A 位移方向向右向左向左向右大小减小增大减小增大 回复力方向向左向右向右向左大小减小增大减小增大 加速度方向向左向右向右向左大小减小增大减小增大 速度方向向左向左向右向右大小增大减小增大减小 振子的动能增大减小增大减小 弹簧的势能减小增大减小增大 系统总能量不变不变不变不变 当堂达标 1、(多选)如图11-3-2所示,物体系在两弹簧之间,弹簧劲度系数分别为k1和k2,且k1=k,k2=2k,两弹簧均处于自然状态。现在向右拉动物体,然后释放,物体在B、C间振动,O 为平衡位置(不计阻力),设向右为正方向,物体相对O点的位移为x,则下列判断正确的是() 图11-3-2 A.物体做简谐运动,OC=OB

高中物理选修3-3知识点与题型复习

热学知识点复习→制作人:湄江高级中学:吕天鸿 一、固、液、气共有性质 1、组成物质的分子永不停息、无规则运动。温度T越高,运动越激烈,分子平均动能。 注意:对于理想气体,温度T还决定其内能的变化。 扩散现象:相互渗透的反应 2、分子运动的表现 布朗运动:看不见的固体小颗粒被分子不平衡碰撞,颗粒越大,运动越 3、分子间同时存在引力与斥力,且都随着分子间距r的增加而。 (1)分子力的合力F表现:是为F引还是F斥?看间距与分界点r0关系,看下图 当r=r0时,F引=F斥,分子力为0; 当r>r0时,F引>F斥,分子力表现为 当r

非晶体:无确定的熔点。 → 物理性质:各向同性。原子排列:无规则 2,、同一种物质可能以晶体与非晶体两种不同形态出现。如碳形成的金刚石与石墨 3、有些晶体与非晶体可以相互转化。 4、常考晶体有:金刚石与石墨、石英、云母、食盐。常考非晶体有:玻璃、蜂蜡、松香。 三、热力学定律→研究高考对象为→主要还是理想气体 1、热力学第一定律:ΔU =W+Q 表达式中正、负号法则:如下图 2、气体实验定律与热力学第一定律的结合量是气体的体积和温度,当温度变化时,气体的内能变化,当体积变化时,气体将伴随着做功,解题时要掌握气体变化过程的特点: (1)等温过程:内能不变,即ΔU=0。温度T ↑,则内能增加,ΔU >0 (2)等容过程:W=0。若体积V ↑,则气体对外界做功,W 取“—”负号计算。反之亦然 (3)绝热过程:Q=0。 3、再次强调:温度T 决定分子平均动能的变化。也决定理想气体的内能变化 四、气体实验定律→ 理想气体→P 、V 、T=t 0c+273 三个物理量关系 1、三条特殊线 (等温线:P 1V 1=p 2V 2 ) 2、液体柱模型 (1)明确点:P 液=egh 一般不用。当液体为汞时,大气压以 为单位时,高为h cm 时,P 液=h .计算气

人教版高中物理选修3-1知识点归纳总结

物理选修3- 1 知识总结 第一章第1节电荷及其守恒定律 、电荷守恒定律 表述1:电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个 物体,或从物体的一部分转移到另一部分 ,在转移的过程中,电荷的总量保持不变。 表述2、在一个与外界没有电荷交换的系统内,正、负电荷的代数和保持不变。 、电荷量 1、 电荷量:电荷的多少。 2、 元电荷:电子所带电荷的绝对值 1.6 X 10 19C 3、 比荷:粒子的电荷量与粒子质量的比值。 第一章第2节库仑定律 一、 电荷间的相互作用 1、 点电荷:带电体的大小比带电体之间的距离小得多。 2、 影响电荷间 相互作用的因素 二、 库仑定律: 适用条件为真空中静止点电荷 计算时各量带入绝对值,力的方向利用电性来判断 第一章第3节电场电场强度 、电场 电荷(带电体)周围存在着的一种物质,其基本性质就是对置于其中的电荷有力的作用。 二、 电场强度 1、 检验电荷与场源电荷 2、 电场强度 检验电荷在电场中某点所受的电场力 F 与检验电荷的电荷 q 的比值。 E F 国际单位:NC q 电场强度是矢量。规定:正电荷在电场中某一点受到的电场力方向就是那一点的电场强度的方向。 三、 点电荷的场强公式 F . Q E — k —2 q r 四、 电场的叠加 五、 电场线 1、电场线:为了形象地描述电场而在电场中画出的一些曲线, 曲线的疏密程度表示场强的大小, 曲线上某点的切线方向表示场强的方向。 在真空中两个静止点电荷间的作用力跟它们的电荷的乘积成正比, 成反比,作用力的方向在它们的连线上。 跟它们距离的平方 注意(1) (2)

高中物理选修32知识点总结-高中物理选修3-1欧姆定律知识点总结

高中物理选修32知识点总结|高中物理选修3-1欧姆定律知识点总结 【--高中生入党申请书】 欧姆定律是物理选修3-1课本的内容,高中生在学习时要掌握相关知识点,下面是给大家带来的高中物理选修3-1欧姆定律知识点,希望对你有帮助。 高中物理选修3-1欧姆定律知识点 一、导体的电阻 (1)定义:导体两端电压与通过导体电流的比值,叫做这段导体的电阻。 (2)公式:R=U/I(定义式)

说明: A、对于给定导体,R一定,不存在R与U成正比,与I成反比的关系,R只跟导体本身的性质有关。 B、这个式子(定义)给出了测量电阻的方法--伏安法。 C、电阻反映导体对电流的阻碍作用 二、欧姆定律 (1)定律内容:导体中电流强度跟它两端电压成正比,跟它的电阻成反比。

(2)公式:I=U/R (3)适应范围:一是部分电路,二是金属导体、电解质溶液。 三、导体的伏安特性曲线 (1)伏安特性曲线:用纵坐标表示电流I,横坐标表示电压U,这样画出的I-U图象叫做导体的伏安特性曲线。 (2)线性元件和非线性元件 线性元件:伏安特性曲线是通过原点的直线的电学元件。 非线性元件:伏安特性曲线是曲线,即电流与电压不成

正比的电学元件。 四、导体中的电流与导体两端电压的关系 (1)对同一导体,导体中的电流跟它两端的电压成正比。 (2)在相同电压下,U/I大的导体中电流小,U/I小的导体中电流大。所以U/I反映了导体阻碍电流的性质,叫做电阻(R) (3)在相同电压下,对电阻不同的导体,导体的电流跟它的电阻成反比。 高中物理选修3-1必考知识点 两种电荷

自然界中的电荷有2种,即正电荷和负电荷。如:丝绸摩擦过的玻璃棒所带的电荷是正电荷;用干燥的毛皮摩擦过的硬橡胶棒所带的电荷是负电荷。同种电荷相斥,异种电荷相吸。 相互吸引的一定是带异种电荷的物体吗?不一定,除了带异种电荷的物体相互吸引之外,带电体有吸引轻小物体的性质,这里的"轻小物体可能不带电。 电荷守恒定律 表述1:电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个物体,或从物体的一部分转移到另一部分,在转移的过程中,电荷的总量保持不变。

高中物理选修3知识点公式总结

1、电荷量:电荷的多少叫电荷量,用字母Q 或q 表示。(元电荷常用符号e 自然界只存在两种电荷:正电荷和负电荷。同号电荷相互排斥,异号电荷相互吸引。 2、点电荷:当本身线度比电荷间的距离小很多,研究相互作用时,该带电体的形状可忽略,相当于一个带电的点,叫点电荷。 3、库仑定律:真空中两个静止的点电荷之间的作用力与这两个电荷所带电荷量的乘积成正比,与它们之间 9109? =k N ﹒m 2/C 2。 45、电场强度:放入电场中一点的电荷所受的电场力跟电荷量的比值。 67、电场线的性质: a .电场线起始于正电荷或无穷远,终止于无穷远或负电荷; b .任何两条电场线不会相交; c. 静电场中,电场线不形成闭合线; d 8、匀强电场:场强大小和方向都相同的电场叫匀强电场。电场线相互平行且均匀分布时表明是匀强电场。 9 q E P ?= 10、等势面特点:①电场线与等势面垂直,②沿等势面移动电荷,静电力不做功。 11A B BA U ?? -=( 电势差的正负表示两点间电势的高低) 12、电势差与静电力做功:q W U = qU W =? 表示A 、B 两点的电势差在数值上等于单位正电荷从A 点移到B 点,电场力所做的功。 13 14、电势差与电场强度的关系:在匀强电场中,沿电场线方向的两点间的电势差等于场强与这两点间距离的Ed = 15 电容的单位是法拉(F ) 决定平行板电容器电容大小的因素是两极板的正对面积、两极板的距离以及两极板间的电介质。 ②对于平行板电容器有关的Q 、E 、U 、C 的讨论时要注意两种情况: 16、带电粒子在电场中运动: ①.带电粒子在电场中平衡。(二力平衡) ②.带电粒子的加速:动力学分析及功能关系分析:经常用2022 121qU mv mv -= ③.带电粒子的偏转:动力学分析:带电粒子以速度V 0垂直于电场线方向飞入两带电平行板产生的匀强电 场中,受到恒定的与初速度方向成900角的电场力作用而做匀变速曲线运动 (类平抛运动)。 t v L 0= ,U d mv qL L md Uq y 202202)v (21=?=

高中物理选修3-2知识点总结

高中物理选修3-2知识点总结 第四章 电磁感应 1.两个人物:a.法拉第:磁生电 b.奥斯特:电生磁 2.感应电流的产生条件:a.闭合电路 b .磁通量发生变化 注意:①产生感应电动势的条件是只具备b ②产生感应电动势的那部分导体相当于电源 ③电源内部的电流从负极流向正极 3.感应电流方向的判定: (1)方法一:右手定则 (2)方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同) ④面积有扩大与缩小的趋势(增缩减扩) 4.感应电动势大小的计算: (1)法拉第电磁感应定律: A 、内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。 B 、表达式:t n E ??=φ (2)磁通量发生变化情况 ①B 不变,S 变,S B ?=?φ ②S不变,B 变,BS ?=?φ ③B和S 同时变,12φφφ-=? (3)计算感应电动势的公式 ①求平均值:t n E ??=φ ②求瞬时值:BLv E =(导线切割类) ③导体棒绕某端点旋转:ω22 1BL E = 5.感应电流的计算: 瞬时电流:总 总R BLv R E I = = (瞬时切割) 6.安培力的计算: 瞬时值:r R v L B BIL F +==22 7.通过截面的电荷量:r R n t I q +?= ?=φ 注意:求电荷量只能用平均值,而不能用瞬时值 8.自感: (1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。 (2)决定因素:线圈越长,单位长度上的匝数越多,截面积越大,它的自感系数就越大。另外,有铁芯的线圈自感系数比没有铁芯时大得多。 (3)类型:通电自感和断电自感 (4)单位:亨利(H)、毫亨(mH)、微亨(H μ) (5)涡流及其应用 ①定义:变压器在工作时,除了在原副线圈中产生感应电动势外,变化的磁通量也会在哎铁芯中产生感应电流。一般来说,只要空间里有变化的磁通量,其中的导体中就会产生感应电流,我们把这种感应电流叫做涡流 ②应用:a.电磁炉b.金属探测器,飞机场火车站安全检查、扫雷、探矿 接通电源的瞬间,灯 泡A 1较慢地亮起来。 断开开关的瞬间,灯泡A 逐渐变暗。

物理选修32知识点总结(全)带对应例题

选修3-2知识点 56.电磁感应现象Ⅰ 只要穿过闭合回路中的磁通量发生变化,闭合回路中就会产生感应电流,如果电路不闭合只会产生感应电动势。 这种利用磁场产生电流的现象叫电磁感应,是1831年法拉第发现的。 57.感应电流的产生条件Ⅱ 1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化?φ可由面积的变化?S 引起;可由磁感应强度B 的变化?B 引起;可由B 与S 的夹角θ的变化?θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。 2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。 3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。 58.法拉第电磁感应定律 楞次定律Ⅱ ①电磁感应规律:感应电动势的大小由法拉第电磁感应定律确定。 ε=BLv ——当长L 的导线,以速度v ,在匀强磁场B 中,垂直切割磁感线,其两端间感应电动势的大小为ε。 如图所示。设产生的感应电流强度为I ,MN 间电动势为ε,则MN 受向左的安培力F BIL =,要保持MN 以v 匀速向右运动,所施外力F F BIL '==,当行进位移为S 时,外力功 W BI L S BILv t ==···。t 为所用时间。 而在t 时间内,电流做功W I t '=··ε,据能量转化关系, W W '=,则I t BILv t ···ε=。 ∴ε=BIv ,M 点电势高,N 点电势低。 此公式使用条件是B I v 、、方向相互垂直,如不垂直,则向垂直方向作投影。 εφ=n t · ??, 公式 εφ=n t ??/。注意: 1)该式普遍适用于求平均感应电动势。2)ε只与穿过电路的磁通量的变化率??φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。 公式二: εθ=Blv sin 。要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直(l ⊥B )。2)θ为v 与B 的夹角。l 为导体切割磁感线的有效长度(即l 为导体实际长度在垂直于B 方向上的投影)。 公式εφ =n t ??中 涉及到磁通量的变化量?φ的计算, 对?φ的计算, 一般遇到有两种情况: 1)回路与磁场垂直的面积S 不变, 磁感应 强度发生变化, 由??φ=BS , 此时ε=n B t S ??, 此式中的 ??B t 叫磁感应强度的变化率, 若??B t 是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则??φ=B S ·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。 严格区别磁通量φ, 磁通量的变化量?φB 磁通量的变化率 ??φ t , 磁通量φ=B S ·, 表示穿过研究平面的磁感线的条数, 磁通量的变化量?φφφ=-21, 表示磁通量变化的多少, 磁通量的变化率??φ t 表示磁通量变化的快慢,

相关主题
文本预览
相关文档 最新文档