当前位置:文档之家› 无机相变储热材料

无机相变储热材料

无机相变储热材料
无机相变储热材料

无机相变储热材料的探究

赵程程

武汉大学化学与分子科学学院 2010级化类一班

摘要:介绍Na2SO4·10H20用作相变材料的储能特性,综述了针对Na2SO4·10H20过冷和相分离现象的解决方法以及Na2S04·lOH20某些共晶盐的研究。

关键词:相变材料、十水硫酸钠、共晶盐、过冷相分离

引言:Na2S04·10H20是一种典型的无机水合盐相变储能材料。它属于低温储热材料,有

较高的潜热(254kJ/kg)和良好的导热性能、化学稳定性好、无毒、价格低廉,是

许多化工产品的副产品,来源广,因合适的相变温度,能用于贮存太阳能、各种工

业和生活废热,与其它无机盐(如NaCI)形成的低共熔盐的相变温度可控制在20~

30"C范围内。因此Na2S04·10H20以其优越的性能,成为很具吸引力的储热材料。

实验原理:

1.Na2S04·10H20的相变储热循环过程为:Na2S04·10H20(S)+饱和溶液=Na2SO4·10H2O(l)

2.过冷:即液相的水溶液温度降低到其凝固点以下仍不发生凝固。这样就使释热温度发生变

动。在其储热后由结晶态变为液态时,因过冷不结晶就不能释放出所储存的潜热,而且由于过冷,液体随温度降低粘度不断增加,阻碍了分子进行定向排列运动,从而使其在过冷程度很大时形成非晶态物质,相应减小相变潜热。

3.相分离:即指结晶水合盐在使用过程中的析出现象。当(AB·mH20)型无机盐水合物受热时,

通常会转变成含有较少摩尔水的另一类型AB·pH20的无机水合盐,而AB·pH20

会部分或全部溶解于剩余的水中。加热过程中,一些盐水混合物逐渐地变成无水盐,并可全部或部分溶解于水(结晶水)。若盐的溶解度很高,则可以全部溶解,但如果

盐的溶解度不高,即使加热到熔点以上,有些盐仍处在非溶解状态,此时残留的固

态盐因密度大沉到容器底部而出现固液相分离。

实验过程:

1.解决Na2SO4·10H20过冷现象:添加成核剂法和冷指法。

●成核剂可作为结晶生成中心的微粒,使在凝固点时顺利结晶,减少或避免过冷的发生。可作Na2S04·10H20成核剂的物质有硼砂等。

●冷指法即相变过程中保留部分固态Na2S04·10H20,以这部分未融化的Na2s04·10H20作

为成核剂。

为了防止在熔化时固液相的分层需要加入一定量的增稠剂或悬浮剂。

→增稠剂的作用:提高溶液的粘度从而阻止水合盐聚集,但并不妨碍相变过程;常用的增稠剂是活性白土、PCA(聚羧酸)、YDS一1、cMc(羧甲基纤维素)等。

→悬浮剂的作用:将析出的无水Na2SO4和成核剂均匀地分散在体系中,使它们与溶液充分接触。常用的悬浮剂有木屑和白碳黑等。

2.Na2S04·10H20的一些低共熔混合物的性能:

低共熔混合物即共晶盐相变材料,是指2种或2种以上物质组成的具有最低熔点的混合物。低共熔混合物具有与纯净物一样的明显的熔点,在可逆的固一液相变中始终保持相同的组分。是相变储能材料中比较理想的材料。

●在Na2S04·10HzO中加入能与其形成共熔混合物杂质NaCI,制备了一系列NaCI含量不同的储热材料样品。

→随NaCI质量百分比的不断增大,材料的相转变点不断降低,储热能力也相应降低,但是在NaCI含量为13%左右时,出现例外,其储热量骤然增大。

→在Na2S04·10H20、NaCI、硼砂、CMC、木屑、HMP盐、水等,形成低共熔混合体系,最佳组成为4%硼砂+7%木屑+2%CMC+0.2%HMP以及一定量的NaCl。

结论:

(1)Na2SO。·10H20无机共晶盐的研究主要有Na2S04·10H20-Na:HP04·12H20、

Na2S04·10H20-NFLCl、Na2S04· 10H20-NaCl以及Na2SO4·10H20—NaN03等体系,取得了较好的研究效果。主要表现在过冷现象基本控制,熔化潜热较大。

(2)整体研究水平大都还停留在试验阶段,商业化应用不多。

参考文献:

1.朱冬生.剧霏.刘超相变材料CH3COONa@3H2O的研究进展 2007(01)

2.张寅平.胡汉平.孔祥冬相变储能理论和应用 1996

3.陈云深.陈凯.沈斌君交联定形相变储能材料的研制[期刊论文]-复合材料学报 2006(03)

4.黄金.张仁元.伍彬复合相变储能材料制备工艺对其浸渗率和相对密度的影响[期刊论文]-材料科学与工程学报

2006(05)

5.蔡作乾.王琏.杨根陶瓷材料辞典 2002

6.马江生相变储热材料-Na2sO4@10H2O的研制 1994(01)

7.丁益民.阎立诚.薛俊慧水合盐储热材料的成核作用 1996(01)

8.Suat Canbazoglu Enhancement of solar thermal energy storage performance using sodium thiosulfate

pentahydrate of a conventional solar water-heating system[外文期刊] 2005

9.孙鑫泉.龚钰秋.徐宝庆十水硫酸钠体系潜热蓄热材料的研究[期刊论文]-杭州大学学报1990(02)

10.Dipak R Biswas Thermal energy storage using sodium sulfate decahydrate and water 1987(01)

11.Stephen B Marks An investigation of the thermal energy storage capacity of Glaubers'salt with

respect to thermal cycling 1980(05)

12.Stephen B Marks The effect of crystal size on the thermal energy storage capacity of thickened

Glauber's salt 1983(01)

13.Herrick C S Melt-freeze-cycle life-testing of Glauber's salt in a rolling cylinder heat store

1982(02)

14.ShurcliffW A Comments on"Glauber's salt in rotating cylinder:pressure gauge shows amount of

stored heat" 1984(02)

15.郝新民十水硫酸钠相变潜热在太阳能蓄热技术中的应用 1990(01)

16.Marliacy P Thermodyaa-mics of crystallizeation of sodium sulfate decahydrate in H2O-NaCl-

Na2SO4:application to Na2SO4@10H2O-based latent heat storage materials 2000(344) 17.Mohammed M F A review on phase change energy storage:materials and applications 2004(45)

18.Belen Z Review on thermal energy storage with phase change:materials,heat transfer analysis and

applications 2003(23)

19.阎立诚.丁益民.孙宇光Na2SO4@10H2O系储热材料研究 1991(04)

20.焦小浣.胡文旭十水硫酸钠相变储热材料应用研究 1996(03)

21.皮启铎十水硫酸钠熔化热的差动热分析 1992(03)

22.冯海燕.刘晓地.葛艳蕊水合盐的几种脱水过程探讨[期刊论文]-无机化学学报 2000(01)

23.胡起柱.梁树勇.张太平Na2SO4@10H2O-NaNO3多温截面 1992(02)

24.谢全安.郑丹星.武向红Na2SO4@10H2O共晶盐的热化学研究[期刊论文]-太阳能学报2002(01)

25.徐玲玲.沈艳华.梁斌斌Na2SO4@10H2O和Na2/HPO4@12H2O体系的相变特性[期刊论文]-南京工业大学学报2005(04)

26.Abhat A Low temperature latent heat thermal energy storage:heat storage materials 1983(04)

27.Dickinson W C.CheremisinoffP N Solar Energy Technology Handbook 1986

28.Hawes D W.Feldman D.Banu D Latent heat storage in building materials 1993(20)

29.George W Scherer Stress from crystallization ofsalt 2004(34)

30.Paul Wencil Brow.John W Evaluation of the variation in thermal performance in

a Na2SO4@10H2O

phase change system 1986(13)

31.方玉堂.匡胜严.张正国纳米胶囊相变材料的制备[期刊论文]-化工学报 2007(03)

储热技术的研究与应用(可研 基础)

储热技术的研究与应用 余热利用分析报告 第一章工业热能现状及利用率 1.1余热能源现状 当前,我国能源利用仍然存在着利用效率低、经济效益差,生态环境压力大的主要问题。节能减排、降低能耗、提高能源综合利用率作为能源发展战略规划的重要内容,是解决我国能源问题的根本途径,处于优先发展的地位。 实现节能减排、提高能源利用率的目标主要依靠工业领域。我国工业领域能源消耗量约占全国能源消耗总量的70%,主要工业产品单位能耗平均比国际先进水平高出30%左右。除了生产工艺相对落后、产业结构不合理的因素外,工业余热利用率低,能源没有得到充分综合利用是造成能耗高的重要原因。 我国能源利用率仅为33%左右,比发达国家低约10%。至少50%的工业耗能以各种形式的余热被直接废弃。因此从另一角度看,我国工业余热资源丰富,广泛存在于工业各行业生产过程中,余热资源约占其燃料消耗总量的17%~67%,其中可回收率达60%,余热利用率提升空间大,节能潜力巨大。工业余热回收利用又被认为是一种“新能源”,近年来成为推进我国节能减排工作的重要内容。 工业余热来源于各种工业炉窑热能动力装置、热能利用设备、余热利用装置和各种有反应热产生的化工过程等。目前,各行业的余热总资源约占其燃料消耗总量的17%~67%,可回收利用的余热资源约为余热总资源的60%。合理充分利用工业余热可以降低单位产品能耗,取得可观的经济效益。 工业余热按其能量形态可以分为三大类,即可燃性余热、载热性余热和有压性余热。

1)可燃性余热 可燃性余热是指能用工艺装置排放出来的、具有化学热值和物理显热,还可作燃料利用的可燃物,即排放的可燃废气、废液、废料等,如放散的高炉气、焦炉气、转炉气、油田伴生气、炼油气、矿井瓦斯、炭黑尾气、纸浆黑液、甘蔗渣、木屑、可燃垃圾等。 2)载热性余热 常见的大多数余热是载热性余热,它包括排出的废气和产品、物料、废物、工质等所带走的高温热以及化学反应热等,如锅炉与窑炉的烟道气,燃气轮机、内燃机等动力机械的排气,焦炭、钢铁铸件、水泥、炉渣的高温显热,凝结水、冷却水、放散热风等带走的显热,以及排放的废气潜热等。 3)有压性余热 有压性余热通常又叫余压(能),它是指排气排水等有压液体的能量。另外,因为工业余热的温度是衡量其质量(品位)的重要标尺,而其温度的高低亦影响了余热回收利用的方式,所以余热也通常按温度高低分为:高温余热,T≥650℃;中温余热,230 ℃≤T<650℃;低温余热,T<230℃。 余热资源来源广泛、温度范围广、存在形式多样.从利用角度看,余热资源一般具有以下共同点:由于工艺生产过程中存在周期性、间断性或生产波动,导致余热量不稳定;余热介质性质恶劣,如烟气中含尘量大或含有腐蚀性物质;余热利用装置受场地等固有条件限制。 1.2余热现状 见附件 第二章储热技术的发展及储热材料分类 2.1储热材料的分类 目前,主要有三种储热方式,包括显热储热、潜热储热(也称为相

相变储能材料及其应用

相变储能材料及其应用 物质的存在通常认为有三态,物质从一种状态变到另一种状态叫相变。相变的形式有以下四种:(1)固—液相变;(2)液—汽相变;(3)固—汽(4)固-固相变。相变过程个伴有能量的吸收或释放,我们就可以利用相变过程中有能量的吸收和释放的现象,利用相变材料来存储能量。比如用冰贮冷,冬天,在寒冷的地区,人们从湖面、河面冻结的厚冰层中获取冰块,贮存于“冰屋”中,利月锯末隔热、冰块可 )、溶 过冷和析出两大问题。所谓过冷是指当液态物质冷却到“凝固点”时并不结晶,而须冷却到“凝固点”以下一定温度时方开始结晶;而析出现象指在加热过程中,结晶水融化,此时盐溶解在水中形成溶液。结晶水合盐的代表有芒硝、六水氯化钙、 六水氯化镁、镁硝石等 (2)石蜡:石蜡主要由直链院烃混合而成,可用通式C n H2n+2表示,短链烷烃熔

点较低,但链增长熔点开始增长较快,而后逐渐减慢。随着链的增长,烷烃的熔解热也增大,由于空间的影响,奇数和偶数碳原子的烷烃有所不同,偶数碳原子烷烃的同系物有较高的熔解热,链更长时熔解热趋于相等。在C7H16以上的奇数烷烃和在C20H44以上的偶数烷烃在7℃一22℃范围内会产生两次相变: (1)低温的固-固转变,它是链围绕长轴旋转形成的; -固 3、有机-无机混合物 带有乙酰胺的有机和天机低共熔混合物具有较为优异的特性,而乙酰胺的熔点为80℃,潜热相当大,为251.2KJ/kg,且比较便宜。 此外乙酰胺本身及其与有机酸和盐类的低共熔混合物的化学和动力学性质都很好。乙酰胺的毒性很低。但是乙酰胺对某些塑料具有溶解作用,故在容器选择上应

谨慎小心,最好选用搪瓷或玻璃类容器。此类箱变材料也是在日常生活用品开发中 很有前途的一类。 储热相变材料的遴选原则: 作为贮热(冷)的相变材料,它们灾满足的条件是: (1)合适的相变温度; (2)较大的相变潜热; 储热相变材料的应用涉及面根广,但大致分为以下几个方面:集中空调的相变贮能系统,相变节能建筑材料和构件,相变储热在太阳能领域的应用,热电冷(或热电)联供系统中的相变储能,利出工业废热的相空贮热系统,相变日用品开发。随着相变材料基础和应用研究的不断断深入(包括新的相变材料的涌现),相变材料应用的 深度和广度都将不断拓展。

相变材料的储热

相变材料的储热 摘要:热能储存可以通过蓄热材料的冷却、加热、熔化、凝固。气化、化学反应等方式实现。它是一种平衡热能供需和使用的手段。热能储存按储热方式可分为三类,即显热储能、潜热储能和化学反应储热。 关键词:相变;储热;复合材料; 引言:相变材料(PCM)在其本身发生相变的过程中,可以吸收环境的热(冷)量,并在需要时向环境放出热(冷)量,从而达到控制周围环境温度的目的。相变储能技术通过相变材料相变时吸收或放出大量热量以达到能量存储的目的,是常用于缓解能量供求双方在时间、强度及地点上不匹配的有效方式。 正文 一、相变储热材料应用的意义 当今社会能源短缺及环境污染成为我们所面临的重要难题。开发利用可再生能源对节能和环保具有重要的现实意义。发展热能存储技术尤为重要,热能存储就是把通过一定的方式把占时应用不到应用不完的多余的热和废热存储起来,适时还可以另作他用。该技术在太阳能的利用、电力的“移峰填谷”、气废热和余热的回收利用、工业与民用建筑和空调的节能等领域具有广泛的应用前景,目前已成为世界范围内的研究热点。 二、相变储能材料分类及材料的选择 1、相变储热材料的分类 (1)从材料的化学组成来看,主要分为无机相变材料和有机相变材料。无机相变材料包括结晶水合盐、熔融盐和金属合金等无机物。与无机类相变储能材料相比,有机类相变储能材料具有无过冷及析出,性能稳定,无毒,腐蚀等优点。其中石蜡类相变潜热量大、相变温度范围广、价格低,所以在相变储能材料的研究使用中受到广泛的重视。 但石蜡类相变储能材料热导率较低,也限制了其应用范围。为有效克服石蜡类有机化合物相变储能材料的缺点,同时改善相变材料的应用效果及拓展其应用范围,复合相变储能材料应运而生。复合相变材料由较稳定的有机化合物和具有较高导热系数的无机物颗粒制备而得,因而复合相变材料具有稳定的化学性质,无毒无腐蚀性或毒性和腐蚀性小。同时它的导热能力较有机物有较大的改善。 (2)从蓄热过程中材料相态的变化方式来看,分为固-液相变、固-固相变、固-气相变和液-气相变四类。由于后两种相变方式在相变过程中伴随着大量气体的产生,是材料的体

相变储能材料和相变储能技术

相变储能材料及其应用 物质从一种状态变到另一种状态叫物质的存在通常认为有三态,(3)(2)液—汽相变;相变。相变的形式有以下四种:(1)固—液相变;固相变。相变过程个伴有能量的吸收或释放,我们就)固-固—汽(4利用相变材料来存可以利用相变过程中有能量的吸收和释放的现象,储能量。比如用冰贮冷,冬天,在寒冷的地区,人们从湖面、河面冻结的厚冰层中获取冰块,贮存于“冰屋”中,利月锯末隔热、冰块可存放到夏季结束。这是冰块就可以起到现在冰箱的效果了。储能想变成材料一般而言,储热相变材料可以这么进行分类结晶水合盐(如 NaSO?10HO)22 4熔融盐 无机物金属(包括合金)其他无机类相变材料(如水) 石蜡 相变材料酯酸类有机物 其他有机 有机类与无机类相变材料的混合混合类

下面我们对相变储能材料进行逐一分析:液相变材料:-、固1.(1)结晶水合盐:结晶水合盐种类繁多,其熔点也从几度到几百度可供选择,其通式可以表达为AB?nHO。结晶水合盐通常是中、低2 温贮能相变材料中重要的一类,其特点是:使用范围广,价格较便宜、导热系数较大(与有机类相变材料相比)、溶解热较大、密度较大、体积贮热密度较大、一般呈中性。但此类相变材料通常存在过冷和析出两大问题。所谓过冷是指当液态物质冷却到“凝固点”时并不结晶,而须冷却到“凝固点”以下一定温度时方开始结晶;而析出现象指在加热过程中,结晶水融化,此时盐溶解在水中形成溶液。结晶水合盐的代表有芒硝、六水氯化钙、六水氯化镁、镁硝石等 (2)石蜡:石蜡主要由直链院烃混合而成,可用通式CHn表2n+2示,短链烷烃熔点较低,但链增长熔点开始增长较快,而后逐渐减慢。随着链的增长,烷烃的熔解热也增大,由于空间的影响,奇数和偶数碳原子的烷烃有所不同,偶数碳原子烷烃的同系物有较高的熔解热,链更长时熔解热趋于相等。在CH以上的奇数烷烃和在CH以上的4472016偶数烷烃在7℃一22℃范围内会产生两次相变: (1)低温的固-固转变,它是链围绕长轴旋转形成的; (2)高温的固-液相变,总潜热接近溶解热,它被看作贮热中可利用的热能。 这样就会使石蜡具有较高的相变潜热。 石蜡作为贮热相变材料的优点是:无过冷及析出现象,性能稳定,无毒,无腐浊性,价格便宜。缺点是导热系数小,密度小,单位体积贮

相变储热材料的制备与应用

相变储热材料的制备与应用 摘要:热能储存可以通过蓄热材料的冷却、加热、熔化、凝固。气化、化学反应等方式实现。它是一种平衡热能供需和使用的手段。热能储存按储热方式可分为三类,即显热储能、潜热储能和化学反应储热。 关键词:相变;储热;复合材料 一、相变材料在国内外的发展状况 国外对相变储能材料的研究工作始于20世纪60年代。最早是以节能为目的,从太阳能和风能的利用及废热回收,经过不断的发展,逐渐扩展到化工、航天、电子等领域。近年来最主要的研究和应用集中在建筑物的集中空调、采暖及被动式太阳房等领域。国外研究机构和科研人员对蓄热材料的理论研究工作,尤其是对蓄热材料的组成、蓄热容量随热循环变化情况、相变寿命、储存设备等进行了详细的研究,在实际应用上也取得了很大进展。 相对于已经进入实用阶段的发达国家,我国在20世纪70年代末80年代初才开始对蓄热材料进行研究,所以国内相变储能材料的理论和应用研究还比较薄弱。上世纪90年代中期以来,国内研究重点开始转向有机相变材料和复合定形相变材料的研究开发。 二、相变储热材料的分类 (1)从材料的化学组成来看,主要分为无机类相变材料和有机类相变材料,而在课堂上我们主要讲解的是有机类相变材料。无机相变材料包括结晶水合盐、熔融盐和金属合金等无机物。与无机类相变储能材料相比,有机类相变储能材料具有无过冷及析出,性能稳定,无毒,腐蚀等优点。其中石蜡类相变潜热量大、相变温度范围广、价格低,所以在相变储能材料的研究使用中受到广泛的重视。但石蜡类相变储能材料热导率较低,也限制了其应用范围。为有效克服石蜡类有机化合物相变储能材料的缺点,同时改善相变材料的应用效果及拓展其应用范围,复合相变储能材料应运而生。复合相变材料由较稳定的有机化合物和具有较高导热系数的无机物颗粒制备而得,因而复合相变材料具有稳定的化学性质,无毒无腐蚀性或毒性和腐蚀性小。同时它的导热能力较有机物有较大的改善。 (2)根据使用的温度不同又可以分为高、中、低温相变储热材料。一般使用温度高于100℃的相变储热材料称为高温相变储热材料。以熔融盐、氧化物和金属及其合金为主。使用温度低于100℃为中、低温相变储热材料,这类相变材料以水合盐、石蜡类、脂酸类为主,在低温类中也有利用液-气相变型的,如液氮、氦。 (3)从蓄热过程中材料相态的变化方式来看,可分为固液、固气、液气、固固四种相变。由于固气和液气两种方式相变是有大量气体产生,使材料的体积变的很大,所以实际中很少采用这两种方式。 三、相变材料的分类选择因素 (1)合适相变温度; (2)较大的相变潜热; (3)合适的导热性能;

相变蓄热技术在热泵中的应用

相变蓄热技术在热泵中的应用 汪南,杨硕,朱冬生 (华南理工大学化学与化工学院传热强化与过程节能教育部重点实验室,广州, 510640) 摘要:本文综述了蓄热技术的研究进展及其在热泵中的应用,并重点介绍了一种相变蓄热式热泵热水器,最后对这种技术的发展进行了展望。 关键词:蓄热相变热泵热水器 0 前言 能源是一个国家经济增长和社会发展的重要物质基础,随着人类对能源的需求量不断增大,能源问题越来越引起人们的重视。但是,大多数能源存在间断性和不稳定性的特点,导致大量热能在时间与空间匹配上的不平衡性,从而使得一方面能源短缺,另一方面又有大量余热被白白浪费。因此,合理利用能源、提高能源利用率是当务之急。 蓄能技术就是采用适当的方式,利用特定的装置,将暂时不用的或者多余的热能通过一定的储能材料储存起来,等到需要时再利用的方法,是提高能源利用效率和保护环境的重要技术。相变蓄热技术在太阳能、工业余热、废热利用以及电力调峰等方面具有很大的潜在应用优势,近年来引起了众多科研工作者的重视。 1 蓄热技术的研究进展 1983年,美国Telkes博士在蓄热技术方面做了大量工作[1]。她对水合盐,尤其是十水硫酸钠(Na2S04?10H2O)进行了长期的研究,对Na2S04?10H2O的相变寿命进行了多达1000次的实验,并预测该材料可相变2000次,并在马萨诸塞州建起了世界上第一座PCM被动太阳房。20世纪70年代早期,日本三菱电子公司和东京电力公司联合进行了用于采暖和制冷系统的相变材料的研究,他们研究了水合硝酸盐、磷酸盐、氟化物和氯化钙。在相变材料应用方面,他们特别强调制冷和空调系统中的储能。东京科技大学工业和工程化学系的Yoneda等人研究了一系列可用于建筑物取暖的硝酸共晶水合盐,从中筛选出性能较好的MgCl2?6H20和Mg(NO3)2?6H2O共晶盐(熔点59.1℃)。位于Ibaraki的电子技术实验室对相变温度范围为200~300℃的硝酸盐及它们的共晶混合物进行了研究。德国GawronK和Schroder J在对-65~0℃的温度范围内相变性能的研究后,推荐在储冷中采用NaF-H20共晶盐(-3.5℃);在低温储热或热泵应用中采用KF?4H20;在建筑物采暖系统中,采用CaCl2?6H20(29℃)或Na2HP04(35℃)。Krichel绘制了大量PCMs的物性图表。他认为石蜡、水合盐和包合盐(elath-rate)是100℃以下储能用相变材料的最佳候选材料。 我国对蓄热相变的理论和应用也进行了广泛的研究[2-9],中国科学技术大学从1978年开始进行相变储热的研究,陈则韶、葛新石、张寅平等人[10~12]在相变材料热物性测定和相变过程导热分析方面做了大量工作,申请了多项专利。1983年,华中师范大学阮德水等[13]对典型的无机水合盐Na2S04?10H2O

相变储能材料在建筑方面的研究与应用

相变储能材料在建筑方面的研究与应用 摘要:随着建筑行业的向前发展,当前人们对于居住的要求也变得越来越高,对于居住条件的舒适性、安全性成为居民居住的主要考虑因素。正因如此,智能化、生态化已经成为当前建筑材料发展的趋势。相变储能材料作为传统建筑材料与相变材料复合而成的一中新型材料,由于其具有储能密度大、能够近似恒温下的吸放热而发展迅速。另一方面,相变储能材料的应用可以保持环境舒适,节省采暖制冷所需能源而受到建筑界的欢迎。本文将从多个方面对相变储能材料进行具体的分析,为后期的深入研究奠定基础。 关键词:建筑材料;相变材料;储能技术 Energy storage materials research and application of phase change in architecture Abstract:With forward the construction industry, the current requirement for people to live has become increasingly high, the comfort of living conditions, security has become a major consideration residents. For this reason, intelligent, ecological building materials has become the current trend of development. Phase change material as traditional building materials and phase change materials in a composite made of a new material, because of its large energy density, can be approximated under constant heat absorption and rapid development. On the other hand, application of energy storage phase change material can be kept comfortable, energy-saving heating and cooling needed and welcomed by the construction industry. This article from the multiple aspects of the phase change material specific analysis, to lay the foundation for further research later. Key words:construction materials; phase change material; energy storage technology

相变储热材料的制备与应用

摘要:热能储存可以通过蓄热材料地冷却、加热、熔化、凝固.气化、化学反应等方式实现.它是一种平衡热能供需和使用地手段.热能储存按储热方式可分为三类,即显热储能、潜热储能和化学反应储热. 关键词:相变;储热;复合材料 相变材料在国内外地发展状况 国外对相变储能材料地研究工作始于世纪年代.最早是以节能为目地,从太阳能和风能地利用及废热回收,经过不断地发展,逐渐扩展到化工、航天、电子等领域.近年来最主要地研究和应用集中在建筑物地集中空调、采暖及被动式太阳房等领域.国外研究机构和科研人员对蓄热材料地理论研究工作,尤其是对蓄热材料地组成、蓄热容量随热循环变化情况、相变寿命、储存设备等进行了详细地研究,在实际应用上也取得了很大进展. 相对于已经进入实用阶段地发达国家,我国在世纪年代末年代初才开始对蓄热材料进行研究,所以国内相变储能材料地理论和应用研究还比较薄弱.上世纪年代中期以来,国内研究重点开始转向有机相变材料和复合定形相变材料地研究开发.资料个人收集整理,勿做商业用途 相变储热材料地分类 ()从材料地化学组成来看,主要分为无机类相变材料和有机类相变材料,而在课堂上我们主要讲解地是有机类相变材料.无机相变材料包括结晶水合盐、熔融盐和金属合金等无机物.与无机类相变储能材料相比,有机类相变储能材料具有无过冷及析出,性能稳定,无毒,腐蚀等优点.其中石蜡类相变潜热量大、相变温度范围广、价格低,所以在相变储能材料地研究使用中受到广泛地重视.但石蜡类相变储能材料热导率较低,也限制了其应用范围.为有效克服石蜡类有机化合物相变储能材料地缺点,同时改善相变材料地应用效果及拓展其应用范围,复合相变储能材料应运而生 .复合相变材料由较稳定地有机化合物和具有较高导热系数地无机物颗粒制备而得,因而复合相变材料具有稳定地化学性质,无毒无腐蚀性或毒性和腐蚀性小.同时它地导热能力较有机物有较大地改善.资料个人收集整理,勿做商业用途 ()根据使用地温度不同又可以分为高、中、低温相变储热材料.一般使用温度高于℃地相变储热材料称为高温相变储热材料.以熔融盐、氧化物和金属及其合金为主.使用温度低于℃为中、低温相变储热材料,这类相变材料以水合盐、石蜡类、脂酸类为主,在低温类中也有利用液气相变型地,如液氮、氦.资料个人收集整理,勿做商业用途 ()从蓄热过程中材料相态地变化方式来看,可分为固液、固气、液气、固固四种相变.由于固气和液气两种方式相变是有大量气体产生,使材料地体积变地很大,所以实际中很少采用这两种方式.资料个人收集整理,勿做商业用途 三、相变材料地分类选择因素 ()合适相变温度; ()较大地相变潜热; ()合适地导热性能; ()性能稳定,可反复使用而不发生熔析和副反应; ()相变地可逆性,过冷度要尽量小; ()符合绿色化学要求:无毒、无腐蚀、无污染; ()使用安全、不易燃.易爆或氧化; ()蒸汽压要低使之不易挥发损失; ()材料密度较大,从而确保单位体积储热密度较大; ()体积膨胀较小; ()成本低廉,原料易得. 实用型地相变储热材料需要满足以上各项基本原则,但选用时也可以结合实际地应用情况,

相变蓄热材料综述

相变蓄热材料综述 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

相变虚热材料综述蓄热技术是提高能源利用效率和保护环境的重要技术,可用于解决热能供给与需求失配的矛盾,在太阳能利用、电力“移峰填谷”、废热和余热的回收利用以及工业与民用建筑和空调的节能等领域具有广泛的应用前景,是世界范围内的研究热点.目前,主要的蓄热方法有显热蓄热、潜热蓄热和化学反应蓄热三种.显热蓄热是利用物质的温度升高来存储热量的.利用陶瓷粒、水、油等的热容进行蓄热,把已经高温或低温变换的热能贮存起来加以利用,如固体显热蓄热的炼铁热风炉、蓄热式热交换器、蓄热式燃烧器等,通常的显热蓄热方式简单,成本低,但储存的热量小,其放热不能恒温的缺点化学反应蓄热是指利用可逆化学反应的结合热储存热能.发生化学反应时,可以有催化荆,也可以没有催化剂一种高密度高能量的蓄热方式,它的储能密度一般高于显热和潜热,此种储能体系通过催化剂和产物分离易于能量长期储存.潜热蓄热(相变蓄热)是利用物质在凝固/熔化、凝结/气化、凝华/升华以及其他形式的相变过程中,都要吸收或放出相变潜热的原理来进行能量储存的技术.利用相变材料相变时单位质量(体积)潜热,蓄热量非常大能把热能贮存起来加以利用,如空间太阳能发电用蓄热器,深夜电力调峰用蓄热器,其储能比显热一个数量级,而且放热温度恒定,但其储热介质一般有过冷、相分离、易老化等缺点。 一相变蓄热材料的分类 根据相变种类的不同,相变蓄热一般分为四类:固一固相变、固一液相变、液一气相变及固一气相变。由于后两种相变方式在相变过程中伴随有

浅论基于复合相变材料储热单元的储热特性

浅论基于复合相变材料储热单元的储热 特性 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 储热技术,特别是相变储热技术是合理有效利用现有能源、优化使用可再生能源和提高能源利用效率的重要技术。相变储热技术利用材料的相变潜热来实现能量的储存和利用,是缓解能量供求双方在时间、强度及地点上不匹配的有效方式。为了使相变储热技术得到更进一步的发展,需要克服包括从储热材料到储热系统等的一系列问题。对于储热材料,需要克服其热导率低和与封装材料不可兼容等缺点;对于储热单元和储热系统,需要克服界面热阻高、使用寿命周期短和储/放热速率不可控等缺点。 1数学模型 物理模型 复合材料被制备成实心圆柱体和空心圆柱体两种形状分别放置于单管单元体和同心管单元体中。为了对比研究两种单元体的储热性能,保持置放于单元体中的复合材料体积一致。对于单管储热单元,复合材料直径为60mm,厚度为15mm。单元筒体长度为

300mm,筒体外径为68mm,壁厚为3mm;对于同心管储热单元,复合材料外径为62mm,内径为,单元体外管直径为70mm,内管直径为,壁厚为3mm,筒体长度同为300mm。 数学模型 复合材料和传热流体的控制方程 由于复合材料在热能的存储过程中,超微多孔通道产生的毛细张力能保持熔盐在陶瓷基体内不流出,能保持材料整体结构的稳定性。在复合材料的制备过程中,陶瓷基体被烧结形成致密的多孔介质,熔盐和热导率提高材料填充在其产生的空隙中。因此,对于这种复合材料内部的传热过程,可以认为是一种微孔介质中的传热。但是这种多微孔介质内部的传热是一种十分复杂的物理过程,往往伴随有颗粒间的热传导、微孔间的自然对流及热辐射。然而,由于微孔所占材料体积比较小,在本文的计算中,发生在微孔里面的自然对流和热辐射可以忽略,仅仅只考虑颗粒间的热传导,因此,复合材料和传热流体区域可以简化成二维模型进行计算。同时为了进一步简化数值模型,对模型也做如下假设:①相变熔盐只有一个熔点;②传热流体的热物理参数为常数且被认为是牛顿流体;③传热流体的入口速度和入口温度均匀且为常数;④储热

相变材料

浅谈相变储能材料的热能储存技术及其应用 云南师范大学能环学院再生B班马侯君(12416181) (云南师范大学太阳能研究所 650500) 摘要:由于相变储能材料具有储能密度高、储能放能近似等温、过程易控制等特点,因此,采用相变储能材料的热能储存技术是提高热能转化和回收利用效率的重要途径,也是储存可再生能源的有效方式之一。鉴于可供选用的相变储能材料种类多、相变温度范围大,使其在许多工程应用中具有较大的吸引力,筒要介绍利用相变储能材料的热能储存技术及其在工程中的多种应用。本文对热能存储技术的主要类型和技术原理进行了简要介绍,讨论了建筑采暖系统中热能 存储技术的应用现状及发展的趋势。 关键词:相变储能材料热能储存技术工程应用建筑采暖 1 引言 利用相变储能材料的热能储存技术是协调能源供求矛盾、提高能源利用效率和保护环境的重要技术,也是储存和回收利用短期或长期需求能源的一种有效途径。它在工业与民用建筑的采暖、空调、温室、太阳能热利用、工业生产过程的热能回收和利用等多个领域得到了广泛的应用,并已逐步成为世界范围高度重视的研究领域。特别是随着相变储能材料的基础和应用研究的不断深入,利用相变储能材料的热能储存技术的应用深度和广度都将不断拓展。为此,本文着重介绍相变储能材料及其研究,以及利用各种相变储能材料的热能储存技术在工程中的多种应用。 2 相变储能材料及其研究 相变储能材料的种类 人们对相变储能材料的研究可以追溯到20世纪70年代,近几十年来国内外研究人员对相变储能材料的研究和开发进行了大量的研究工作,取得了一定的研究成果,得到了具有温度变化小、储能密度大、过程易控制并适于利用材料的相变潜热进行热能储存的多种相变储能材料。根据其相变形式可分为固-液相变储能材料、固-固相变储能材料、固-气相变储能材料、液-气相变储能材料4类,虽然固-气相变和液-气相变具有的相变热大,但其体积上的大变化使相变储能系统变得复杂和不实用,因此,后两种相变储能材料在实际应用中很少被选用,应用较多的相变储能材料主要是固-液相变储能材料和固-固相变储能材料两类。 固-液相变储能材料 在固-液相变储能材料中,主要有无机相变储能材料、有机相变储能材料及其共融混合物3类。 (1)无机相变储能材料 无机相变储能材料包括结晶水合盐、熔融盐、金属合金和其它无机物。其中,水合盐是适于温度范围在 0"--150℃的潜热式储存的典型无机相变储能材料,它也是中低温相变储能材料中重要的一类,其优点是价格便宜、单位体积储能密度大、一般呈中性;缺点是过冷度大和易析出分离,需要通过添加成核剂和增稠剂进行处理。常用作相变储能材料的结晶水合盐热物理性能见表1。 表1 常用作相变储能材料的结晶水合盐热物理性能

相变储热材料的发展概况及展望

相变储热材料的发展概况及展望 本文系统概括了相变储热材料的发展概况,介绍了相变储热材料的分类、性能和应用,并对其未来的发展进行了展望。 标签:相变材料相变储热能源 能源是人类赖以生存的基础。随着现代工业的迅速发展,人们对能源的需求量越来越大,迫切需要全球各国不断开发和利用新能源。在此过程中,虽然新能源在不断被开发,但是我们对能源的利用在许多情况下都未达到合理化,致使大量能源被浪费。因此,提高能源的利用率很有必要。储热技术可用于解决热能供给和需求失配的矛盾,是提高能源利用效率和保护环境的重要技术。储热技术主要包括显热、潜热和反应热3种储热方式。其中,以相变材料(Phase Change Material,PCM)的固-固、固-液相变潜热来储存热量的潜热型热能储存方式最为普遍,也最为重要。其优点为:储热密度大、储放热过程近似等温和过程容易控制等[1]。 固-固相变储热材料和固-液相变储热材料是目前应用较为广泛的相变储热材料。固-液相变材料存在过冷和相分离现象,从而导致储热性能恶化,具有腐蚀性等缺点。固-固相变材料在发生相变前后固体的晶格结构改变而放热吸热,与固-液相变储热材料相比,固-固相变储热材料具有稳定性好、腐蚀性小、装置简单等特点[2]。 一、相变储热材料分类及应用 1.相变储热材料分类 相变储热材料主要有固-固和固-液型两类,其中固-液相变储热材料根据使用温度范围,又可分为高温型和低温型储热材料,或者根据材料类型,又可分为有机型和无机型储热材料;固-固相变储热材料主要有3大类,分别是高分子类、多元醇类和层状钙钛矿类。 1.1固-固相变储热材料 高分子类相变储热材料主要是一些高分子的聚合物。如聚烯烃类、聚缩醛类等。目前最常见的是聚乙烯。这种材料一般不产生过冷或相分离现象,结晶度高,导热率高,物美价廉。 多元醇类相变储热材料主要有季戊四醇(PE)、2,2-二羟甲基-丙醇(PG)、新戊二醇(NPG)、三羟甲基乙烷(TMP)等。这类材料具有寿命长、焓变大、性能稳定等优点。多元醇的相变温度较高,在很大程度上限制了其应用[3],可通过混合多元醇,调节相变温度。

相变蓄热材料综述

相变虚热材料综述 蓄热技术是提高能源利用效率和保护环境的重要技术,可用于解决热能供给与需求失配的矛盾,在太阳能利用、电力“移峰填谷”、废热和余热的回收利用以及工业与民用建筑和空调的节能等领域具有广泛的应用前景,是世界范围内的研究热点.目前,主要的蓄热方法有显热蓄热、潜热蓄热和化学反应蓄热三种.显热蓄热是利用物质的温度升高来存储热量的.利用陶瓷粒、水、油等的热容进行蓄热,把已经高温或低温变换的热能贮存起来加以利用,如固体显热蓄热的炼铁热风炉、蓄热式热交换器、蓄热式燃烧器等,通常的显热蓄热方式简单,成本低,但储存的热量小,其放热不能恒温的缺点化学反应蓄热是指利用可逆化学反应的结合热储存热能.发生化学反应时,可以有催化荆,也可以没有催化剂一种高密度高能量的蓄热方式,它的储能密度一般高于显热和潜热,此种储能体系通过催化剂和产物分离易于能量长期储存.潜热蓄热(相变蓄热)是利用物质在凝固/熔化、凝结/气化、凝华/升华以及其他形式的相变过程中,都要吸收或放出相变潜热的原理来进行能量储存的技术.利用相变材料相变时单位质量(体积)潜热,蓄热量非常大能把热能贮存起来加以利用,如空间太阳能发电用蓄热器,深夜电力调峰用蓄热器,其储能比显热一个数量级,而且放热温度恒定,但其储热介质一般有过冷、相分离、易老化等缺点。 一相变蓄热材料的分类 根据相变种类的不同,相变蓄热一般分为四类:固一固相变、固一液相变、液一气相变及固一气相变。由于后两种相变方式在相变过程中伴随有

大量气体的存在,使材料体积变化较大,因此尽管它们有很大的相变热,但在实际应用中很少被选用,固一固相变和固一液相变是实际中采用较多的相变类型。根据材料性质的不同,一般来说相变蓄热材料可分为:有机类、无机类及混合类相变蓄热材料。其中,石蜡类、脂酸类是有机类中的典型相变蓄热材料;结晶水合盐、熔融盐和金属及合金等是无机类中的典型相变蓄热材料。混合类又可分为:有机混合类、无机混合类及无机一有机混合类。 根据使用温度范围的不同,潜热蓄热材料(相变蓄热)又可分为分为高、中、低温三种. 1低温相变蓄热材料 低温相变蓄热材料主要有无机和有机两类无机相变材料主要包括结晶水合盐、熔融盐、金属或合金.结晶水合盐通常是中、低温相变蓄能材料中重要的一类,具有价格便宜,体积蓄热密度大,熔解热大,熔点固定,热导率比有机相变材料大,一般呈中性等优点.但在使用过程中会出现过冷、相分离等不利因素,严重影响了水合盐的广泛应用决过冷的办法主要有两种,一种是加入微粒结构与盐类结晶物相类似的物质作为成核剂.例如,Dr.Telkes经过千余次试验后发现在Na2SO。·10HzQ中加入硼酸能明显地降低过冷度;另一种是保留一部分固态相变材料,即保持一部分冷区,使未融化的一部分晶体作为成核剂,这种方法文献上称为冷指(Cold finger)法,虽然操作简单,但行之有效∞J.为了解决相分离的问题,防止残留固体物沉积于容器底部,人们也研究了一些方法,一种是将容器做成盘状,将这种很浅的盘状容器水平放臵有助于减少相分离;另一种更有效的方法是在混合物中添加合适的增稠剂,防止混合物中成分的分离,但并不妨碍

相变储能材料在建筑节能中的应用

相变储能材料及其在建筑节能中的应用摘要:相变材料具有储能密度大、效率高以及近似恒定温度下吸热与放热等优点。将该材料用于墙体天花板和地板,可提高建筑物热容量,从而可以降低室内温度波动,提高舒适度。本文介绍了相变储能材料的机理及其分类,综述了目前国内外相变节能材料的研究进展,分析了相变材料用于建筑上的应用方面,列举了相变材料在示范性建筑中的使用情况,最后提出相变储能材料的不足之处及应用前景。 关键词:建筑节能,相变,蓄能,建筑材料 Phase Change Materials and Its Application in the Construction of Energy-efficient Ji yongyu (Xi'an University of Architecture and Technology, Xi’an 710055) Abstract: A phase change material having a large energy density, high efficiency, and other advantages approximately constant temperature of the endothermic and exothermic. The materials used for walls ceilings and floors, the building thermal capacity can be increased, which can reduce the indoor temperature fluctuations and improve comfort. This paper describes the mechanism of phase change material and its classification, review the progress of the current domestic and international research phase change energy-saving materials, analysis of phase change materials for applications in buildings, citing the phase change material in an exemplary buildings usage, concludes the phase transition inadequacies energy storage materials and application prospects. Keywords: building energy efficiency, phase transformation, storage, construction materials 0 引言 近年来随着中国的经济快速发展以及人们生活水平的日益提高,人们对室内环境舒适度的要求也越来越高。在影响室内环境舒适度的诸多因素中,室温是一个非常关键的因素,而维持室温在 16.0~28.0°C 是保持室内环境舒适度的关键。为达到这一标准,人们通过利用空调和供暖系统来调节温度,但是相应的会造成能耗大幅度增加和能源消耗过快、环境污染加剧等问题。如何在室内环境舒适度、节能、环保中保持平衡已经成为建筑设计以及节能领域的热点问题 在众多的节能方法中, 近年新出现的相变储能材料, 逐渐走进人们的视野, 成为建筑节能开发的新宠。相变储能材料在很多领域都有应用, 但应用于建材的研究始于1982 年, 由美国能源部太阳能公司发起, 在我国才刚刚起步。相变储能材料的英文全称为Phase Change Material, 简称为PCM。相变储能材料是指随温度变化而改变物理性质并能提供潜热的物质,在一定的温度范围内,利用材料本身相态或结构的变化, 当环境温度升高或降低时, 它可以向环境自动吸收多余热量储存起来或释放储存的热量能起到保温作用。 1 相变储能材料介绍

高温相变材料的研究进展和应用

高温相变材料的研究进展和应用 摘要:随着全球性能源与环境的不断恶化,能源充分利用和新能源开发成为业界关注的重点。相变储热是利用相变材料在其物相变化过程中从环境吸收热(冷)量或向环境释放热(冷)量,从而达到能量的储存或释放的目的,并能与新能源结合应用。分析了高温相变材料的种类和各自特点,介绍了其在各行各业的应用情况,并对高温相变材料的未来发展进行了展望。 关键词:相变材料;储热材料;相变 1引言 物质相变过程是一个等温或近似等温过程,在这个过程中伴随有能量的吸收或释放。相变储热是利用相变材料在其相变过程中,从环境吸收或释放热量,达到储能或放能的目的。高温相变材料具有相变温度高,储热容量大,储热密度高等特点,它的使用能提高能源利用效率,有效保护环境,目前已在太阳能热利用、电力的“移峰填谷”、余热或废热的回收利用以及工业与民用建筑和空调的节能等领域得到了广泛的应用。现阶段 ,人们关心比较多的新能源是太阳能 ,但是太阳能利用和废热回收存在时间和空间上的不匹配的问题。相变储能材料可以从环境中吸收能量和向环境释放能量 ,较好地解决了能量供求在时间和空间上不匹配的矛盾 ,有效地提高了能量的利用率。同时相变储能材料在相变过程中温度基本上保持恒定 ,能够用于调控周围环境的温度 ,并且能重复使用。相变储能材料的这些特性使得其在电力“移峰填谷”、工业与民用建筑和空调的节能、纺织品以及军事等领域有着广泛的应用前景。 2相变储热技术

储热方法通常有3种:显热储热、化学反应储热和潜热储热(相变储热)。相变储热可以实现能量供应与人们需求在时间和空间达到一致的目的,又具有节能降耗的作用。相变储热材料按相变方式一般分为4类:固—固相变、固—液相变、固—气相变及液—气相变材料圈;按相变温度范围可分为高温、中温和低温储热材料;按材料的组成成分可分为无机类和有机类(包括高分子类)储热材料。由于固一气相变材料相变时体积变化太大,使用时需要很多的复杂装置,在实际应用中很少采用。相变储热材料在储热、放热过程中,温度波动范围很小,材料近似恒温,故可控制温度。其储热容量大,储热密度高,单位质量、单位体积的储热量要远远超过显热储热材料;且较之于化学反应储热,相变储热具有设备简单、体积小、设计灵活、使用方便等优势。 3高温相变储热材料 3.1高温固—液相变材料 固—液相变材料是指在温度高于相变点时物相由固相变为液相,吸收热量当温度下降时物相又由液相变为固相,放出热量的一类相变材料。目前固—液相变材料主要包括结晶无机物类和有机物类2种。无机盐高温相变材料主要为高温熔融盐、部分碱、混合盐。高温熔融盐主要有氟化物、氯化物、硝酸盐、硫酸盐等。它们具有较高的相变温度,从几百摄氏度至几千摄氏度,因而相变潜热较大。例如LiH相对分子质量小而熔化热大(2 840 J/g)。碱的比热容高,熔化热大,稳定性好,在高温下蒸气压力很低,且价格便宜,也是一种较好的中高温储能物质。例如NaOH在287℃和318℃均有相变,比潜热达330 J/g,在美国和日本已试用于采暖和制冷工程领域。混合盐熔化热大,熔化时体积变化小,传热较好,其最大优点是熔融温度可调,可以根据需要把不同的盐配制成相变温度从几百摄氏度

利用相变储能材料的热能储存技术及其应用

利用相变储能材料的热能储存技术及其应用 摘要: 由于相变储能材料具有储能密度高、储能放能近似等温、过程易控制等特点, 因此, 采用相变储能材料的热能储存技术是提高热能转化和回收利用效率的重要途径, 也是储存可再生能源的有效方式之一。鉴于可供选用的相变储能材料种类多、相变温度范围大, 使其在许多工程应用中具有较大的吸引力, 简要介绍了利用相变储能材料的热能储存技术及其在工程中的多种应用。 关键词: 相变储能材料; 热能储存技术; 工程应用 Applications of thermal energy storage techniques with phase change storage materials Abstract: Thermal energy storage technique with phase change storage materials is an important approach of enhancing the efficiency of thermal energy translation and recovery utilization, and one of the efficient ways of storing reproducible energy because of their characteristics such as higher energy storage capacity, isothermal energy storage or discharge and easier operation control. T here are many kinds o f phase chang e storage materials that melt and solidify at a w ide rang e of temperatures, which makes them attractive in a lot of engineering applications. T his article present s an overview of thermal energy storage techniques and their applications in engineering. Key words: phase change storage materials; thermal energy storage technique; engineering application 一.引言 近年来,当今社会能源短缺及环境污染成为我们所面临的重要难题。开发 利用可再生能源对节能和环保具有重要的现实意义。开发新能源提高能源利用 率已成为工业发展的重要课题。因此,相变储能材料(phase change material)成为国内外能源利用和材料科学方面的研究热点。相变储能技术可 以解决能量供求在时间和空间上不匹配矛盾,也就是可以在能量多时可以储 能,在需要时释放出来,从而提高能源利用率。一些发达国家在推广应用相对 比较成熟的储能技术和储能材料,以期待不断提高技术性、经济性和可靠性。 我国也在这方面进行了积极的研究[1-3]。

相关主题
文本预览
相关文档 最新文档