当前位置:文档之家› CAN网络 其特性阻抗及终端阻抗

CAN网络 其特性阻抗及终端阻抗

CAN网络 其特性阻抗及终端阻抗

CAN 网络其特性阻抗及终端阻抗

CAN 网络阻抗问题的开始是由CAN 网络开始的,如下图是一个CAN 的

网络的基本模型,两端是120 欧姆的电阻,can 网络用的线材的特性阻抗是也是120 欧姆的,下面有几个问题分别拆分来说明。1.为什么要用120 欧姆的终端阻抗?首先CAN 网络里用到传输线,线材的特性阻抗为120 欧姆。关于这跟线下面的问题来讨论,另外要说明的是在CAN 网络里的设备,即CAN 收发器,这种器件的输出阻抗很低,输入阻抗是比较高的,可以见TJA1050 的框图,也就是说在传输线上120 欧姆的特性阻抗传输的信号突然到了一个阻抗很高的地方,可以理解为断路,这样会产生很高的信号反射,影响CAN 收发器

对电平的采样,造成信息的误读。如果在CANH 和CANL 之间加上一个120

欧姆的电阻即终端电阻,因为这个电阻和线缆特性阻抗相同,同时这个远小于CAN 收发器输出阻抗的电阻和CAN 收发器并联在一起,电流自然更多的从阻抗小的地方流过,这样从特征阻抗120 欧姆的线缆上流道120 欧姆的电阻上,他们之间阻抗接近,他们的信号反射就要小很多,可以有效的保证信号完整性。同时这个电阻也不会影响信号本身如下图,例如在一个容错CAN 网络里,CANH=3.5v,CANL=0.5v 的时候为显性,CANH=CANL=2.5v 的时候为隐形,在显性位的时候终端电阻两端分别为3.5v 和1.5v,一个CAN 收发器为输出端一个CAN 收发器为接收端,输出端在输出电压,保持CANH 和CANL 的电压为 3.5v 和1.5v 不变,他们之间的电压差将产生电流由终端电阻消耗掉,接受端的CANH 和CANL 可以准确的采样到3.5v 和1.5v 的电压值,同理在隐形位的时候终端电阻也是不影响CAN 网络的信号但是达到了阻抗匹配的作用。

2.CAN 网络使用的120 欧姆特性阻抗的线材,对线材的特性阻抗如何定义?特性阻抗是对一种材质我们这里说的是线材,由于本身的粗细,大小等因素决定

射频同轴电缆特性阻抗Zc的测试

射频同轴电缆特性阻抗Z C 的测试 胡 树 豪 这里介绍射频同轴电缆特性阻抗Z C 的6种测试方法。它们同样也适合于双绞线,只不过仪器要转换为差分系统而已。 一、λ/4线接负载法 1、测试方法与步骤: ·待测电缆一段,长约半米(无严格要求),两端装上连接器。扫频范围由仪器低频扫到百余兆赫即可。对于其它长度的电缆,扫频范围请自定。 ·仪器工作在测反射(或回损)状态,作完校正后画面应选阻抗圆图。 ·在测试端口接上待测电缆,电缆末端接上精密负载。 ·画面不外三种情况: 轨迹集中为一点,则Z C = Z 0(测试系统特性阻抗,一般为50Ω)。 轨迹呈圆弧或圆圈状,在圆图右边,则Z C > Z 0 。 轨迹呈圆弧或圆圈状,在圆图左边,则Z C < Z 0 。 ·将光标移到最接近实轴的点上,记下此点的电阻值R in (不管电抗值)。 n i C R Z Z 0= 例如:R in = 54Ω,则Z C = 52Ω,若R in = 46Ω,则Z C = 48Ω。 若轨迹不与实轴相交,则扫频范围不够或电缆太短;若交点太多,则扫频范围太宽或电缆太长。 2、优点 轨迹直观连续,不易出错。 连接器的反射可以通过λ/4线抵消。 3、缺点 必须截取短样本。 必须两端装连接器。 电缆质量必须较好,否则不同频率的测试结果起伏较大,不好下结论。 4、物理概念与对公式的理解 λ/4线有阻抗变换作用,其输入阻抗Z in 与负载阻抗Z L 之间满足Z in = Z C 2/Z L 关系。 现在Z L = Z 0,Z in = R in ,代入展开即得上面的Z C 计算公式。 λ/4线的阻抗变换公式是众所周知的,但作为特性阻抗的测试方法却未曾见。在测阻抗曲线试验中发现,与实轴相交的这一点是可用来测特性阻抗的;因为它把矛盾扩大了,反而更容易测准。由于曲线是很规矩的,不易出错。但必须用第一个交点,即除原点以外的最低频率的与实轴最近的一点,用第二点就可能出问题。换句话说,待测电缆的电长度应为λ/4的奇数倍,不能是偶数倍。 二、λ/8线开、短路法 1、测试方法与步骤: ·样本与扫频方案 对于已装好连接器的跳线,长度已定,只能由长度定扫频方案而对于电缆原材料,则可以按要求频率确定下料长度。此时待测电缆一头装连接器即可。

电线电缆基础知识培训

电线电缆基础知识培训

电线电缆基础知识培训 电线电缆基础知识培训 —、总论 电线电缆产品的种类有成千上万,应用在各行各业中。它们总的用途有两种,一种是传输电流,一种是传输信号。传输电流类的电缆最主要控制的技术性能指标是导体电阻、耐压性能;传输信号类的电缆主要控制的技术性能指标是传输性能一一特性阻抗、衰减及串音等。当然传输信号主要也靠电流(电磁波)作载体,现在随着科技发展可以用光波作载体来传输。 电缆总体来说可以分为六大类:(1)裸线类(2)电磁线(漆包线)(3)电力电缆(4)电气装备用电线电缆(5)通信电线电缆(6)光缆 我公司现在在做及销售的主要是电气装备用电线电缆及电力电缆这两大类。以下我主要给大家介绍一下这两大类产品相关的基础知识。 二、电缆基本结构 一般电缆最基本的结构有导体、绝缘层及外护层,根据要求再增加一此结构,如屏蔽层、内护层或铠装层等,为了电缆有圆整性再辅加一些填充材料。导体是传输电流或信号的载体,其他结构都是作防护用。防护的性能根据电缆产品的需要总体上有三种,一种是保护电缆本身各单元不相互或减少影响,如耐压,耐热,防电磁场产生的损耗,通信电缆防信号相互干扰等。另一种防护是保护导体中的电流不对外部产生影响,如防止电流外泄,防电磁波外泄等;最后一种保护外界不对电缆内部产生影响,如抗压、抗拉、耐热、耐候、耐燃、防水、抗电磁波干扰等。 以下对电力电缆的结构单元作一简单的介绍。 1)导体(或称导电线芯): 其作用是传导电流。有实芯和绞合之分。材料有铜、铝、银、铜包钢、铝包钢等,主要用的是铜与铝。铜的导电性能比铝要好得多。铜导体的电阻率国家 标准要求不小于0.017241 Q .mm2/m (20°C时),铝导体的的电阻率要求 不小于0.028264 Q .mm2/m (20C时)。

电缆阻抗及特性阻抗一般疑问

电缆阻抗及特性阻抗一般疑问 术语 音频:人耳可以听到的低频信号。范围在20-20kHz。 视频:用来传诵图象的高频信号。图象信号比声音复杂很多,所以它的带宽(范围)也大过音频很多,少说也有0-6MHz。 射频:可以通过电磁波的形式想空中发射,并能够传送很远的距离。射频的范围要宽很多,10k-3THz(1T=1024G)。 电缆的阻抗 本文准备解释清楚传输线和电缆感应的一些细节,只是此课题的摘要介绍。如果您希望很好地使用传输线,比如同轴电缆什么的,就是时候买一本相关课题的书籍。什么是理想的书籍取决于您物理学或机电工程,当然还少不了数学方面的底蕴。 什么是电缆的阻抗,什么时候用到它? 首先要知道的是某个导体在射频频率下的工作特性和低频下大相径庭。当导体的长度接近承载信号的1/10波长的时候,good o1风格的电路分析法则就不能在使用了。这时该轮到电缆阻抗和传输线理论粉墨登场了。

传输线理论中的一个重要的原则是源阻抗必须和负载阻抗相同,以使功率转移达到最大化,并使目的设备端的信号反射最小化。在现实中这通常意味源阻抗和电缆阻抗相同,而且在电缆终端的接收设备的阻抗也相同。 电缆阻抗是如何定义的? 电缆的特性阻抗是电缆中传送波的电场强度和磁场强度之比。(伏特/米)/(安培/米)=欧姆 欧姆定律表明,如果在一对端子上施加电压(E),此电路中测量到电流(I),则可以用下列等式确定阻抗的大小,这个公式总是成立:Z = E / I 无论是直流或者是交流的情况下,这个关系都保持成立。 特性阻抗一般写作Z0(Z零)。如果电缆承载的是射频信号,并非正弦波,Z0还是等于电缆上的电压和导线中的电流比。所以特性阻抗由下面的公式定义: Z0 = E / I 电压和电流是有电缆中的感抗和容抗共同决定的。所以特性阻抗公式可以被写成后面这个形式:

阻抗测试方法

成品阻抗测试方法: 1、仪器设置: 网络分析仪:CENTER:200MHz SPAN:2MHz(视被测电缆的长度进行设定)MEAS:S12 或S21 FORMA T:Phase 直通校准 注意:校准完毕为一条数值为零的直线,SPAN更改不同的数值需要重新校准。 2、电容测量仪测试电容值。(数值现实稳定可以读取数值)。 3、相位差的测量: 网络分析仪连接被测电缆,显示相位值,按照以下方式进行读取数值: 打开菜单MARKER SERACH,target value设置为0,打开multi target search , 记录两个标记点的频率值(注意:选择红圈内数值最接近的标记点)。 如上图所示:应选择标记点1、2。 δf=(f m -f n )/m-n 4、按照特性阻抗的公式: 平均特性阻抗=1000/(δf*c) δf单位为MHz, C为测量的电容值:单位nf。 注意事项:1、测试频率差时被测电缆的接头状态必须和测试电容的接头状态保持一致。 2、target value设置为0,以避免产生误差。 3、保证校准状态有效。

相对传播速度的测量方法: 1:相对传播速度的定义:信号在介质中的传播速度与自由空间的传播速度之比。 2、仪器的设置: 网络分析仪进行测试: CENTER:200MHz SPAN:1MHz MEAS:S12 或S21 FORMA T:Group delay 直通校准 校准后为一条数值为零的直线。 3、连接被测电缆,打开Marker Factions ,将统计功能打开。读取平均值即为延迟时间t。 4、按照下列公式计算相对传播速度: V =L/(t?c) ?100% V:相对传播速度。L:电缆的实际长度(米)c=3.0?108米/秒 t :延迟时间(秒)。 电缆相位及电长度测试及计算方法: 1、仪器的设置: 网络分析仪设置: CENTER:要求测试频点SPAN:10MHz(或者按照通知单要求设置起始终止频率)MEAS:S12 或S21 FORMA T:Extend Phase 直通校准 校准后为一条数值为零的直线。 2、连接被测电缆,读取要求频率点的数值。

电线电缆的初步认识(二)

电线电缆基本知识(二)

电线的制造流程伸铜丝绞铜丝隔离外被押出芯线押出 芯线绞合

电气性能 ?导体阻抗:即导体本身的阻抗,由导体的材质和面积和长度 决定(其中有些材料与温度有关).不同AWG数的导体导体阻抗不同,并且AWG数越大阻抗越小. ?耐电压:确定电线电缆在规定的额定电压下和短暂的过电 压下(可能是切换开关、遽增的电压及其它类似的现象所造成)尚能正常运作。 ?绝缘阻抗:电线通过直流电压后,其表面产生漏电流所形 成之阻值. ?特性阻抗Z0(impedance):电缆在终端匹配的情况下,电 磁波沿电缆传播所遇到阻抗,称为特性阻抗,单位为Ω。 电缆的特性阻抗与其结构尺寸和介电常数(ε)等有关.电缆组件特征阻抗必须与其连接之电子组件讯号线的特征阻抗相匹配, 以减少高频讯号在通过连接器时产生反射而造成NOISE.

?串音:串音噪声(Crosstalk)是指在高频时, 某一条信号线上传递的电子信号在其附近的信号线上因电磁感应而产生之噪声,串音噪声会随着频率的增高及Pin与Pin距离缩小而增大,当串音噪声太大时会造成信号失真, 甚至造成电子电路的误触发及错误?衰减: 电流方向的电压降( 线路上的损耗值) ?延时: 信号从一端输出,到另一端接收到之间的时间差量 确保各讯号之间的同步

物理性能 ?耐燃实验: 测试电线的耐燃烧状况,是否合乎相关 规范. ◆水平燃烧 ◆垂直燃烧 垂直燃烧标准:VW-1燃烧整条线 VW-1S燃烧芯线 VW-1SC 单独燃烧外被 ◆上升燃烧试验 ?耐高温实验:模拟电线在高温状况后,电线的耐压 和绝缘状况.一般标准为:80℃ 96H ?耐低温实验:模拟电线在低温状况后,电线的耐压 和绝缘状况.一般标准为: -25 ℃ 96H

交流阻抗怎么测量

交流阻抗怎么测量 交流阻抗法是电化学测试技术中一类十分重要的方法,是研究电极过程动力学和表面现象的重要手段。特别是近年来,交流阻抗的测试精度越来越高,超低频信号阻抗谱也具有良好的重现性,再加上计算机技术的进步,对阻抗谱解析的自动化程度越来越高,这就使我们能更好的理解电极表面双电层结构,活化钝化膜转换,孔蚀的诱发、发展、终止以及活性物质的吸脱附过程。 (1)交流阻抗:交流阻抗即阻抗,在电子学中,是指电子部件对交流激励信号呈现出的电阻和电抗的复合特性;在电化学中,是指电极系统对所施加的交流激励信号呈现出的电阻和电抗的复合特性。阻抗模的单位为欧姆,阻抗辐角(相角)的单位为弧度或度。 (2)交流阻抗谱:在测量阻抗的过程中,如果不断地改变交流激励信号的频率,则可测得随频率而变化的一系列阻抗数据。这种随频率而变的阻抗数据的集合被称为阻抗频率谱或阻抗谱。阻抗谱是频率的复函数,可用幅频特性和相频特性的组合来表示;也可在复平面上以频率为参变量将阻抗的实部和虚部展示出来。测量频率范围越宽,所能获得的阻抗谱信息越完整。RST5200电化学工作站的频率范围为:0.00001Hz~1MHz,可以很好地完成阻抗谱的测量。 (3)电化学阻抗谱:电化学阻抗谱是一种电化学测试方法,采用的技术是小信号交流稳态测量法。对于电化学电极体系中的溶液电阻、双电层电容以及法拉第电阻等参量,用电化学阻抗谱方法可以很精确地测定;而用电流阶跃、电位阶跃等暂态方法测定,则精度要低一些。另外,像扩散传质过程等需要用较长时间才能测定的特性,用暂态法是无法实现的,而这却是电化学阻抗谱的长项。 (4)电化学阻抗谱测量的特殊性:就测量原理而言,在电化学中测量电极体系的阻抗谱与在电子学中测量电子部件的阻抗谱并没有本质区别。通常,我们希望获得电极体系处于某一状态时的电化学阻抗谱。而维持电极体系的状态,须使电极电位保持不变。通常认为,电极电位变化50mV以上将会破坏现有的状态。因此,在电化学阻抗谱测量中,必须注意两个关键点,即:偏置电位和正弦交流信号幅度。 (5)正弦交流信号的幅度:为了避免对电化学电极体系产生大的影响以及希望其具有较好的线性响应,正弦交流信号的幅度通常可设在2~20mV之间。 (6)自动去偏:在电化学阻抗谱测量过程中,由于偏置电位不一定等于开路电位以及少量的非线性作用,在工作电极电流中还会含有直流成分。去除这个直流成分(偏流),可扩大交流信号的动态范围、提高信噪比。RST5200电化学工作站,可在测量过程中动态地调整去偏电流,使获得的阻抗谱数据更精准。另外,在软件界面的状态栏中,可实时显示工作电极的极化电流,供操作者参考。 以上为交流阻抗的相关说明,下面我们就实验设置过程中遇到的专业名词

探讨射频电缆的各种指标和性能

探讨射频电缆的各种指标和性能 射频电缆组件的正确选择除了频率范围,驻波比,插入损耗等因素外,还应考虑电缆的机械特性,使用环境和应用要求,另外,成本也是一个永远不变的因素。在本文中,详细讨论了射频电缆的各种指标和性能,了解电缆的性能对于选择最佳的射频电缆组件是十分有益的。射频同轴电缆是用于传输射频和微波信号能量的。它是一种分布参数电路,其电长度是物理长度和传输速度的函数,这一点和低频电路有着本质的区别。射频同轴电缆分为半刚,半柔和柔性电缆三种,不同的应用场合应选择不同类型的电缆。半刚和半柔电缆一般用于设备内部的互联;而在测试和测量领域,应采用柔性电缆。 半刚性电缆 顾名思义,这种电缆不容易被轻易弯曲成型,其外导体是采用铝管或者铜管制成的,其射频泄露非常小(<-120dB),在系统中造成的信号串扰可以忽略不计。这种电缆的无源互调特性也是非常理想的。如果要弯曲到某种形状,需要专用的成型机或者手工的磨具来完成。如此麻烦的加工工艺换来的是非常稳定的性能,半刚性电缆采用固态聚四氟乙烯材料作为填充介质,这种材料具有非常稳定的温度特性,尤其在高温条件下,具有非常良好的相位稳定性。半刚性电缆的成本高于半柔性电缆,大量应用于各种射频和微波系统中。 半柔性电缆 半柔性电缆是半刚性电缆的替代品,这种电缆的性能指标接近于半刚性电缆,而且可以手工成型。但是其稳定性比半刚性电缆略差些,由于其可以很容易的成型,同样的也容易变形,尤其在长期使用的情况下。 柔性(编织)电缆 柔性电缆是一种"测试级"的电缆。相对于半刚性和半柔性的电缆,柔性电缆的成本十分昂贵,这是因为柔性电缆在设计时要顾及的因素更多。柔性电缆要易于多次弯曲而且还能保持性能,这是作为测试电缆的最基本要求。柔软和良好的电指标是一对矛盾,也是导致造价昂贵的主要原因。柔性射频电缆组件的选择要同时考虑各种因素,而这些因素之间有些的相互矛盾的,如单股内导体的同轴电缆要比多股的具有更低的插入损耗和弯曲时的幅度稳定性,但是相位稳定性能就不如后者。所以一条电缆组件的选择,除了频率范围,驻波比,插入损耗等因素外,还应考虑电缆的机械特性,使用环境和应用要求,另外,成本也是一个永远不变的因素。 特性阻抗 射频同轴电缆由导体,介质,外导体和护套组成。 "特性阻抗"是射频电缆,接头和射频电缆组件中最常提到的指标。最大功率传输,最小信号反射都取决于电缆的特性阻抗和系统中其它部件的匹配。如果阻抗完全匹配,则电缆的损耗只有传输线的衰减,而不存在反射损耗。电缆的特性阻抗(Zo)与其内外导体的尺寸

详细了解电缆的特性阻抗

详细了解电缆的特性阻抗 术语 音频:人耳可以听到的低频信号。范围在20-20kHz。 视频:用来传诵图象的高频信号。图象信号比声音复杂很多,所以它的带宽(范围)也大过音频很多,少说也有0-6MHz。 射频:可以通过电磁波的形式想空中发射,并能够传送很远的距离。射频的范围要宽很多,10k-3THz(1T=1024G)。 电缆的阻抗 本文准备解释清楚传输线和电缆感应的一些细节,只是此课题的摘要介绍。如果您希望很好地使用传输线,比如同轴电缆什么的,就是时候买一本相关课题的书籍。什么是理想的书籍取决于您物理学或机电工程,当然还少不了数学方面的底蕴。 什么是电缆的阻抗,什么时候用到它? 首先要知道的是某个导体在射频频率下的工作特性和低频下大相径庭。当导体的长度接近承载信号的1/10波长的时候,good o1风格的电路分析法则就不能在使用了。这时该轮到电缆阻抗和传输线理论粉墨登场了。 传输线理论中的一个重要的原则是源阻抗必须和负载阻抗相同,以使功率转移达到最大化,并使目的设备端的信号反射最小化。在现实中这通常意味源阻抗和电缆阻抗相同,而且在电缆终端的接收设备的阻抗也相同。 电缆阻抗是如何定义的? 电缆的特性阻抗是电缆中传送波的电场强度和磁场强度之比。(伏特/米)/(安培/米)=欧姆 欧姆定律表明,如果在一对端子上施加电压(E),此电路中测量到电流(I),则可以用下列等式确定阻抗的大小,这个公式总是成立: Z = E / I 无论是直流或者是交流的情况下,这个关系都保持成立。 特性阻抗一般写作Z0(Z零)。如果电缆承载的是射频信号,并非正弦波,Z0还是等于电缆上的电压和导线中的电流比。所以特性阻抗由下面的公式定义: Z0 = E / I 电压和电流是有电缆中的感抗和容抗共同决定的。所以特性阻抗公式可以被写成后面这个形式:

电路基础实验实验十一rlc元件阻抗特性的测定

实验十一 R、L、C元件阻抗特性的测定 实验成员: 班级: 整理人员:

实验十一 R 、L 、C 元件阻抗特性的测定 一、实验目的 1.验证电阻,感抗、容抗与频率的关系,测定R~f ,X L ~f 与X C ~f 特性曲线。 2.加深理解R 、L 、C 元件端电压与电流间的相位关系。 二、原理说明 1.在正弦交变信号作用下,电阻元件R 两端电压与流过的电流有关系式 在信号源频率f 较低情况下,略去附加电感及分布电容的影响,电阻元件的阻值信号源频率无关,其阻抗频率特性R~f 如图9-1。 如果不计线圈本身的电阻R L ,又在低频时略去电容的影响,可将电感元件视为电感,有关系式 I jX U L L ? ? = 感抗 fL X L π2= 感抗随信号源频率而变,阻抗频率特性X L ~f 如图9-1。 在低频时略去附加电感的影响,将电容元件视为纯电容,有关系式 I jX U C C ? ? - = 容抗 fC X C π21 = 容抗随信号源频率而变,阻抗频率特性X C ~f 如图9-1. 2.单一参数R 、L 、C 阻抗频率特性的测试电路如图9-2所示。 途中R 、L 、C 为被测元件,r 为电流取样电阻。改变信号源频率,测量R 、L 、

C 元件两端电压U R 、U L 、U C ,流过被测元件的电流则可由r 两端电压除以r 得到。 3.元件的阻抗角(即相位差φ)随输入信号的频率变化而改变同样可用实验方法测得阻抗角的频率特性曲线φ~f 。 用双踪示波器测量阻抗角(相位差)的方法。 将欲测量相位差的两个信号分别接到双踪示波器Y A 和Y B 两个输入端。调节示波器有关旋钮,使示波器屏幕上出现两条大小适中、稳定的波形,如图9-3所示,荧光屏上数的水平方向一个周期占n 格,相位差占m 格,则实际的相位差φ(阻抗角)为 度n 360m ? ? =φ 三、实验设备 四、实验内容 1.测量R 、L 、C 元件的阻抗频率特性。

电缆阻抗知识

电缆的阻抗(Impedance):其电缆中的R、L、C造成电气阻力 计算公式如下: z÷ ? =π + R ) f ( L 2C 也可用下列公式计算 对于时变电磁场,物质的介电常数和频率相关,通常称为介电系数。 介电常数又叫介质常数,介电系数或电容率,它是表示绝缘能力特性的一个系数,以字母ε表示,单位为法/米 电缆的阻抗 什么是电缆的阻抗,什么时候用到它? 首先要知道的是某个导体在射频频率下的工作特性和低频下大相径庭。当导体的长度接近承载信号的1/10波长的时候,good o1风格的电路分析法则就不能在使用了。 这时该轮到电缆阻抗和传输线理论粉墨登场了。 传输线理论中的一个重要的原则是源阻抗必须和负载阻抗相同,以使功率转移达到最大化,并使目的设备端的信号反射最小化。在现实中这通常意味源阻抗和电缆阻抗相同,而且在电缆终端的接收设备的阻抗也相同。 电缆阻抗是如何定义的? 电缆的特性阻抗是电缆中传送波的电场强度和磁场强度之比。(伏特/米)/(安培/米)=欧姆 欧姆定律表明,如果在一对端子上施加电压(E),此电路中测量到电流(I),则可以用下列等式确定阻抗的大小,这个公式总是成立: Z = E / I

无论是直流或者是交流的情况下,这个关系都保持成立。 特性阻抗一般写作Z0(Z零)。如果电缆承载的是射频信号,并非正弦波,Z0还是等于电缆上的电压和导线中的电流比。所以特性阻抗由下面的公式定义: Z0 = E / I 电压和电流是有电缆中的感抗和容抗共同决定的。所以特性阻抗公式可以被写成后面这个形式: 其中 R=该导体材质(在直流情况下)一个单位长度的电阻率,欧姆 G=单位长度的旁路电导系数(绝缘层的导电系数),欧姆 j=只是个符号,指明本项有一个+90'的相位角(虚数) π=3.1416 L=单位长度电缆的电感量 c=单位长度电缆的电容量 注:线圈的感抗等于XL=2πfL,电容的容抗等于XC=1/2πfL。从公式看出,特性阻抗正比于电缆的感抗和容抗的平方根。 对于电缆一般所使用的绝缘材料来说,和2πfc相比,G微不足道可以忽略。在低频情况,和R相比2πfL微不足道可以忽略,所以在低频时,可以使用下面的等式: 注:原文这里是Zo = sqrt ( R / (j * 2 * pi * f * L)) 应该是有个笔误。阻抗不应该是反比于感抗.实际上低频时应该是电阻和容抗占主导地位。 如果电容不跟随频率变化,则Z0和频率的平方根成反比关系,在接近直流的状态下有一个-45'的相位角,当频率增加相位角逐渐减少到0'。当频率上升时,聚氯乙烯和橡胶材料会稍微降低电容,但聚乙烯,聚丙烯,特氟纶(聚四氟乙烯)的变化不大。 当频率提高到一定程度(f足够大),公式中包含f的两项变的很大,这时候R和G可能可以被忽略。等式成为

实验7.8.9.RLC特性阻抗测试

实训项目七 R 、L 、C 元件阻抗特性的测定 一、实验目的 1.验证电阻、感抗、容抗与频率的关系,测定R ~f 、L X ~f 、C X ~f 特性曲线。 2.加深理解R 、L 、C 元件端电压与电流间的相位关系。 二、原理说明 1.在正弦交变信号作用下,电阻元件两端电压与流过的电流有关系式 I R U = 在信号源频率f 较低情况下,略去附加电感及分布电容的影响,电阻元件的阻值与信号源频率无关,其阻抗频率特性R ~f 如图3-20。 如果不计线圈本身的电阻1R ,又在低频时略去电容的影响,可将电感元件视为纯电感,有关系式, I jX U L = 感抗 fL X L π2= 感抗随信号源频率而变,阻抗频率特性L X ~f 如图3-20所示。 在低频时略去附加电感的影响,将电容元件视为纯电容,有关系式, I jX U C -= 容抗 fC X C π21 = 容抗随信号源频率而变,阻抗频率特性C X ~f 如图3-20。 图3-20 阻抗特性测试电路 2.单一参数R 、L 、C 阻抗率特性的测试电路如图3-20所示。 图中R 、L 、C 为被测元件,r 为电流取样电阻。改变信号源频率,测量R 、L 、C 元件两端电压R U 、L U 、C U 流过被测元件的电流则可由r 两端电压除以r 得到。 元件的阻抗角(即相位差?)随输入信号的频率变化而改变,同样可用实验方法测得阻

抗角频率特性曲线?~f 。 3.用双踪示波器测量阻抗角(相位差)的方法。 将欲测量相位差的两个信号分别接到双踪示波器A Y 和B Y 两个端。调节示波器有关旋钮,使示波器屏幕上出现两条大小适中、稳定的波形,如下图3-21所示,荧光屏上数得水 平方向一个周期占n 格,相位差占m 格,则实际的相位差?(阻抗角)为n m 360?=?。 图3-21 相位差测定波形图 三、实验设备 四、实验内容 1.测量单一参数R 、L 、C 元件的阻抗频率特性。 实验线路如图3-20所示,取mH L K R 10,1=Ω= ,Ω==200,1r F C μ。通过电缆线将函数信号发生器输出的正弦信号接至电路输入端,作为激励源U ,并用交流毫伏表测量,使激励电压的有效值为U =3V ,并在整个实验过程中保持不变。 改变信号源的输出频率从200Hz (用频率计测量),并使开关S 分别接通R 、L 、C 三个元件,用交流毫伏表分别测量R U 、r U ;L U 、r U ;C U 、r U ,并通过计算得到各频率点时的R 、L X 、C X 之值,记录表中。

电缆的特性阻抗

电缆的阻抗 术语 音频:人耳可以听到的低频信号。范围在20-20kHz。 视频:用来传诵图象的高频信号。图象信号比声音复杂很多,所以它的带宽(范围)也大过音频很多,少说也有0-6MHz。 射频:可以通过电磁波的形式想空中发射,并能够传送很远的距离。射频的范围要宽很多,10k-3THz(1T=1024G)。 电缆的阻抗 本文准备解释清楚传输线和电缆感应的一些细节,只是此课题的摘要介绍。如果您希望很好地使用传输线,比如同轴电缆什么的,就是时候买一本相关课题的书籍。什么是理想的书籍取决于您物理学或机电工程,当然还少不了数学方面的底蕴。 什么是电缆的阻抗,什么时候用到它? 首先要知道的是某个导体在射频频率下的工作特性和低频下大相径庭。当导体的长度接近承载信号的1/10波长的时候,good o1风格的电路分析法则就不能在使用了。这时该轮到电缆阻抗和传输线理论粉墨登场了。 传输线理论中的一个重要的原则是源阻抗必须和负载阻抗相同,以使功率转移达到最大化,并使目的设备端的信号反射最小化。在现实中这通常意味源阻抗和电缆阻抗相同,而且在电缆终端的接收设备的阻抗也相同。 电缆阻抗是如何定义的? 电缆的特性阻抗是电缆中传送波的电场强度和磁场强度之比。(伏特/米)/(安培/米)=欧姆 欧姆定律表明,如果在一对端子上施加电压(E),此电路中测量到电流(I),则可以用下列等式确定阻抗的大小,这个公式总是成立: Z = E / I 无论是直流或者是交流的情况下,这个关系都保持成立。 特性阻抗一般写作Z0(Z零)。如果电缆承载的是射频信号,并非正弦波,Z0还是等于电缆上的电压和导线中的电流比。所以特性阻抗由下面的公式定义: Z0 = E / I 电压和电流是有电缆中的感抗和容抗共同决定的。所以特性阻抗公式可以被写成后面这个形式: 其中 R=该导体材质(在直流情况下)一个单位长度的电阻率,欧姆 G=单位长度的旁路电导系数(绝缘层的导电系数),欧姆 j=只是个符号,指明本项有一个+90'的相位角(虚数) π=3.1416

特性阻抗之原理与应用

特性阻抗之原理與應用 Characteristic Impedance 一、前題 1、導線中所傳導者為直流(D.C.)時,所受到的阻力稱為電阻(Resistance),代表符號為R,數值單位為“歐姆”(ohm,Ω)。其與電壓電流相關的歐姆定律公式為: R=V/I;另與線長及截面積有關的公式為:R=ρL/A。 2、導線中所傳導者為交流(A.C.)時,所遭遇的阻力稱為阻抗(Impedance),符號為Z,單位仍為Ω。其與電阻、感抗及容抗等相關的公式為: Z =√R2 +(XL—Xc)2 3、電路板業界中,一般脫口而出的“阻抗控制”嚴格來說并不正确,專業性的說法應為“特性阻抗控制”(Characteristic Impedance Control)才對。因為電腦類PCB線路中所“流通”的“東西”并不是電流,而是針對方波訊號或脈沖在能量上的傳導。此種“訊號”傳輸時所受到的“阻力”另稱為“特性阻抗”,代表的符號是Zo。計算公式為:Zo = √L/C ,(式中L為電感值,C為電容值),不過Zo的單位仍為歐姆。只因“特性”的原文共有五個章節,加上三個單字一并唸出時拗口繞舌十分費力。為簡化起見才把“特性”一字暫時省掉。故知俗稱的“阻抗控制”,實際上根本不是針對交流電“阻抗”所進行的“控制”。且即使要簡化掉“特性”也應說成Controlled Impedance,或阻抗匹配才不致太過外行。 圖1 PCB元件間以訊號(Signal)互傳,板面傳輸線中所遭遇的阻力稱為“特性阻抗” 二、需做特性阻抗控制的板類 電路板發展40年以來已成為電機、電子、家電、通信(含有線及無線)等硬體必備的重要元件。若純就終端產品之工作頻率,及必須阻抗匹配的觀點來分類時,所用到的電路板約可粗分為兩大類:

电线电缆导体介绍

Ⅰ电线电缆导体介绍 一.导体概述 按电阻率(长为1m,截面积为1mm2的材料电阻值大小)划分,一般情况下我们将材料分为三类: 导体:电阻率在102Ω·mm2/m以下 半导体:电阻率为103~108Ω·mm2/m﹔ 绝缘体:电阻率为108Ω·mm2/m以上。 目前常用的金属导体有金、银、铜等(如下表),考虑到导体的价格和导电性能,最常用的为铜导体。导电系数以铜为标准(100%),各导体比较如下表: 名称符号比重(g/cm3) 导电常数% 备注 金Au 19.3 70.80 不氧化、价格昂贵 银Ag 10.5 109 导电性最优、价格昂贵铜Cu 8.89 100 导电性次优、价格普及钢(铁) Fe 7.86 17.80 导电性不良、抗张好铝Al 2.7 61.20 质量轻 由上表可知,铜的导电率较佳,适用性能广,成本较低,还可在其表面镀锡,利于焊接,并有抗氧化作用(指与空气中氧气结合氧化)。 二.导体规格 目前铜线导体的组成种类繁多,如7/0.05mm,7/0.06mm,7/0.08mm, 19/0.08mm等等,那么这些组成怎么区分,怎么确定是什么规格呢? 导体组成因需要的不同而多种多样,在通讯控制线缆行业,目前通用的标称为AWG,就是American Wire Guage,中文意思是“美国线材规格”,它把导体分为单铜(单条铜导体)和绞铜(多条铜导体绞合成的铜导体),单铜根据直径大小划分规格﹔绞铜根据截面积大小划分规格,如下表所示,表中列出的为目前常用的导体规格:

导体规 格(AWG) 单条导体直径绞铜导体的截面积标准尺寸 Mils (mm) 最小尺寸 Mils (mm) 标准尺寸 Cmils (mm2) 最小尺寸 Cmils (mm2) 32 8.0 0.203 7.92 0.201 64.0 0.0324 62.7 0.0318 31 8.9 0.226 8.81 0.244 79.2 0.0401 77.6 0.0393 30 10.0 0.254 9.9 0.251 100 0.0507 98 0.0497 29 11.3 0.287 11.2 0.284 128 0.0647 125 0.0633 28 12.6 0.320 12.5 0.318 159 0.0804 156 0.0790 27 14.2 0.361 14.1 0.358 202 0.102 198 0.100 26 15.9 0.404 15.7 0.399 253 0.128 248 0.126 25 17.9 0.455 17.7 0.450 320 0.162 314 0.159 24 20.1 0.511 19.9 0.506 404 0.205 396 0.201 23 22.6 0.574 22.4 0.568 511 0.259 501 0.254 22 25.3 0.643 25.0 0.637 640 0.324 627 0.318 21 28.5 0.724 28.2 0.717 812 0.412 796 0.404 20 32.0 0.813 31.7 0.805 1020 0.519 1000 0.509 Ⅱ绝缘体和被覆材料 一、绝缘体 1.目的:为导体绝缘。 2.常用材料包括PVC、SR-PVC、PE、氟塑料、PP、橡胶、ABS等。 二、被覆材料 1.目的:保护绝缘体 2. 常用材料包括PVC、SR-PVC、PE、氟塑料、PP、橡胶、ABS等,应用最广泛的 为PVC。 三、PVC胶粒 (一)PVC用途简介和分类 1.用途:电线电缆、绝缘材料、外被材料、唱片、地砖、塑料管、人造窗帘、 雨衣、鞋子、海滩椅、插头、电子零件等等。 2.分类:按硬度分为三种,即硬质、半硬质、软质﹔它们的优点是电气绝缘

过渡电阻对阻抗继电器的影响

第四章 过渡电阻对阻抗继电器的影响 一. 过渡电阻对相间阻抗继电器的影响 电力系统中的短路一般都不是金属性的,而是在短路点存在过渡电阻。短路点的过渡电阻g R 是指当相间短路或接地短路时,短路电流从一相流到另一相或从相导线流入地的途径中所通过的物质的电阻,这包括电弧、中间物质的电阻,相导线与地之间的接触电阻,金属杆塔的接地电阻等。 在相间短路时,过渡电阻主要由电弧电阻构成。短路初瞬间,电弧电流g I 最大,弧长g l 最短,弧阻g R 最小。几个周期后,在风吹、空气对流和电动力等作用下,电弧逐渐伸长,弧阻g R 迅速增大,因此电弧电阻属于非线性电阻。在导线对铁塔放电的接地短路时,铁塔及其接地电阻构成过渡电阻的主要部分,铁塔的接地电阻与大地导电率有关,对于跨越山区的高压线路,铁塔的接地电阻可达数十欧;当导线通过树木或其它物体对地短路时,过渡电阻更高。目前我国对500kV 线路接地短路的最大过渡电阻按300Ω估计;对220kV 线路,则按100Ω估计。 对于图中所示的单侧电源网络,当线路B —C 的出口经g R 短路时,保护l 的测量阻抗为g J R Z =1.,保护2的测量阻抗为g AB J R Z Z +=2.。可见,过渡电阻会使测量阻抗增大,对保护1,测量阻抗增大的数值就是g R ;对保护2,由于2.J Z 是AB Z 与g R 的向量和, 图 单侧电源线路经过渡电阻g R 短路的等效图 由图可知其数值比无g R 时增大不多。因此可以得出结论:保护装置距短路点越近时,受过渡电阻的影响越大;同时,保护装置的整定值越小,受过渡电阻的影响也越大。

图 过渡电阻对不同安装地点距离保护影响的分析 当g R 较大使1?k Z 落在保护1的第Ⅱ段范围内,而2.k Z 仍落在保护2的第Ⅱ段范围内时,两个保护将同时以第Ⅱ段时限动作,从而失去选择性。 如图所示的双侧电源网络接线,各参数标示于图中,假设全系统各元件的阻抗角相等,以'()S L S Arg Z Z Z ArgZ φ∑ ∑=++=表示。 当线路上任意点经过渡电阻Rg 发生三相短路时,设三相参数相同,则仍可用一相回路进行分析。此时在F 点Rg 中流过的电流为: F M N I I I =+ (4-25) 安装于线路M 侧的继电器测量阻抗为: F M M L g L R M M U I Z Z R Z Z I I αα= =+ =+ (4-26) 式中α表示故障点位置占线路全长的百分数,Z R 表示由过渡电阻在测量阻抗中引起的附加分量。由于对侧电源的助增作用使Rg 所产生的影响要复杂得多。例如,当两侧电势相位不同时,I M 和I N

阻抗测试

PCB的差分阻抗测试技术 作者: 周英航上网日期: 2006年11月10日打印版订阅 关键字:PCB电路板TDR真差分TDR特征阻抗Coupon 为了提高传输速率和传输距离,计算机行业和通信行业越来越多的采用高速串行总线。在芯片之间、板卡之间、背板和业务板之间实现高速互联。这些高速串行总线的速率从以往USB2.0、LVDS以及FireWire1394的几百Mbps到今天的PCI-Express G1/G2、SATA G1/G2 、XAUI/2XAUI、XFI的几个Gbps乃至10Gbps。计算机以及通信行业的PCB客户对差分走线的阻抗控制要求越来越高。这使PCB生产商以及高速PCB设计人员所面临的前所未有的挑战。本文结合PCB行业公认的测试标准IPC-TM-650手册,重点讨论真差分TDR测试方法的原理以及特点。 IPC-TM-650手册以及PCB特征阻抗测试背景 IPC-TM-650测试手册是一套非常全面的PCB行业测试规范,从PCB的机械特性、化学特性、物理特性、电气特性、环境特性等各方面给出了非常详尽的测试方法以及测试要求。其中PCB板电气特性要求在第2.5节中描述,而其中的2.5.5.7a(IPC-TM-650官方网站下载链接https://www.doczj.com/doc/ff3058475.html,/4.0_Knowledge/4.1_Standards/test/2-5-5-7a.pdf)则全面的介绍了PCB特征阻抗测试方法和对相应的测试仪器要求,重点包括单端走线和差分走线的阻抗测试。 TDR的基本原理及IPC-TM-650对TDR设备的基本要求 1.TDR的基本原理 图1是一个阶跃信号在传输线(如PCB的走线)上传输时的示意图。而传输线是通过电介质与GND分隔的,就像无数个微小的电容的并联。电信号到达某个位置时,就会令该位置上的电压产生变化,就像是给电容充电。因此,传输线在此位置上是有对地的电流回路的,因

同轴电缆的信号传输特性分析(精)

同轴电缆的信号传输特性分析关键词:同轴电缆传输损耗屏蔽衰减 深圳市西艾特电子技术有限公司总工程师 heml 一、概述 在当今的信息社会,通过同轴电缆传输信号得到了广泛的应用。因此,它有待于人们对它进行更加深入和全面的了解。 自从美国贝尔实验室 1929年发明同轴电缆以来,已经过了数十年历史。在这期间, 同轴电缆通过了多次改进。第一代电缆采用实芯材料作为填充介质, 由于它对高频衰减大, 现在通常主要把它用于传输视频信号。后来人们把聚乙烯采用化学方法发泡作为填充介质。其发泡度可达 30%, 高频传输特性有所提高。我们把这称为第二代电缆。 80年代,第三代纵孔藕芯电缆出现,它的高频衰减达到目前新型电缆的水平。但化学发泡电缆和纵孔藕芯电缆的防潮特性都不好。 90年代初, 市场推出了物理发泡电缆和竹节电缆。我们称为第四代电缆。竹节电缆虽然能防潮和高频损耗低, 但介质具有不均匀性, 在高频有反射点。后来无人使用。物理发泡电缆的发泡度可达 80%。介质主要成分是氮气, 气泡之间是相互隔离的。因此,它具有防潮和低损耗的特点,是目前综合特性最好的同轴电缆。

图一 二、电缆结构与信号传输特性 同轴电缆的结构如上图,在中心内导体外包围一定厚度的绝缘介质,在介质外是管状外导体, 外导体表面再用绝缘塑料保护。它是一种非对称传输线, 电流的去向和回向导体轴是相互重合的。 在信号通过电缆时,所建立的电磁场是封闭的,在导体的横切面周围没有电磁场。因此, 内部信号对外界基本没有影响。电缆内部电场建立在中心导体和外导体之间,方向呈放射状。而磁场则是以中心导体为圆心,呈多个同心圆。这些场的方向和强弱随信号的方向和大小变化。 1、同轴电缆对传输信号的损耗

22-阻抗继电器的动作特性(精)

一、选择题 1、以电压U 和(U-IZ)比较相位,可构成( )。 A :全阻抗特性的阻抗继电器 B :方向阻抗特性的阻抗继电器 C :电抗特性的阻抗继电器 D :带偏移特性的阻抗继电器 2、模拟型方向阻抗继电器受电网频率变化影响较大的回路是( )。 A :幅值比较回路 B :相位比较回路 C :记忆回路 D :执行元件回路 3、阻抗继电器的精确工作电流是指,当φk =φ sen ,对应于( )时,继电器刚好 动作的电流。 A :Z act =0.8z set 时的电流 B :Z act =0.9z set 时的电流 C :Z act =z set 时的电流 4、如果用Z m 表示测量阻抗,Z set 表示整定阻抗,Z act 表示动作阻抗。线路发生短 路,不带偏移的圆特性距离保护动作,则说明( )。 A ; act set set ,m Z Z Z Z << B : act set set ,m Z Z Z Z ≤≤ C: act set set ,m Z Z Z Z <≤ 5、某距离保护的动作方程为 90<270J DZ J Z Z Arg Z -0°)是( )。 A :90+<270+J DZ J Z Z Arg Z δδ-

PCB特性阻抗简介

PCB特性阻抗简介 今就电子学的领域出发解译影响高频特性阻抗品质〝谐振(resonance)〞。所谓的谐振意指可发生于任一物理系统中,只要该系统具有相对形式之贮能零件。当贮存于这些零件中之能量作相互交换时,就不需再自能源取得额外之能量,而将有谐振存在。 我们都知道当驾驶一前轮不平衡之车辆时,在某些特定速率下,不平衡的轮子之振动率等于前端悬吊者之自然谐振频率,则存在在一系统中之弹簧及质量中之能量可彼此互作交换导致一大的振动及方向盘之移动,这些情形司机常见到之。 在此文中,我们将讨论在电路中之谐振特性及一些应用。电路中之谐振,要求电抗量必须能互相抵销。在一串联RLC电路中,此需电抗性电压降抵消:在一并联RLC电路中,则需电抗性电流互相抵消。 一串联电路的阻抗,为电阻值及电抗值之向量和。在一串联RLC电路中,将有一频率,在该频率下可使其电感抗及电容抗相等,此频率称为谐振频率。可使电抗值互相抵销,导致净电抗值为0,在谐振频率(f0),|XL|=|XC|。 其中所言的RLC电路即指电阻、电感、电容组件所组合而成的电子回路,所以了解何为特性阻抗之前,甚至何谓谐振频率应先就其材料特性加以了解。 就电阻而言:电阻器(resistor)在高频电路中应用甚广,但是一般对电阻特性的了解,仍多局限于电阻在直流电路中所呈现的阻尼特性。实际上,电阻在高频电路中,因受信号频率的影响,不仅电阻值会随之改变,更可能会呈现电感或电容的特性。 如图所示电阻器在高频时的等效电路,R为电阻器的电阻值,L为其两端引线的电感,C为存在于电阻器内所有杂散电容的总和。杂散电容形成的原因,随电阻器结构的不同而异。以碳粒合成电阻(carbon composite resistor)为例,由于其结构为以微小碳粒压合而成,故在各碳粒之间都存有电容。此即为等效电路中杂散电容C的来源之一。由此可以推知碳粒合成电阻的高频特性甚差。 另外就TDR测量空板上的传输线而言亦可依上述的方式解译,其中上述所提L的效应来自电阻的两端引线,同理推验可知,TDR所使用探棒的测头如接于导通孔时即产生传输路径,此输入信道愈长则L效应相对愈大,此现象将如同业先前

电缆阻抗介绍

电缆阻抗介绍 全部读完,先总结几点有用的(不是电子专业的,用词可能不太准确): 1、阻抗是高频信号通过电缆时,电容和电感的反应。这个用万用表无法测出。 2、阻抗是由线材(包括接头)材料和形状决定的,不随长度变化。 3、阻抗不匹配,会导致信号发生发射,衰减信号甚至产生再反射信号干扰。 电缆的阻抗术语 音频:人耳可以听到的低频信号。范围在20-20kHz。 视频:用来传诵图象的高频信号。图象信号比声音复杂很多,所以它的带宽(范围)也大过音频很多,少说也有0-6MHz。 射频:可以通过电磁波的形式想空中发射,并能够传送很远的距离。射频的范围要宽很多,10k-3THz(1T=1024G)。 本文准备解释清楚传输线和电缆感应的一些细节,只是此课题的摘要介绍。如果您希望很好地使用传输线,比如同轴电缆什么的,就是时候买一本相关课题的书籍。什么是理想的书籍取决于您物理学或机电工程,当然还少不了数学方面的底蕴。 什么是电缆的阻抗,什么时候用到它? 首先要知道的是某个导体在射频频率下的工作特性和低频下大相径庭。当导体的长度接近承载信号的1/10波长的时候,good o1风格的电路分析法则就不能在使用了。这时该轮到电缆阻抗和传输线理论粉墨登场了。 传输线理论中的一个重要的原则是源阻抗必须和负载阻抗相同,以使功率转移达到最大化,并使目的设备端的信号反射最小化。在现实中这通常意味源阻抗和电缆阻抗相同,而且在电缆终端的接收设备的阻抗也相同。 电缆阻抗是如何定义的? 电缆的特性阻抗是电缆中传送波的电场强度和磁场强度之比。(伏特/米)/(安培/米)=欧姆 欧姆定律表明,如果在一对端子上施加电压(E),此电路中测量到电流(I),则可以用下列等式确定阻抗的大小,这个公式总是成立: Z = E / I 无论是直流或者是交流的情况下,这个关系都保持成立。 特性阻抗一般写作Z0(Z零)。如果电缆承载的是射频信号,并非正弦波,Z0还是等于电缆上的电压和导线中的电流比。所以特性阻抗由下面的公式定义: Z0 = E / I 电压和电流是有电缆中的感抗和容抗共同决定的。所以特性阻抗公式可以被写成后面这个形式: 其中 R=该导体材质(在直流情况下)一个单位长度的电阻率,欧姆 G=单位长度的旁路电导系数(绝缘层的导电系数),欧姆 j=只是个符号,指明本项有一个+90'的相位角(虚数) π=3.1416 L=单位长度电缆的电感量 c=单位长度电缆的电容量 注:线圈的感抗等于XL=2πfL,电容的容抗等于XC=1/2πfL。从公式看出,特性阻抗正比于电缆的感抗和容抗的平方根。

相关主题
文本预览
相关文档 最新文档