当前位置:文档之家› 船舶自动控制第四章第二节VAF 型燃油粘度自动控制系统5

船舶自动控制第四章第二节VAF 型燃油粘度自动控制系统5

船舶自动控制第四章第二节VAF 型燃油粘度自动控制系统5
船舶自动控制第四章第二节VAF 型燃油粘度自动控制系统5

第二節VAF 型燃油粘度自動控制系統一、SYSTEM ARRANGEMENT DIAGRAM

二、系統組件構造(SYSTEM COMPONENTS)

1.粘度偵測器

(VISCOSITY SENSOR WITH DIFFERENTIAL PRESSURE TRANSMITTER) Viscosity Sensor : 檢測燃油粘度之連續讀數, 其原理為:再等溫的情況下,讓定量的燃油,從一定長度及一定圓截面積的毛細管內,以層流(表示沒有亂流或渦流)流過,在此種情況下,燃油粘度與燃油流過毛細管的壓力降,就變成線性函數的關係;經過毛細管兩端的壓力降,由兩個抽頭引出,連到DP/P Transmitter,此壓力降的信號與粘度成正比。

DP/P Transmitter : 將Viscosity Sensor測量出之燃油粘度值轉換成類比訊號(0.2~1.0 bar)傳送至Viscosity Control Station。

2.粘度控制器PNEUMATIC VISCOSITY CONTROL STATION

比較並分析DP/P Transmitter發出之燃油粘度類比訊號與設定粘度之誤差值,然後發送出正確的控制訊號至Pneumatic Control valve調整其開度, 以達到正確適度之加熱蒸汽量。

3.氣動控制閥(PNEUMATIC CONTROL VALVE)

接受來至PNEUMATIC CONTROL STATION之控制信號(0.2-1.0 bar),Diaphragm依空氣壓力大小之變化調整VALVE DISC開度,進而控制加熱蒸汽進入燃油加熱器之量, 當閥開度變大時,加熱蒸汽量大,燃油粘度降低, 反之則相反。

4.控制空氣減壓/過濾器(AIR FILTER/REGULATOR)

提供適當減壓、過濾後的作動控制空氣至DP/P Transmitter , Pneumatic Control Station,Pneumatic Control V alve和Analog Viscosity Indicator等裝備, 使其功能正常運轉.

5.粘度紀錄器(ANALOG VISCOSITY RECORDER)

連續紀錄燃油之粘度,信號(0.2-1.0bar)來自DP/P Transmitter

6.粘度指示器(ANALOG VISCOSITY INDICATOR)

裝於機艙控制室之粘度遙控指示器,可設定最高、最低粘度警報點,並連接至機艙警報器

7.壓差警報器(ALARM PRESSURE SWITCH)

有兩組MICRO SWITCH ,一為低粘度另一為高粘度偵測器,接受來至DP/P Transmitter之信號.

8.啟動控制盤(STARTER BOX)

主電源開關控制箱

9.馬達開關(MOTOR SWITCH)

粘度計馬達控制開關

10.燃油加熱器(FUEL OIL HEATER)

燃油加熱器,低溫燃油流經加熱器,當Pneumatic Control V alve開度增加時,燃油溫度增加,粘度則會降低。

三、OPERATION SCHEMATIC OF THE VISCOSITY CONTROL

STATION (PROPORTIONAL + RESET ACTION CONTROL)

(降低燃油粘度,升高燃油溫度之控制流程說明)

1.AIR SINGAL FROM D/P Transmitter 壓力減弱, 促使Measuring Diaphragm

收縮(往左移動) 。

2.BLACK POINTER 順時針方向旋轉。

3.Flapper 經由A-B-C連桿向下運動,靠近NOZZLE ,Flapper因Nozzle產生

一反推力,而促使P1之壓力升高。

4.Nozzle Diaphragm下移, Pilot V alve 開度增加, Exhaust Port 關閉。

5.P2 壓力升高。

6.Feedback Bellows 膨脹作用, 帶動JL連桿往右移動。

7.比例桿FG(設定靈敏度用)促使GD往上移動。

8.連桿 E 亦往上移動使Flapper 離開Nozzle。

9.依據RESET V ALVE 之設定, RESET BELLOWS 內部之壓力逐漸緩慢上升

使JL 連桿向左移動,使OUTPUT PRESSURE (RESET ACTION) 亦緩慢增加,直至測量出之粘度相等於設定值、FEEDBACK BELLOW和RESET BELLOW兩端壓力達到穩定平衡狀態止。

10.升高之P2 之壓力作用於OUTPUT SIGNAL TO PNEUMA TIC CONTROL

V ALVE上,達到關小加熱蒸氣閥而降低燃油溫度,提高燃油粘度之目的。(提高燃油粘度,降低燃油溫度之控制流程說明)

11.當燃油溫度過度降低,燃油粘度低於設定值時。

12.AIR SINGAL FROM D/P Transmitter 壓力增強, 促使Measuring Diaphragm

膨脹(往右移動)。

13.BLACK POINTER 逆時針方向旋轉。

14.Flapper 經由A-B-C連桿向上運動,離開NOZZLE ,Flapper因Nozzle產生

一吸力,而促使P1之壓力降低。

15.Nozzle Diaphragm上移, Pilot V alve 開度關閉, Exhaust Port 開啟。

16.P2 壓力降低。

17.Feedback Bellows 收縮作用, 帶動JL連桿往左移動。

18.比例桿FG(設定靈敏度用)促使GD往下移動。

19.連桿 E 亦往下移動使Flapper 接近Nozzle。

20.依據RESET V ALVE 之設定, RESET BELLOWS 內部之壓力逐漸緩慢下降

使JL 連桿向右移動,使OUTPUT PRESSURE (RESET ACTION) 亦緩慢減少,直至測量出之粘度相等於設定值、FEEDBACK BELLOW和RESET BELLOW兩端壓力達到穩定平衡狀態止。

21.降低之P2 之壓力作用於OUTPUT SIGNAL TO PNEUMA TIC CONTROL

V ALVE上,達到開大加熱蒸氣閥而升高燃油溫度,降低燃油粘度之目的。

船舶机舱通风系统最适化与结构化设计之研究

M3 船舶機艙通風系統最適化與結構化設計之研究 紀凱鴻1 洪文恭1*邵揮洲2 1國立成功大學系統及船舶機電工程學系碩士生 台南市大學路一號 1*國立成功大學系統及船舶機電工程學系博士生/台灣國際造船公司工程師 台南市大學路一號 2成功大學系統及船舶機電工程學系教授 台南市大學路一號 *E-mail: p1697120@https://www.doczj.com/doc/f718598411.html,.tw 本研究基於國內船舶空調系統設計之概念,即以整體性的機艙佈置設計規劃為前提,針對風管設計流程之簡化與自動化做探討,以期能達到降低設計工時並節省材料成本的最適化通風設計。本研究首先於PDMS完全三維設計工作平台上,製作通風系統之CAD立體初步模型以取代過去使用二維圖像敘述之風管系統,以PML語言發展整個通風管路之機能設計流程,包含最適風管路徑計算、管路路徑資料編輯,配合等摩擦法決定之通風管徑建構一組基礎管路模型,接著依船體機艙空間結構特性與風管路徑佈置架構,尋找適合通風管路依附之船體結構物件(Pillar、Frame、Gird),由程式調整修改管路模型進而發展通風系統之最適化設計。 本研究的優點是機艙整體風管設計皆使用PDMS 3D環境中規劃,使計算與設計皆在同一工作平台上進行,風管的生產資訊、圖形資料與施工圖皆使用同一資料庫,可直接自PDMS取得,以達到設計資訊之取得的方便性與正確性。融合船體結構以簡化機艙通風管路路徑佈置的最適化設計概念,即盡量依附於艙體結構的骨架來放置通風管路,使機艙空間有效利用率提升,增加機艙空間的完整性,並精簡風管支架與風管元件的材料成本,同時達到增加船體結構強度的好處。 關鍵詞:機艙佈置,通風管路,船體結構 Optimum and structuralize design of ventilating system in marine engine room Kai-Hung Ji1Wen-Kung Hung1* Heiu-Jou Shaw2 Basing on the design conception of HV AC of shipbuilding in Taiwan, the simplification and automation of design work flow are mainly described in this paper on the basis of the entirety design plan of engine room arrangement, in order to reduce the designers’working hours and lower the material cost. First of all, make the 3D ventilation system key model to replace the 2D graph description used before on the PDMS entirely 3D design platform and develop the functional design

锅炉控制系统简介

锅炉控制系统简介 本锅炉控制系统设计遵循先进、可靠、安全、经济、适用、开放的原则。系统控制器采用DCS、计算机系统,能实现锅炉及辅机的热工控制、电气检测、联锁保护、自动调节及控制等,实现锅炉房生产过程控制自动化。 系统组成及技术要求 1系统组成 锅炉采用DCS控制系统集中监控,在锅炉房就地控制室内布置锅炉控制设备。整个锅炉系统的监视及控制功能将通过DCS控制系统实现,DCS将对锅炉系统所有被控对象进行监控,包括闭环控制、设备启、停控制,设备启停状态、远方/就地切换、主要工艺参数的监视(数据采集、LCD画面显示、参数处理、越限报警、制表打印等),并完成设备的连锁保护。机组正常运行时,运行人员主要在锅炉房就地控制室中通过LCD液晶显示器、键盘、鼠标来完成锅炉系统控制功能,只有非正常状态下,运行人员通过就地手操进行控制。 锅炉控制系统采用一套带冗余配置的DCS系统控制器及操作员站,实现对锅炉系统的集中监控,能对锅炉系统进行按键操作的全自动启动和停止的控制。控制系统由下述几部分组成:传感器、变送器,调节器及电动执行器等。同时系统能实现 对重要设备的手/自动切换和必要的手操功能。 锅炉自动调节系统包含下列项目: a 汽包水位自动调节; b 炉膛压力自动调节; c 蒸汽温度自动调节; DCS控制系统按dcS系统进行设计,其系统的配置及主要特性如下: 2、控制方式 采用集控、单机控制方式,集控方式下可以通过操作员站

的键盘和鼠标,对主、辅机设备进行启停,并由联锁功能;对各调节回路进行手动和自动控制;在手动方式下,通过备用操作盘启停设备和用硬手操对调节回路进行控制。系统主要运行在集控方式,只有控制系统故障时才在单机方式下运行。 集控方式下控制的设备有:引风机,鼓风机,给煤机,给水泵等。集控方式下的调节回路有:锅炉喂煤调节,炉膛负压调节,主蒸汽温度自控调节、汽包水位三冲量调节等。 3、主要画面监视及操作功能: 流程图参数显示 调节回路操作显示 电机控制显示 顺序启停操作 事件、报警显示 趋势记录显示保护报警显示 信号一缆表显示报表打印

船舶机舱通风与结构对其火灾特性的影响

龙源期刊网 https://www.doczj.com/doc/f718598411.html, 船舶机舱通风与结构对其火灾特性的影响 作者:朴日晶渠翠玲杨延明 来源:《科技探索》2014年第01期 中图分类号:U6 文献标识码:A 文章编号:1007-0745(2014)01-0359-01 摘要:随着我国社会的快速进步,经济的飞速发展,我国的航天航空技术同时也得到了显著的提升,但是我国的船舶和机舱发生的火灾给我国的经济带来巨大的损失,并且严重的威胁着船舱和机舱中人员的安全。要想避免火灾,减少财产损失和人员伤亡,必须仔细分析船舶机舱通风与结构,还必须对火灾特性进行详细的分析研究。本文介绍了船舶和机舱通风的结构,分析了火灾的特性,并且对相关问题进行了研究。 关键词:船舶机舱通风与结构火灾特性影响 现代社会中,火灾已经成为造成财产损失和人员伤亡的罪魁祸首,船舶机舱也是相同的,也遭到了火灾的威胁,要想减少火灾的发生率,保证船舱机舱的财产的安全和人员的安全,必须要对船舱和机舱的结构进行详细的分析,层层分析,而且必须要详细的了解船舱机舱的火灾的特性,根据这两项进行分析总结,提出解决方法和预防措施。 1、船舶机舱通风结构 船舶的通风系统是一种管系,他通过空气的自然流通来进行通风,并且得到机械通风的辅助。所以船舱和机舱的通风分为自然的通风和机械的辅助通风两种通风结构。船舱一般设有通风口、船舱口、窗户、门等,自然通风就是利用这些船舶自身的开口和通风的管道进行通风。但是自然通风因为时间地点环境的影响而受到限制,不能发挥其最大的作用,不能完好的通风,所以,船舱必须要有机械通风系统进行通风,机械通风的机械有很多种,布风机、轴流风机和通风管道等,能做到很好的通风。自然通风容易受到很多因素的影响,温度、风向等。但是自然通风结构很简单,不用购置设备,成本低,而且维护方面简单。机械通风性能比较固定,不容易受到外界的影响,可以人工的进行送风和排风,但是机械通风必须购置大型的设备,投入很大,而且结构复杂,维修维护都很繁琐。 2、分析船舱机舱结构和火灾的特性 2.1 进行大涡模型的实验 所有的船舱和机舱的结构和火灾的特性都必须经过详细的分析,在这里我们用一种叫大涡模拟技术,做一个实验,对船舱进行混合燃烧模型进行结构分析。首先选用一种设计结构,在这里我们选用散货船机舱对其的机舱通风效果进行分析,选取不同的几何结构下的单层和双层进行混合燃烧实验。

船舶机舱自动化

【单选】在船舶中央空调取暖工况湿度自动调节的各方案中,对控制送风的相对湿度法,不正确的叙述是______。 -------------------------------------------------------------------------------- A.湿度传感器探测空调的送风 B.采用喷水加湿 C.根据湿度偏差确定加湿蒸汽阀的开度 D.采用比例调节 【单选】K-CHIEF500网络型监视与报警系统的网络结构为______。 -------------------------------------------------------------------------------- A.全部采用局域网结构 B.全部采用CAN总线结构 C.上层网络为CAN总线结构,下层网络为局域网结构 D.上层网络为局域网结构,下层网络为CAN总线结构【单选】在主机燃油粘度自动控制系统中,蒸汽调节阀是属于______。 -------------------------------------------------------------------------------- A.控制对象 B.执行机构 C.调节单元 D.测量单元 【单选】关于K-CHIEF500的监视与报警系统中,下列模块中______是模拟量输入模块。 -------------------------------------------------------------------------------- A.RAi-16 B.RDI-32 C.RAO-8

D.SGW 【单选】在对PID调节器进行参数带定时,先整定出最佳的比例带PB和积分时间Ti,加进微分作用后,可使______。 -------------------------------------------------------------------------------- A.PB↑,Ti↓ B.PB↑,Ti↑ C.PB↓,Ti↓ D.PB↑,Ti↑ 【单选】在FCM燃油供油单元中,对轻油(DO)的控制方式包括______。 -------------------------------------------------------------------------------- A.温度程序控制、温度定值控制 B.温度程序控制、黏度定值控制 C.温度定值控制、黏度定值控制 D.温度定值控制、黏度程序控制 【单选】涡流式压力传感器的基本原理是金属导体置于变化着的磁场中,导体内就会产生______。 -------------------------------------------------------------------------------- A.涡流 B.感应电压 C.电动势 D.电荷 【单选】在PLC的晶体管输出型是通过______。 --------------------------------------------------------------------------------

第四章-船舶机仓自动控制实例第二节-燃油黏度控制系统166

考点1 NAKAKITA型控制系统包括“柴油-重油”自动转换和温度程序控制两套装置。可见,NAKAKITA型燃油黏度控制系统是采用温度程序控制和黏度定值控制的综合控制方案。 在NAKAKITA型控制系统中,增加了温度程序控制,这就避免了在油温较低的情况下,采用黏度控制会使油温升高过快的现象,从而可改善喷油设备的工作条件。“柴油-重油”自动转换可使在油温较低的情况下,燃油系统用柴油工作,这既能保证良好的雾化质量,又能用柴油冲洗用过重油的管路,保证控制系统和喷油设备工作的可靠性。 测粘计的作用是燃油黏度成比例的转换成毛细管两端的压差信号。该压差信号送至差压变送器,由差压变送器转换为标准的气压信号,用作显示和黏度调节器的测量输入信号。 要使系统投入工作,先要合上电源主开关SW,电源指示灯PL亮;再把温度“上升-下降”设定开关转到所要设定的挡位上,如转到1挡。然后把“柴油-重油”转换开关转至重油位,即开关由D断开合于H。 考点2温度程序调节器的结构和工作原理与黏度调节器完全相同,只是多了一套温度程序设定装置。同时,该调节器是采用正作用式的。 温度程序设定装置是在给定指针上加装一个驱动杆,小齿轮转动扇形轮时,驱动杆与给定指针一起转动、驱动杆上装有上、下限温度开关,两个开关状态由开关杆控制。 在燃油系统投入工作前,由于油温较低并处于下限值,这时若把“柴油一重油”转换开关转至“重油”位置,当系统投入运行时,仍用柴油运行工作,并在温度程序调节器的控制下油温逐渐升高。当柴油温度达到中间温度值(如70℃,可调)时,三通电磁阀动作并推动三通活塞阀,自动进行柴油到重油的转换,系统开始用重油工作。 上、下限温度的设定可通过改变上、下限温度设定器的位置来进行调整。 考点3系统的控制电路如图4-2-1所示。它能实现“柴油-重油”的自动转换及燃油温度程序控制与黏度定值控制的自动转换。要使系统投入工作,先要合上电源主开关SW,电源指示灯PL亮;再把温度“上升-下降”设定开关转到所要设定的挡位上,如转到1挡。然后把“柴油-重油”转换开关转至重油位,即开关由D断开合于H。现在,柴油油温从下限值开始以1℃/min的速度上升。温度程序调节器的驱动杆和给定指针逐渐向温度增高的方向转动。当柴油温度上升到中间温度时,可调凸轮把中间温度限位开关触头压下,三通电磁阀上位通,三通活塞阀的活塞上部空间通气源,把活塞压到下位,这时燃油系统自动从用柴油转换到用重油。如果在10~20 s内完成柴油到重油的转换,三通活塞处于下位,其位置检测开关DL 触头从左面的3、4断开合于右面的1、2,而HL会从右面的1、2断开合于左面的3、4。继电器RY-OC断电,相应的指示灯灭(图中未画出),表示柴油到重油的转换已经完成。时间继电器TL-2延时时间是10~20 s,继电器通电10~20 s后,[CM (46)其常闭触头TL-2断开,继电器MV-10、MV-lS均断电,相当于SV 1和SV 2 都断 电,三通电磁阀保持上位通,燃油系统保持用重油。如果在继电器TL-2延时时间之内没有完成三通活塞阀从上位到下位的转换(如活塞或活塞杆卡牢在上位),位置开关HL仍合在右边的1、2,因TL-2常开触头已经延时闭合,使继电器AX-2通电,其常闭触头AX-2断开,继电器RH断电,它的所有常开触头均断开,电机SM 1

13.5 m游艇机舱通风系统的优化与实现-广东造船-120期

76 Construction Technics 建造工艺 作者简介:张伟平(1971—),男,高级工程师,从事船舶设计与建造工作 陈 振(1981—),男,技术员,从事游艇建造工作收稿日期:2011-07-28 1 前言 船舶的正常行驶依赖于主机的正常可靠运行,主机正常运行必然依赖于一个前提条件——氧气。作为主机的工作场所——机舱,保证其必须的通风量尤为重要。同时机舱作为船员的工作场所,具有良好的通风能为船员提供良好的工作环境。游艇机舱所拥有的空间极其有限,这必然导致大量的设备聚集在狭小的空间之内。同时,游艇作为一种休闲娱乐的设备,舒适性能是其最重要的一项指标,因此在机舱内部,装有大量的隔音棉,这更对通风散热形成阻碍。 13.5 m游艇以其优异的性能,成为一款畅销船型。但根据船东使用后的反馈情况来看,通风系统在主机达到满负荷的状态下,存在着动力不足的情况。因此,有必要对原有的通风系统进行优化,以提高本产品的性能,更好地为客户服务。 本次对机舱通风系统的优化从以下两个方面出发:① 优化机舱布置,提高自然送风量:② 优化强制进风。通过优化,提高机舱的空气氧气含量,增加主机动力,使游艇达到其设计速度。 2 机舱通风量校核 2.1 该艇机舱概况 13.5 m游艇机舱长2.8 m,型宽4.9 m,型深2.6 m。主机2台,为康明斯QSM11- 715,柴油机功率526 kW,转速2 500 r/min。机舱四周及顶部安装隔音棉。2.2 动力通风量的确定[1] 机舱通风量是按照《游艇建造规范2008》进行设计计算。按照两台主机全负荷运转时计算。 按照《游艇建造规范2008》3.3.4.4每一动力通风舱室的抽风机或抽风机组的总排风量见表1。 表1 动力总排风量计算 表中 V=20 计算得: Q =13 m 3/min 实际抽风机抽风能力为:Q 实际=4×7=28 m 3/min 2.3 自然通风量的确定 按照《游艇建造规范2008》3.3.4.4各进气孔或管道的合计内横截面积,以及各排气孔或排气管道的合计内横截面积应不小于按下式计算之值且每一进、排 13.5 m游艇机舱通风系统的优化与实现 张伟平1 , 陈 振2 (1.南通航运职业技术学院,南通 226010;2.苏州星锐游艇有限公司,太仓215400) 摘 要:某游艇有限公司建造的13.5m游艇(SEASE 53)因机舱狭小,通风不畅,导致主机工况不佳。本文针对原有的通风系统提出了优化的方案,以改善机舱通风条件,从而充分发挥主机的功率。 关键词:游艇;机舱;通风系统;优化 13.5 metre Coastal BOATS Engine Ventilation System Optimization and Implementation ZHANG Weiping 1; Chen Zhen 2 ( 1.Nantong Shipping College, Nantong 226010, 2Suzhou Sease Yacht Co., Ltd. Taicang 215400 ) Abstract: This passage is according to 13.5 metre Coastal Boats engine room’s arrangement to design. It’s transformation is based on the problems of previous ventilation system that happened in use. Key words: Coastal Boats;Engine room;Ventilation;Optimization 净舱容V (m 3 )V<1 1≤V≤3 V>3 m (Q 量风排总3 /min) 1.5 1.5V 0.5V+3

11规则___轮机自动化_第七章_船舶机舱辅助控制系统考试题库

第七章船舶机舱辅助控制系统 第二节燃油供油单元自动控制系统 1. 当控制器接通柴油模式DO时,斜坡函数加温期间温度控制指示LED灯“TT"( )。 A 定发亮B,闪烁C.熄灭 D.无法判断 2 控制器EPC-50B包括( )。①操作面板②电源③主控制板 A.①②B.①②③C.①③D.②③ 3 控制系统能否对“柴油—重油J/转换阀进行自动控制 A.能B,不能C.无法判断D,视情况决定 4 如果没有故障、错误或警告,数码管用不闪烁的符号指示程序状态,如电源开用“( )”,正在扔始化硬件用“( )"等。 A,一,,+.B.一,,0,C.+.,0,D.0.,一. 5 粘度传感器的如果发生多个故障,高级别的故障( )改写较低级别的故障。 A,可以B.不可以C.有时可以D.无法判断是否可以 6 黏度信号保持在最大值的原因可能是( )。 A.电流接头损坏B.EVT-20故C.空气夹杂在燃油系统中 D.起动期间燃油温度太低 7控制器内置具有( )控制规律的软件,可以对重油的粘度或温度进行定值控制。 A.比例积分微分B.比例微分C.比例积分D.以上都不对 8 在燃油粘度或温度自动控制系统中,若采用电加热器EHS,则由2个电加热供电单元分别对2个电加热器的燃油进行加热。原因是:( )。 A.提供足够的加热量,确保燃油盲6够得到加热 B.可以方便地控制加热速度的快慢,需要快速加热时,两个可同时满额工作、 C.两个加热器可互为备用,保障了加热器的安全使用 D.以上都正确 9如果调节过程中出现偏差过大,燃油黏度控制系统都会给出报警信号吗( )。 A.黏度偏差过大会报警,温度偏差过大不会报警 B.温度偏差过大会报警,黏度偏差过大不会报警 C,黏度、温度偏差过大都不会报警 D,黏度、温度偏差过大都会报警 10在系统新安装后或工作条件改变时,要对系统运行的( ) 进行重新设定和修改,以适应新的需要。A.系数B.整数C,大小 D.参数 11 当控制器接通柴;模式DO时,当燃油温度在达到温度设置Pr35的3℃内后,温升斜坡停止,正常温度控制运行。“TT“LED灯( )。A.稳定发亮B.闪烁C.熄灭D,无法判断 12 一旦从DO转换为HFO,则EPC—50的控制器可检测到粘度增加,表明重油已经进入系统,那么重油将被开始加热。当温度已经低于重油温度设置值( )℃,控制器自动转到粘度调节控制。 A. 2 B. 3 C, 4 D.5 1 3 在系统投入工作之前,要先( )。 A.观察比较测量值与实际值有无异常情况 B.手动检测各电磁阀或电动切换阀是否正常、灵活 c-检查燃油和加热系统有没有漏泄或损坏的情况 D.观察EPC-50主扳和粘度检测电路板指示是否正常 14 重油改变时,哪些参数是必须改变的()o ①密度参数Pr23 ②重油温度设置点参数Pr30;③HFO低温限制值Pr32 A.①②B.①②③C.①③D.② 15 发生了多个故障后,需要读取历史报警列表,EPC-50B中的CPU存储了最后的()次报警。A.16 B.32 C.48 D.64 16在燃油粘度或温度自动控制系统中,若采用电加热器EHS,则由( ) 电加热供电单元分别对2个电加热器进行加热。 个B.2,1,。C.3个D,4个 17如果调节过程出现振荡,则需要增加参数Fa25或Fa27,Fa26或Fa28,这些参数的增加会使得系统反映( ), 消除静差能力( )。 A.变慢,减小B,变慢,加强C.加快,减小D.加陕,加强 第三节燃油净油单元自动控制系统 l如果分油机因故障报警,那么在分油机的EPC—50控制单元土,相应的警报指示灯就会发出( ) 并不停的闪烁,机舱内同时伴有警报声。 A,黄光B.绿光c,红光D,蓝光 2 如果中间发生故障或需要停止分油时,可通过按下“SEPARATION/STOP”按钮;实现停止控制。分离设备停止序列对应的( )LE叫吾开始闪烁。启动排渣,排渣完成后,停止序1lLED等变为稳定的绿色,而分离系统运行对应的绿色LED将熄灭。显示Stop(停止)‘ A.绿色B.红色c.黄色D.蓝色 3 开启水管的供应阀SV15 出现泄漏情况或相应的控制回路故障,造成排渣口打开,应( )。A.及时校正该泄漏情况B.检查该阀的控制线路 C.检查补偿水系统D.A 或B 4补偿水系统中没有水,应当( )‘ A.检查补偿水系统B.确保任何供应阀均处于开启状态 C.清洁滤网D.A + B 5. 正常“排渣”后,EPC—50根据有关置换水的参数是否人为修改过,来确定程序是进入水流量枝准Ti59进行参数校正,还是准备再次分油,直接进入分离筒“密封”操作Ti62。至Ti75后,系统完成一个工作循环。 A.Ti59, Ti64, Ti75 B.Ti59, Ti62, Tj73

浅析船舶机舱的自然通风

浅析船舶机舱的自然通风 [摘要]在船舱中充沛、合理地运用天然通风是一种既经济又有用的节能方法,它不仅不耗费动力,而且还能获得比较充足的通风换气的效果。但是如今天然通风在船上的运用首要局限在天然排风方面,而在进风方面使用的却非常少,对其实施的研究也是非常缺少。但是天然通风的研讨效果对船只机舱的天然通风具有极好的学习效果。机舱内的很多区域都位于船舶的甲板以下,而且船舶内部的机械设备在工作时会散发出很多的热,从而使得机舱内的空气温度迅速升温,因此就能够运用由此发生的热压以及船只在航行过程中发 生的风压,通过机舱外面的通风口用风管把舷外的空气引进机舱的底部或者直接把舷外空气引进主机透平进口。天然排风是现在广泛使用的机舱排风方法,船上的烟囱通常安顿在机舱的尾部,考虑到烟囱中温度较高,能够进一步推动空气上升,恰是使用了这一特性,通常在烟囱的上后部向船艏倾斜的烟囱壁上开设几个非常大的天然排风口,这对于机舱来说因为有很多余热存在,运用天然通风可达到无量的通风换气量,但是天然通风非常容易受到外界气象条件的影响。 [关键词]船舶;机舱;自然通风 中图分类号:U376 文献标识码:A 文章编号:1009-914X

(2017)14-0057-01 船舶机舱作为全船的基地区域,汇聚了船舶的动力装置及大多数首要设备,因此机舱有些的顺畅运作,成为评价船舶安全功用的首要目标之一。众所周知,任何设备的正常工况都需要一个最佳温度,而机舱内发热设备较多,空间相对狭小的特征抉择了机舱内废热的打扫作业除了依托自然通 风外,更需凭借强力有用的通风系统进行机械通风。 1 机舱通风的目的 人员以及机械设备对机舱环境的恳求不是完全一致的,在湿度以及空气的清洁度方面有大致一样的恳求,在温度方面区别比较大,常把机舱内的温度设计得较高,而在集控室内设备空调。船舶机舱通风的首要意图就是保持机舱内合适的环境条件(温度、清洁度、湿度、空气流速以及空气成份等)以确保柴油机、锅炉焚烧所有必要的空气量,也是确保机舱内超卓的工作环境,改进轮机人员的劳作和卫生条件的重要措施。机舱通风设备应满足以下功能: (1)为主机、副机、锅炉供给充足的空气。 (2)坚持机舱内良好的工作环境。因为柴油机、锅炉、油柜以及加热设备等继续向机舱放热,使机舱温度增加,因而应供给良好的通风使机舱内坚持适合的温度,从而为机电设备和轮机管理人员提供良好的工作环境。 (3)排出机舱内的油气和有害气体,坚持空气清洗。

2013船舶机舱自动化补充练习题

船舶机舱自动化题目2013 1 在燃油供油单元FCM中设有燃油黏度或温度自动控制功能,当其进行黏度控制时,控制对象是______,系统输出量是______。 A 柴油主机,燃油温度 B 燃油加热器,蒸汽流量 C 柴油主机,燃油黏度 D 燃油加热器,燃油黏度 答案 D 2 燃油供油单元FCM按照DO模式运行时,控制对象是______,系统输出量是______。 A 燃油加热器,燃油温度 B 燃油加热器,蒸汽流量 C 柴油主机,燃油黏度 D 燃油加热器,燃油黏度 答案 A 3 在燃油供油单元FCM中的黏度自动控制中,EVT20黏度传感器装置的作用是将______。 A 燃油黏度的变化转变为感应电动势信号的变化 B 燃油黏度的变化转变为4-20mA电流信号的变化 C 燃油温度的变化转变为感应电动势信号的变化 D 燃油温度的变化转变为4-20mA电流信号的变化 答案 B 4 在燃油黏度控制系统中一般均采用______。 A 反作用式调节器,配合气关式调节阀 B 正作用式调节器,配合气关式调节阀 C 反作用式调节器,配合气开式调节阀 D 正作用式调节器,配合气开式调节阀 答案 A 5 在燃油供油单元FCM烧用DO时,且参数Fa31=1时,EPC-50B控制器进行______。 A 燃油黏度定值控制 B 燃油黏度程序控制 C 燃油温度定值控制 D 燃油温度程序控制 答案 D

6 船用燃油辅锅炉常用高低火燃烧来控制锅炉的蒸汽压力,其主要目的是______。 A 保证最佳的燃烧风油比 B 提高锅炉运行的经济性 C 保证蒸汽压力恒定 D 避免锅炉的频繁启停 答案 D 7 在大型油船辅锅炉的燃烧控制中,供风量控制回路是属于______。 A 定值控制 B 程序控制 C 随动控制 D 开环控制 答案 C 8 在采用EPC-50控制的S型分油机自动控制系统中,其中的水分传感器MT50属于______。 A 电磁式传感器 B 电阻式传感器 C 电感式传感器 D 电容式传感器 答案 D 9 试卷代号章节小节小小节难度知识层次 7021 5 3 3 0.4 1 试题ID 1 题干在采用EPC-50控制的S型分油机自动控制系统中,为保证分油机及控制系统的正常运行,必须预先设定一些有关参数,这些参数可分三类。下面不属于这三类的是______。 A 安装参数Inxx B 工艺参数Prxx C 工厂设置参数Faxx D 分油机时序时间参数Tixx 答案 D 10 在采用EPC-50控制的S型分油机自动控制系统中,如果距离上次排渣达到了设定的最大排渣时间,而净油中的含水量仍未达到触发值,那么控制系统将进行的操作是______。 A 不进置换水,立即进行一次排渣 B 等达到最大排渣时间时进行一次排渣 C 进行一次排水

11规则___轮机自动化_第七章_船舶机舱辅助控制系统考试题库

第七章船能机舱辅助控制系统 第二节燃油供油单元自动控制系统 1.当控制器接通柴油模式DO时,斜坡函数加温期间温度控制捋示LED灯“TT()? A定发亮B,闪烁C.熄灭D?无法判断 2控制器EPC-5OB包括()o ①操作面板②电源③主控制板 A.GXD B.①<2)③ c. dXD D. 3控制系统能否对“柴油一垂油J/转换阀进行自动控制 A.能B,不能 C.无法判断D,视惜况决定 4如果没有故障、错误或警告,数码管用不闪烁的符号抬示程序状态,如电源开用“()”,正在扔始化硬件用“()"等。 A? ?I +? B* > 9 0> C? +? > 0> D. 0? >*? 5粘度传感器的如果发生多个故障,高级别的故障()改写较低级别的故障。 A,可以B.不可以 C.有时可以D?无法判断是否可以 6黏度信号保持在最大值的原因可能是()。 A.电流接头扭坏 B. EVT-20故C?空气夹杂在燃油系统中 D.起动期间燃油温度太低 7控制器内置具有()控制规律的软件,可以对重油的粘度或温度进行定值控制。 A.比例积分微分 B.比例微分 C.比例积分 D.以上都不对 8在燃油粘度或温度自动控制系统中,若采用电加热器EHS,则由2个电加热供电单元分别对2个电加热器的燃油进行加热?原因是:()? A.提供足够的加热量,确保燃油盲6够得到加热 B.可以方便地控制加热速度的快慢,需要快速加热时,两个可同时满额工作. C?两个加热器可互为备用,保障了加热器的安全使用 D.以上都正确 9如果调节过程中出现偏遼过大,燃油黏度控制系统都会给出报警伯号吗()。 A?黏度偏差过大会报警,温度偏差过大不会报警 B?温度偏差过大会报警.黏度偏差过大不会报警 C,黏度.温度偏差过大都不会报警 D,黏度、温度偏筮过大都会报警 10在系统新安装后或工作条件改变时,要对系统运行的()进行重新设定和修改,以适应新的需要.A.系数 B.整数C, 大小D.参数11当控制器接通柴;模式DO时,当燃油温度在达到温度设置PW5的39内后,温升斜坡停止,正常温度控制运行.“TT “ 1^)灯()?A?稳定发亮B?闪烁C.熄灭D.无法判断 12 一旦从D0转换为HFO,则EPC-50的控制器可检测到粘度增加,表明重油已经进入系统,那么重油将被开始加热.当温度已经低于重油温度设置值()?€,控制器自动转到粘度调节控制。 A? 2 B? 3 C, 4 D. 5 1 3在系统投入工作之前,要先()。 A?观察比较测啟值与实际值有无异常情况 B.手动检测各电磁阀或电动切换阀是否正常.灵活 旷检査燃油和加热系统冇没冇漏泄或损坏的情况 D?观察EPC-50主扳和粘度检测电路板指示是否正常 14重油改变时,哪些参数是必须改变的0。 ①密度参数Pr23②重油温度设置点参数Pr30;③HFO低温限制值P”2 A.①<§) B.①②③ C.① D.② 15发生了多个故障后,需要读取历史报警列表,EPO50B中的CPU存储了最后的()次报警。A. 16 B. 32 C. 48 D. 64 16在燃油粘度或温度自动控制系统中,若采用电加热器EHS.则由()电加热供电单元分别对2个电加热器进行加热。 个B?2> 1,<> C?3个D, 4个 17如果调寿过'程出现振断则诂要增加参数F&25或Fa27, Fa26或F~28,这些参数的增加会使得系统反映( 消除静養能力(几 A.变慢,减小B,变慢,加强C.加快,减小D?加陕,加强 第三节燃油净油单元自动控制系统 1如果分油机因故障报警,那么在分油机的EPC-50控制爪元土,相应的警报拆示灯就会发出()并不停的闪烁,机舱内同时伴有警报声. A,黄光 B.绿光c红光D,蓝光 2如果中间发生故障或需要停止分油时,可通过按下“SEPARATION/STOP”按钮;实现停止控制。分离设备停止序列对应的()LE叫吾开始闪烁?启动排渣,排渣完成后,停止序11LED等变为稳定的绿色,而分离系统运行对应的緑色LED将熄灭。显示Stop (停止)“A?绿色 B.红色 c.黄色 D.蓝色 3开启水管的供应阀SV15出现泄漏情况或相应的控制回路故障,造成排渣口打开,应()。A.及时校正该泄漏情况B?检査该阀的控制线路 C.检査补偿水系统D?A或B 4补偿水系统中没有水.应当()“ A.检査补偿水系统B?确保任何供应阀均处于开启状态 C?淸洁濾网D?A + B 5.正常“排渣”后,EPC-50根据有关置换水的参数是否人为修改过,来确定程序是进入水流區枝准Ti59进行参数校正,还是准备再次分油,直接进入分离筒“密封”操作Ti62o至Ti75后,系统完成一个工作循环。 A. Ti59, Ti64, Ti75 B. Ti59, Ti62, Tj73 C. Ti59, Ti62, Ti75 D? Ti59, Ti67 / Ti75 6测童电阻R是测绘电桥的一个桥臂,它是安装在所要检测的管路中,离测绘电桥较远。为补偿环境温度变化所产生日獺逞误差,在实际测量电路中往往()? A.把“两线制”接法改为“四士虽制”

船舶燃油黏度自动控制系统研究

船舶燃油黏度自动控制系统研究 为了保证船舶柴油机主机能正常运行,燃油的黏度必须保证在一个合适的范围内,如对低速柴油机,一般要求不超过60~100s雷氏1号黏度。若燃油黏度超过规定限度时,它可能会导致燃油系统中某些部件的损坏和管路接头漏油,同时使燃油雾化不良,燃烧效率低及柴油机运动件磨损加剧等。但也不是黏度越低就越好,对重油来说,黏度越低,加热温度就应该越高。它在油泵吸入过程中有可能汽化,这是必须避免的。为此对每种燃油也都相应的规定啦最高加热温度。为了降低船舶的营运成本,目前几乎所有的柴油机主机都使用重油。因为重油在常温下黏度很高,在管路中难以输送,更不能直接喷入气缸进行燃烧,故必须预先加热,使其黏度下降到规定的范围内。 初看起来,黏度控制似乎是一个温度控制问题,当然这对某一固定品种的燃油来说确实是如此,但世界各港口所供应的燃油品种不一样,在同一个温度下,其黏度差异往往很大,所以用温度来反映黏度就不科学,也不方便。微辣控制燃油的最佳黏度,对不同种的燃油就必须重新整定燃油黏度的给定值,其工作特别繁琐,特别是当不同品种的燃油混合在一起时,更难确定最佳喷射黏度所对应的温度给定值。因此,船用燃油系统一般不采用温度控制,而是直接采用黏度控制系统,它以燃油的黏度作为被控参数,根据燃油黏度的偏差值控制加热的蒸汽调节阀的开度,使燃油黏度保持为恒定值,这种方法不但科学,而且当油舱中各种燃油混合比例发生变化时,轮机人员不必作任何调整,系统能够保证所要求的黏度。目前在船上,VAF型燃油黏度控制系统的应用最为广泛,它是由一套气动单元组合仪表组成的,主要单元主要有测黏计,差压变送器,调节器,蒸汽调节阀。 燃油黏度调节系统

船舶机械通风系统降噪方案 刘万龙

船舶机械通风系统降噪方案刘万龙 发表时间:2019-08-07T15:40:57.280Z 来源:《防护工程》2019年9期作者:刘万龙 [导读] 本文重点论述了如何对这方面的问题加以控制,希望能够在今后的工作中提供一定的帮助。 身份证号码:22018219880115XXXX 湖北省武汉市 430061 摘要:噪声污染对人们所生活的环境影响是极大的,更不必说船舶机械对环境造成的不良影响了。在现代社会生活中,人们对于环保的意识不断提升,因此加强对船舶机械的噪音控制是相当有必要的。本文重点论述了如何对这方面的问题加以控制,希望能够在今后的工作中提供一定的帮助。 关键词:船舶机械通风系统降噪方案 引言 当前船舶机械具有十分迅猛的发展趋势,人们在追求船舶机械具有舒适性的同时,对于噪声的要求也愈发突出。在这种情况下,更需要对噪声来源进行研究。事实证明,出现噪声污染的主要来源在于振动,一旦振动的频率过大,不仅会影响机械器件的快速老化以及损坏,使用寿命也会缩短。 1.噪音对人的危害 1.1 噪音对语言清晰度的影响 语言清晰度, 一般是指能听懂发言者所讲的无连贯意思的单字百分率。实验表明,通常声级50dB以下的环境算是安静的,当噪音声级达到55dB, 语言清晰度就只有68%了, 会话距离只有2m左右; 当噪音达到60dB时,语言清晰度就只有62%了,会话距离竟缩小到1m。在80dB的噪音环境里人们交谈已经很困难,而90dB的噪音环境里面则无法交谈。 1.2 噪音对人听觉的损伤 噪音损伤听觉,最常见的是“听觉疲劳”,即在噪音作用下,使人的听觉灵敏度暂时下降,过后很快就会恢复。这种现象也称“暂时性听力损失”。而当听觉长期暴露在强噪音环境中, 至使听觉灵敏度下降变成长期的,以后不能再全部恢复,即造成“永久性听力损失”,或称“永久性噪声耳聋”。 1.3 噪音危害人的健康 根据卫生部门的研究,最常见的生理效果是引起肾上腺活动增加,影响人的新陈代谢作用,容易使人产生疲劳、头脑发胀、神经过敏等现象。更为严重的高频噪声可引起人神经错乱,神经机能衰退。 2.船舶机械通风系统降噪处理方案 针对该船的实际情况,经过研究分析,最终确定先将原风道拆卸出来酸洗,去除其油污、灰尘,更换不锈钢滤网,让其流道通畅无阻(如图 2 所示)。并对一些风机电机进行了改换装,同时对风机进行了减振安装,从根本上降低机构噪声。 图1 改造后的SINDEX 消音器设备 3船舶通风系统的消声降噪措施 3.1通风机装置的噪声传播控制 (1)通风机应布置在专用的通风机室内,该室应进行声学处理和隔声以降低辐射到周围的噪声。在必要情况下,可采取对噪声影响较大的部分设备加隔声罩的控制措施,如厨房区域、卧室和会议室所在舱室等;如果舱室某层通风设备众多,可以对该层及上层顶板喷吸音棉,对机房墙面贴双层石膏板架空、外加吸音棉加孔板;全艇性的大功率的通风设备,应安装在噪声要求较低的地方,如主机辅机机房等。 (2)利用反射抑制结构噪声的传播。结构噪声是指在结构中以波动形式传播的机械振动,并且由诸如舱壁、列板、板格等这些第二噪声源以空气噪声辐射出来。由于船舶结构主要材料是钢,它的内部阻尼很小,所以结构噪声传播时能量损失非常小。我们可以采取尽量使声能反射回声源的办法克服结构噪声的传播。 在传播途径中引入阻抗的改变,或者插入其它的煤质,或使传播途径上几何形状变化等都会引起这种反射。比如装设声阻抗与钢材不同的构件,使之“阻挡”结构噪声的传播,这些构件的声阻抗与钢材的相比差异越大,“阻挡”效果就越佳。在具有横向肋骨系统的船舶上,噪声向上部的传播就比沿船壳板向前传播来得容易,这是由于肋骨的声阻抗有变化而减小了噪声传播的缘故。 3.2通风系统噪声分析与策略 目前,舰船通风系统多采用集中送风全艇性空气调节系统和舱室独立式通风调节装置相结合的方式来实现舱内空气环境控制,其噪声来源主要是空气动力噪声和装置机械撞击、振动产生的空气声和固体声。其中,通风机装置运行的风噪和机器振动噪声,我们把它称为机器结构噪声,结构噪声可以通过通风管道传递到其它舱室单元中去,也可以通过装置底座传递给舰船固壳;气流在风管及进出风口内流动产生的噪声我们称之为再生噪声,再生噪声不仅在空气中传播,其同样可以引起管路振动形成机械振动并传递给舰船固壳。 由于舰船上机器设备庞杂,噪音来源多样,采用主动噪声控制技术是不合适的。针对舰船通风系统噪声环境特点,我们应该从被动控制技术的角度入手:一方面优化系统设计,从声源上降低噪声;另一方面采取吸声降噪或隔离等措施控制噪声传播,在一定程度上使噪声衰减至较低值。因此,设计合理的转速十分重要。很多船舶机械设备都配置有相应的驾驶室,工作人员在驾驶室中操作机器,如果驾驶室中的噪声没有得到合理的控制,工作人员的身心健康会受到极大的损害,在工作时也极易造成疲劳,对现场控制的反应速度变慢,容易酿成安全事故,因此,需要严格控制驾驶室中的噪声。可以通过合理的结构设计、采取吸音隔声措施、对驾驶室的地板进行密封等措施来抑制噪声。在密封处理上,要对驾驶室底板和操作杆件以及玻璃等进行严格的设计,保证其与外界的可靠隔离,因为即使是一个细小的空

基于PLC控制的锅炉自动输煤系统设计..

摘要 本论文主要是以锅炉的自动输煤系统为研究对象,自动输煤系统的出现不仅仅解决了在锅炉输煤过程中只能使用人力的现状,也解决了工作强度大、工作时间长的问题。论文首先简述了锅炉概况,对自动输煤系统的工艺流程进行分析设计,然后对输入输出点进行分配,设计了主电路,对PLC进行分析选择,最后画出梯形图。通过对原有锅炉输煤系统控制方面存在的问题进行分析,采用PLC 控制系统选用日本三菱F1-30MR型PLC,通过硬件选取,软件调试,实现整体控制系统结构合理,运转良好的目的。个机械之间均涉及安全连锁保护控制共嫩:系统的输煤电机启停有严格控制顺序,彼此间有相应的联锁互动关系,当启停某台输煤系统设备时。从该设备下面流程的最终输煤设备开始向上逐级启用,最后才能使该台设备启动;当停止某台输煤设备或某台设备故障时,从该设备上面流程的源头给煤设备开始向下逐级停机,左后才能使该台设备停止。这样就保证了上煤传输的正常运行在线控制煤流量,避免了皮带上煤的堆积,也保护了皮带。PLC控制系统硬件设计布局合理,工作可靠,操作,维护方便,工作良好。用PLC 输煤程控系统。用PLC来对锅炉输煤系统进行控制。锅炉输煤系统,是指从卸煤开始,一直到将合格的煤块送到煤仓的整个工艺过程,它包括以下几个主要环节:卸煤生产线、煤场、输煤系统、破碎与筛分、配煤系统以及一些辅助生产环节。本设计中主要研究的是其中的输煤系统部分,即煤块从给煤机传输到原煤仓的过程。采用了顺序控制的方法。不但实现了设备运行的自动化管理和监控。提高了系统的可靠性和安全性,而且改善了工作环境,提高了企业经济效益和工作效率。因此PLC电气控制系统具有一定的工程引用和推广价值。 关键词:PLC;自动输煤系统;煤料自动控制

迈腾1.8TSI轿车燃油控制系统原理与检修

一、组成 国产2008款迈腾1.8TSI轿车采用涡轮增压汽油直喷技术,迈腾1.8TSI轿车燃油控制系统主要由电动油泵、带压力限制阀的滤清器、低压燃油压力传感器G410、燃油高压泵、燃油压力调节阀N276、高压燃油压力传感器G247、燃油轨道、压力限制阀、喷油器、发动机控制单元ECU和燃油泵控制单元J538等组成。其示意图如图1所示,燃油系统部件安装位置如图2所示。 二、工作原理 迈腾1.8TSI轿车发动机采用汽油缸内直喷技术,燃油系统通过燃油高压泵(由轮轴驱动)把低压燃油系统内50~650kPa的低压燃油转化为1.1~3.0MPa的高压燃油,以满足不同工况的需求。燃油压力调节阀N276装在燃油高压泵上,属高频电磁阀。发动机控制单元根据装在高压油轨上的高压燃油压力传感器G247所监测到的信号,控制N276以精确调整占空比,从而得到所需的燃油压力。低压燃油系统的压力是由燃油箱中的电动燃油泵提供的,装在燃油箱上部的燃油泵控制单元J538根据脉宽调制信号(燃油控制电路如图3所示),控制电动燃油泵工作,使低压燃油系统压力维持在50-500kPa。在发动机启动时,低压燃油系统的压力能达到600kPa以上,用以保证发动机的正常启动及工作。

1高压泵 高压泵产生约150bar(1bar=10sPa)压力,泵活塞被凸轮轴通过圆柱挺杆驱动,这样减少摩擦也减少链条受力,使发动机运转更平顺,燃油经济性更好。高压泵如图4所示。 (1)进油 在进油过程中,进油阀在针阀弹簧力的作用下打开。在高压泵活塞向下运动的过程中,泵腔的容积不断增大,泵腔内的燃油压力近似于低压系统内压力,燃油流八泵腔。如图5所示。 (2)供油 控制单元ECU计算供油始点给燃油压力控制阀N276发送指令使其吸合。针阀将克服针阀弹簧的作用力向左运动:同时进油阀在弹簧作用力下被关闭泵活塞向上运动,泵腔内建立起油压。当泵腔内的油压高于油轨内的油压时出油润被开启,燃油被泵入油轨内,如图6所示。 2燃油压力传感器 油轨内的压力保持恒定对减少排放、降低噪音和提高功率有重要影响。燃油压力在一个调节回路中进行调节,传感器的测量误差小于2%。传感器的核心就是一个钢膜,在

相关主题
文本预览
相关文档 最新文档