当前位置:文档之家› 安定性试验方法

安定性试验方法

安定性试验方法

安定性试验方法

一、准备工作:

雷氏夹和玻璃片(质量75g-85g)涂油。

二、成型

将预先准备好的雷氏夹放在已稍擦油的玻璃板上,并立即将已制好的标准稠度净浆一次装满雷氏夹,装浆时一只手轻轻扶持雷氏夹,另一只手用宽约10mm的小刀插捣数次,然后抹平,盖上稍涂油的玻璃板,接着立即将试件移至湿气养护箱内养护24h±2h。

三、沸煮:

调整好水位,中途不加水也能超过试件,同时30min煮沸。四、从养护箱内取出试件,去除玻璃板,测雷氏夹针尖距离(A)、

精确到0.5mm,放进沸煮箱架上,指针向上,沸煮三小时。

五、放掉热水,冷却室温后,测量雷氏夹指针距离(C),精确至

0.5mm,当两个试件煮后增加距离(C-A)的平均值不大于 5.0mm

时,即认为安定性合格,当两个试件的(C-A)值相差超过4.0mm 时,应用同一样品立即重做一次试验。再如此,则认为该水泥安定性不合格。

汽车理论课后习题答案 第五章 汽车的操纵稳定性

第 五 章 5.1一轿车(每个)前轮胎的侧偏刚度为-50176N /rad 、外倾刚度为-7665N /rad 。若轿车向左转弯,将使两前轮均产生正的外倾角,其大小为40。设侧偏刚度与外倾刚度均不受左、右轮载荷转移的影响.试求由外倾角引起的前轮侧偏角。 答: 由题意:F Y =k α+k γγ=0 故由外倾角引起的前轮侧偏角: α=- k γγ/k=-7665?4/-50176=0.6110 5.2 6450轻型客车在试验中发现过多转向和中性转向现象,工程师们在前悬架上加装前横向稳定杆以提高前悬架的侧倾角刚度,结果汽车的转向特性变为不足转向。试分析其理论根据(要求有必要的公式和曲线)。 答: 稳定性系数:??? ? ??-=122k b k a L m K 1k 、2k 变化, 原来K ≤0,现在K>0,即变为不足转向。 5.3汽车的稳态响应有哪几种类型?表征稳态响应的具体参数有哪些?它们彼此之间的关系如何(要求有必要的公式和曲线)? 答: 汽车稳态响应有三种类型 :中性转向、不足转向、过多转向。 几个表征稳态转向的参数: 1.前后轮侧偏角绝对值之差(α1-α2); 2. 转向半径的比R/R 0;

3.静态储备系数S.M. 彼此之间的关系见参考书公式(5-13)(5-16)(5-17)。 5.4举出三种表示汽车稳态转向特性的方法,并说明汽车重心前后位置和内、外轮负荷转移如何影响稳态转向特性? 答:方法: 1.α1-α2 >0时为不足转向,α1-α2 =0时 为中性转向,α1-α2 <0时为过多转向; 2. R/R0>1时为不足转向,R/R0=1时为中性转向, R/R0<1时为过多转向; 3 .S.M.>0时为不足转向,S.M.=0时为中性转向, S.M.<0时为过多转向。 汽车重心前后位置和内、外轮负荷转移使得汽车质心至前后轴距离a、b发生变化,K也发生变化。 5.5汽车转弯时车轮行驶阻力是否与直线行驶时一样? 答:否,因转弯时车轮受到的侧偏力,轮胎产生侧偏现象,行驶阻力不一样。 5.6主销内倾角和后倾角的功能有何不同? 答:主销外倾角可以产生回正力矩,保证汽车直线行驶;主销内倾角除产生回正力矩外,还有使得转向轻便的功能。 5.7横向稳定杆起什么作用?为什么有的车装在前恳架,有的装在后悬架,有的前后都装? 答:横向稳定杆用以提高悬架的侧倾角刚度。

汽车操纵稳定性实验指导书

汽车操纵稳定性实验指导书 课程编号: 课程名称: 实验一汽车转向轻便性实验 实验目的 汽车的转向轻便性和操纵稳定性是现代汽车重要的使用性能,通过对实验了解和掌握测试系统的安装调试、基本实验方法并学会数据处理和运用理论知识对汽车操纵稳定性研究、评价。以培养学生解决实际工程问题的能力。 二、实验的主要内容 了解测试系统的组成和测试原理,汽车转向轻便性实验的数据的实时采集和处理。测定汽车在低速大转角时的转向轻便性,与操纵稳定性其他试验项目一起,共同评价汽车的操纵稳定性。 采集测量变量及参数 方向盘转角; 方向盘力矩; 方向盘直径。 三、实验设备和工具 1.测量仪器 汽车方向盘转角——力矩传感器 汽车操纵稳定性数据采集和分析仪 2.实验车辆 小型客车一辆 3.标明试验路径的标桩16个。 四、实验原理 测定汽车在道路上进行转向行驶时,驾驶员作用在方向盘上的力矩和方向盘转角的变化关系评价汽车的转向操纵性能 验方法和步骤 1.实验准备 试验场地应为干燥、平坦而清洁的水泥或柏油路面。任意方向上的坡度不大于2%。在试验场地上,用明显颜色画出双纽线路径(图1),双纽线轨迹的极坐标方程为: 为:轨迹上任意点的曲率半径R

°时,双纽线顶点的曲率半径为最小值,即=0Ψ 当. 双纫线的最小曲率半径(m)应按试验汽车的最小转弯半径(m)乘以倍,并圆整到比此乘积大的一个整数来确定。并据此画出双纽线,在双纽线最宽处、顶点和中点(即结点)的路径两侧共放置16个标桩(图1)。标桩与试验路径中心线的距离,按汽车的轴距确:定,当试验汽车轴距大于时,为车宽一半加50cm,当试验汽车轴距小于或等于2m时,为车宽一半加30cm。 图1 双纽线路径示意图 2.试验方法 2.1接通仪器电源,使之预热到正常工作温度。 2.2汽车以低速直线滑行,驾驶员松开方向盘,停车后,记录方向盘中间位置及方向盘力矩零线。 2.3驾驶员操纵方向盘使汽车沿双纽线路径行驶。车速为10土1km/h。待车速稳定后,开始记录方向盘转角及力矩,并记录(或显示)车速作为监督参数,直到汽车绕双纽线行驶满三周。 3.数据处理 3.1根据记录的方向盘转角及方向盘力矩,按双纽线路径每一周整理成图2所示的M—θ曲线,并计算以下参数: 3.1.1方向盘最大力矩,用下式计算: 式中:Mmax——方向盘最大力矩,N·m; 3.1.2方向盘最大作用力,用下式计算:

操纵稳定性试验方法_稳态回转试验

中华人民共和国国家标准 汽车操纵稳定性试验方法GB/T 6323.6—94 稳态回转试验代替GB 6323.6—86 Controllability and stability test procedure for automobiles—Steady static circular test procedure 1 主题内容与适用范围 本标准规定了汽车操纵稳定性试验方法中的稳态回转试验方法。 本标准采用固定转向盘转角连续加速的方法进行试验。也可采用附录A(补充件)所规定的试验方法。 本标准适用于二轴轿车、客车、货车及越野汽车,其他类型可参照执行。 2 引用标准 GB/T 12534 汽车道路试验方法通则 GB/T 13047 汽车操纵稳定性指标限值与评价方法 GB/T 12549 汽车操纵稳定性术语及其定义 3 测量变量和仪器设备 3.1 测量变量 3.1.1必须测量变量 a. 汽车横摆角速度 b. 汽车前进车速 c. 车身侧倾角 3.1.2希望测量变量 a. 汽车重心侧偏角; b. 汽车纵向加速度; c. 汽车侧向加速度 3.2 仪器、设备 3.2.1试验仪器应符合GB/T12534中3.5条的规定,其测量范围及最大误差应满足表1 要求. GB/T6323.6—94

Z 3.2.3试验所用传感器应按各自使用说明书安装。陀螺仪的安装接近车辆重心位置,垂直陀螺轴线与车辆Z轴线重合或平行。 4 试验条件 4.1 试验汽车 4.1.1试验汽车应是按厂方规定装备齐全的汽车,试验前,应测定车轮定位参数,对转向系、悬架系进行检查,并按规定进行调整、紧固和润滑。只有认定汽车已符合厂方规定的技术条件时,方可进行试验。测定及检查的有关参数的数值记入附录B(补充件)中。 4.1.2试验时若用新轮胎,轮胎至少应经过200km正常行驶的磨合,若用旧轮胎,试验终了,残留花纹的高度应小于1.5mm.轮胎气压应符合GB/T 12534中3.1.2、3.1.3条的规定。轴载质量必须符合厂方规定。 注:轻载状态是指除驾驶员、试验员及仪器外,没有其他加载物的状态。对于承载能力小的汽车,如果轻载质量已超过量大总量的70%,则不必进行轻载状 态的试验。 4.2 试验场进与环境 a. 试验场地应为干燥、平坦且清洁的水泥或沥青路面,任意方向的坡度不大于 20%; b. 试验时风速应不大于5m/s; c. 大气温度在0~40°C之间。 5 试验方法 5.1在试验场地上,用明显颜色画出半径为15m或20m的圆周。 5.2接通仪器电源,使之预热到正常工作温度。 5.3试验开始之前,汽车应以侧向加速度为3m/s2的相应车速沿画定的圆周行驶500m 以使轮胎升温。 5.4驾驶员操纵汽车以最低稳定速度沿所画圆周行驶,待安装于汽车纵向对称面上 车速传感器在半圈内都能对准地面所画圆周时,固定转向盘不动,停车并开始记录,记下各变量的零线,然后,汽车起步,缓缓连续而均匀地加速(纵向加速度不超过0.25m/s2),直至汽车的侧向加速度达到6.5m/s2(或受发动机功率限制而所能达到的最大的侧向加速度、或汽车出现不稳定状态)为止。记录整个过程。 5.5试验按向左转和向右转两个方向进行,每个方向试验三次。每次试验开始时车身应处于正中位置。

汽车操纵稳定性

关键词:汽车操纵稳定性 1、蔡世芳(1985). "汽车操纵稳定性评价指标和参数匹配的工程分析方法." 汽车工程7(3): 21-29. 本文提出一种工程分析方法,并利用此方法研究评价指标和参数匹配规律。全文主要内容有四部份: (1)工程分析方法的数学模型; (2)评价指标的工程计算方法; (8)评价指标的相关分析和主要评价指标的推荐。(4)操纵稳定性参数匹配的基本规律。 2、岑少起, 潘筱, et al. (2006). "ADAMS 在汽车操纵稳定性仿真中的应用研究." 郑州大学学报: 工学版27(003): 55-58. 运用ADAMS软件建立了C型车多自由度整车多体动力学仿真模型,详细分析了前悬架系统、后钢板弹簧系统和轮胎模型,同时提出了一种建立钢板弹簧多体模型的新方法——中性面法,并对不同方向盘转角及改变整车质心位置下的操纵稳定性进行了动力学仿真.经过与实际车型性能比较,该模型与分析结果是准确、可靠的,可应用于汽车平顺性研究中. 3、陈克, 王工, et al. (2005). "基于ADAMS 的汽车操纵稳定性虚拟试验演示系统开发." 沈阳理工大学学报24(001): 59-61. 利用ADAMS动力学软件建立了整车多刚体系统模型.分别考虑车型、悬架、轮胎、车速等不同因素对整车操纵稳定性的影响,进行整车操纵稳定性6个性能试验的仿真分析.利用获取的动力学分析数据、仿真动画,实现汽车操纵稳定性虚拟试验演示系统. 4、陈黎卿, 王启瑞, et al. (2005). "基于ADAMS 的双横臂扭杆独立悬架操纵稳定性分析." 合肥工业大学学报: 自然科学版28(004): 341-345. 悬架的主要性能参数在悬架运动过程中的变化规律是影响悬架性能的主要因素。文章采用ADAMS软件建立了某商务车独立悬架的数学模型和仿真模型,分析了该悬架对操纵稳定性的影响,以及悬架主要性能参数的变化规律,为悬架设计奠定了基础。与传统的设计方法相比,这种方法提高了精度和效率。 5、邓亚东, 余路, et al. (2005). "ADAMS 在汽车操纵稳定性仿真分析中的运用." 武汉大学学报: 工学版38(002): 95-98. 利用ADAMS软件建立了某轿车的操纵动力学多体仿真模型,详细考虑了前后悬架系统、转向系统、轮胎以及各种连接件中的弹性衬套的影响,分析了汽车在方向盘转角阶跃输入时的转向特性.通过对不同车速、不同载荷下的仿真计算,得出汽车转向特性在这些条件下的不同表现,揭示了汽车转向特性与车速、载荷和轮胎的内在关系,为汽车操纵稳定性分析提供了参考. 6、董涵(2003). 侧风环境下高速汽车稳定性研究与分析[D], 长沙: 湖南大学. 随着汽车车速的不断提高,汽车侧风稳定性的研究日益重要。由于实车试验风险大、场地设备要求高,而使用计算机仿真则可以极大的的缩短产品开发周期。因而进行高速汽车侧风稳定性计算机仿真研究具有现实意义。在车辆动力学研究过程中,汽车数学模型的精确与否始终是一个关键问题。随着计算机技术的长足进步,以及多体系统动力学这一学科的成熟,汽车模型的自由度越来越多,仿真结果越来越精确。本文首先整理了汽车操纵稳定性的各项评价指标,根据汽车高速运动时的受力分析,使用非线性轮胎模型,建立了侧风环境下汽车运动十八自由度数学模型并进行了直线行驶运动仿真。

粉煤灰八项常规项目检测操作细则

粉煤灰操作细则 一、含水量的试验方法 1、操作步骤 称取粉煤灰试样50g,准确至0.01g,倒入蒸发皿中;将烘干箱温度调整并控制在105℃~110℃;将粉煤灰试样放入烘干箱内烘至恒重,取出放在干燥器中冷却至室温后称量,准确至0.01g。 2、计算公式 W = [(W1-W0)/ W1] × 100 式中:W ——含水量,%; W1——烘干前试样的质量,g; W0——烘干后试样的质量,g; 计算至0.1%。 二、细度的试验方法 1、操作步骤 将粉煤灰样品置于温度为105℃~110℃烘干箱内烘至恒重,取出放在干燥器中冷却至室温。 称取试样50 g,准确至0.01 g,倒入45μm方孔筛筛网上,将筛子置于筛座上,盖上筛盖。接通电源,将定时开关固定在3,开始筛析;开始工作后,观察负压表,使负压稳定在4000Pa~6000Pa,若负压小于4000Pa则应停机,清理收尘器中的积灰后再进行筛析。在筛析过程中,可用轻质木棒或硬橡胶棒轻轻敲打筛盖,以防吸附。

3min后筛析自动停止,停机后观察筛余物,如出现颗粒成球、粘筛可有细颗粒沉积在筛框边缘,用毛刷将细颗粒轻轻刷开,将定时开关固定在手动位置,再筛析1min~3min直至筛分彻底为止,将筛网内的筛余物收集并称量,准确至0.01 g。 2、计算公式 F = (G1/G)×100 式中:F ——45μm方孔筛筛余,%; G1——筛余物的质量,g; G ——称取试样的质量,g。 计算至0.1%。 三、烧失量的试验方法 1、操作步骤 准确称取试样约1 g,放入已灼烧至恒量的瓷坩埚中,在950℃~1000℃的高温下灼烧30min,取出,稍冷后置于干燥器中,冷却至室温后进行称量。 2、计算公式 Loss =(m -m1)/ m×100 式中:Loss ——烧失量的百分含量,%; m ——灼烧前试样的质量,; m1——灼烧后试样的质量,。 四、需水量比的试验方法 1、操作步骤 (1)胶砂配比按下表

汽车操纵稳定性试验解析

汽车操纵稳定性试验解析! 汽车的操稳性不仅影响到汽车驾驶的操纵方面,而且也是决定汽车安全行驶的一个主要性能;为了保证安全行驶,汽车的操稳性受到汽车设计者很大的重视,成为现代汽车的重要使用性能之一,如何试验并评价汽车的操稳性显得极其重要。汽车操控稳定性分为两个方面:1、操控性: 指汽车能够确切的响应驾驶员转向指令的能力;2、稳定性:指汽车受到外界扰动(路面扰动或阵风扰动)后恢复原来运动状态的能力。一、常用试验仪器 1、陀螺仪:用于汽车运动状态下测动态参数,如汽车行进方位角,汽车横摆角速度,车身侧倾角及纵倾角等; 2、光束水准车轮定位仪:测车轮外倾角,主销内倾角,主销外倾角,车轮前束,车轮最大转角及转角差; 3、车辆动态测试仪:测汽车横摆角速度,车身侧倾角及纵倾角,汽车横向加速度与纵向加速度等运动参数; 4、力矩及转角仪:测转向盘转角或力矩; 5、五轮仪和磁带机等。二、试验分类三、稳态回转试验 01试验步骤 1、在试验场上,用明显的颜色画出半径为15m或20m的圆周; 2、接通仪器电源,使之加热到正常工作温度; 3、试验开始前,汽车应以侧向加速度为3m/s2的相应车速沿画定的

圆周行驶500m以使轮胎升温。4、以最低稳定速度沿所画圆周行驶,待安装于汽车纵向对称面上的车速传感器在半圈内都能对准地面所画的圆周时,固定转向盘不动,停车并开始记录,记下各变量的零线,然后,汽车起步,缓缓连续而均匀地加速(纵向加速度不超过0·25m/s2),直至汽车的侧向加速度达到6·5m/s2为止,记录整个过程。5、试验按向左转和右转两个方向进行,每个方向试验三次。每次试验开始时车身应处于正中央。 02评价条件 1、中性转向点侧向加速度值An:前后桥侧偏角之差与侧向加速度关系曲线上斜率为零的点的侧向加速度值,越大越好; 2、不足转向度:按前后桥侧偏角之差与侧向加速度关系曲线上侧向加速度2m/s2点的平均值计算,越小越好; 3、车厢侧倾度K:按车厢侧倾角与侧向加速度关系曲线上侧向加速度2m/s2点的平均斜率计算,越小越好。 转向特性曲线图四、转向回正试验 01试验步骤一)低速回正性能试验:1、在试验场地上用明显的颜色画出半径为15m的圆周。2、试验前试验汽车沿半径为15m的圆周、以侧向加速度达3m/ s 2 的相应车速,行 驶500m,使轮胎升温。3、接通仪器电源,使其达到正常工作温度。4、试验汽车直线行驶,记录各测量变量零线,然

粉煤灰烧失量试验方法

粉煤灰烧失量(%)试验取样方法 一、粉煤灰烧失量(%)试验取样方法及数量 以连续供应的200t相同等级的粉煤灰为一批,不足200t亦按一批论,粉煤灰的数量按干灰(含水率小于1%)的重量计算。 散装灰取样——从不同部位取15份试样,每份试样1~3kg,混合均匀,按四分法缩取比试验所需量大一倍的试样(称为平均试样)。 袋装灰取样——从每批中抽10袋,并从每袋中各取试样不少于1kg,混合均匀,按四分法缩取比试验所需量大一倍的试样(称为平均试样)。 二、试验方法:按四分法取样,准确称取1g试样,置于已灼烧恒重的瓷坩埚中,将盖斜置与坩埚上,防在高温炉内从低温开始逐渐升高温度,在950~1000℃以灼烧15~20min,取出坩埚,置于干燥器中冷至室温。称量,如此反复灼烧,直至恒重。 三、计算:烧失量(%)S=(G1-G2)/G1*100 G1烧前质量,G2烧后质量。 四、粉煤灰必试项目试验结果评定标准 评定依据《用于水泥和混凝土中的粉煤灰》(GB1596-91),其品质指标应符合下表规定:烧失量(%)不大于 Ⅰ级5%Ⅱ级8%Ⅲ级15% 三)、掺合料“混凝土中掺用矿物掺合料的质量应符合现行标准《混凝土矿物外加剂应用技术规程》DB/T 1013-2004J10364-2004《用于水泥和混凝土中的粉煤灰》GB/T1596-2005等的规定。矿物掺合料的掺量应通过试验确定。 检查数量:按进场的批次和产品的抽样检验方案确定。 检查方法:检查出厂合格证和进场复验报告。“ 混凝土生产中为改善其某些性能、调节混凝土强度等级、节约水泥材料、而加入的人造或工业废料及天然的矿物材料,称为混凝土掺合料。其可分为活性掺合料和非活性掺合料。 活性掺合料是指某些自身具有水硬性的材料,如碱性粒化高炉矿渣、增钙液态渣、烧页岩灰等。或者某些自身不具有水硬性,但经磨细与石灰或石灰和石膏拌合在一起,加水后能在常温下具有胶凝性的水化产物,既能在水中也能在空气中硬化,这种材料称为具有活性的水硬性材料,如酸性粒化高炉矿渣、硅粉、沸石粉、粉煤灰、烧页岩以及火山灰质材料,如火山灰、浮石、凝灰岩、硅藻土、蛋白石等。 非活性掺合料是指某些不具有水硬性或活性甚低的人造或天然矿物材料,一般与水泥不起化学反应或反应很小,掺入混凝土中主要起填充作用和改善混凝土的和易性,如磨细石英砂、石灰石、粘土等。 1.粉煤灰(GB1596-2005) 粉煤灰是由电厂煤粉炉排出的烟气中收集到的灰白色颗粒粉末,是将磨成一定细度的煤粉在温度高达110 0℃~1500℃的煤灰锅炉中燃烧后收集得到的细灰。在高温悬浮燃烧过程中,煤粉中含炭成分被烧掉,而其所含的页岩及黏土质矿物被熔融成液滴,当它们被烟道气带出并急速冷却时,即形成粒径大约在1μm~50μm的微细球状颗粒。它表面光滑呈球形,密度1.95~2.40g/cm3.粉煤灰的成分与高铝粘土相接近,主要以玻璃体状态存在,另有一部分为莫来石、α石英、方解石及β硅酸二钙等少量晶体矿物。其主要化学成分为SiO2占40%~60%;Al2O3占20%~30%;Fe2O3占5%~10%,以及少量的氧化钙、氧化镁、氧化钠、氧化钾、三氧化硫等。粉煤灰的活性主要取决于玻璃体的含量,以及无定形的氧化铝和氧化硅的含量,而粉煤灰的细度、需水量比也是影响活性的两个主要物理因素,因此粉煤灰应有严格的质量控制。 1.1细度细度表示颗粒的粗细程度,目前各国粉煤灰细度指标的表征方法主要有两种,一种用比表面积(cm2/g)表示,一种用45μm筛筛余量(%)表示(Ⅰ级:≤12%;Ⅱ≤25%;Ⅲ≤45%)。我国用后者表征细度指标,筛余量越多,则细度指标值越大,粉煤灰颗粒越粗。

GBT汽车操纵稳定性试验方法稳态回转试验

GBT汽车操纵稳定性试验方法稳态回转试验 汽车操纵稳固性试验方法GB/T 6323.6—94 稳态回转试验代替GB 6323.6—86 Controllbility and stability test procedure for automobiles—Steady static circular test procedure 1 主题内容与适用范畴 本标准规定了汽车操纵稳固性试验方法中的稳态回转试验方法。 本标准采纳固定转向盘转角连续加速的方法进行试验。也可采纳附录A(补充件)所规定的试验方法。 本标准适用于二轴的轿车、客车、货车及越野汽车,其他类型汽车可参照执行。 2 引用标准 GB/T 12534汽车道路试验方法通则 GB/T 13047汽车操纵稳固性指标限值与评判方法 GB/T 12549汽车操纵稳固性术语及其定义 3 测量变量和仪器设备 3.1 测量变量 3.1.1 必须测量变量 a.汽车横摆角速度; b.汽车前进车速; c.车身侧倾角。 3.1.2 期望测量变量 a.汽车重心侧偏角; b.汽车纵向加速度;

c.汽车侧向加速度。 3.2 仪器、设备 3.2.1 试验仪器应符合GB/T 12534中3.5条的规定,其测量范畴及最大误差应满足表1要求。 3.2.2 包括传感器及记录仪器在内的整个测量系统,频带宽度不小于3Hz。 3.2.3 试验所用传感器应按各自使用说明书安装。陀螺仪的安装应接近车辆重心位置,垂直陀螺轴线与车辆Z轴线重合或平行。 4 试验条件 4.1 试验汽车 4.1.1 试验汽车应是按厂方规定装备齐全的汽车,试验前,应测定车轮定位参数,对转向系、悬架系进行检查,并按规定进行调整、紧固和润滑。只有认定汽车已符合厂方规定的技术条件时,方可进行试验。测定及检查的有关参数的数值记入附录B(补充件)中。 4.1.2 试验时若用新轮胎,轮胎至少应通过200km正常行驶的磨合,若用旧轮胎,试验终了,残留花纹的高度应不小于1.5mm。轮胎气压应符合GB/T 12534中3.2条的规定。 4.1.3 试验汽车为厂定最大总质量状态(驾驶员、试验员及测试仪器的质量,计入总质量)和轻载状态;乘员和装载物(举荐用沙袋)的分布应符合GB/T 12534中3.1.2、3.1.3条的规定。轴载质量必须符合厂方规定。 注:轻载状态是指除驾驶员、试验员及仪器外,没有其他加载物的状态。关于承载能力小的汽车,假如轻载质量已超过最大总质量的70%,则不必进行轻载状态的试验。 4.2 试验场地与环境 a.试验场地应为干燥、平坦且清洁的水泥或沥青路面,任意方向的坡度不大于2%;

粉煤灰八项常规项目检测操作细则

粉 煤 灰 操 作 细 则 一、 含水量的试验方法 1、 操作步骤 称取粉煤灰试样50g ,准确至0.01g ,倒入蒸发皿中;将烘干 箱温度调整并控制在105℃~110℃;将粉煤灰试样放入烘干箱内烘至恒重,取出放在干燥器中冷却至室温后称量,准确至0.01g 。 2、 计算公式 W = [(W 1- W 0)/ W 1] × 100 式中:W —— 含水量,%; W 1 —— 烘干前试样的质量,g ; W 0 —— 烘干后试样的质量,g ; 计算至0.1%。 二、 细度的试验方法 1、 操作步骤 将粉煤灰样品置于温度为105℃~110℃烘干箱内烘至恒重,取出放在干燥器中冷却至室温。 称取试样50 g ,准确至0.01 g ,倒入45μm 方孔筛筛网上,将筛子置于筛座上,盖上筛盖。接通电源,将定时开关固定在3,开始筛析;开始工作后,观察负压表,使负压稳定在4000Pa ~6000Pa ,若负压小于4000Pa 则应停机,清理收尘器中的积灰后再进行筛析。在筛析过程中,可用轻质木棒或硬橡胶棒轻轻敲打筛盖,以防吸附。

3min后筛析自动停止,停机后观察筛余物,如出现颗粒成球、粘筛可有细颗粒沉积在筛框边缘,用毛刷将细颗粒轻轻刷开,将定时开关固定在手动位置,再筛析1min~3min直至筛分彻底为止,将筛网内的筛余物收集并称量,准确至0.01 g。 2、计算公式 /G)×100 F = (G 1 式中:F ——45μm方孔筛筛余,%; G ——筛余物的质量,g; 1 G ——称取试样的质量,g。 计算至0.1%。 三、烧失量的试验方法 1、操作步骤 准确称取试样约1 g,放入已灼烧至恒量的瓷坩埚中,在950℃~1000℃的高温下灼烧30min,取出,稍冷后置于干燥器中,冷却至室温后进行称量。 2、计算公式 Loss =(m -m1)/ m×100 式中:Loss ——烧失量的百分含量,%; m ——灼烧前试样的质量,; m1——灼烧后试样的质量,。 四、需水量比的试验方法 1、操作步骤 (1)胶砂配比按下表

粉煤灰检测实施细则

粉煤灰检测实施细则 1.适用范围、检测参数及技术标准 1.1适用范围 适用于拌制混凝土和砂浆时作为掺合料的粉煤灰及水泥生产中作为活性混合材料的粉煤灰。 1.2检测参数 细度( 45μ m 方孔筛筛余)、含水量、安定性、烧失量、需水量比、活性指数、三氧化硫、游离氧化钙。 1.3技术标准 1.3.1 产品标准(判定标准)及其需引用标准 GB/T 1596-2005用于水泥和混凝土中的粉煤灰 1.3.2 试验方法标准及其需引用标准 a.GB/T 176-2008水泥化学分析方法 b.GB/T 1346-2001水泥标准稠度用水量、凝结时间、安定性检验方法 c.GB/T 2419-2005水泥胶砂流动度试验方法 d.GB 12573-2008水泥取样方法 e.GB/T 17671-1999水泥胶砂强度检验方法(ISO 法) 2.检测环境 普通混凝土、砂浆用粉煤灰的设施环境应能满足下列要求: 2.1试件成型试验室的温度应保持在20℃± 2℃、相对湿度不低于50%。 2.2试件养护池水温应保持在20℃± 1℃范围内。 3.检测设备与标准物质 3.1检测设备 见表 3.1

3.2标准物质 3.2.1 GSB14-1511水泥细度和比表面积标准粉。 表 3.1 序 名称型号量程精度 号(最小分度值)1负压筛析仪FSY-150———— 245μm 方孔筛—————— 3电子天平AY20020-200g0.01g 4电热恒温干燥箱101-350℃ ~300℃1℃ 5蒸发皿—————— 6干燥器—————— 7电子天平YP30010~3000g0.1g 8水泥专用量瓶150mL——0.5mL 9水泥净浆搅拌机NJ-160A———— 10水泥稠度和凝结时间测定仪——0~70mm1mm 11雷氏夹¢30*30———— 12雷氏值膨胀值测定仪LD-500~25mm1mm 13自动控制养护箱HBY-40B———— 14水泥沸煮箱F2-31A 型———— 15箱式电阻炉SRJX-4-100~1000℃11℃ 16分析天平TG328A0.1mg~200g0.1mg 17水泥胶砂搅拌机JJ-5———— 18水泥胶砂流动度测定仪STNLD-3 型———— 19游标卡尺300mm0~300mm0.02mm 20水泥专用量瓶250mL225mL—— 21ISO 水泥胶砂振实台ZT-96———— 22胶砂试模40×40×160———— 23全自动水泥强度试验机DY208M 型0~300kN 1.0 0~10kN 24试验筛0.08mm方孔筛————25滤纸快、中、慢————26瓷坩埚(带盖)——————27滴定管、容量瓶、移液管—————— 3.2.2 GSB14-1510强度检验用水泥标准样。 4.取样方法及试样数量 4.1对于同一产家、同一等级、同一品种、连续进场且不超过10d 的掺合料为

同济汽车操纵稳定性实验报告新

《汽车平顺性和操作稳定性》实验报告 学院(系)汽车学院 专业车辆工程(汽车) 学生姓名同小车学号 000001 同济大学汽车学院实验室 2014年11月 1.转向轻便性实验

实验目的 驾驶员通过操纵方向盘来控制汽车的行驶方向,操纵方向盘过重,会增加驾驶员的劳动强度,驾驶员容易疲劳;操纵方向盘过轻,驾驶员会失去路感,难以控制汽车的形式方向。操纵方向盘的轻重,是评价汽车操纵稳定性的基本条件之一。转向轻便性实验的目的在于通过测量驾驶员操纵方向盘力的大小,与其他实验仪器评价汽车操纵稳定性的好处。 实验仪器设备 实验条件 试验车:依维柯 实验场地与环境 于圆形试车场,实验时按照桩桶圈出的双扭线,以10Km/h的车速行驶。双扭线的极坐标方程见下,形状如下图 实验当天天气晴好,无风,气温20度 在ψ=0时,双扭线顶点处的曲率半径最小,相应数值为Rmin=1/3d,双扭线的最小曲率半径应按照实验汽车的最小转弯半径乘以1,1倍,并圆整到比此乘积大的一个整数来确定。 试验中记录转向盘转交及转向盘转矩,并按双扭线路经过每一周整理出转向盘转矩转向盘转矩曲线。通常以转向盘最大转矩,转向盘最大作用力以及转向盘作用功等来评价转向轻便性。 转向轻便型实验数据记录

方向盘转角-转矩曲线 2. 蛇形试验 实验目的 本项试验是包括车辆-驾驶员-环境在内的闭路试验的一种,用来综合评价汽车行驶的稳定性及乘坐的舒适性,与其他操纵试验项目一起,共同评价汽车的操纵稳定性。也可以用来考核汽车在接近侧滑或侧翻工况下的操纵性能,在若干汽车操纵稳定性对比试验时,作为主观评价的一种感性试验。 实验原理 将试验车辆以不同车速行驶于规定的蛇形试验中,通过实验仪器可以得到行驶时的车速,方向盘转角,横摆角速度,车身侧倾角。 试验方法遵照GB/T 6323.1-94汽车操纵稳定性试验方法 蛇形试验

水泥粉煤灰矿粉试验方法

水泥粉煤灰矿粉试验方法: 水泥试验项目:细度,凝结时间,安定性,强度. 细度(<10%)称取25g水泥置于80微米的负压筛上筛3min.计算公式:F=(筛余质量 /25)╳100%。负压在4000-6000Pa 稠度用水量比(调整用水量法)/安定性试验净浆拌制:标准配比(水泥500g:水142.5g)调整用水量直到流动度在130-140cm的用水量. 安定性:做2个雷氏夹试件先放入标养箱养护24h,取掉玻璃板量两个针脚开口尺寸,再放 入沸煮箱中煮3h(其中加沸30min不算入其中),放掉箱中水取出再量针脚开口尺寸.计算公式:[1号试件(煮前尺寸/煮后尺寸)+2号试件(煮前尺寸/煮后尺寸)]/2<5mm即合格. 凝结时间:用维卡仪测试针进入净浆中的深度计算. 强度:抗折/抗压强度(3天和28天的对比试件和试验试件各做一组) 粉煤灰试验项目:细度,烧失量,需水量比,活性指数. 细度(<12%):称取10g粉煤灰置于45微米的负压筛上筛3min.公式:F=(筛余质量/10)╳100% 需水量比:对比胶砂配比(水泥250砂750水125)试验胶砂(水泥175粉煤灰75砂750水 用量:流动度到130-140mm时的用水量)计算公式:X=(流动度在130-140mm用水/125) ╳100% 活性指数配比:(对比胶砂水泥450砂1350水225)(试验胶砂水泥315粉煤灰135砂1350水225做28d的对比试件和试验试件各一组,测其28天的抗压强度)公式:试验28d/对比28d 烧失量:称取1g试样放入900±50℃的马弗炉中灼烧15分钟.公式:[(烧前试样重量-烧后的质量)/烧前质量]不大于3.0%. 矿粉试验项目:比表面积,烧失量,流动度比,活性指数. 活性指数:(测其7d28d抗压强度)试验样/对比样.试验样:水泥225矿粉225砂1350水 225 对比样:水泥450灰1350水225.试验样品,由对比水泥和矿粉按质量比1:1组成. 7天活性指数=试验7d抗压/对比7d抗压;28天活性指数=试样28天抗压/对比样28天抗压流动度比:亦按上面的配比,测出的试验样流动度/测出的对比样流动度即为流动度比. 烧失量:按粉煤灰烧失量方法试验.

粉煤灰安定性试验(标准法)

粉煤灰安定性试验(标准法) 1.目的及原理 雷氏法是通过测定水泥标准稠度净浆在雷氏夹中沸煮后试针的 相对位移表征其体积膨胀的程度。 2.仪器设备 水泥净浆搅拌机 雷氏夹 沸煮箱 雷氏夹膨胀测定仪 试验样品 对比样品和被检验粉煤灰(C类)按7:3质量比混合而成 4. 安定性测定 (标准法) 试验前准备工作 每个试样需成型两个试件,每个雷氏夹需配备两个边长或直径约 80mm、厚度4mm~5mm的玻璃板,凡与水泥净浆接触的玻璃板和雷氏夹内都要稍稍涂上一层油。(注:有些油会影响凝结时间、矿物油比较合适。) 雷氏夹试件的成型 将预先准备好的雷氏夹放在已稍檫油的玻璃板上,并立即将已制好的标准稠度净浆装一次装满雷氏夹,装浆时一只手轻轻扶持雷氏夹,另一只手用宽度约25mm的直边刀在浆体表面轻轻插捣3次,然后抹平,

盖上稍檫油的玻璃板,接着立即将试件移至湿气养护箱内养护24h±2h。 沸煮 调整好煮沸箱内水位,使能保证在整个过程中都能超过试件,不需中途添补试验用水,同时又能保证在30min±5min内开始沸腾。 脱去玻璃板取下试件,先测量雷氏夹指针尖端间的距离(A),精确到,接着将试件放入沸煮箱中的试件架上,指针朝上,然后在30min ±5min内加热至沸并恒沸180min±5min。 5. 结果判别 沸煮结束后,立即放掉箱中的热水,打开箱盖,待箱体冷却至室温,取出试件进行判别。测定雷氏夹指针尖端的距离(C),精确到,当两个试件煮后指针尖端增加的距离(C-A)的平均值不大于时,即认为该样品安定性合格。当两个试件煮后增加距离的距离(C-A)的平均值大于时,应用同一样品立即重做一次试验。以复检结果为准。

粉煤灰检验方法

1 范围 本标准规定了用于水泥和混凝土中的粉煤灰的技术要求、试验方法和检验规则等。 本标准适用于拌制水泥混凝土和砂浆时作掺合料的粉煤灰成品生产中作混合材料的粉煤灰。 2 引用标准 GB176 水泥化学分析方法 GB177 水泥胶砂强度检验方法 GB2419 水泥胶砂流动度试验方法 3 定义 从粉煤灰烟道气体中收集的粉末称为粉煤灰。 4 技术要求 4.1 拌制的要水泥混凝土和砂浆时,作掺合料的粉煤灰成品应满足表1求。 表—1

4.2水泥生产中作活性混合材料的粉煤灰应满足表2要求。 表——2 国家技术监督局1991—06—04批准1992—03—01实施 5 试验方法 5.1烧失量 5.1.1试验步骤 称取约1g试样,精确至0.0001 g,置于已灼烧恒量的坩埚中,将坩埚盖斜置于坩埚上,放入电阻炉内,将温度调至950℃—1000℃内,当逐渐升至所调温度后,再灼烧15—20分钟。取出坩埚,置于干燥器中冷却至室温,然后称量,5.1.2结果计算 XloI=m7-m8/ms7 *100 式中:XloI—烧失量的质量百分数(%) m7—试样的质量g. m8—灼烧后试样的质量g. 5.2细度

5.2.1适用范围 适用于粉煤灰细度的测定。 5.2.2仪器 采用有气流筛析仪(又称负压筛析仪)主要由筛座、筛子、真空源及收尘器等到组成。利用气流作为筛分的动力和介质,通过旋转的喷嘴喷出的气流作用使筛网里的待测粉状物料呈流态化,并在整个系统负压的作用下将颗粒通过筛网抽走,从而达到筛分的目的。 5.2.3试验步骤 1>称取试样50 g,精确至0.1 g.倒入0.045mm方孔筛筛网上,将筛子置于筛座上,盖上筛盖. 2>接通电源,将定时开关开到3min,开始筛析。 3>开始工作后,观察负压表,负压大于2000Pa时,表示工作正常,若负压小于2000Pa时,则应停机,清理收尘器中的积灰后再进行筛析。 4>在筛析过程中,可用轻质木棒或硬橡胶棒轻轻敲打筛盖,以防吸附。 5>3mi后筛析自动停止,停机后将筛网内的筛余物收集并称量,准确至0.1g。 5.2.4结果计算 筛余百分数X ( % )按式计算: X=G*2 式中:G—筛余物重量。

第5章_汽车的操纵稳定性 (2)

第5章汽车的操纵稳定性 1. 何谓汽车的操纵稳定性?其性能如何在时域和频域中进行评价?具体说明有几种型式可 以判定和表征汽车的稳态转向特性? 2. 解释下列名词和概念侧偏现象侧偏刚度回正力矩转向灵敏度特征车速临界车速 中性转向点侧向力变形转向系数侧向力变形外倾系数转向盘力特性静态储备系数S.M. 轮胎拖距 3. 举出三种表示汽车稳态转向特性的方法,并说明汽车重心前后位置和内、外轮负荷转移 如何影响稳态转向特性? 4. 汽车的稳态响应由哪几种类型?表征稳态响应的具体参数由哪些?它们彼此之间的关系 如何(要求有必要的公式和曲线)。 5. 汽车转弯时车轮行驶阻力是否与直线行驶时一样? 6. 主销内倾角和后倾角的功能有何不同? 7. 横向稳定杆起什么作用?为什么有的车装在前悬架,有的车装在后悬架,有的前后都装? 8. 某种汽车的质心位置、轴距和前后轮胎的型号已定。按照二自由度操纵稳定性模型,其 稳态转向特性为过多转向,请找出5种改善其转向特性的方法。 9. 汽车空载和满载是否具有相同的操纵稳定性? 10. 试用有关计算公式说明汽车质心位置对主要描述和评价汽车操纵稳定性、稳态响应指标 的影响。 11. 为什么有些小轿车后轮也没有设计有安装前束角和外倾角? 12. 转向盘力特性与哪些因素有关,试分析之。 13. 地面作用于轮胎的切向反力是如何控制转向特性的? 14. 汽车的三种稳态转向特性是什么?我们希望汽车一般具有什么性质的转向特性?为什 么?有几种型式可以判定或表征汽车的稳态转向特性?具体说明。 15. 画出弹性轮胎侧偏角和回正力矩特性曲线,分析其变化规律的原因。 16. 轮胎产生侧偏的条件是什么?侧偏的结果又是什么?试分析侧倾时垂直载荷在左、右车 轮上重新分配对汽车操纵稳定性的稳态响应有什么影响? 17. 试述外倾角对车轮侧偏特性的影响。 18. 汽车表征稳态响应的参数有哪几个?分别加以说明。 19. 汽车重心位置变化对汽车稳态特性有何影响? 20. 用何参数来评价汽车前轮角阶跃输入下的瞬态特性?试加以说明。 21. 车厢侧倾力矩由哪几种力矩构成?写出各力矩计算公式。 22. 试述等效单横臂悬架的概念。 23. 什么是线刚度?如何计算单横臂独立悬架的线刚度? 24. 试述汽车瞬态响应的稳定条件。 25. 转向时汽车左右轮的垂直载荷变化对车轮侧偏特性有何影响? 26. 汽车在前轴增加一横向稳定杆后不足转向量有何变化?为什么? 27. 非独立悬架汽车车厢侧倾力矩由哪两种力矩组成?写出其计算公式。

粉煤灰检测实施细则

粉煤灰检测实施细则 1. 适用范围、检测参数及技术标准 1.1适用范围 适用于拌制混凝土和砂浆时作为掺合料的粉煤灰及水泥生产中作为活性混合材料的粉煤灰。 1.2检测参数 细度(45μm方孔筛筛余)、含水量、安定性、烧失量、需水量比、活性指数、三氧化硫、游离氧化钙。 1.3技术标准 1.3.1产品标准(判定标准)及其需引用标准 GB/T 1596-2005 用于水泥和混凝土中的粉煤灰 1.3.2试验方法标准及其需引用标准 a.GB/T 176-2008 水泥化学分析方法 b.GB/T 1346-2001 水泥标准稠度用水量、凝结时间、安定性检验方法c.GB/T 2419-2005 水泥胶砂流动度试验方法 d.GB 12573-2008 水泥取样方法 e.GB/T 17671-1999 水泥胶砂强度检验方法(ISO法) 2. 检测环境 普通混凝土、砂浆用粉煤灰的设施环境应能满足下列要求: 2.1试件成型试验室的温度应保持在20℃±2℃、相对湿度不低于50%。 2.2试件养护池水温应保持在20℃±1℃范围内。 3. 检测设备与标准物质 3.1检测设备 见表3.1

3.2 标准物质 3.2.1 GSB14-1511水泥细度和比表面积标准粉。 表3.1 3.2.2 GSB14-1510强度检验用水泥标准样。 4. 取样方法及试样数量 4.1对于同一产家、同一等级、同一品种、连续进场且不超过10d的掺合料为

一验收批,但一批的总量不宜超过200t。不足200t者应按一验收批进行验收。 4.2每一编号为一取样单位,当散装粉煤灰运输工具的容量超过该厂规定的出厂编号吨数时,允许该编号的数量超过取样规定吨数。 4.3取样方法按GB 12573-2008进行。取样应有代表性,可连续取,也可从10个以上不同部位取等量样品,总量至少6kg。 5. 检测方法 5.1 细度(45μ方孔筛筛余) 5.1.1设备、标准、环境检查 检查核对所需设备正常与否,必要时作记录; 检查核对产品标准和试验方法标准,并记录; 检查核对环境温度,并记录。 5.1.2试样核对检查 核对和检查试样是否符合要求,并记录。 5.1.3检测与计算 5.1.3.1检测 检测方法依据标准:GB/T 1596-2005。 操作步骤、细节,注意事项: a.将测试用粉煤灰样品置于温度为105℃~110℃烘干箱内烘至恒重,取出放在干燥器中冷却至室温。 b.称取试样约10g,准确至0.01g,倒入45μm方孔筛筛网上,将筛子置于筛座上,盖上筛盖。 c.接通电源,将定时开关固定在3min,开始筛析。 d.开始工作后,观察负压表,使负压稳定在4000Pa~6000Pa。若负压小于4000 Pa,则应停机,清理收尘器中的积灰后再进行筛析。 e.在筛析过程中,可用轻质木棒或硬橡胶棒轻轻敲打筛盖,以防吸附。 f. 3min后筛析自动停止,停机后观察筛余物,如出现颗粒成球、粘筛或有细颗粒沉积在筛框边缘,用毛刷将细颗粒轻轻刷开,将定时开关固定在手动位置,再筛析1min~3min直至筛分彻底为止。将筛网内的筛余物收集并称量,准确至0.01g。

第 章 汽车操纵稳定性

第5章汽车的操纵稳定性 学习目标 通过本章的学习,应掌握汽车行驶的纵向和横向稳定性条件;掌握车辆坐标系的有关术语,了解影响侧偏特性的因素,掌握轮胎回正力矩与侧偏特性的关系;熟练掌握汽车的稳态转向特性及其影响因素;了解汽车转向轮的振动和操纵稳定性的道路试验内容。 汽车在其行驶过程中,会碰到各种复杂的情况,有时沿直线行驶,有时沿曲线行驶。在出现意外情况时,驾驶员还要作出紧急的转向操作,以求避免事故。此外,汽车还要经受来自地面不平、坡道、大风等各种外部因素的干扰。一辆操纵性能良好的汽车必须具备以下的能力: (1)根据道路、地形和交通情况的限制,汽车能够正确地遵循驾驶员通过操纵机构所给定的方向行驶的能力——汽车的操纵性。 (2)汽车在行驶过程中具有抵抗力图改变其行驶方向的各种干扰,并保持稳定行驶的能力——汽车的稳定性。 操纵性和稳定性有紧密的关系:操纵性差,导致汽车侧滑、倾覆,汽车的稳定性就破坏了。如稳定性差,则会失去操纵性,因此,通常将两者统称为汽车的操纵稳定性。 汽车的操纵稳定性,是汽车的主要使用性能之一,随着汽车平均速度的提高,操纵稳定性显得越来越重要。它不仅影响着汽车的行驶安全,而且与运输生产率与驾驶员的疲劳强度有关。 5.1节汽车行驶的纵向和横向稳定性 5.1.1 汽车行驶的纵向稳定性 汽车在纵向坡道上行驶,例如等速上坡,随着道路坡度增大,前轮的地面法向反作用力不断减小。当道路坡度大到一定程度时,前轮的地面法向反作用力为零。在这样的坡度下,汽车将失去操纵性,并可能产生纵向翻倒。汽车上坡时,坡度阻力随坡度的增大而增加,在坡度大到一定程度时,为克服坡度阻力所需的驱动力超过附着力时,驱动轮将滑转。这两种情况均使汽车的行驶稳定性遭到破坏。 图5.1 汽车上坡时的受力图 图5.1为汽车上坡时的受力图,如汽车在硬路面上以较低的速度上坡,空气阻力 w F可以忽略不计,由于剩余驱动力用于等速爬坡,即汽车的加速阻力0 = j F,加速阻力矩0 = j M,而车轮的滚动阻力矩 f M的数值相对来说比较小,可不计入。 分别对前轮着地点及后轮着地点取力矩,经整理后可得 ? ? ? ?? ? ? = + - = - - sin cos sin cos 2 1 L G h aG Z L G h bG Z g g α α α α (5.1) 当前轮的径向反作用力0 1 = Z时,即汽车上陡坡时发生绕后轴翻车的情况,由式(5.1) 可得

相关主题
文本预览
相关文档 最新文档