当前位置:文档之家› 第八章声波测井

第八章声波测井

第八章声波测井
第八章声波测井

第八章声波测井

声波测井的物理基础

1.名词解释:

(1)滑行波:

(2)周波跳跃:

(3)stoneley 波:

(4)伪瑞利波:

(5)声耦合率:

(6)相速度:

(7)声阻抗:

(8)群速度:

(9)频散:

(10)衰减:

(儿)截止频率:

(12)声压:

(13)模式波:

(14)泊松比:

(15)第一临界角:

(16)第二临界角:

2.说明弹性系数K 和切变弹性系数μ的意义。他们与杨氏模量E 及泊松比σ有怎样 的关系?

3.介质质点弹性机械振动的过程是 的外力作用下, 与 的互相交替作用的过程,而声波传播,则是这种过程作用于 使之 的过程。

4.声波是介质质点的 振动在介质中的传播过程。声纵波是 变波,横波是 变波,它们均与此物理量(介质的) 有关。

5.某灰岩的V p =5500m/s ,密度ρb =2。73g /cm 3,横波速度V s 按V p =1.73V 。给出。试 求杨氏模量E ,泊松比σ,体弹性模量K ,切变弹性模量μ及拉梅常数λ。

6.声纵波的质点振动方向与能量传播方向 ,它可在 态介质中传播;声横波的质点振动方向与能量传播方向 ,它能在 态介质中传达播,但不能在 态介质中传播。

7.声纵波的速度为p V =;声横波的速度为s V =故V P /V S = 。根据岩石的泊松比为0.155—0.4,于是V p /V s ;= 。这表明在岩石中,V p V S ,所以在声波测井记录上, 波总先于 波出现。

8.在 相介质中,由于μ=0,即 切应力,故 。

9.瑞利(Rayleigh)波发生在钻井的 界面上,其速度v R 很接近V S ,约为 ,此波随离开界面距离的加大而迅速 ;斯通利(Stoneley )波产生在 中,并在泥浆中传播,它以低 和低 形式传传播,其速度 于泥浆的声速。

10.到达接收器的各声波中,全反射波因路径处在 中,波速 ,直达波行程 ,但波速 ,滑行波行程 但波速 。故以 波最早到达接收器。

11.声波沿井壁岩石传播的条件是:声入射角临界角,此时,沿井壁传播的波将按方向泥浆中辐射声能量。

12.在井壁上,入射的声波将诱导出反射纵波,折射纵波和折射横波。由于岩石的速度大于泥浆的速度,前两种诱导波的角度。又由于V s

13.写出均匀各向同性介质中虎克定律的表达式。

14.什么是费马时间最小原理?惠更斯原理的内容是什么?

15.什么是压电效应?什么是逆压电效应?制作声波发射探头时利用的是何种效应?

16.声波测井中探头的振动模式有几种?它们分别激发什么样的波?

17.阐明介质中声波的传播机制。

18.说明声波形成过程可以用哪些物理量描述。

19.讨论平面波的反射和折射有何重要意义?

20.为什么固体介质中,P波折射角总大于S波折射角,而且它们都大于入射角?

21.用物理概念说明侧面波的产生条件。

22.分析声测井中T至冗的各种声波特性。

23.要实现V s测量,应主要考虑什么问题,采取什么措施?

声速测井

1.井径变化对单发双收声系的影响只表现在。

①井径变化地层的上界面;②井径变化地层的下界面;

⑧井径变化地层的上、下界面;④井径变化地层。

2.声波速度测井曲线上钙质层的声波时差比疏松地层的声波时差值。

①很大;②大;

③相等;④小

3.地层埋藏越深,声波时差值。

①越大;②越小;

③不变;④变大。

4.在声波时差曲线上,读数增大,表明地层孔隙度。

①增大;②减小;

③不变;④很大

5.声波时差曲线上井径缩小的上界面出现声波时差值。

①增大;②减小;

③不变;④较大

6.利用声波时差值计算孔隙度时会因泥含量增加孔隙度值。

①很小;②减小;

③不变;④增大

7.只有当井内泥浆的声速岩石的声速时,才能产生沿井壁在地层中传播的滑行波。

①大于;②小于;

③等于;④约等于。

8.地层的声速随泥质含量增加而。

①趋于零;②增大;

③不变;④减小

9.声波时差值和孔隙度有关系。

①正比;②反比;

③不变;④相等

10.裂缝性地层在声波时差曲线上数值。

①减小;②增大;

③不变;④变为零

11.相同岩性的地层,老地层的时差值新地层的时差值。

①小于;②大于;

③等于;④相似于

12.气层的声波时差值油水层的声波时差值。

①小于;②大于;

③等于;④相似于

13.对未固结的含油砂岩层,用声波测并资料计算的孔隙度。

①偏小;②偏大;

③不变;④很小

14.声波速度测井采用声速测井仪。

①单发一双收;②单发一单收;

③双发一双收;④双发一单收

15.地层埋藏越浅,声速。

①越大;②越小;

③不变;④趋于零

16.声波速度随着地层孔隙度增大而。

①增大;②趋于无穷大;

③不变;④减小

17.以临界角入射到界面上,折射波在第二种介质传播的波叫。

①直达波;②折射波;

③反射波;④滑行波

18.在渗透性岩层处,声波速度值减小表明。

①孔隙度增大;②孔隙度减小;

③孔隙度不变;④孔隙度相等

19.在岩石中纵波传播的速度比横波传播速度。

①快;②慢;

③极大;④极小;

20.气层在声波时差曲线上数值。

①零;②低;

③中等;④高;

21.将下列岩石按声速的大小排列顺序,泥浆、石灰岩、钙质砂岩、砂岩、粉砂岩。

22.声波纵波速度测井的应用主要有、和。

23.纯砂岩的Δt测值为200μm/s,若求得之Ф为25.3%,则Δf= ,这表明孔隙中可能是(①水②油⑧气)。

24.在孔隙性灰岩上,时差测值为214μs/m。泥岩上的时差为272μs/m。已知灰岩骨架的时差为156μs/m,孔隙中流体时差为620μs/m。则纯岩的孔隙度为。若灰岩含10%泥质,则该灰岩的孔隙度为。

25.欠压实的岩石,由声波测井计算出孔隙度比(①有效②总)孔隙度(①高②低)。

26.没有压实的地层,Δt值(①特别低②特别高),Ф计算值(①小②大),因而要做校正。

经验的校正。经验的校正公式为100t a sh t C φφ=??。式中100a sh R

C t φφ=?。这里,R φ由 算出;C 值在 到 之间。

27.孔隙性地层中,含泥一般使Δt 因而Ф值 ;充有油气的地层Δt 。

28.实验测量结果表明:对于纯岩层,声横波时差与纵波时差的对比值为 。例 如,纯砂岩、灰岩、白云岩比值分别为(①1.9,1.8,1.6②1.6,1.8,1.9)。据此,可利用地层的横、纵波时差比,确定 。

29.在砂泥岩岩剖面上,砂岩显示 的时差值,泥岩显示 的时差值。页岩则 。

30.碳酸盐剖面上,岩盐时差 ,含有泥质时,时差 。

31.膏盐剖面上,岩盐时差 ,无水石膏的时差显示为 。

32.声波时差曲线出现“周波跳跃”,常对应于 、 和 等地段。

33.仪器处于井轴条件下,单发单收声波仪的岩层时差值受(①井径V 井,井壁行程②井壁行程,V 岩)改变的影响;单发双收仪则受(①井径,V 井②井壁行程,③V 岩,井壁行程) 改变的影响。双发双收仪,即使(①仪器倾斜或井径改变②仪器偏心或贴壁)也平均地不影响时差值。

34.单发双收声速测井仪所测量的声波时差曲线,在井径缩小的井段上,上界会出现 Δt 的 ,下界会出现Δt 的 。

35.声波时差曲线出现“周波跳跃”是由于 的原因造成。

36.用()()

/ma f ma t t t t φ=?-??-?式计算孔隙度,实际上适用于:①泥岩地层②均匀粒间孔隙地层③有次生孔隙地层④裂缝型地层,请选择正确者。

37.对未固结的含油气砂岩,用上题公式计算出的孔隙度是(①偏高②偏低⑧正确)。

38.在界面处,产生滑行波的条件是什么?

39.声波速度理论值的影响因素有哪些?

40.井径扩大的界面处,声波时差值有什么变化?

41.声波时差值随泥质含量增加会有什么变化?

42.声速测井中的误差有几种?如何消除?

43.某储层的声波时差值Δt=310μs/m ,骨架声波时差值Δt ma = 190μs/m ,流体声波时 差值Δt f =590μs/m ,求该储层的孔隙度是多少?

44.试述声波速度测井的原理?

45.用声波时差测井曲线求孔隙度时,为什么要对泥质含量,未固结砂岩含气砂岩进 行校正?

46.声速测井时,先后到达接收器的有几种波?如何保证滑行波最先到达接收器?

47.画出单发双收声系在渗透性孔隙性很好的砂岩层(围岩为页岩)的时差曲线异常示意图。

48.如何考虑声速测井源距和间距的选择?

49.比较各种声测井方法的特性。

50.声速测井与密度测井均与岩石密度有关。试比较两者的不同点和优缺点。

51.声波压实校正系数可有哪几种方法?试简述之。

52.一单发双收声波仪的源距为1cm 间距为0.5m ,泥浆声速设为1600m /s ,泥岩为 1850m /s ,井径27cm 时,页岩上首波至R l 、R 2的时间为:(①490μs ,760μs ②625μs ,895μs)。

53.设泥浆中声波时差为189μs /ft ,地层中为120μs /ft ,井径为16"。问发射和接收器间

距离至少应选多大才能保证最先至达接收器的是首波?在页岩中(设150μs/ft)最小距离是多少?

54.单发双收声波仪的源距为1m,间距为0.5m,泥浆声速设为1600m/s,泥岩为1850m/s。问泥岩处井径扩大到多少,所测的初至波不再是滑行波?

55.简述补偿声波测井的原理。它能否实现完全补偿?

56.下图是某一膏岩剖面的测井曲线,(岩性仅有盐岩和硬石膏),试划出岩性,并说明理由。

57.声速测井测量的是哪种波?它的传播速度(或时差)与哪些因素有关?

58.单发双收声系有什么缺点?双发双收声系是如何克服这些缺点的?

59.声波时差测井资料有什么用途?

60.气层在声波时差测井曲线上有什么特点?

61.采用什么形式的声速测井仪可以消除井眼的影响?

62.阐明均匀无限各向同性介质中,声波传播的物理过程。

63.如何利用测井曲线判断气层和裂缝带。

64.比较单发双收声系和双发双收声系的优缺点。

65.致密地层与疏松地层在声波时差曲线上显示如何?

套管井中的声波测井、声波全波列测井

1.裂缝性地层,声幅值。

①增大;②减小;

③不变;④无穷大

2.水泥胶结测井曲线上,泥浆的等距离低值异常尖峰显示为。

①泥浆;②套管;

③套管接箍④地层

3.水泥胶结好时,声幅相对幅度值。

①大于20%;②小于20%;

③在20-40% ④大于40%

4.声阻抗指的是介质的与的乘积。

①电阻率与岩性;②时差与岩性;

③层厚与岩性;④密度与速度

5.在裸眼井中,接收换能器可以接收到声波全波列的成分,包括有、、、和。

6.声幅测井仪使用、测井仪。

①单发,双收;②单发,单收;

③双发,双收;④双发,单收

7.长源距声波全波列测井下声系为R10.6 R22.24 T10.61T2。由于源距,探测范围,有利于测量地层,并从并从时间上易于区分波及其它类型的后续波。声系频率为1lkHz,于普通声系频率,讯号衰减,可补偿源距引起的衰减。

8.长源距声波测井是采用法进行井眼补偿的。用和两组源距测量的。

9.介质的特征声阻抗是声波速度和介质密度的乘积,即z=Vρ。若有两种介质,其z1 =z2,则声耦合(好,不存在反射波;不好,存在反射波;好,存在反射波),声波能很好透射过分界面,声阻抗差明显时,则。

10.长源距声波仪可以:

(1)分别测量条单发单收时差曲线;

(2)测量T1至时差和至R2时差两者的平均值可以得出经井眼补偿的纵波时差曲线;

(3)可按一定的深度间隔进行补偿方法得出横波时差曲线,还可以记录波列。

11.从全波列声波记录上识别横波,可以从横波的两个基本特点来考虑,即,各。

12.声全波的记录方式可有及两种。

13.水泥胶结测井曲线的影响因素是什么?

14.简述声幅测井检查固井质量的原理。为什么固井声幅测井不用单发双声系而仅用单发单收井下装置?

15.固井质量变差,水泥胶结测井的胶结指数(BI)曲线值将发生怎样的变化?

16.如何利用声波变密度测井判断固井质量?

17.如何利用水泥胶结测井判断固并质量?

18.水泥胶结测井(CBL)与变密度测井(VDL)的定性解释规则是:①套管未胶结,Δt 不是套管值,幅度低,VDL无套管信号,显示规律为反差明显的条带;②套管胶结良好时,Δt小,幅度大,VDL己套管信号强,地层波强;③套管胶结好但地层耦合不好时,幅度低,VDL仅有地层波至。上述规则是否正确?如不正确,请予更正。

19.列述长源距声系的方法特点。

20.简述全波列测井的应用。

21.为从声波记录图上区分纵波和横波,至少需采用多大源距?

22.根据如图所示的测井曲线判断储层中流体性质并说明理由。

23.声全波列记录有哪几种方式,其特点如何?

24.下图是某一碳酸盐岩剖面的测井曲线划分出该剖面的裂缝带,并说明理由。

25.计算声全波记录上横波继纵波之后到达的时间。设仪器处于Δt P=200μs/m的砂岩上,σ=0.25,声探头频率为20kHz,源距分别为1m及3m两种情况。

26.简述声波全波列测井中所记录到的全波列各种波型成份的特点。

27.讨论声波在传播过程中发生能量衰减的原因。

28.计算声速的体积模型有几种?试比较其优点。

29.什么叫套管波?它有什么特点?

30.影响套管波幅度的因素有哪些?

测井曲线解释

主要测井曲线及其含义 主要测井曲线及其含义 一、自然电位测井: 测量在地层电化学作用下产生的电位。 自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。Rmf ≈Rw时,SP几乎是平直的;Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。 自然电位测井 SP曲线的应用:①划分渗透性地层。②判断岩性,进行地层对比。③估计泥质含量。④确定地层水电阻率。 ⑤判断水淹层。⑥沉积相研究。 自然电位正异常 Rmf<Rw时,SP出现正异常。 淡水层Rw很大(浅部地层) 咸水泥浆(相对与地层水电阻率而言) 自然电位测井 自然电位曲线与自然伽马、微电极曲线具有较好的对应性。 自然电位曲线在水淹层出现基线偏移 二、普通视电阻率测井(R4、R2.5) 普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。 视电阻率曲线的应用:①划分岩性剖面。②求岩层的真电阻率。③求岩层孔隙度。④深度校正。⑤地层对比。 电极系测井 2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。 底部梯度电极系分层: 顶:低点; 底:高值。 三、微电极测井(ML) 微电极测井是一种微电阻率测井方法。其纵向分辨能力强,可直观地判断渗透层。 主要应用:①划分岩性剖面。②确定岩层界面。③确定含油砂岩的有效厚度。④确定大井径井段。⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。 微电极确定油层有效厚度 微电极测井 微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。 四、双感应测井 感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。 感应测井曲线的应用:①划分渗透层。②确定岩层真电阻率。③快速、直观地判断油、水层。 油层: RILD>RILM>RFOC

Geolog-全波列声波测井中文手册-

Geolog软件技术手册Full Sonic Wave Processing -SWB 帕拉代姆公司北京代表处 2006年12月

1、综述................................................................................................................................................................................ - 1 - 1.1 预备知识..................................................................................................................................................................... - 1 - 1.2数据 ............................................................................................................................................................................... - 1 - 2、阵列声波全波形........................................................................................................................................................... - 2 - 2.1数据准备 ...................................................................................................................................................................... - 3 - 2.1.1查看/创建一个声波列阵工具模版.......................................................................................................... - 3 - 2.1.2 练习指导2-创建其他波形属性.............................................................................................................. - 5 - 2.1.3波形分解.......................................................................................................................................................... - 6 - 2.1.4深度转换.......................................................................................................................................................... - 7 - 2.2 处理 .............................................................................................................................................................................. - 8 - 2.2.1数据分析......................................................................................................................................................... - 8 - 2.2.2去噪................................................................................................................................................................ - 11 - 2.2.3 设计滤波器................................................................................................................................................. - 17 - 2.2.4 振幅恢复 ..................................................................................................................................................... - 19 - 2.3阵列声波处理.......................................................................................................................................................... - 20 - 2.3.1处理模块简介 ............................................................................................................................................. - 20 - 2.3.2偶极波形处理 ............................................................................................................................................. - 21 - 2.3.3 单极波形处理 ............................................................................................................................................ - 23 - 2.3.4 拾取标志波至 ............................................................................................................................................ - 26 - 2.4后期处理 (32) 2.4.1综述 (32) 2.4.2频散校正 (33) 2.4.3 传播时间叠加 (36) 2.4.4 相关性显示 (38) 2.4.5 阵列声波重处理 (39) 3、机械性质 (44) 3.1综述 (44) 3.2 计算动力学弹性性质 (44) 附录I-快速运行 (46) 附录II-频散校正讨论 (47)

测井

第一章: 1.分析自然电位的成因,写出扩散电动势、扩散吸附电动势、总电动势表达式。 成因:1)地层水含盐浓度和泥浆含盐浓度不同,引起离子的扩散作用和岩石颗粒 对离子的吸附作用;2)地层压力与泥浆柱压力不同时,在地层孔隙中产生过滤作用。 扩散电动势:w mf d mf w d d R R K C C K E lg lg ≈≈ 扩散吸附电动势:w mf a mf w a a R R K C C K E lg lg ≈≈ 总电动势: 21 1 2 lg lg lg C C K C C K C C K E a mf a mf d s -+=mf a d s C C K K E 2 lg )(+=mf s C C K E 2 lg =若砂岩的地层水矿化度为C 2,泥岩的地层水矿化度为C 1,泥浆滤夜的矿化度为C mf ,C 1 ≥ C 2 ≥ C mf 2、不同Cw 、Cmf 情况下自然电位测井曲线有哪些特征? 在井中电流从泥岩流向砂岩,电位值沿电流方向降低,界面处全部电流都在井中,电流线最密,电位变化最大。在砂岩处,自然电位曲线的异常幅度ΔU sp 小于静自然电位曲线的异常幅度SSP 。 3、影响自然电位测井的因素有哪些? 1)岩性的影响 K 与泥质的类型、泥质含量及分布形式有关。不同的岩性,电 阻R 不同。 2)地层水和泥浆滤液中的含盐浓度及盐的类型 矿化度不同时,C w /C mf 不同;盐的类型不同时,K 值不同。 3)温度的影响 温度的变化引起K 值的变化,温度对电阻率的影响明显。 4)地层厚度的影响 5)井径和侵入影响 4.自然电位测井曲线在油田勘探开发中应用于哪些方面? 划分渗透层并确定层界面的位置;求取地层水电阻率R w ;求取泥质含量Vsh ;求取阳离子交换容量Q v 5.自然电位曲线的泥岩基线是:(2) (1)测量自然电位的零线;(2)衡量自然电位异常的零线;(3)没有意义; (4)其值大小没有实际意义。 6.偏向低电位一方的自然电位异常称为(负异常),其数值是:(3) (1)负的;(2)正的;(3)无正负之分。 7.明显的自然电位正异常说明:(2) (1)Cw> Cmf;(2)Cw

随钻测井行业内的革命性产品

【新技术】随钻测井行业内的革命性产品 加拿大卡尔加里的Cold Bore技术公司,目前正在试验用于定向井作业井下信号传输的革命性产品——声波电测技术,可以用来替代目前行业内常用的 MWD/LWD技术。公司刚刚成立了1年半,目前正在融资进行工具测试。 Cold Bore 是行业内最先尝试应用声波电测技术进行井下信号传输的公司之一。并且目前已经取得革命性的成果。制作的原型机已经测试了2500个小时,行业内测试原型机的标准是2500-3000h,公司准备成功测试20000个小时之后再进行商业化推广。 基本原理:在井下将电信号转化为机械能通过钻柱来传播声波信号。 优势:传输速度快,传播的极限速率56000bps,多数试验下,传输速率比目前市场常用的工具快2800倍。目前MWD/LWD常用的Mud pulse 传输速率约 5-8bps,EM传输速率约10-15bps。有个比喻很形象,声波电测技术的传输速率对比目前MWD/LWD所用工具的传输速率,就如90年代的拨号上网和如今的高速宽带。 目前常用井下传输技术主要有Mud pluse和EM技术,EM传输速率稍快,但是不够稳定,传输的井深较浅;Mud pluse 稳定且能够达到足够的井深要求,但是传输速率慢,并且测量时,需要停泵,停转盘,降低钻井时效。 在石油行业内,用于井下数据测量的工具,成本和传输速度是两个重要的因素。由于所用的电子元件极其昂贵,目前行业内的产品创新速度比较缓慢。 根据https://www.doczj.com/doc/0017522444.html, 的数据,在2013年MWD/LWD的市场额达到60亿美金,MWD市场额从2000年的10亿美金,到2008年达到20亿美金,预计到2016年市场价值可翻倍达到40亿美金。LWD市场从2009年的20亿美金,到2013年增加到37.5亿美金。对比,2013年定向井的陆地市场额约160亿美金,海上定向井市场额约400亿美金,水力压裂市场额300亿美金。 对于一个创新性的小公司,Cold Bore的目标是成为石油天然气行业的“苹果”。对于如此巨大的的市场额,如果技术能够成功的商业化应用,可以想象能够获得多大的回报。 对于油服行业来说,最高的利润回报点,还是存在于高新技术附加值上。每一个领域的巨大创新,都会带来巨额的利润回报。而目前在国内,很少的企业和研究

测井部分

第N节水文地质测井中子孔隙度、密度孔隙度(沙泥水)、声波孔隙度 水文地质测井是水文、地热以及矿产资产资源、工程、环境地质勘查工作中的一个重要组成部分,它是在水文地质勘查工作中逐步发展起来的,对提高勘查质量、加快勘查速度、降低勘查成本起着很大的作用。水文测井可解决的地质任务主要如下: 1 判别岩性、编录和校正钻孔地质剖面。 2 确定含(隔)水层位置和厚度,判定为孔隙含水、裂隙含水或溶洞含水,含咸水或淡水,含冷水或热水。 3 计算含水层的孔隙率,渗透率,含水砂岩的砂、泥、水含量和岩、土层的力学参数。 4 确定各涌、漏水部位。查明钻孔中含水层之间的补给关系。 5 测量静止水位,检查钻孔的止水质量和堵孔质量。 6 研究钻孔技术状况。包括井径、井斜的变化,套管完好情况,井内故障位置和原因等。为定向孔、灌注桩、老井修复等工程项目提供精确资料。 7 进行区域性的地层对比。了解含水层在地下空间的分布范围和特征。 一、水文地质测井一般可分为常规煤田参数、方法测井和专门水文地质测井两部分。 一)常规煤田参数和方法测井包括自然电位、人工电阻率系列、天然伽马、人工放射性、声速测井以及工程测井。 二)水文地质测井是在上述测井的前提下进行的示踪测井、流量测井等测量, 二、各参数方法分别论述如下: 1、自然电位测井:是测井最早兴起的测井参数,是以岩石的电化学性质为基础的测井方法。主要用于划分地层、含水层和区分含水层的咸、淡水。 自然电位的形成较为复杂,一般有扩散电位、扩散吸附电位和过滤电位 1)扩散电位:涅耳斯特公式 E d=K d lg(C1/C2) E d—扩散电动势; K d—扩散电位系数; C1、C2—两种溶液的浓度。 2)扩散吸附电位: E da=k da lg(C1/C2) E da—扩散吸附电位; k da—扩散吸附系数。 3)过滤电位 与地层水和泥浆之间的压力差及过滤溶液的电阻率成正比,与过滤溶液的黏度成反比。 解释方法:淡水呈负电位,咸水呈正电位。分层点为曲线根部拐点 2、人工电场电测:是以测量岩石的导电性为基础的一组方法,如:视电阻率电位、视电阻率梯度、侧向电阻率、微电极、激发极化、感应测井等。主要用于划分地层和确定含水层的深度、厚度。 解释方法:岩石的电阻率随岩石颗粒的增加而增大;随泥质含量的增加而减小。视电阻率、侧向电阻率曲线根部拐点分层,梯度曲线尖部分层。 3、天然伽马:是以测量岩石的天然放射性为基础的参数,用以估算岩石的泥质含量。 解释方法:岩石的天然伽马随泥质含量的增加而增大,一般呈线性关系。分层点一般选用曲线的中部分层,薄层时分层点由曲线的1/2向2/3处移动。 4、人工放射性:一般可分为低能伽玛、散射伽玛、中子伽玛、中子—中子测井。 1)低能伽马是以伽玛射线与物质的光电效应为基础的方法,主要与物质的原子序数有关。放射源一般选用Am241,原子平均光电吸收截面P E与介质原子序数的3.6次方呈正比,原子序数越高的围岩对其吸收越强烈,即低能伽马的测量值随原子序数的增大而减小。分层点选用曲线的中部分层。 2)散射伽玛是以伽玛射线与物质的康普顿效应为基础的方法,主要与物质的密度有关。主要用于划分地层和确定含水层的深度、厚度。该方法对于密度较低的煤层和含水层反应尤为明显。在碎屑岩地层中,求解密度孔隙度。 ρ=ClgN+D ρ—岩石的电子密度; C—小于零的系数; D—常数。 当接收为双源距时为补偿密度,可通过实验求出脊肋线方程,消除井壁泥饼的影响。放射源一般选用C S137。 解释方法:由上面公式可以看出,散射伽玛的计数率的对数与围岩的密度呈正比,即随围岩密度的减小,计数率指数增大。其分层点一般选用曲线的中部分层,薄层时分层点由曲线的1/2向2/3处移动。 3)中子—伽马是以测量中子被俘获后产生的次生伽玛射线的测井方法,主要与地层中的含氢、氯有关。放射源一般测井采用镅—铍中子源,石油测井也有采用中子发生器的。 测量值随岩石含氢、氯的增加而减小。从而解释煤层、含水层或油、气层。在碎屑岩地层中,求解中子孔隙度。 4)中子—中子是测量热中子的测井方法,主要与地层中的氢、氯和源距有关。 5、声速测井分为纵波测量、横波测量和声幅、全波列测量四种。 1)纵波测井:是以测量岩石的纵波传播速度的测井方法。 一般测量的是纵波时差—单位长度(米)纵波传播的时间,即岩石的纵波传播速度越快,纵波时差越小。 2)横波测井:是以测量岩石的横波传播速度的测井方法。 一般测量的是横波时差—单位长度(米)横波传播的时间,即岩石的横波传播速度越快,横波时差越小。 3)声幅、全波列测井:主要用于检查固井质量的测井方法。 6、工程测井:主要以测量钻孔的顶角、方位、井径和井温等的测井方法。 三、水文地质测井 一)示踪测井 示踪测井是水文地质测井中常用的有效方法,一般选择溶于水且无毒、无污染的NaCl,荧光素、磁化物以及同位素为示踪剂。 1、扩散法(含提捞法、注入法)测井

第八章声波测井

第八章声波测井 声波测井的物理基础 1.名词解释: (1)滑行波: (2)周波跳跃: (3)stoneley 波: (4)伪瑞利波: (5)声耦合率: (6)相速度: (7)声阻抗: (8)群速度: (9)频散: (10)衰减: (儿)截止频率: (12)声压: (13)模式波: (14)泊松比: (15)第一临界角: (16)第二临界角: 2.说明弹性系数K 和切变弹性系数μ的意义。他们与杨氏模量E 及泊松比σ有怎样 的关系? 3.介质质点弹性机械振动的过程是 的外力作用下, 与 的互相交替作用的过程,而声波传播,则是这种过程作用于 使之 的过程。 4.声波是介质质点的 振动在介质中的传播过程。声纵波是 变波,横波是 变波,它们均与此物理量(介质的) 有关。 5.某灰岩的V p =5500m/s ,密度ρb =2。73g /cm 3,横波速度V s 按V p =1.73V 。给出。试 求杨氏模量E ,泊松比σ,体弹性模量K ,切变弹性模量μ及拉梅常数λ。 6.声纵波的质点振动方向与能量传播方向 ,它可在 态介质中传播;声横波的质点振动方向与能量传播方向 ,它能在 态介质中传达播,但不能在 态介质中传播。 7.声纵波的速度为p V =;声横波的速度为s V =故V P /V S = 。根据岩石的泊松比为0.155—0.4,于是V p /V s ;= 。这表明在岩石中,V p V S ,所以在声波测井记录上, 波总先于 波出现。 8.在 相介质中,由于μ=0,即 切应力,故 。 9.瑞利(Rayleigh)波发生在钻井的 界面上,其速度v R 很接近V S ,约为 ,此波随离开界面距离的加大而迅速 ;斯通利(Stoneley )波产生在 中,并在泥浆中传播,它以低 和低 形式传传播,其速度 于泥浆的声速。 10.到达接收器的各声波中,全反射波因路径处在 中,波速 ,直达波行程 ,但波速 ,滑行波行程 但波速 。故以 波最早到达接收器。

测井曲线代码-整理版

原始测井曲线代码 代码名称 A1R1 T1R1声波幅度 A1R2 T1R2声波幅度 A2R1 T2R1声波幅度 A2R2 T2R2声波幅度AAC 声波附加值 AA VG 第一扇区平均值AC 声波时差 AF10 阵列感应电阻率AF20 阵列感应电阻率AF30 阵列感应电阻率AF60 阵列感应电阻率AF90 阵列感应电阻率AFRT 阵列感应电阻率AFRX 阵列感应电阻率AIMP 声阻抗 AIPD 密度孔隙度 AIPN 中子孔隙度 AMA V 声幅 AMAX 最大声幅 AMIN 最小声幅 AMP1 第一扇区的声幅值AMP2 第二扇区的声幅值AMP3 第三扇区的声幅值AMP4 第四扇区的声幅值AMP5 第五扇区的声幅值AMP6 第六扇区的声幅值AMVG 平均声幅 AO10 阵列感应电阻率AO20 阵列感应电阻率AO30 阵列感应电阻率AO60 阵列感应电阻率AO90 阵列感应电阻率AOFF 截止值 AORT 阵列感应电阻率AORX 阵列感应电阻率APLC 补偿中子 AR10 方位电阻率 AR11 方位电阻率 AR12 方位电阻率 ARO1 方位电阻率 ARO2 方位电阻率 ARO3 方位电阻率ARO4 方位电阻率 ARO5 方位电阻率 ARO6 方位电阻率 ARO7 方位电阻率 ARO8 方位电阻率 ARO9 方位电阻率 AT10 阵列感应电阻率 AT20 阵列感应电阻率 AT30 阵列感应电阻率 AT60 阵列感应电阻率 AT90 阵列感应电阻率 ATA V 平均衰减率 ATC1 声波衰减率 ATC2 声波衰减率 ATC3 声波衰减率 ATC4 声波衰减率 ATC5 声波衰减率 ATC6 声波衰减率 ATMN 最小衰减率 ATR T 阵列感应电阻率 ATRX 阵列感应电阻率 AZ 1号极板方位 AZ1 1号极板方位 AZI 1号极板方位 AZIM 井斜方位 BGF 远探头背景计数率 BGN 近探头背景计数率 BHTA 声波传播时间数据 BHTT 声波幅度数据 BLKC 块数 BS 钻头直径 BTNS 极板原始数据 C1 井径 C2 井径 C3 井径 CAL 井径 CAL1 井径 CAL2 井径 CALI 井径 CALS 井径 CASI 钙硅比 CBL 声波幅度 CCL 磁性定位 CEMC 水泥图 CGR 自然伽马 CI 总能谱比 CMFF 核磁共振自由流体体积 CMRP 核磁共振有效孔隙度 CN 补偿中子 CNL 补偿中子 CO 碳氧比 CON1 感应电导率 COND 感应电导率 CORR 密度校正值 D2EC 200兆赫兹介电常数 D4EC 47兆赫兹介电常数 DAZ 井斜方位 DCNT 数据计数 DEN 补偿密度 DEN_1 岩性密度 DEPTH 测量深度 DEV 井斜 DEVI 井斜 DFL 数字聚焦电阻率 DIA1 井径 DIA2 井径 DIA3 井径 DIFF 核磁差谱 DIP1 地层倾角微电导率曲线1 DIP1_1 极板倾角曲线 DIP2 地层倾角微电导率曲线2 DIP2_1 极板倾角曲线 DIP3 地层倾角微电导率曲线3 DIP3_1 极板倾角曲线 DIP4 地层倾角微电导率曲线4 DIP4_1 极板倾角曲线 DIP5 极板倾角曲线 DIP6 极板倾角曲线 DRH 密度校正值 DRHO 密度校正值 DT 声波时差 DT1 下偶极横波时差 DT2 上偶极横波时差 DT4P 纵横波方式单极纵波时 差 DT4S 纵横波方式单极横波时 差 DTL 声波时差

煤层气地球物理测井技术现状及发展趋势

第33卷 第1期 2009年2月 测 井 技 术 WELL LO GGIN G TECHNOLO GY Vol.33 No.1Feb 2009 基金项目:国家科技大专项大型油气田及煤层气开发课题煤层气地球物理测井技术研究(2008ZX50352002)作者简介:张松扬,男,1963年生,博士,高级工程师,现为煤层气地球物理测井技术研究课题组组长。 文章编号:100421338(2009)0120009207 煤层气地球物理测井技术现状及发展趋势 张松扬 (中国石化石油勘探开发研究院,北京100083) 摘要:在煤层气勘探开发中,地球物理测井是识别煤层、分析煤层特性、评价煤层气储层的重要手段。煤层气储层具有非均质性和各向异性较强、孔隙结构复杂的特点,常规油气勘探中测井解释评价的基本模型在煤层气解释中不能直接套用,必须建立适合煤层气测井的解释方法和模型,才能对煤层气做出正确评价。通过煤层气勘探开发测井技术应用调研,对煤层气测井采集技术、解释评价技术及面临的技术难题进行了阐述,指出当前煤层气勘探开发测井技术的发展趋势。认为我国未来煤层气测井技术的发展将向成像测井技术的应用、煤心刻度测井技术的应用,井中和井间地球物理技术的结合等方向发展。关键词:测井技术;煤层气;解释评价;发展趋势中图分类号:P631.81 文献标识码:A Actualities and Progresses of Coalbed Methane G eophysical Logging T echnologies ZHAN G Song 2yang (Petroleum Exploration and Production Research Institute ,SINOPEC ,Beijing 100083,China ) Abstract :The geop hysical logging technologies are important means to identify coal bed ,analyze coal bed t rait and evaluate t he coalbed met hane reservoir in t he process of coalbed met hane explo 2ration and develop ment.The conventional log interp retation and evaluation models for oil explo 2ration can not be directly used in coalbed met hane evaluation ,because t he coalbed met hane reser 2voir is different from t he oil reservoir in t he following aspect s.It has higher heterogeneity ,higher anisot ropy ,and more complex porosity.The interpretation met hod and model suitable to t he coalbed met hane logging should be established to correctly evaluate t he coalbed met hane reser 2voir.After st udying t he coalbed met hane exploration and develop ment technologies in recent years ,expounded are data acquisition technology ,data interp retation technology in coalbed met h 2ane logs ,t he technology challenges we face and coalbed gas develop ment t rend.It is believed t hat t he coalbed met hane log technology in China should make p rogress by applying imaging logging ,coal core calibration logging ,and combined in 2well and between 2well seismic technologies.K ey w ords :logging technology ,coalbed met hane ,interp retation &evaluation ,develop ment t rend 0 引 言 地球物理测井是煤层气勘探开发配套工艺技术之一,可以提供高精度的煤层气储层测井地质信息。开展煤层气地球物理测井评价技术的研究具有重要意义和广阔应用前景[1210]。近年来,我国煤层气地球物理测井技术研究已取得长足发展[11220]。原地质 矿产部华北石油地质局数字测井站自1991年率先开始在安徽淮南、河南安阳、山西柳林等地区开展了地球物理测井在煤层气储层评价中的应用研究,取得了定性识别煤层特性等方面的一些进展[5,11212]。中国石油集团测井有限公司自1997年开始,先后在山西大城、晋城、吴堡、大宁-吉县和安徽淮北地区对煤系地层应用测井新技术开展相应的煤层气储层

测井曲线解释

测井曲线基本原理及其应用 一.国产测井系列 1、标准测井曲线 2.5m底部梯度视电阻率曲线。地层对比,划分储集层,基本反映地层真电组率。恢复地层剖面。 自然电位(SP)曲线。地层对比,了解地层的物性,了解储集层的泥质含量。 2、组合测井曲线(横向测井) 含油气层(目的层)井段的详细测井项目。 双侧向测井(三侧向测井)曲线。深双侧向测井曲线,测量地层的真电组率(RT),试双侧向测井曲线,测量地层的侵入带电阻率(RS)。 0.5m电位曲线。测量地层的侵入带电阻率。0.45m底部梯率曲线,测量地层的侵入带电阻率,主要做为井壁取蕊的深度跟踪曲线。 补偿声波测井曲线。测量声波在地层中的传输速度。测时是声波时差曲线(AC) 井径曲线(CALP)。测量实际井眼的井径值。 微电极测井曲线。微梯度(RML),微电位(RMN),了解地层的渗透性。 感应测井曲线。由深双侧向曲线计算平滑画出。[L/RD]*1000=COND。地层对比用。 3、套管井测井曲线 自然伽玛测井曲线(GR)。划分储集层,了解泥质含量,划分岩性。 中子伽玛测井曲线(NGR)划分储集层,了解岩性粗细,确定气层。校正套管节箍的深度。套管节箍曲线。确定射孔的深度。固井质量检查(声波幅度测井曲线) 二、3700测井系列 1、组合测井 双侧向测井曲线。深双侧向测井曲线,反映地层的真电阻率(RD)。浅双侧向测井曲线,反映侵入带电阻率(RS)。微侧向测井曲线。反映冲洗带电阻率(RX0)。 补偿声波测井曲线(AC),测量地层的声波传播速度,单位长度地层价质声波传播所需的时间(MS/M)。反映地层的致密程度。 补偿密度测井曲线(DEN),测量地层的体积密度(g/cm3),反映地层的总孔隙度。 补偿中子测井曲线(CN)。测量地层的含氢量,反映地层的含氢指数(地层的孔隙度%) 自然伽玛测蟛曲线(GR),测量地层的天然放射性总量。划分岩性,反映泥质含量多少。 井径测井曲线,测量井眼直径,反映实际井径大砂眼(CM)。 2、特殊测井项目 地层倾角测井。测量九条曲线,反映地层真倾角。 自然伽玛能谱测井。共测五条曲线,反映地层的岩性和铀钍钾含量。 重复地层测试器(MFT)。一次下井可以测量多点的地层压力,并能取两个地层流体样。 三、国产测井曲线的主要图件几个基本概念: 深度比例:图的单位长度代表的同单位的实际长度,或深度轴长度与实际长度的比例系数。如,1:500;1:200等。 横向比例:每厘米(或每格)代表的测井曲线值。如,5Ω,m/cm,5mv/cm等。 基线:测井值为0的线。 基线位置:0值线的位置。 左右刻度值:某种曲线图框左右边界的最低最高值。 第二比例:一般横向比例的第二比例,是第一比例的5倍。如:一比例为5ΩM/cm;二比例则为25m/cm。 1、标准测井曲线图 2、2.5米底部梯度曲线。以其极大值和极小值划分地层界面。它的极大值或最佳值基本反映地层的真电阻率(如图) 自然电位曲线。以半幅点划分地层界面。一般砂岩层为负异常。泥岩为相对零电位值。 标准测井曲线图,主要为2.5粘梯度和自然电位两条曲线。用于划分岩层恢复地质录井剖面,进行井间的地层对比,粗略的判断油气水层。 3、回放测井曲线图(组合测井曲线) 深浅双侧向测井曲线。深双侧向曲线的极度大值反映地层的真电阻率(RT),浅双侧向的极大值反映浸入带电阻率(RS)。以深浅双侧向曲线异常的根部(异常幅度的1/3处)划分地层界面。

声波测井技术在岩土工程勘察中应用

现代物业?新建设 2012年第11卷第9期 浅谈声波测井技术在岩土工程勘察中的应用 张建宏 (新疆新地勘岩土工程勘察设计有限公司,新疆 乌鲁木齐 830002)摘 要:伴随着不断发展的数字测井技术,在测井当中,声速测井已经成为重要的方式之一。对岩体工程勘察中声波测井技术的应用进行了分析。 关键词:岩土工程;勘察;声波测井 中图分类号:[P258] 文献标识码:A 文章编号:1671-8089(2012)09-0047-02 声波测井主要分为声幅测井与声波测井两大类。一般来说,我们说的声波测井指的是对地层当中声波传播速度进行测量。 1 声波测井 在不同的介质当中,声波传播会有明显的差别,岩石当中的裂缝、风化以及溶洞对声波速度都有影响,因此对岩层物性特征的了解可以通过声波测试来进行。而声速测井测的是地层中声波传播的时间。 声波测井一般是对纵波速度进行测量,声波耦合通过仪器发射晶体声波,然后通过仪器接收晶体声波。由于接收晶体与发射晶体之间存在一定距离,所以传播速度与所测得的声波传播时差成反比。根据实际需要,也可以将传播时差换算成声波速度,然后再与其余的物理参数进行结合,也能够将横波速度计算出来,从而对弹性参数以及岩性的划分进行计算,这样更有利于岩土工程勘察工作的进一步开展。 2 岩石中声波的传播 我们所研究的是不同地质年代在地壳中的矿物成分以及结构各异的岩石,并且在岩石当中还存在裂隙与孔隙,但是它们的分布、大小、形状并非固定,而这些因素对岩石的物理性质都有不同程度的影响。岩石的声速指的是在岩石当中声波的传播速度,理论支持与实践证明:随着岩石密度的不断增大,声波速度也会随着提升。 2.1 岩性 如果岩石的岩性不同,那么声波传播速度也会有明显的区别。岩性不同,岩石密度就存在差异,一般来说,岩石密度从大到小依次为:石灰岩→砂岩→泥岩,而声波速度也会随着密度的减少而降低。 2.2 岩石结构 如果岩石的胶结性较差、较为疏松,声波速度也会降低;反之,声波速度则会升高。对于声波速度来说,岩石当中存在的溶洞与裂隙等也会产生一定程度的影响。 2.3 岩石孔隙间的储集物 岩石声波速度也会受到岩石孔隙当中不同储集物的影响。 2.4 地质时代以及地层埋藏深度 声波在地层当中的传播会受到地层时代以及地层埋藏实际深度的影响。当地质时代与岩性相同,那么埋藏的深度越大,声波传播的速度也就越大;反之,埋藏的深度越小,那么声波速度也会随着减小。在岩性相同的情况下,相比新地层,老地层的声波传播速度更快,这主要是由于在漫长的地质年代中,老地层受到了覆盖岩层长期性压实产生的结果。此外,由于长期地壳运动,岩石骨架颗粒的排列也会越来越紧,其弹性与密度都会不同程度地增加。 3 声波测井的应用范围 3.1 钻孔岩性的划分 由于不同的岩层所具有的声波传播速度是不同的。所以,地层岩性可以通过声速测井来进行判断。在钻孔岩性的划分当中,也可以结合自然伽玛、电阻率等有关的参数。 3.2 岩层风化、氧化带的确定 由于受到了氧化与风化,岩石的胶结程度会受到不同程度的影响,甚至会出现破碎,从而导致强度减弱、密度减小、波速减小,将完整的岩石声波速度与所测得的声波速度进行比较就会发现。岩石的疏松与破碎的程度能够通过波速的减少量来判断,因此对岩层的氧化带、风化都能够加以确定。 Engineering Construction 工程施工 – 47 –

声波测井技术发展现状与趋势

浅谈声波测井技术发展现状与趋势 摘要:以声波测井换能器技术的变化为主线,分析了声波测井技术的进展以及我国在该技术领域内取得的进步。单极子声波测井技术已经成为我国成熟的声波测井技术,包括非对称声源技术在内的多极子声波测井技术已经进入产业化进程。 关键词:声波测井;换能器;单极子声波测井;多极子声波测井; 从声学上讲,声波测井属于充液井孔中的波导问题。由声波测井测量的井孔中各种波动模式的声速、衰减是石油勘探、开发中的极其重要参数。岩石的纵、横波波速和密度等资料可用来计算岩石的弹性参数(杨氏模量、体积弹性模量、泊松比等);计算岩石的非弹性参数(单轴抗压强度、地层张力等);估算就地最大、最小主地层应力;估算孔隙压力、破裂压力和坍塌压力;计算地层孔隙度和进行储层评价和产能评估;估算地层孔隙内流体的弹性模量,从而形成独立于电学方法的、解释结果不依赖于矿化度的孔隙流体识别方法;与stoneley波波速、衰减资料相结合用以估算地层的渗透率;为地震勘探多波多分量问题、avo问题、合成地震记录问题等提供输人参数等等。经过半个多世纪的发展,声波测井已经成为一个融现代声学理论、最新电子技术、计算机技术和信息处理技术等最新科技为一体的现代测量技术,并且这种技术仍在迅速发展之中,声波测井在地层评价、石油工程、采油工程等领域发挥着越来越重要

的作用。与电法测井和放射性测井方法并列,声波测井是最重要的测井方法之一。 一、测井技术发展现状及趋势 声波测井技术的进步是多方面的。声波测井声波探头个数在不断增加以提高声波测量信息的冗余度、改善声波测量的可靠性;声波测井中探头的振动方式经历了单极子振动方式、偶极子振动方式、四极子振动方式和声波相控阵工作方式,逐步满足在任意地层井孔中测量地层的纵横波波速、评价地层的各向异性和三维声波测井的需求。声波探头的相邻间距不断减小,而发收探头之间的距离在不断增大,这一方面提高了声波测井在井轴方向的测量分辨率;另一方面也提高了声波测井的径向探测深度。声波测井的工作频率范围在逐步向低频和宽频带范围、数据采集时间在不断增大,为扩大声波测井的探测范围提供了保障。声波测井中应用的电子技术从模拟电路、数字电路技术逐步发展为大规模可编程电路和内嵌中央处理器技术,从而实现声波测井仪器的探头激励、数据采集、内部通讯、逻辑控制、数据传输等方面的智能化和集成化。可以预期,下一代声波测井仪器研制的关键技术之一是研制能够控制声束指向性的 基阵式换能器。应用相控阵换能器的最大优势就是增大空间某个方向的声辐射强度,使声波沿着预先设定好的方向辐射,从根本上增加有用信号的能量、提高信噪比和探测能力。显然,声波探头结构和振动模态性质的变化直接导致了声波测井技术的根本进步。

声波测井技术在岩土工程勘察中的应用

浅谈声波测井技术在岩土工程勘察中的应用摘要:本文首先论述了声速测井的测试原理,进而论述了影响岩石声波速度的主要因素,第三以工程实例,利用声波测井技术得到了评价岩土动力学特征的参数,既校正地解释岩性和岩层,还反映了岩土层的相对强度,为建筑设计提供一定的参考依据;最后,文章还阐述了当前声波测井技术在岩土工程勘察中存在的不足之处,以供参考。 关键词:声波测井技术;岩土工程勘察;应用 abstract: this paper first discusses the velocity measurement principles of well logging, and then discusses the influence of the main factors rock acoustic velocity, and the third by engineering example, the acoustic logging technology got the evaluation of the parameters of the dynamic characteristics of rock, both correction to explain the lithology and rocks, but also reflect the relative strength of geotechnical layer, for building design provides some reference basis; finally, the paper also expounds the current acoustic logging technology in geotechnical engineering investigation in existence deficiency, for reference. keywords: acoustic logging technology; geotechnical engineering; application 中图分类号:tu74文献标识码:a 文章编号:

测井曲线一览表

测井符号英文名称中文名称 Rt true formation resistivity. 地层真电阻率 Rxo flushed zone formation resistivity 冲洗带地层电阻率 Ild deep investigate induction log 深探测感应测井 Ilm medium investigate induction log 中探测感应测井 Ils shallow investigate induction log 浅探测感应测井 Rd deep investigate double lateral resistivity log 深双侧向电阻率测井 Rs shallow investigate double lateral resistivity log 浅双侧向电阻率测井RMLL micro lateral resistivity log 微侧向电阻率测井 CON induction log 感应测井 AC acoustic 声波时差 DEN density 密度 CN neutron 中子 GR natural gamma ray 自然伽马 SP spontaneous potential 自然电位 CAL borehole diameter 井径 K potassium 钾 TH thorium 钍 U uranium 铀 KTH gamma ray without uranium 无铀伽马 NGR neutron gamma ray 中子伽马 --------------------------------------------------- GRSL—能谱自然伽马 POR 孔隙度 NEWSAND PORW 含水孔隙度 NEWSAND PORF 冲洗带含水孔隙度 NEWSAND PORT 总孔隙度 NEWSAND PORX 流体孔隙度 NEWSAND PORH 油气重量 NEWSAND BULK 出砂指数 NEWSAND PERM 渗透率 NEWSAND SW 含水饱和度 NEWSAND SH 泥质含量 NEWSAND CALO 井径差值 NEWSAND CL 粘土含量 NEWSAND DHY 残余烃密度 NEWSAND SXO 冲洗带含水饱和度 NEWSAND DA 第一判别向量的判别函数 NEWSAND DB 第二判别向量的判别函数 NEWSAND DAB 综合判别函数 NEWSAND CI 煤层标志 NEWSAND

相关主题
文本预览
相关文档 最新文档