当前位置:文档之家› 根据霍尔传感器的电机测速装置设计

根据霍尔传感器的电机测速装置设计

根据霍尔传感器的电机测速装置设计
根据霍尔传感器的电机测速装置设计

检测与转换技术大作业报告

题目

院系

班级

学生姓名

日期

霍尔传感器在电机转速测量装置上

的应用设计

利用霍尔传感器,设计了一种电机转速测量装置并提出了相应的测速算法,还设计了转速信号处理电路,将脉冲信号转化为标准的T TL 电平,便于A T89C52 单片机的计数运算,并通74LS164 寄存器将转速信号显示在L ED 上。该电机测速装置具有线路简单、实时性好、成本低、安装调试方便和节省空间等优点,尤其是在测量空间有限、轴偏心或传感器不便安装的条件下,该测量方法具有明显的优势。

第一章测速电路相关元件分析

1.1 AT89C52单片机

AT89C52是一个低电压、高性能CMOS8位单片机,片内含8KB的可反复擦写的Flash只读程序存储器和256B的随机存取数据存储器(RAM),兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元。AT89C52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读/写口线。AT89C52主要功能特性和引脚图如下所示:

·完全兼容MCS-51指令系统

·8k可反复擦写Flash ROM

·全静态操作:时钟频率0-24MHz

·三级加密程序存储器

·3个16位可编程定时/计数器中断

·256x8bit内部RAM

·32个可编程的双向I/O口

·2个外部中断源,共8个中断源

·2个读写中断口线

·可编程串行UART通道

·低功耗空闲和掉电模式

·软件设置睡眠和唤醒功能

1.2 LM317T三端稳压器

LM317T是可调节三端正电压稳压器,在输出电压范围为1.25V到37V时能够提供超过1.5A的负载电流。此稳压器使用非常容易,只需两个外接电阻来设置输出电压。其主要功能特性如下所示:

·输出电流超过1.5安

·输出电压在1.2伏和37伏间连续可调

·内部热过载保护

·不随温度变化的内部短路电流限制

·对高压应用浮空工作

·标准3引脚品体管封装

·避免置备多种固定电压

·输出品体管安全工作区补偿

1.3 HZL201霍尔传感器

1.3.1 线性霍尔元件测速原理

由霍尔效应原理可知:当霍尔片处于磁场中,并在垂直于磁场的方向上通以电流时, 霍尔片上与电流和磁场分别垂直的方向会产生霍尔电势差V=KBI。当通过霍尔片的电流恒定不变时,只要改变磁场的大小,就可以改变V。在电机外壳附近漏磁场因电枢转动会起变化,利用线性霍尔传感器可对其进行检测。由于传感器输出电压信号稳定,只要存在磁场,霍尔元件总是产生相同大小的电压,并且输出信号电压的大小与转速无关。即使是在低转速状态下,仍能够获得较高的检测准确度,但是输出信号的强弱与霍尔器件在电机外壳的安装位置有关。因此,需通过实验确定传感器在电机外壳的安装位置,以获得最佳的信号效果。基于此原理,在直流电机测速中,采用线性霍尔元件作为传感器,感应部分固定在电动机外壳。在定子磁场中,永久磁铁的磁力线通向转子,转子一般采用硅钢片叠压而成,转子铁心一般分为多槽,转子转动过程中引起定子磁通发生周期性的变化,从而引起了霍尔元件输出信号的频率变化。霍尔元件输出的信号无需经过放大处理,可直接用比较器整形后送入单片机进行处理, 从而得到

电机转速[1]。

1.3.2 HZL201霍尔传感器

国产H ZL201 霍尔齿轮传感器是一种用于测量速度、角度、转速、长度等的新型传感器。由传感黑色金属齿轮或齿条的齿数转换成电压脉冲信号来测量物体的速度、转速等参量。该传感器红色端接电源正极,黑色端接地,绿色端为输出端。而它的特点在于传感黑色金属目标、输出幅度与齿轮转速无关,低速性能优异,工作频率高达20 k Hz,具体技术指标如表1所示。

HZL201霍尔传感器实物图如下所示:

1.4 74LS164寄存器

74LS164是8位串行输入并行输出移位寄存器。当清除端(CLR)为低电平时,输出端(QA-QH)均为低电平。串行数据输入地(A、B)可控制数据:当A、B任意一个为低电平时,则禁止新数据输入,在时钟端(CP)脉冲上升沿的作用下Q0为低电平;当A、B有一

个为高电平时,则另一个就允许输入数据,并在上升沿的作用下决定Q0的状态。

74LS164由于无并行输出控制端,在串行输入过程中,其输出状态会不断地变化,故在某些应用场合,在74LS164的输出端应接输出三态门控开关,以保证串行输入结束后再输出数据[2]。

74LS164引脚功能和封装图如下所示:

·CP ……时钟输入端

·CLR ……同步清除输入端(低电平有效)

·A、B……串行数据输入端

·QA-QH …输出端

1.5 LED数码管

市场上比较常见的数码管是LED数码管,具有亮度高、价格低等优点,非常适合本电路的制作。数码管按发光二极管单元的连接方式可分为共阳极数码管和共阴极数码管。共阳极数码管是指将所有发光二极管的阳极接到一起形成公共阳极(COM)的数码管。共阳极数码管在应用时应将公共极COM接到+5V,当某一字段发光二极管的阴极为低电平时,相应字段就点亮。当某一字段的阴极为高电平时,相应字段就不亮。。共阴极数码管是指将所有发光二极管的阴极接到一起形成公共阴极(COM)的数码管。共阴极数码管在应用时应将公共极COM接到地线GND上,当某一字段发光二极管的阳极为高电平时,相应字段就点亮。当某一字段的阳极为低电平时,相应字段就不亮[3]。

LED数码管内部结构图分别如下所示:

第二章 测速电路相关电路设计

2.1 转速测量及控制的基本原理

2.1.1 转速测量原理

根据霍尔效应原理,测量转速时,在非磁性的转盘上粘上一块磁钢,把霍尔传感器的感应面对准磁钢的磁极,并将其固定在机架上。机器轴旋转时, 固定在转盘上的磁钢会随之旋转,当磁钢转到传感器的位置时,霍尔传感器便输出一个脉冲信号,经施密特触发器整型,送到单片机的外部中断INT0引脚。转轴每转一圈霍尔传感器输出一个脉冲信号,相邻两个脉冲之间的时间间隔为转轴转一圈的时间,由此可计算出转轴的转速。

2.1.2 转速控制原理

直流电机的转速与施加于电机两端的电压大小有关,可以采用AT89C52片内的D/A 转换器的输出控制直流电机的电压,从而控制电机的转速。在这里采用简单的比例调节器算法,比例调节器的输出系统式为:

()t e K y p = (1)

式(1)中:y为调节器的输出;

()t e为调节器的输入,一般为偏差值;

K为比例系数

p

从式(1)可以看出,调节器的输出y 与输入偏差值()t e成正比。因此,只要偏差()t e一出现就产生与之成比例的调节作用,具有及时调节的特点,这是一种最基本的调节规律。比例调节作用的大小除了与偏差()t e有关外,主要取决于比例系数

K,且比例调节系数愈大,调节作用越强,动态特性也越大;反之,p

K太大时将会引起比例系数越小,调节作用越弱。对于大多数的惯性环节,p

K太大时自激振荡。比例调节的主要缺点是存在静差,对于扰动的惯性环节,

p

将会引起自激振荡。对于扰动较大、惯性也比较大的系统,若采用单纯的比例调

节器就难于兼顾动态和静态特性,需采用调节规律比较复杂的PI(比例积分调节

器)或PID(比例、积分、微分调节器)算法。

2.2 霍尔测速装置及方法简介

2.2.1 霍尔转速传感器检测装置

转速测量系统安装示意图如图1所示,下面对检测装置主要部件进行介绍。

1)霍尔转速传感器。该传感器是利用霍尔效应原理工作的:一个金属或半导体薄片置于磁场中,磁场垂直于薄片,当薄片通以电流时,在薄片的两侧面上就会产生一个微量的霍尔电压。如果改变磁场的强度,,霍尔电压的大小亦随之改变;当磁场消失时,霍尔电压变为零。霍尔效应式转速传感器输出的信号是矩形脉冲信号,很适合于数字控制系统,抗干扰能力强。

2)齿轮信号盘。信号盘可用一般的黑色钢板制成,结构图如图2所示。它就是转速测量时所用的转盘,盘上共有24个齿。中心孔用来在电机转轴上定位,从而信号盘与电机的转轴一起转动,传感器固定在支架上,垂直于信号盘,其安装图如图3所示。当信号盘随电机转轴旋转时,信号盘的每个轮齿经过探头正前方时产生感应,探头就输出一个标准的脉冲信号。对该信号盘而言,每24个脉冲对应电机的1个工作循环。因此,脉冲信号的频率大小就反映了信号盘转速的高低,可由单片机进行测量并换算为转速。

2.3 转速数字式测量方法

旋转设备转动速度的数字检测基本方法是利用与该设备同轴连接的霍尔转速传感器的输出脉冲频率与转速成正比的原理,根据脉冲发生器发出的脉冲速度和序列,测量转速和判别其转动方向。根据脉冲计数来实现转速测量的方法主要有:M法(测频率法)、T法(测周期法)和M/T法(频率/周期法)。

1)M法。在规定的检测时间内,检测霍尔传感器所产生的脉冲信号的个数来确定转速。虽然检测时间一定,但检测的起止时间具有随机性,因此M法测量转速在极端情况下会产生±1个转速脉冲的误差。当被测转速较高或电机转动一圈发出的转速脉冲信号的数量较大时,才有较高的测量精度,因此M法适合于高速测量。

2)T法。它是测量霍尔传感器所产生的相邻两个转速脉冲信号的时间来确定转速。相邻两个转速脉冲信号时间的测量是采用对已知高频脉冲信号进行计数来实现的。在极端情况下,时间的测量会产生±1个高频脉冲周期,因此T法在被测转速较低(相邻两个转速脉冲信号时间较大)时,才有较高的测量精度,所以T法适合于低速测量。

3)M/T法。它是同时测量检测时间和在此检测时间内霍尔传感器所产生的转速脉冲信号的个数来确定转速。由于同时对两种脉冲信号进行计数,因此只要“同时性”处理得当,M/T法在高速和低速时都具有较高的测速精度[4]。

传感器输出脉冲的间隔对 M 法有很大的影响。采用 M 法时,平均速度越准确(相对误差小),其估计的瞬时速度就越不准确,反之瞬时速度越准确,其平均速度的相对误差就越大。M/T 法相对于其他两种方法有较高的精度,但它的实时性差。T法实际上是对计时器进行计数,相对于M法对脉冲进行计数,该方法有着较高的精度。另外T法对每个转速脉冲都进行了转速的计算,最大限度地利用了传感器所提供的转速信息,能实时地反映转速的变化过程。综合考虑,本文系统采用了测周期法(T 法)。

2.4 转速信号处理与显示电路

按照转速装置设计方案,转速信号处理流程图如图4所示。HZL201霍尔齿轮传感器接受齿轮信号盘的转动,转化为近似方波脉冲信号。由于要使用单片机进行转速信号计数,霍尔传感器输出的方波脉冲信号必须转化为标准TTL电平,所以在信号处理流程图中加入了信号处理电路。通过这个电路就能将霍尔传感器输出的电压信号变为标准的TTL电平,之后要做的工作就是将该转速信号显示在LED上,通过一系列的处理,就能实时地反应转速信号的变化。

2.4.1 信号处理电路

根据转速信号处理流程图,首先设计了信号处理电路,传感器输出的转速信号为方波脉冲信号,它的高电平低于15 V 高于14 V,而低电平接近0。可见该脉冲信号的电压幅值与单片机接口不匹配,因此该电路又选用了一个由三极管(8050) 组成的整形电路处理转速信号使其满足单片机的接收要求。当输出为高电平信号时,三极管VT1 的基极发射极处于正向偏置状态,故集电极发射极处于正向通路状态,其输出电压约为0 ;当输出为低电平信号时,三极管VT1 的基极发射极处于反向偏置状态,故集电极发射极处于断路状态,其输出电压约为+5 V。处理电路如图5所示,经处理后的方波脉冲信号满足单片机的接收要求。

2.4.2 LED 显示电路

由于AT89C52单片机的I/O口线不是很充足,数据采用串行输入的方法。图6给出了LED显示电路,该电路采用TOS-8106BHK 型号的共阳极LED显示器,其工作电压为5V。它只使用AT89C52的3个端口,配接4片串入并出移位寄存器

74LS164与1片三端可调稳压器LM317T。其中74LS164的引脚Q0 ~Q7 为8位并行输出端,引脚A、B为串行输入端,引脚CLK为时钟脉冲输入端,在CLK 脉冲上升沿的作用下实现移位,在CLK=0、清除端CLR=1 时,74LS164保持原来数据状态;CLR=0 时,74LS164输出清零。其工作过程如下:AT89C52的串行口设定在方式0移位寄存器状态下,串行数据由P3.0 发送,移位时钟由P3.1送出。在移位时钟的作用下,串行口发送缓冲器的数据一位一位地移入74LS164 中。4片74LS164串级扩展为4个8位并行输出口,分别连接到4个LED显示器的段选端作静态显示。需要指出的是,由于74LS164 无并行输出控制端,因而在串行输入过程中,其输出端的状态会不断变化,造成不应显示的字段仍有较暗的亮度,影响了显示的效果[2]。

为了改善不应显示的字段仍有较暗的亮度,在此显示电路上添加1片三端可调稳压器LM317T,该稳压器的3、2 脚分别是电压输入、输出端,1 脚是电压调整端,2 脚输出电压随1脚电压而变化。1脚与接地电阻之间并一个NPN三极管,它的基极受P1.7口线控制,串行输入时P1.7口线为高电平,三极管饱和导通使LM317T的1脚约为0.3 V,2 脚输出电压随之下降到1.25 V,不足以使共阳极LED发光,故此时串行输入的影响不会反映到LED上;串行输入结束后,使P1.7口线为低电平,三极管截止,适当调节P1 阻值,使2脚输出电压上升到5.0 V 从而使LED 正常发光。因此,1片三端可调稳压器LM317T起到了4 片锁存器的作用使LED显示不会闪烁。该电路的另一优点是通过可调电位器P1 可在线调整2脚的输出电压,使LED的显示亮度均匀可调,而且省掉了大量的LED 限流电阻。

第三章测速电路相关软件编程

检测装置的软件系统主要包括:测速主程序、二进制码与 BCD 码转换的子程序以及显示子程序。

3.1 测速主程序

3.1.1 原理简析

信号处理电路输出端与A T89C52 单片机的INT1引脚相连,由INT1引脚接收转速脉冲信号,进而控制单片机内部定时计数器T1 的启动和停止。当INT1为下降沿脉冲时启动计数,上升沿时停止计数。此时计数器中记得的数值m为12 分频时钟的周期数。由上可知定时计数器 T1 的工作方式为方式 1,即C/T=1。故 TMOD=1001××××B,令 TMOD=90[5]。另外该装置采用T法测速,因此转速测量公式为n=60f/z*m。其中f为A T89C52 的内部时钟脉冲频率,m为单片机响应中断从计数器T1 读出的计数值,z为齿轮信号盘每转输出的脉冲个数。

3.1.2 汇编程序

ORG 0000H

AJMP MAIN

ORG 001BH

AJMP INTP

ORG 1000H

MAIN: MOV SP,#60H

MOV SCON,#00H ;串行口方式0工作

ANL TMOD,#0FH ;置计数器1工作方式1

ORL TMOD,#90H ;不影响T0的工作

MOV R0, #30H ;置内部RAM

SETB EA ;CPU开中断

SETB EX1 ;开INT1中断

SETB PX1 ;令INT1为高优先级

SETB IT1 ;令INT1为脉冲触发

LCALL DISP

INTP: …

3.2 BCD码与二进制码转换子程序

3.2.1 BCD码简介

BCD码是用二进制表示的十进制数。BCD码是为了满足人们利用计算机来进行十进制计数,同时又为了能满足计算机处理信息需要二进制编码的需要,从而设计的一种编码。因为任何十进制数都是0-9这10个数字的组合,这样必须对十进制的0-9这10个数字符号进行二进制编码,即BCD码具有二进制和十进制两种数制编码的某些特征。

3.2.2 转换说明

BCD码表示的4位十进制数分别存放于R1、R2中,其中R2存储千位数和百位数,R1存储十位数和个位数,要把其转换为纯二进制码,可用由高位到低位逐为检查BCD码的数值,然后累加各十进制位对应的二进制数来实现。其中1000D=03E8H,100D=0064H,10=000AH。子程序如下:

入口:待转换的BCD码存于R1、R2中,其中

低位字节十位数个位数R1

高位字节千位数百位数R2

出口:结果存在20H、21H单元中,其中20H存储低字节,21H存储高字节。

3.2.3 汇编程序

BCDBI1: MOV 20H, #00H

MOV 21H, #00H ;存结果单元

MOV R3, #0E8H ;1000=03E8H

MOV R4, #03H ;1000的二进制数送R3、R4

MOV A, R2

ANL A, #F0H ;取千位数

SWAP A ;将千位数移至低4位

JZ BRAN1 ;千位数为0,则转BRAN1 LOOP1: DEC A

ACALL ADDT ;千位数不为0,加千位数二进制码

JNZ LOOP1

BRAN1: MOV R3, #64H ;100=64H

MOV R4, #00H ;百位数的二进制码送R3、R4

MOV A, R2

ANL A, #0FH ;取百位数

JZ BRAN2 ;为0则转BRAN2,否则继续

LOOP2: DEC A

ACALL ADDT

JNZ LOOP2 ;加百位数的二进制码BRAN2:MOV R3, #0AH ;10=0AH

MOV A, R1

ANL A, #0F0H ;取十位数

SWAP A ;将十位数移至低4位

JZ BRAN3 ;为0则转BRAN3,否则继续LOOP3: DEC A

ACALL ADDT

JNZ LOOP3 ;加十位数的二进制码BRAN3: MOV A, R1

ANL A, #0FH

MOV R3, A

ACALL ADDT

RET

ADDT: PUSH PSW

PUSH ACC

CLR C

MOV A, 20H ;在20H、21H单元中

ADD A, R3 ;累计转换结果

MOV 20H, A

MOV A, 21H

ADDC A, R4

MOV 21H, A

POP ACC

POP PSW

RET

3.3 显示子程序

3.3.1 原理简析

针对显示子程序,由于移位寄存器74LS164仅有串入并出作用没有译码功能,因此,在编写显示驱动程序之前,首先需要计算列写出与该电路对应的LED段选码,然后由AT89C52的P3.0口送入74LS164的串行输入端,再并行

输出到LED的段选端。可见这种稳定的静态显示方式也省去了CPU的动态扫描过程。电路中设计了4位LED显示器,其功能为:左首位为千位数或标志位,左二位为百位数,左三位为十位数,左四位为个位数。据此,给出如图7所示的显示子程序流程图[6]。

3.3.2 子程序流程图

3.3.3 汇编程序

DISP: SETB P1.7 ;熄灭LED显示

传感器原理——基于霍尔传感器的转速测量系统设计

. 传感器原理及应用期末课程设计题目基于霍尔传感器的转速测量电路设计 姓名小波学号8888888888 院(系)电子电气工程学院 班级清华大学——电子信息 指导教师牛人职称博士后 二O一一年七月十二日

摘要:转速是发动机重要的工作参数之一,也是其它参数计算的重要依据。针对工业上常见的发动机设计了以单片机STC89C51为控制核心的转速测量系统。系统利用霍尔传感器作为转速检测元件,并利用设计的调理电路对霍尔转速传感器输出的信号进行滤波和整形,将得到的标准方波信号送给单片机进行处理。实际测试表明,该系统能满足发动机转速测量要求。 关键词:转速测量,霍尔传感器,信号处理,数据处理

Abstract: The rotate speed is one of the important parameters for the engine, and it is also the important factor that calculates other parameters. The rotate speed measurement system for the common engine is designed with the single chip STC89C51. The signal of the rotate speed is sampled by the Hall sensor, and it is transformed into square wave which will be sent to single chip computer. The result of the experiment shows that the measurement system is able to satisfy the requirement of the engine rotate speed measurement. Key words:rotate speed measurement, Hall sensor, signal processing, data processing

霍尔传感器小车测速)

成绩评定: 传感器技术 课程设计 题目霍尔传感器小车测速

摘要 对车速测量,利用霍尔传感器工作频带宽、响应速度快、测量精度高的特性结合单片机控制电路,设计出了一种新型的测速系统,实现了对脉冲信号的精确、快速测量,硬件成本低,算法简单,稳定性好。霍尔传感器测量电路设计、显示电路设计。测量速度的霍尔传感器和车轴同轴连接,车轴没转一周,产生一定量的脉冲个数,有霍尔器件电路部分输出幅度为12 V 的脉冲。经光电隔离器后成为输出幅度为5 V 转数计数器的计数脉冲。控制定时器计数时间,即可实现对车速的测量。在显示电路设计中,实现LED上直观地显示车轮的转数值。与软件配合,实现了显示、报警功能 关键词:单片机AT89C51 传感器 LED 仿真

目录 一、设计目的------------------------- 1 二、设计任务与要求--------------------- 1 2.1设计任务------------------------- 1 2.2设计要求------------------------- 1 三、设计步骤及原理分析 ----------------- 1 3.1设计方法------------------------- 1 3.2设计步骤------------------------- 3 3.3设计原理分析--------------------- 10 四、课程设计小结与体会 ---------------- 11 五、参考文献------------------------- 11

一、设计目的 通过《传感器及检测技术》课程设计,使学生掌握传感器及检测系统设计的方法和设计原则及相应的硬件调试的方法。进一步理解传感器及检测系统的设计和应用。 用霍尔元件设计测量车速的电子系统,通过对霍尔元件工作原理的掌握实现对车速测量的应用,设计出具体的电子系统电路,并且能够完成精确的车速测量。 二、设计内容及要求 2.1设计任务 霍尔传感器一般由霍尔元件和磁钢组成,当霍尔元件和磁钢相对运动时,就会产生脉冲信号,根据磁钢和脉冲数量就可以计算转速,进而求出车速。 现要求设计一个测量系统,在小车的适当位置安装霍尔元件及磁钢,使之具有以下功能: 功能:1)LED数码管显示小车的行驶距离(单位:cm)。 2)具有小车前进和后退检测功能,并用指示灯显示。 3)记录小车的行驶时间,并实时计算小车的行驶速度。 4)距离测量误差<2cm。 5)其它。 2.2设计要求 设计要求首先选定传感器,霍尔传感器具有灵敏、可靠、体积小巧、无触点、无磨损、使用寿命长、功耗低等优点,综合了电机转速测量系统的要求。其次设计一个单片机小系统,掌握单片机接口电路的设计技巧,学会利用单片机的定时器和中断系统对脉冲信号进行测量或计数。再次实时测量显示并有报警功能,实时测量根据脉冲计数来实现转速测量的方法。要求霍尔传感器转速为0~5000r/min。 三、设计步骤及原理分析 3.1 设计方法 3.1.1 霍尔效应 所谓霍尔效应,是指磁场作用于载流金属导体、半导体中的载流子时,产生

霍尔传感器应用测速方面

传感器原理及工程应用(论文) 霍尔传感器应用测速方面 学生姓名: 指导教师: 专业: 学号: 2011 年12 月

目录 前言 (1) 1绪论 (1) 1.1脉冲信号的获得 (1) 1.2方案分析论证 (2) 1.3单片机模块论证与选择 (2) 1.4显示模块论证与选择 (2) 1.5报警模块论证与选择 (3) 1.6电源模块论证与选择 (3) 2 基于霍尔传感器的电机转速测量系统硬件设计 (4) 2.1总体硬件设计 (4) 2.2系统电路设计 (5) 2.3霍尔传感器测量电路设计 (5) 2.4霍尔传感器测量原理 (6) 2.5转速测量方法 (7) 2.6反相器74LS14 (7) 2.7光电耦合器 (8) 2.8蜂鸣器 (9) 结论 (10) 参考文献 (11)

前言 测速是工农业生产中经常遇到的问题,学会使用单片机技术设计测速仪表具有很重要的意义。要测速,首先要解决是采样的问题。在使用模拟技术制作测速表时,常用测速发电机的方法,即将测速发电机的转轴与待测轴相连,测速发电机的电压高低反映了转速的高低。 使用单片机进行测速,可以使用简单的脉冲计数法。只要转轴每旋转一周,产生一个或固定的多个脉冲,并将脉冲送入单片机中进行计数,即可获得转速的信息。在直流电机的多年实际运行的过程中,机械测速电机不足之处日益明显,其主要表现为直流测速电机DG中的炭刷磨损及交流测速发电机TG中的轴承磨损,增加了设备的维护工作量,也随着增加了发生故障的可能性;同时机械测速电机在更换炭刷及轴承的检修作业过程中,需要将直流电动机停运,安装过程中需要调整机械测速电机轴与主电机轴的同轴度,延长了检修时间,影响了设备的长期平稳运行。 随着电力电子技术的不断发展,一些新颖器件的不断涌现,原有器件的性能也随着逐渐改进,采用电力电子器件构成的各种电力电子电路的应用范围与日俱增。因此采用电子脉冲测速取代原直流电动机械测速电机已具备理论基础,如可采用磁阻式、霍尔效应式、光电式等方式检测电机转速。 经过比较分析后,决定采用测速齿轮和霍尔元件代替原来的机械测速电机。霍尔传感器作为测速器件得到广泛应用。霍尔传感器是利用霍尔效应实现磁电转换的一种传感器。霍尔效应这种物理现象的发现,虽然已有一百多年的历史,但是直到20世纪40年代后期,由于半导体工艺的不断改进,才被人们所重视和应用。我国从70年代开始研究霍尔器件,经过20余年的研究和开发,目前已经能生产各种性能的霍尔元件,霍尔传感器具有灵敏度高、线性度好、稳定性高、体积小和耐高温等特点[2]

霍尔元件测速原理说明及应用

霍尔测速 测速是工农业生产中经常遇到的问题,学会使用单片机技术设计测速仪表具有很重要的意义。要测速,首先要解决是采样的问题。在使用模拟技术制作测速表时,常用测速发电机的方法,即将测速发电机的转轴与待测轴相连,测速发电机的电压高低反映了转速的高低。使用单片机进行测速,可以使用简单的脉冲计数法。只要转轴每旋转一周,产生一个或固定的多个脉冲,并将脉冲送入单片机中进行计数,即可获得转速的信息。 下面以常见的玩具电机作为测速对象,用CS3020设计信号获取电路,通过电压比较器实现计数脉冲的输出,既可在单片机实验箱进行转速测量,也可直接将输出接到频率计或脉冲计数器,得到单位时间内的脉冲数,进行换算即可得电机转速。这样可少用硬件,不需编程,但仅是对霍尔传感器测速应用的验证。 1 脉冲信号的获得 霍尔传感器是对磁敏感的传感元件,常用于开关信号采集的有CS3020、CS3040等,这种传感器是一个3端器件,外形与三极管相似,只要接上电源、地,即可工作,输出通常是集电极开路(OC)门输出,工作电压范围宽,使用非常方便。如图1所示是CS3020的外形图,将有字面对准自己,三根引脚从左向右分别是Vcc,地,输出。 图1 CS3020外形图 使用霍尔传感器获得脉冲信号,其机械结构也可以做得较为简单,只要在转轴的圆周上粘上一粒磁钢,让霍尔开关靠近磁钢,就有信号输出,转轴旋转时,就会不断地产生脉冲信号输出。如果在圆周上粘上多粒磁钢,可以实现旋转一周,获得多个脉冲输出。在粘磁钢时要注意,霍尔传感器对磁场方向敏感,粘之前可以先手动接近一下传感器,如果没有信号输出,可以换一个方向再试。这种传感器不怕灰尘、油污,在工业现场应用广泛。 2 硬件电路设计 测速的方法决定了测速信号的硬件连接,测速实际上就是测频,因此,频率测量的一些原则同样适用于测速。 通常可以用计数法、测脉宽法和等精度法来进行测试。所谓计数法,就是给定一个闸门时间,在闸门时间内计数输入的脉冲个数;测脉宽法是利用待测信号的脉宽来控制计数门,对一个高精度的高频计数信号进行计数。由于闸门与被测信号不能同步,因此,这两

根据霍尔传感器的电机测速装置设计

检测与转换技术大作业报告 题目 院系 班级 学生姓名 日期

霍尔传感器在电机转速测量装置上 的应用设计 利用霍尔传感器,设计了一种电机转速测量装置并提出了相应的测速算法,还设计了转速信号处理电路,将脉冲信号转化为标准的T TL 电平,便于A T89C52 单片机的计数运算,并通74LS164 寄存器将转速信号显示在L ED 上。该电机测速装置具有线路简单、实时性好、成本低、安装调试方便和节省空间等优点,尤其是在测量空间有限、轴偏心或传感器不便安装的条件下,该测量方法具有明显的优势。 第一章测速电路相关元件分析 1.1 AT89C52单片机 AT89C52是一个低电压、高性能CMOS8位单片机,片内含8KB的可反复擦写的Flash只读程序存储器和256B的随机存取数据存储器(RAM),兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元。AT89C52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读/写口线。AT89C52主要功能特性和引脚图如下所示: ·完全兼容MCS-51指令系统 ·8k可反复擦写Flash ROM ·全静态操作:时钟频率0-24MHz

·三级加密程序存储器 ·3个16位可编程定时/计数器中断 ·256x8bit内部RAM ·32个可编程的双向I/O口 ·2个外部中断源,共8个中断源 ·2个读写中断口线 ·可编程串行UART通道 ·低功耗空闲和掉电模式 ·软件设置睡眠和唤醒功能 1.2 LM317T三端稳压器 LM317T是可调节三端正电压稳压器,在输出电压范围为1.25V到37V时能够提供超过1.5A的负载电流。此稳压器使用非常容易,只需两个外接电阻来设置输出电压。其主要功能特性如下所示: ·输出电流超过1.5安 ·输出电压在1.2伏和37伏间连续可调 ·内部热过载保护 ·不随温度变化的内部短路电流限制

霍尔传感器测速原理

现代检测技术论文 测控11-2班 范国霞 1105070202

绪论 现代技术关于速度的测量方法多种多样,其中包括线速度和角速度两个方面,速度和转速测量在工业农业、国防中有很多应用,如汽车、火车、轮船及飞机等行驶速度测量;发动机、柴油机、风力发电机等输出轴的转速测量等等。其中有微积分转换法,线速度与角速度转换方法,时间位移方法等等,下面我所介绍的是霍尔传感器对于速度的测量方法。霍尔式传感器是基于霍尔效应原理设计的传感器. 关键字:霍尔效应,霍尔传感器

霍尔传感器 霍尔传感器是基于霍尔效应的一种传感器。1879年美国物理学家霍尔首先在金属材料中发现了霍尔效应,但由于金属材料的霍尔效应太弱而没有得到应用,随着半导体技术的发展,开始用半导体材料制成霍尔元件,由于他的霍尔效应显著而得到了应用和发展。在了解霍尔传感器之前先了解一下什么是霍尔元件以及它的基本特性。 霍尔元件的结构很简单,它是由霍尔片、四根引线和壳体组成的,如图1所示。 图1 霍尔片是一块矩形半导体单晶薄片,引出四根引线:1、1ˊ两根引线加激励电压或电流,称激励电极;2、2ˊ引线为霍尔输出引线,称霍尔电极。霍尔元件的壳体是用非到此金属、陶瓷或环氧树脂封装的。在电路中,霍尔元件一般可用两种符号表示,如图1(b)所示。

霍尔元件的基本特性 (1)额定激励电流和最大允许激励电流当霍尔元件自身温度升高10℃所流过的激励电流成为额定激励电流。以元件允许最大温升为限定的激励电流称为最大允许激励电流。因霍尔电势随激励电流增加而线性增加,所以使用中希望选用尽可能大的激励电流,因而需要知道元件的最大允许激励电流。 (2)输入电阻和输出电阻激励电极间的电阻称为输入电阻。霍尔电极输出电势对电路外部来说相当于一个电压源,其电源内阻即为输出电阻。 (3)不等位电势及不等为电阻当霍尔元件的激励电流为I时,若元件所处位置磁感应强度为零,则它的霍尔电势应该为零,但实际不为零。这是测得的空载电势称为不等位电势。 (4)寄生直流电势再外加磁场为零、霍尔元件用交流激励时,霍尔电极输出除了交流不等位电势外,还有一直流电势,称为寄生直流电势。 (5)霍尔电势温度系数在一定磁感应强度和激励电流下温度每变化1℃时,霍尔电势变化的百分率称为霍尔电势温度系数。他同时也是霍尔系数的温度系数。

霍尔传感器的测速电路设计

4.2.2霍尔传感器的测速电路设计 首先选定传感器,霍尔传感器具有灵敏、可靠、体积小巧、无触点、无磨损、使用寿命长、功耗低等优点,综合了电机转速测量系统的要求。 其次设计一个单片机小系统,利用单片机的定时器和中断系统对脉冲信号进行测量或计数。 再次实时测量显示并有报警功能,实时测量根据脉冲计数来实现转速测量的方法。要求霍尔传感器转速为0~5000r/min。 霍尔测速模块论证与选择 采用霍尔传感器;选型号为CHV-25P/10的霍尔传感器,其额定电压为10v,输出信号5v/25mA,电源为12~15v。体积大,价格一般为40~120元之间不等。性价比较高 计数器模块论证与选择 采用片内的计数器。其优点在于降低单片机系统的成本。每到一个脉冲将会产生一个T1的计数,在T0产生的100ms中断完成后,T1的中断溢出次数就是所需要计的脉冲数。特点在于:使用了内部的T1作为外部脉冲的计数器,并且,为了避免计数器的溢出,将T1的初值设为0。 显示模块论证与选择 采用LCD液晶显示器作为显示模块核心。LCD显示器工作原理简单,编程方便,节能环保。 报警模块论证与选择 采用蜂鸣器与发光二极管作为声光报警主要器件。该方案不论在硬件和焊接方面还是在编写软件方面都简单方便,而且成本低廉。 电源模块论证与选择 采用交流220V/50Hz电源转换为直流5V电源作为电源模块。 该方案实施简单,电路搭建方便,可作为单片机开发常备电源使用。 单片机模块论证与选择 选用P89C51的单片机速度极快、功耗低、体积小、资源丰富,有各种不同的规格,最快的达100MPS ,引脚还可编程确定功能 选用51系列的单片机,是因为51的架构十分典型。而且: 1.价格便宜; 2.开发手段便宜; 3.自己动手焊接相对容易。 转速测量方案论证

霍尔转速传感器测速实验

实验九霍尔转速传感器测速实验 一、实验目的 了解霍尔转速传感器的应用。 二、基本原理 根据霍尔效应表达示U H=K H IB,当K H I不变时,在转速圆盘上装上N只磁性体,并在磁钢上方安装一霍尔元件。圆盘每转一周,表面的磁场B从无到有就变化N次,霍尔电势也相应变化N次。此电势通过放大、整形和计数电路就可以测量被测旋转体的转速。 三、需用器件与单元 霍尔转速传感器、转速测量控制仪。 四、实验步骤 1、根据图9-1,将霍尔转速传感器装于转动源的传感器调节支架上,探头对准转盘内的磁钢。 图9-1 霍尔转速传感器安装示意图 2、将+15V直流电源加于霍尔转速器的电源输入端,红(+)、绿( ),不要接错。 3、将霍尔传感器输出端(黄线)接示波器或者频率计。 4、调节电动转速电位器使转速变化,用示波器观察波形的变化(特别注意脉宽的变化), 或用频率计观察输出频率的变化。

五、实验结果分析与处理 1、记录频率计六组输出频率数值如下: 由以上数据可得:最快转速对应的频率f1=152.83Hz,最慢转速对应频率f6=20.1Hz。随着转速的减小,脉宽T1逐渐变大,但占空比基本保持不变,而且速度不能无限减小。 六、思考题 1、利用霍尔元件测转速,在测量上是否有所限制? 答:有,测量速度不能过慢,因为磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。 2、本实验装置上用了二只磁钢,能否只用一只磁钢? 答:如果霍尔是单极的,可以只用一只磁钢,但可靠性和精度会差一些;如果霍尔是双极的,那么必须要有一组分别为n/s极的磁钢去开启关断它,那么至少要两只磁钢。 1

实验十九 开关式霍尔传感器测转速实验

实验十九开关式霍尔传感器测转速实验 一、实验目的:了解开关式霍尔传感器测转速的应用。 二、基本原理:开关式霍尔传感器是线性霍尔元件的输出信号经放大器放大,再经施密特电路整形成矩形波(开关信号)输出的传感器。开关式霍尔传感器测转速的原理框图19—1所示。当被测圆盘上装上6只磁性体时,圆盘每转一周磁场就变化6次,开关式霍尔传感器就同频率f相应变化输出,再经转速表显示转速n。 图19—1开关式霍尔传感器测转速原理框图 三、需用器件与单元:主机箱中的转速调节0~24V直流稳压电源、+5V直流稳压电源、电压表、频率\转速表;霍尔转速传感器、转动源。 四、实验步骤: 1、根据图19—2将霍尔转速传感器安装于霍尔架上,传感器的端面对准转盘上的磁钢并调节升降杆使传感器端面与磁钢之间的间隙大约为2~3mm。 2、将主机箱中的转速调节电源0~24V旋钮调到最小(逆时针方向转到底)后接入电压表(电压表量程切换开关打到20V档);其它接线按图19—2所示连接(注意霍尔转速传感器的三根引线的序号);将频频\转速表的开关按到转速档。 3、检查接线无误后合上主机箱电源开关,在小于12V范围内(电压表监测)调节主机箱的转速调节电源(调节电压改变直流电机电枢电压),观察电机转动及转速表的显示情况。

图19—2 霍尔转速传感器实验安装、接线示意图 4、从2V开始记录每增加1V相应电机转速的数据(待电机转速比较稳定后读取数据);画出电机的V-n(电机电枢电压与电机转速的关系)特性曲线。实验完毕,关闭电源。 n(转/ 406286108132157179203225250分) V(mv)2003004635006017037999019991104 电机的V-n(电机电枢电压与电机转速的关系)特性曲线 五、思考题: 利用开关式霍尔传感器测转速时被测对象要满足什么条件? 被测物能够阻挡或透过或反射霍尔信号,般都是一个发射头一个接收头若发射接收安装在同侧,则被测物必须能反射该信号,发射接收安装在对侧,则被测物必须能阻挡透过该信

霍尔传感器测速原理 (2)

霍尔传感器测速原理: 电流的测量采用磁平衡式霍尔电流传感器传感器可测量从直流到100kHz的交流量在自动测控系统中,常需要测量和显示有关电参量。目前大多数测量系统仍采用变压器式电压、电流互感器,由于互感器的非理想性,使得变比和相位测量都存在较大的误差,常需要采用硬件或软件的方法补偿,从而增加了系统的复杂性。 采用霍尔检测技术,可以克服互感器这些缺点,能测量从直流到上百千赫兹的各种形状的交流信号,并且达到原副边不失真传递,同时又能实现主电路回路和电子控制电路的隔离,霍尔传感器的输出可直接与单片机接口。 因此霍尔传感器已广泛应用于微机测控系统及智能仪表中,是替代互感器的新一代产品。在此提出了利用霍尔传感器对电参量特别是对高电压、大电流的参数的测量。 l测量原理 1霍尔效应原理如图1所示,一个N型半导体薄片,长度为L,宽度为S,厚度为d,在垂直于该半导体薄片平面的方向上,施加磁感应强度为B的磁场,若在长度方向通以电流Ic则运动电荷受到洛伦兹力的作用,正负电荷将分别沿垂直于磁场和电流的方向向导体两端移动,并在导体两端形成一个稳定的电动势UH,这就是霍尔电动势(或称之为霍尔电压),这种现象称为霍尔效应。霍尔电压的大小UH=RIB/d=KHICB,其中R为霍尔常数;KH为霍尔元件的乘积灵敏度。 2用霍尔传感器测量电参量的原理由霍尔电压公式可知:对于一个成型的霍尔传感器,乘积灵敏度KH是一恒定值,则UH∝ICB,只要通过测量电路测出UH的大小,在B和IC 两个参数中,已知一个,就可求出另一个,因而任何可转换成B或J的未知量均可利用霍尔元件来测量,任何转换成B和I乘积的未知量亦可进行测量。电参量的测量就是根据这一原理实现的。 若控制电流IC为常数,磁感应强度B与被测电流成正比,就可以做成霍尔电流传感器测电流,若磁感应强度B为常数,IC与被测电压成正比,可制成电压传感器测电压,利用霍尔电压、电流传感器可测交流电的功率因数、电功率和交流电的频率。 由UH=KICB可知:若IC为直流,产生磁场B的电流IO为交流时,UH为交流;若IO亦为直流,则输出也为直流。当IC为

传感器原理_基于霍尔传感器的转速测量系统设计说明

传感器原理及应用期末课程设计题目基于霍尔传感器的转速测量电路设计 姓名小波学号8888888888 院(系)电子电气工程学院 班级清华大学——电子信息 指导教师牛人职称博士后 二O一一年七月十二日

摘要:转速是发动机重要的工作参数之一,也是其它参数计算的重要依据。针对工业上常见的发动机设计了以单片机STC89C51为控制核心的转速测量系统。系统利用霍尔传感器作为转速检测元件,并利用设计的调理电路对霍尔转速传感器输出的信号进行滤波和整形,将得到的标准方波信号送给单片机进行处理。实际测试表明,该系统能满足发动机转速测量要求。 关键词:转速测量,霍尔传感器,信号处理,数据处理

Abstract: The rotate speed is one of the important parameters for the engine, and it is also the important factor that calculates other parameters. The rotate speed measurement system for the common engine is designed with the single chip STC89C51. The signal of the rotate speed is sampled by the Hall sensor, and it is transformed into square wave which will be sent to single chip computer. The result of the experiment shows that the measurement system is able to satisfy the requirement of the engine rotate speed measurement. Key words: rotate speed measurement, Hall sensor, signal processing, data processing

霍尔传感器测速原理

霍尔传感器测速原理: 电流的测量采用磁平衡式霍尔电流传感器传感器可测量从直流到100kHz的交流量在自动测控系统中,常需要测量与显示有关电参量。目前大多数测量系统仍采用变压器式电压、电流互感器,由于互感器的非理想性,使得变比与相位测量都存在较大的误差,常需要采用硬 件或软件的方法补偿,从而增加了系统的复杂性。 采用霍尔检测技术,可以克服互感器这些缺点,能测量从直流到上百千赫兹的各种形状的交流信号,并且达到原副边不失真传递,同时又能实现主电路回路与电子控制电路的隔离,霍 尔传感器的输出可直接与单片机接口。 因此霍尔传感器已广泛应用于微机测控系统及智能仪表中,就是替代互感器的新一代产品。在此提出了利用霍尔传感器对电参量特别就是对高电压、大电流的参数的测量。 l测量原理 1霍尔效应原理如图1所示,一个N型半导体薄片,长度为L,宽度为S,厚度为d,在垂直于该半导体薄片平面的方向上,施加磁感应强度为B的磁场,若在长度方向通以电流Ic则运动电荷受到洛伦兹力的作用,正负电荷将分别沿垂直于磁场与电流的方向向导体两端移动,并在导体两端形成一个稳定的电动势UH,这就就是霍尔电动势(或称之为霍尔电压),这种现象 称为霍尔效应。霍尔电压的大小UH=RIB/d=KHICB,其中R为霍尔常数;KH为霍尔元件的乘积灵敏度。 2用霍尔传感器测量电参量的原理由霍尔电压公式可知:对于一个成型的霍尔传感器,乘积灵敏度KH就是一恒定值,则UH∝ICB,只要通过测量电路测出UH的大小,在B与IC 两个参数中,已知一个,就可求出另一个,因而任何可转换成B或J的未知量均可利用霍尔元件来测量,任何转换成B与I乘积的未知量亦可进行测量。电参量的测量就就是根据这一原理实现的。 若控制电流IC为常数,磁感应强度B与被测电流成正比,就可以做成霍尔电流传感器测电流,若磁感应强度B为常数,IC与被测电压成正比,可制成电压传感器测电压,利用霍尔电压、电流传感器可测交流电的功率因数、电功率与交流电的频率。 由UH=KICB可知:若IC为直流,产生磁场B的电流IO为交流时,UH为交流;若IO亦为直流,则输出也为直流。当IC为交流,IO亦

霍尔元件测速电路 (1)

霍尔原件测速 测速是工农业生产中经常遇到的问题,学会使用单片机技术设计测速仪表具有很重要的意义。要测速,首先要解决是采样的问题。在使用模拟技术制作测速表时,常用测速发电机的方法,即将测速发电机的hnmk/yil,用CS3020设计信号获取电路,通过电压比较器实现计数脉冲的输出,既可在单片机实验箱进行转速测量,也可直接将输出接到频率计或脉冲计数器,得到单位时间内的脉冲数,进行换算即可得电机转速。这样可少用硬件,不需编程,但仅是对霍尔传感器测速应用的验证。 1 脉冲信号的获得 霍尔传感器是对磁敏感的传感元件,常用于开关信号采集的有CS3020、CS3040等,这种传感器是一个3端器件,外形与三极管相似,只要接上电源、地,即可工作,输出通常是集电极开路(OC)门输出,工作电压范围宽,使用非常方便。如图1所示是CS3020的外形图,将有字面对准自己,三根引脚从左向右分别是Vcc,地,输出。 图1 CS3020外形图 使用霍尔传感器获得脉冲信号,其机械结构也可以做得较为简单,只要在转轴的圆周上粘上一粒磁钢,让霍尔开关靠近磁钢,就有信号输出,转轴旋转时,就会不断地产生脉冲信号输出。如果在圆周上粘上多粒磁钢,可以实现旋转一周,获得多个脉冲输出。在粘磁钢时要注意,霍尔传感器对磁场方向敏感,粘之前可以先手动接近一下传感器,如果没有信号输出,可以换一个方向再试。这种传感器不怕灰尘、油污,在工业现场应用广泛。 2 硬件电路设计 测速的方法决定了测速信号的硬件连接,测速实际上就是测频,因此,频率测量的一些原则同样适用于测速。 通常可以用计数法、测脉宽法和等精度法来进行测试。所谓计数法,就是给定一个闸门时间,在闸门时间内计数输入的脉冲个数;测脉宽法是利用待测信号的脉宽来控制计数门,对一个高精度的高频计数信号进行计数。由于闸门与被测信号不能同步,因此,这两种方法都存在±1误差

基于单片机的霍尔测速报警系统方案

传感器与测控电路课程设计报告学生:禹振榜 指导老师:书仪余以道 专业班级:12级测控二班 所在学院:机电工程学院 学号1203030214 课题基于单片机的霍尔测速报警系统

基于单片机的霍尔测速报警系统的设计 摘要 在生产中,电机应用十分广泛,比如汽车速度显示,设备工作时的档位,都需要我们了解电机或者机器的转速。转速作为工程中应用的一个非常广泛的参数,它的测量方法有很多,特别是单片机对脉冲数字信号的强大处理能力,使得全数字测量系统越来越普及,越来越方便。 本设计属于码盘转速测量系统,实现转速的实时测量和显示。本系统以STC90C51单片机为核心,旋转编码器通过用传感器测量非电量,转变成模拟电量,再通过一系列测控电路。获得数字信号,实现实时轴转速测量,同时用四位段码式LED数码管显示模块显示电机转速,并且加入了报警模块。详细阐述了转速测量系统的工作过程,以及硬件电路的设计、显示效果。本文吸收了硬件软件化的思想,实现了题目要求的功能。 关键词:转速测量,,单片机, LED显示模块,霍尔传感器。

目录 第一部分绪论 1.1 设计的任务与要求————————————————1 第二部分功能分析与设计要求 2.1 测控系统功能的概述———————————————1 2.2系统模块的确定————————————————— 2 2.3各模块的选择—————————————————— 2 2.1.1传感器模块的论证与选择——————————————2 2.1.2报警模块的论证与选择———————————————3 2.1.3显示模块的论证与选择———————————————3 2.1.2单片机模块的论证与选择——————————————3 2.4 小结——————————————————————3 第三部分测控系统的总体设计 3.1 测控系统的总体设计———————————————4 3.1.1 硬件原理图———————————————————4 3.1.2 硬件电路设计总图————————————————5 3.2 测控系统子模块简介———————————————5 3.2.1传感器原理及分电路析—————————————— 5 3.2.2 报警模块————————————————————7 3.2.3 LED数码管———————————————————8

霍尔元件测速原理说明及应用

霍尔元件测速原理说明 及应用 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

霍尔测速 测速是工农业生产中经常遇到的问题,学会使用单片机技术设计测速仪表具有很重要的意义。要测速,首先要解决是采样的问题。在使用模拟技术制作测速表时,常用测速发电机的方法,即将测速发电机的转轴与待测轴相连,测速发电机的电压高低反映了转速的高低。使用单片机进行测速,可以使用简单的脉冲计数法。只要转轴每旋转一周,产生一个或固定的多个脉冲,并将脉冲送入单片机中进行计数,即可获得转速的信息。 下面以常见的玩具电机作为测速对象,用CS3020设计信号获取电路,通过电压比较器实现计数脉冲的输出,既可在单片机实验箱进行转速测量,也可直接将输出接到频率计或脉冲计数器,得到单位时间内的脉冲数,进行换算即可得电机转速。这样可少用硬件,不需编程,但仅是对霍尔传感器测速应用的验证。 1 脉冲信号的获得 霍尔传感器是对磁敏感的传感元件,常用于开关信号采集的有CS3020、 CS3040等,这种传感器是一个3端器件,外形与三极管相似,只要接上电源、地,即可工作,输出通常是集电极开路(OC)门输出,工作电压范围宽,使用非常方便。如图1所示是CS3020的外形图,将有字面对准自己,三根引脚从左向右分别是Vcc,地,输出。 图1 CS3020外形图 使用霍尔传感器获得脉冲信号,其机械结构也可以做得较为简单,只要在转轴的圆周上粘上一粒磁钢,让霍尔开关靠近磁钢,就有信号输出,转轴旋转时,

就会不断地产生脉冲信号输出。如果在圆周上粘上多粒磁钢,可以实现旋转一周,获得多个脉冲输出。在粘磁钢时要注意,霍尔传感器对磁场方向敏感,粘之前可以先手动接近一下传感器,如果没有信号输出,可以换一个方向再试。这种传感器不怕灰尘、油污,在工业现场应用广泛。 2 硬件电路设计 测速的方法决定了测速信号的硬件连接,测速实际上就是测频,因此,频率测量的一些原则同样适用于测速。 通常可以用计数法、测脉宽法和等精度法来进行测试。所谓计数法,就是给定一个闸门时间,在闸门时间内计数输入的脉冲个数;测脉宽法是利用待测信号的脉宽来控制计数门,对一个高精度的高频计数信号进行计数。由于闸门与被测信号不能同步,因此,这两种方法都存在±1误差的问题,第一种方法适用于信号频率高时使用,第二种方法则在信号频率低时使用。等精度法则对高、低频信号都有很好的适应性。 图2是测速电路的信号获取部分,在电源输入端并联电容C2用来滤去电源尖啸,使霍尔元件稳定工作。HG表示霍尔元件,采用CS3020,在霍尔元件输出端(引脚3)与地并联电容C3滤去波形尖峰,再接一个上拉电阻R2,然后将其接入LM324的引脚3。用LM324构成一个电压比较器,将霍尔元件输出电压与电位器R P1比较得出高低电平信号给单片机读取。C4用于波形整形,以保证获得良好数字信号。LED便于观察,当比较器输出高电平时不亮,低电平时亮。微型电机M可采用型,通过电位器R P1分压,实现提高或降低电机转速的目的。C1电容使电机的速度不会产生突变,因为电容能存储电荷。

霍尔传感器组成的转速测量电路

霍尔传感器组成的转速测量电路 报告书 姓 名 王强 学 号 院、系、部 电气系 专 业 电气工程及其自动化 1 课程设计任务书 ※※※※※※※※※ ※ ※ ※※ ※ ※ 2008级 测试技术课程设计

在工农业生产和工程实践中,经常会遇到各种需要测量转速的场合,测量转速的方法分为模拟式和数字式两种。模拟式采用测速发电机为检测元件,得到的信号是模拟量,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难。数字式通常采用光电编码器、圆光栅、霍尔元件等为检测元件,得到的信号是脉冲信号。单片机技术的日新月异,特别是高性能价格比的单片机的出现,转速测量普遍采用以单片机为核心的数字式测量方法,使得许多控制功能及算法可以采用软件技术来完成。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。 本课题,是要利用霍尔传感器来测量转速。由磁场的变化来使霍尔传感器产生脉冲,由单片机计数,经过数据计算转化成所测转速,再由数码管显示出来。 一、主要内容 利用强磁铁与霍尔元件组成测试转体转速的测量电路,包括计数与显示电路。 二、基本要求 1. 实现基本功能 2.完成3000字设计报告 3. 画出电路图 4. 发挥部分,设计超速报警,完成信号传输。 三、主要技术指标(或研究方法) 测量范围0—6000r/min 精度±5r/min 工作电压5V~12V 工作电流低于500mA 工作环境温度-60℃~65℃ 四、应收集的资料及参考文献 霍尔元件原理与应用 显示元件原理 数据采样整理单 2 概述 2.1 系统组成框图

在测量电机转速时我们从采用了电磁感应式传感器。当电机转动时,带动传感器。这种传感器可以将转速信号转变成一个对应频率的脉冲信号输出,经过信号处理后输出到计数器。脉冲信号的频率与电机的转速是一种线性的正比关系,因此对电机转速的测量,实质上是对脉冲信号的频率的测量。 本课题采是以STC89C52单片机为核心将处理好的信号经过数据处理转换成所测得的实际十进制信号的系统。系统硬件原理框图如图2-1: 系统框图原理如图2-1所示,系统由传感器、信号处理、显示电路和系统软件等部分组成。传感器采用霍尔传感器,负责将转速转化为脉冲信号。信号处理电路包含待测信号放大、波形变换、波形整形电路等部分,其中放大器实现对待测信号的放大,降低对待测信号的幅度要求,实现对小信号的测量;波形变换和波形整形电路实现把正负交变的信号波形变换成可被单片机接受的TTL/CMOS兼容信号。处理器采用STC89C52单片机,显示器采用8位LED数码管动态显示。 2.2霍尔传感器测转速原理及特性 1、霍尔传感器测速原理:

传感器课程方案霍尔元件测转速

电控学院 传感器课程设计 院<系):电气与控制项目学院 专业班级: 10级测控2班 姓名: 学号: 指导教师: 2018年 1月 3日 目录 1.任务1 2.原理1 2.1测速原理1 2.2组成及框图:1 2.3应用:2 3.内容2 3.1电路图2 3.2器件选择2 3.2.1 单片机2 3.2.2 LED3 3.2.3霍尔传感器4 3.3参数计算6 4.心得体会8

霍尔元件测速电路 在项目实践中,经常会遇到各种需要测量转速的场合,测量转速的方法分为模拟式和数字式两种。模拟式采用测速发电机为检测元件,得到的信号是模拟量。数字式通常采用电磁编码器,霍尔元件等为检测元件,得到的信号是脉冲信号。随着微型计算机的广泛应用,特别是高性能价格比的单片机的出现,转速测量普遍采用以单片机为核心的数字式测量方法。 本文便是运用AT89C51单片机控制,霍尔元件采集信号的智能化转速测量仪。电机在运行过程中,通过霍尔测速元件的开关性能,每次转过一圈,输出一个高电平,再通过单片机的计数功能,将单位时间的高电平数记录下来,这样就可以通过单片机来测量电机的转速,同时通过数码管予以显示。 本设计主要用AT89C51作为控制核心,由霍尔传感器、LED数码显像管、及RS232构成。详细介绍了单片机的测量转速系统,充分发挥了单片机的性能。本文重点是利用霍尔元件3144测量速度并通过单片机显示在6位LED数码管上。 其优点是硬件电路简单,软件功能完善,测量速度快、精度高、控制系统可靠,性价比较高等特点。 1.任务 通过AT89C51单片机接收霍尔传感器传来的脉冲信号,单片机根据外部中断,以及内部定时器进行记数计算出电机转速送到LED。 2.原理 2.1测速原理 霍尔传感器检测转速示意图如图2-1所示。在非磁材料的圆盘边上粘贴一块磁钢,霍尔传感器固定在圆盘外缘附近。圆盘每转动一圈, 霍尔传感器便输出一个脉冲。通过单片机测量产生脉冲的频率,就可以得出圆盘的转速.。同样道理,根据圆盘(车轮>的转速,再结合圆盘的周长就是计算出物体的位移。如果要增加测量位移的精度,可以在圆盘(车轮>上多增加几个磁钢.。备注:当没有信号产生时, 电平,有磁钢时输出低电平。 2.2组成及框图: 传感器电路、转速测量、LED显示、电平转换电路设计等将在以下章节作

霍尔传感器测速系统-软件

基于霍尔传感器的电机转速测量系统 软件设计 摘要 在生产过程中,电机的应用十分广泛,随着生产的不断发展,对电机转速的测量就显得十分必要,同时对电机转速的测量提出了更高的要求。 本文设计了一种以51单片机作为主控制器,使用霍尔传感器进行测量的直流电机转速测量系统。本系统采用集成霍尔传感器敏感速率信号,具有频率响应快,抗干扰能力强等特点。 文章介绍了霍尔传感器的工作原理,阐述了霍尔传感器测速系统的工作过程,利用脉冲计数法实现了对转速的测量,通过LCD直观地显示电机的转速值。结合硬件电路设计,采用模块化方法进行了软件设计。编制了电机转速的测量设计了测量模块、转速模块、报警模块、显示模块等的C51程序,并通过PROTEUSE软件进行了仿真。仿真结果表明所设计的软件程序是正确的。 关键词:霍尔传感器;单片机;电机转速测量;液晶显示。

Software Design of Motor Speed Measurement System Based on Hall Sensor Abstract In the production process, the motors are widely used as production continues to develop, measuring the motor speed becomes necessary, while motor speed measurement put forward higher requirements. This measurement system is a design of a microcomputer 51 as the primary controller, the Hall sensor as a sensor to measure the DC motor speed. The system uses an integrated Hall sensor sensitivity rate of the signal with a frequency of fast response, anti-interference ability and so on. The working principle of the Hall sensor was introduced in this paper. The working process was described. It is used pulse-counting method to achieve the measurement of speed, and to display motor speed values through an intuitive LCD. Combination of hardware circuit design, softwares were designed by a modular approach using C51 program, such as the motor speed measurement module, alarm module, display module etc., All these programs were simulated through PROTEUSE. Simulation results show that the designed software programs are correct. Keywords: Hall sensor;microcontroller;Speed Measurement ;LCD.

最新传感器实验霍尔测速和光速测控

传感器实验霍尔测速和光速测控

传感器实验实验报告 实验三霍耳测速 一、实验目的: 了解霍耳传感器N3120U的特性,学习霍耳传感器的应用,NE555时基集成电路应用。 二、实验设备及器件: 显示器、稳压电源、频率计数器;霍耳传感器、万用表、小磁铁、小电机等。 三、实验原理: 霍耳元件是一种磁电转换元件,用于检测磁场并将磁信号转换成电压。把霍耳元件置于外磁场中,沿垂直于磁力线方向通过电流时,其中的载流子受洛仑兹力作用,被推向一侧,积累以后形成电场,这个电场阻止载流子的偏移,当达到动态平衡后,电场中电位差即形成霍耳电压。当电流一定时,测量霍耳电压即可得知磁场的场强大小。

本实验采用的N3120U霍耳器件是一种集成的开关元件。它的输出可直接与多种电子元件相连。它的内部结构和主要性能如上图,其中: 图(一)显示了N3120U的内部结构和外接电路的种类。 图(二)显示了对于N3120U器件来说磁场为负的情况。 图(三)、图(四)、图(五)表示了对于磁感应强度大小的不 同区域输出电压翻转的情况。 图(六)给出了实验装置的示意图和磁铁与传感器的相 对位置图,当磁铁转动时,N3120U输出波形为一系列方 波,这时就可送计数器进行计数。 实验原理框图所示: 四、实验步骤: 1、测试传感器特性: (1)按图(一)连接电路,输出接示波器。 (2)如图(七)所示,测试图(五)区域的器件特性。用示波器观察N3120U的输出情况。将小磁铁由远及近移向N3120U,当输出电压发生跳变时,记录小磁体靠近霍耳探头的一端(现在是N极)与霍耳探头N3120U的距离,然后由此点由近及远移动小磁铁,观察N3120U 的输出,当示波器上输出电压出现反向跳变时,再记录小磁体与N3120U的距离。 磁铁由远到近磁铁由近到远 跳变点与N3120U距离 8mm 11mm 注:反复操作,测量结果与表中相差无几,由于不便于测量,难以得到精确值,故不必进行多次记录。 (3)用小磁体的 S极指向N3120U,重复 (2)的步骤,测试图(三)所示的器件特性。 实验中,将S极指向N3120U,重复(2)中步骤,发现无论S极如何靠近和远离 N3120U,示波器显示电压并不会发生跳变。说明该霍尔元件是一个单向开关型霍尔传感器,只对N极敏感。 (4)将磁体的 N极对准N3120U,如图(六)转动小磁体,观察示波器上的输出电压,测试如图(四)所示的特性。当连续转变小磁体时,输出电压将连续发生跳变,记录下 4次输出电压发生跳变时每次小磁体的转变角度。 跳变次数 1 2 3 4

相关主题
文本预览
相关文档 最新文档