当前位置:文档之家› IC卡自助充电管理系统

IC卡自助充电管理系统

IC卡自助充电管理系统
IC卡自助充电管理系统

IC卡自助充电管理系统

一.功能简介

系统采用预付费电表管理,将每个充电设备都经过一个预付费电表供电管理,可根据实际数量,将十几甚至几十个预付费电表集中安装在一个表箱内,可以一个车棚放置几个表箱,一台智能IC卡付费机管理一个表箱内的电表,以485方式相连。当持卡者需要进行充电操作时,选择一个充电插座,在管理该插座的付费机上刷IC卡,选择插座编号,可以选择计次或者扣费方式,用于支付充电费用。付费机收到扣费信息后开启对应电表供电,电动车开始充电。当付费的相应电量使用完毕,则电表自动断开电源的供电。单次充电的电量和单价均可以按软件设置。

而付费机的数据信息,可以利用TCP/IP方式实时上传,也可以在需要的情况下利用GPRS方式远程上传。而挂失信息同样可以利用TCP/IP方式或GPRS方式下传。

二.

三.设备参数

四.预算清单

第一章概述

1.概述:

物业管理公司或管理人员为了能对辖区内各种电动车充电进行更有效、更安全的管理,有效的控制滥用电源、不规范用电、浪费电等现象,可以通过采用对电源的合理控制实现这种功能需求。SD3030是专门用于控制充电电源的控制器系统。通过采用SD3030对电源的控制,所有使用充电电源的持卡人,都必须先经过系统管理员授权。使用电源时,先刷一下IC卡,在按一下所在充电插座的按钮即可。未经授权的IC 卡,无法进行取电。控制器不管是脱机运行还是联机控制,都可记录大量的交易数据,使得充电的所有数据记录都有据可寻。

通过IC卡管理充电电源,可将无卡人员滥用电源外;同时,又起到了省电省空耗的作用;因为充电电源具有时间限制,这样减少了出现电池充电饱和之后继续充电的情况,延长了电池使用寿命;多个电源点在分布广的情况下,容易发生起火等不安全因素,通过IC卡管理的充电电源,平时插座是没有电压的,有效的加强了传统安全管理系统中管理的薄弱的一面;提高了物业的安全等级。

本系统具有IC卡消费功能,可按次、按日期、按消费金额进行卡管理。

SD3030基于SDNET控制软件平台使用的一个控制模块,来对电源进行有效使用的管理。SD3030可在线运行,可以单机独立运行,即使关闭PC机,SD3030也可以正常使用,确保其稳定可靠的控制功能,从而提高楼宇管理层次。

sD3030/ SD3031智能充电电源控制器

第二章系统需求分析

就目前的实际情况和贵方的系统需求总结如下:

(1)共有充电点需要要控制。

(2)其它:

第三章系统设计目标及原则

3.1 系统设计目标

SDOOR IC卡充电电源管理系统是建立在先进的计算机技术、通信技术及非接触式IC卡技术之上,为充电电源的使用带来安全、方便的控制。

具体目标为:

2持有效卡人能方便、安全的使用充电电源。

2闲杂无卡人员或持无效卡人员不能使用充电电源。

2不影响原有充电器的使用,保证整个系统的安全性。

2管理人员能方便的设置IC卡的使用期限和查看刷卡记录。

2经济合理的运营成本。

2根据管理软件设定消费模式对IC卡进行消费扣值。

3.2 系统设计原则

2先进性:采用当前先进成熟的技术和设备;

2安全性:不影响原充电器的使用,保证其安全性。

2实用性:合理配置和选取合适的产品型号,使整个系统稳定、可靠和成本最省。

2方便性:完善的管理系统,软件操作清晰,管理人员和持卡用户都能方便的使用系统。

2可扩展性及易维护性原则。

2开放性:为保证各供应商产品的协同运行,同时考虑到投资者的长远利益,本系统必须是开放系统,并结合相关的国际标准或工业标准执行。

第四章系统解决方案及技术描述

4.1 系统概述

SDOOR IC卡充电电源管理系统其目的是控制充电电源的使用,是一卡通的又一个解决方案。

该系统集感应式IC卡技术、计算机技术及通讯技术于一体,SDOOR IC卡充电电源管理系统解决方案根据控制使用过程分为二种:时间型和次数型

4.2IC卡充电电源管理系统基本功能及特点

IC卡充电电源管理系统结合楼宇、小区、工厂、公司一卡通实施管理,持卡人通过刷卡,获取充电电源。基本功能及特点:

l 能严格控制充电电源使用。

l 方便物业对电动车充电用电的管理,减少有些人不充电或者充电次数少的问题,有效控制器充电电源使用漏洞。

SDOOR IC卡充电电源管理系统独特之处:

l 针对不同的场合和需求,提供最优、最省的解决方案。

l 系统组成灵活、扩展性强。

l 能够实时监控充电电源的使用情况。

l 可以与SDOOR 门禁、考勤、停车场、电梯等系统组成真正的一卡通系统。

4.3 系统结构

1)、该产品的意义:

目前很多小区或者企业用户的充电电源缺少管理,以及造成滥用电源、收费不公等情况,对管理人员增加了难度,加入了IC卡控制功能,使管理者感到提高了充电电源使用的安全等级,减少各种因充电带来的问题,这样,就不但解决了安全问题,也解决了不同电动车充电频率不同的使用问题。其系统框图如下:

用户充电电源控制按钮

SD3060按键信号采集器

SD3030 充电电源控制器

读卡器

2)使用概述:

持卡用户在读卡器上刷卡后,启动电源按键,将充电器插上电源按键对应的电源座即可。

第五章设备介绍

1、SD3030/ SD3031充电电源控制器

产品图片:

实物图

产品特色:

l 防雷击设计(10KV500A反应速度1-10纳秒)

l 适应市电电压波动(开关电源设计,输入范围AC180V-250V)

l 杜绝死机(多级看门狗电路设计)

l 数据、时钟永不丢失(采用美国原装内置电池芯片)

l 硬件设计高度集成,结构更简单,故障更少(后备电源主机一体设计等)

l 软件设计完善,千锤百炼,满足各种需求

l 根据管理软件设定对IC卡进行消费扣值

2. SD3030充电电源控制器标准功能:

●可控制32个充电电源。

●提供一个标准的读卡器接口,支持Wiegand 26Bit、Wiegand 32Bit、Wiegand40Bit

●支持ABA(第二轨道)

●支持生物识别技术

●支持指纹识别技术

●支持密码键盘

●可进行15个时间组的出入权限时间编程

●控制器具有休眠、安全、密码等几种工程模式

●支持RS-485组网功能,可独立脱机运行使用

●最多可管理20000个使用者,增加存贮器,可扩展至80000持卡人

●在非联网状态下可独立保存20000条记录,数据掉电保持时间超过90天

●当重新联网时数据自动上传

●多种系统板状态监测和自检(例如:外部电源掉电、数据资料出错、网络异常及系统复位、制箱非法打开等)

3输入端子介绍

●16组开关量(无源/有源)输入信号端子

●1组标准RJ45读卡器输入端子

●2组控制器工作电源输入端子

●1组控制箱门磁报警输入端子

4输出端子介绍

●16组无源干接点输出控制端子

●1组扩展板信号输出端子

●2组扩展输出端子

5动态电压保护性能

●所有输入/输出均带电压动态保护

●所有继电器输出带有瞬间过电压保护

6网络通讯特点

●1个RS485网络通讯接口,可连接127个充电电源控制器

●网络总长可达1200米,通过长线驱动器可扩展距离

●通讯速率:4800,9600自行定义

7DIP设置开关介绍

●SW 1-7 位控制器地址码设置

●SW 8输入端子状态设置

●SW 9 输出端子状态设置

●SW 12冷热复位开关

8.SD3060按键信号采集器

外观示意图

本产品主要用于接收16个按键请求信号,多个楼层信号采集器连接在一条485总线上。当充电电源控制器收到采集器传送的按键信号后,将开放相应的继电器,实现用户通过就近的按键就可开放充电电源的目的。

本产品使用一个数字IC来采集对应的楼层信息,及一个8位拨码盘来标志控制采集器的地址,实际有16路楼层信号接入口,输入采用光隔方式。

1、功能:

●可输入32个按键请求信号。

●支持RS-485组网功能,可独立脱机运行使用。

●当重新联网时将个充电电源楼层控制器的数据自动上传至电脑。

●多种系统板状态监测和自检(例如:外部电源掉电、数据资料出错、网络异常及系统复位等)

2、输入端子介绍

●16组开关量(无源/有源)输入信号端子

●2组控485通讯接口

●1组扩展输入端子

3、动态电压保护性能

●所有输入/输出均带电压动态保护

●所有继电器输出带有瞬间过电压保护

4、网络通讯特点

●2个RS485网络通讯接口,可连接127个楼层信息采集器●网络总长可达1200米,通过长线驱动器可扩展距离

Android5.1 电池充电剩余时间计算

Android5.1 电池充电剩余时间计算android5.1手机在充电的时候,并且在锁屏界面的时候会显示还剩多少时间电池充满电。我们就这个机制进行下深入分析: 首先对电池的变化都会监听BatteryService发出的Intent.ACTION_BATTERY_CHANGED广播,因此在framework目录下全局搜索,结果发现在./base/packages/Keyguard/src/com/Android/keyguard/KeyguardUpdateMonitor.Java这个目录下,也就是keyguard中有对这个广播的监控 在KeyguardUpdateMonitor.java这个文件中 [java] view plain copy private final BroadcastReceiver mBroadcastReceiver = new BroadcastReceiver() { public void onReceive(Context context, Intent intent) { final String action = intent.getAction(); if (DEBUG) Log.d(TAG, "received broadcast " + action); if (Intent.ACTION_TIME_TICK.equals(action) || Intent.ACTION_TIME_CHANGED.equals(action) || Intent.ACTION_TIMEZONE_CHANGED.equals(action)) { mHandler.sendEmptyMessage(MSG_TIME_UPDA TE); } else if (Intent.ACTION_BA TTERY_CHANGED.equals(action)) {//监听电池变化的广播 final int status = intent.getIntExtra(EXTRA_STA TUS, BA TTERY_STATUS_UNKNOWN); final int plugged = intent.getIntExtra(EXTRA_PLUGGED, 0); final int level = intent.getIntExtra(EXTRA_LEVEL, 0); final int health = intent.getIntExtra(EXTRA_HEALTH, BA TTERY_HEALTH_UNKNOWN); final Message msg = mHandler.obtainMessage( MSG_BA TTERY_UPDATE, new BatteryStatus(status, level, plugged, health)); mHandler.sendMessage(msg);//发消息 } 接下来我们搜索下MSG_BATTERY_UPDATE这个消息, [java] view plain copy private void handleBatteryUpdate(BatteryStatus status) { if (DEBUG) Log.d(TAG, "handleBatteryUpdate"); final boolean batteryUpdateInteresting = isBatteryUpdateInteresting(mBatteryStatus, status); mBatteryStatus = status; if (batteryUpdateInteresting) { for (int i = 0; i < mCallbacks.size(); i++) { KeyguardUpdateMonitorCallback cb = mCallbacks.get(i).get(); if (cb != null) {

电动汽车中的电池能量管理系统

一、前言 电动汽车的应用有效地解决了能源和环境可持续发展的问题。电动汽车的应用前景广阔。但电动汽车尤其纯电动汽车的应用遇到了动力电池的难题,电池的问题体现在两个方面。其一是动力电池比能量不高,影响电动汽车续驶里程的要求,价格太高直接影响电动汽车的初始成本; 其二是电池的性能差,使用寿命低影响电动汽车的使用成本。电动汽车用的电池使用中其性能发挥得如何,除与电池模块自身性能有关外,与其应用的电池能量管理系统的功能有着密切的关系,尤其是电池模块质量不太理想的条件下,应用功能完备的电池能量管理系统其作用就更加突出。借助电池能量管理系统的正常工作会使电池模块的性能得以充分发挥,减少电池模块故障,延长电池模块的使用寿命,增加电动汽车的使用安全感。因此,电动汽车电池能量管理系统的应用备受电动汽车设计者和使用者的重视。 二、电动汽车电池能量管理系统的功能电动汽车,尤其是纯电动汽车中的电池能量管理系统是该车的一种相当重要的技术措施,可以称为电动汽车电池的“保护神”,它起到了对电池性能的保护、防止个别电池的早期损坏、有利于电动汽车的运行,并具有各种警告功能等[1]。由于它参加电池箱内电池模块的监控工作使电动汽车的运行、充电等功能与电池的有关参数(电流、电压、内阻、容量)紧密相连和协调工作。它有计算,发出指令、执行指令和提出警告的功能。各种电池模块虽然有结构和性能上的差异,但它们都具备一些相同或相似的功能。典型的电池能量管理系统应具备如下功能: 2.1 对能量的检测功能 电动汽车在行车过程中,该系统能随时对车辆的能耗进行计算,最终给出该电池箱内电池模块剩余的电池能量值,并通过剩余能量计将数据显示出来,使驾驶人员知道车辆的续驶里程,以便决定如何行驶.在能量允许的条件下使车辆行驶到具有充电功能的地方,补充电量防止半路抛锚。 2.2 对电池工作状态的监测与控制功能 电池能量管理系统按电池箱内安装的传感器提供的信号对电池进行管理。一般情况下,电池箱内有温度传感器及电压、电流和内阻的测量值。由于温度的变化对其他参数都有影响,所以一般都以电池模块的温度来做为控制的指令信号,将测得的温度值与事先设定的温度值进行比较,决定对电池冷却与否。电动汽车能源是很宝贵的,应尽量采用节能元件,所以电池箱内的冷却风扇一般都是采用分级参与工作。这样能做到在保证电池性能的条件下尽量使用小排量的风扇。当第一级风扇工作后尚不能达到要求的温度时,第二级冷却风扇才参与工作,加强冷却。此时电池箱内的温度如果还不能达到要求的工作条件,温度继续升高已达到影响电池模块的正常工作条件,为保护电池模块不受损坏,能量管理系统会发出停止电池模块供电的指令,强行车辆停驶。当电池在充电状态下,能量管理系统会强令充电机停止充电而不损坏电池,由维修人员进行检测排除故障。 2.3 保证充电功能

镍镉电池和镍氢电池充电时间计算

镍镉电池和镍氢电池充电时间计算 一、充电常识 在这里,首先要说明的是,充电是使用充电电池的重要步骤。适当合理的充电对延长电池寿命很有好处,而野蛮胡乱充电将会对电池寿命有很大影响。本篇对电池充电的介绍主要是指镍镉电池和镍氢电池。 对镍隔电池和镍氢电池充电有两种方式,就是我们大家所熟知的“快充”和“慢充”。快充和慢充是充电的一个重要概念,只有了解了快充和慢充才能正确掌握充电。 首先,快充和慢充是个相对的概念。有人曾问,我的充电器充电电流有200mA,是不是快充?这个答案并不绝对,应该回答对于某些电池来说,它是快充,而对于某些电池来说,它只是慢充。那我们究竟怎样来判别快充还是慢充呢? 例如一节5号镍氢电池的电容量为1200mAH,而另一节则为1600mAH。我们把一节电池的电容量称为1C,可见1C只是一个逻辑概念,同样的1C,并不相等。 在充电时,充电电流小于0.1C时,我们称为涓流充电。顾名思义,是指电流很小。一般而言,涓流充电能够把电池充的很足,而不伤害电池寿命,但用涓流充电所花的时间实在太长,因此很少单独使用,而是和其它充电方式结合使用。 充电电流在0.1C-0.2C之间时,我们称为慢速充电。充电电流大于0.2C,小于0.8C则是快速充电。而当充电电流大于0.8C时,我们称之为超高速充电。 正因为1C是个逻辑概念而非绝对值,因此根据1C折算的快充慢充也是一个相对值。前面例子中提到的200mA充电电流对于1200mAH的电池来说是慢充,而对于700mAH的电池来说就是快充。 知道了快慢充的概念后,我们还需要了解充电器的情况才能对电池正确充电。目前市场上的充电器主要分为恒流充电器和自动充电器两种 二、恒流充电器 恒流充电器是市场上最常见的充电器,从镍镉电池时代,我们就开始使用恒流充电器。恒流充电器通常使用慢速充电电流,它的使用相对比较简单,只需将电池放在电池仓中即可充电。需要注意的是,对充电时间的计算要准确。 对充电时间的计算有个简单的公式:Hour=1.5C/充电电流。例如:对1200mAH的电池充电,充电器的充电电流为150mA,则时间为1800mAH/150mA等于12小时。当然在很多时候并不能计算出正好的时间,我们可以挑离得最近的半小时以方便记时。例如:充电器的电流为160mA,对1400mAH的电池充电,则时间为2100mAH/160mA约为13小时,而不用计算到分。 恒流充电器的构造简单,工作稳定,是一种不错的充电方式,对电池寿命的影响小。但它也有其局限性,首先必须计算时间,另外随着镍氢电池的容量越来越大,恒流充电所需的时间也越来越长,对使用带来了一定的不便。因此,近年来快速自动充电器也逐渐流行起来

48V铅酸储电池充电器设计方案

48V 铅酸储电池充电器设计方案 第一章 总体设计方案 1 系统设计 根据课题的要求,系统采用开关电源,通过脉冲电流的方式来实现充电的目的。由市电送来的220V 交流电经变压器降压、桥式整流、可控硅调频后送给蓄电池进行充电。 2 方案策略 用单结晶体管触发电路实现触发信号频率的调制方案。蓄电池充电时,先通过变压器将220V 市电降压为56V 交流电,然后通过桥式整流得到全波直流电、最后通过可控硅调频后的脉冲电流为蓄电池供电。脉冲电流的频率主要取决于单节晶体管触发电路发出的触发信号的频率,通过调节RC 电路的R 值,使电容器的充电时间发生改变,单节晶体管的关断时间发生改变,从而改变了输出触发信号的占空比,这个触发信号送给可控硅,从而便调节可控硅在一个周期内关断和导通的时间,从而实现控制可控硅输出脉冲电流大小。这种方法技术简单、成熟、有多年的实用经验、所需的元器件少、成本低,安全可靠,适应市电输入范围宽都是其主要的优点。如下图1.1方框图

图1.1 总体方框图 第二章 蓄电池的选择 蓄电池是电瓶式扫地车上主要能源装置,其作用包括:向驱动系统、滚扫系统和仪表供电。 1 蓄电池的种类、特点 蓄电池的种类一般可分为铅酸电池、铅酸免维护电池及镍镉电池等,它们各自的特点如下: 铅酸电池:也称为汽车用电池(需加水维护),充放电时会产生氢气,安置地点必须设置在通风处以免造成危险;电解液呈酸性,会腐蚀金属;价格低廉。 铅酸免维护电池:密封式充电不会产生任何有害气体,摆设容易,不需考虑安置地点通风问题,免保养,免维护;放电率高,特性稳定,价格较高。 镍镉电池:用于特殊场合及特殊设备上,水为介质,充放电不会产生.有害气体;失水率低,但需要固定时间加水及保养;放电特性最佳;可放置于任何恶劣环境。 2 蓄电池的选择 电机是电瓶式扫地车主要消耗源,其次是继电器和仪表车,根据驱动组和电器控制组提供的资料,电机总功率为1600W ,额定电压为48V;继电器和仪表总功率为5W,额定电压为48V 。所以蓄电池需提供的工作电流为 8004040518.548P I A U +++=== 式中P ——电机功率; U ——电瓶电压。 选60AH 的电瓶,则可续行3.3小时。这是电瓶式扫地车用最高速行驶时的情况,如果降低车速续行时间有望达到或超过5小时。 综上所述,本设计选择48V 60AH 的铅酸免维护电池,如图2.1所示:

充电电池电量计原理及计算方法

充电电池电量计原理及计算方法 https://www.doczj.com/doc/008812665.html,文章出处:发布时间: 2010/08/09 | 1422 次阅读 | 0次推荐 | 0条留言目前大量应用的充电电池 电池是一种能量转化与储存的装置,它通过反映将化学能或者物理能转化为电能。电池即一种化学电源,它由两种不同成分的电化学活性电极分别组成正负两极浸泡再能提供媒体传导作用的电解质中,当连接在某一外部载体上时,通过转换其内部的化学能来提供电能。[全文] 包括铅酸蓄电池、镍镉/镍氢电池、锂离子/锂聚合物电池。这几种电池的特性如表1所示。 铅酸蓄电池容量大,内阻低(一般400Ah的2V蓄电池内阻大约为0.5mΩ),可进行大电流放电,但是笨重且体积庞大、不便于携带,常用在汽车和工业场合。其电极材料含铅,可对环境造成极大污染。铅酸蓄电池对充电控制的要求不高,可以进行浮充。 镍镉电池容量较大,内阻低、放电电压平稳,适合作为直流电源 直流电源是维持电路中输送稳定直流的装置,分正负极,工作时至少包括变压、整流、滤波、稳压四个环节,如干电池、蓄电池、直流发电机等。[全文] 。与其他种类的电池相比,镍镉电池耐过充电和过放电,操作简单方便,但是具有记忆效应,应尽量在完全放电之后进行充电。电极材料含有剧毒重金属镉,随着环保要求的提高,其市场份额越来越小。 镍氢电池是在镍镉电池的基础上发展而来的,采用金属化氢替代有毒的镉,在大部分场合可以替代镍镉电池。其容量约为镍镉电池的1.5~2倍,且没有记忆效应。相对于镍氢电池,它对充电控制的要求较高,目前大量使用在一些便携电子产品中。 锂离子电池 现已广泛被大家使用的锂离子电池是由锂电池发展而来的。所以在认识锂离子电池之前,我们先来介绍一下锂电池。举例来讲,以前照相机里用的扣式电池就属于锂电池。锂电池的负极材料是锂金属,正极材料是碳材。按照大家习惯上的命名规律,我们称这种电池为锂电池。锂离子电池的正极材料是氧化钴锂,负极材料是碳材。电池通过正极产生的锂离子在负极碳材中的嵌入与迁出来实现电池的充放电过程,为了区别于传统意义上的锂电池,所以人们称之为锂离子电池。[全文] 是目前最常见的二次锂电池,拥有高能量密度,与高容量镍镉/镍氢电池相比,其能量密度为前者的1.5~2倍。其平均使用电压为3.6V,是镍镉电池、镍氢电池的3倍。它的内阻较大,不能进行大电流充放电,并且需要精确的充放电控制,以防止电池损坏并达到最佳使用性能。锂离子电池广泛使用在各种便携电子产品中,包括手机、笔记本电脑、mp3等。

可充电电池组智能低碳管理系统的设计

可充电电池组智能低碳管理系统的设计 【摘要】本文提出了一种新的可充电电池组管理和维护方法。在不拆解电池组的情况下,自动检测电池组中每个电池的电压、电量等参数,对电池组中任意存在问题的电池进行维护与激活,延长电池组使用寿命;同时,在条件允许时利用电池放电能量对需要充电的电池充电,可以节约能源,实现低碳、节能减排。 【关键词】电池组记忆效应自动检测核对性充放电低碳激活 充电电池作为电能储备单元,具有容量大、内阻小、价格便宜等优点,在电力、通信、医疗、银行、铁路/空行/港口调度等许多领域有着广泛的应用,但都或多或少存在一定的记忆效应,而使用最多的铅酸电池更是具有明显的记忆效应,这就要求必须定期对其进行完全充放电操作,称为全核对性充放电。核对性放电可以检查出电池组中蓄电池容量是否正常,并且及时发现老化电池和活化蓄电池。对老化电池进行多次完全充放电使蓄电池内部化学物质活化的操作,称为激活。 电池组在对外供电时将所有的电池一起放电,再进行整体充电,由于电池的个体化差异,使得部分电池过充电或过放电,如果不能及时发现,将会极大降低电池的使用寿命,使电池组提前报废,造成很大浪费。除此之外,铅酸电池中重金属铅占了整个电池组成成分的2/3以上,其生产和回收都对环境造成极大的危害。 传统的核对性充放电方法是用大功率电阻放电,这部分能量被直接消耗;传统的对老化电池激活需要拆解电池组,费时费力且容易造成短路打火事故。 本文提出在不拆解电池组的情况下,实现对电池组中任意单只或多只电池的自动检测、自动充放电、自动进行低碳激活、实时检测防止过充电过放电,延长电池使用寿命的目的;在核对性充放电及对老化电池激活时可利用放电能量,把需要放电电池的放电电量用来对需要充电的电池进行充电,这样既节约能源,又避免了使用电阻放电带来的温升以及散热问题,降低碳排放。 本文结构安排:首先进行系统的整体分析,然后是硬件设计,其次是软件设计,最后做了在不拆解电池组情况下检测任意单个电池的电压、电流、容量以及怎样实现电池组中一个电池给另外一个电池充电的实验,得出了新方法比传统的电池组管理方法效率高和节能的结论。 1 系统的整体分析 在不拆解电池组情况下,本系统可对2个以上同规格可充电电池组成的电池组进行日常维护与自动低碳激活。通过电池选择模块从电池组中选择单个电池,通过检测模块检测出选中电池的各种参数。当对电池组整体充电时,实时检测单个电池电压,可以检测出由于单个电池个体化差异所导致过充电和欠充的电池,

电池充电器设计总结(资料很全的噢).

电池充电器设计总结 日常生活中,我们常常能见到各行各业的电子产品中都含有电池,如手机,数码相机,MP3,甚至卫星等等。电池作为一种储电设备,应用已十分广泛,电池的性能与寿命都关系到产品的性能与寿命,因此提高电池的性能与寿命就很关键,其中关系最直接的就是给电池充电的充电器。充电器的设计至关重要,在设计充电器之前就有必要了解电池的相关知识。本文将介绍我们最常见,也最常用的电池相关的知识,主要包括电池相关的概念、电池的性能特点及参数,对充电器的要求、智能充电器的设计要求等等。 一、电池相关的概念 1、安全性能 影响最大的是爆炸和漏液,主要与电池的内压、结构和工艺设计有关(比如安全阀失效、锂离子电池没有保护电路等。 2、容量 按照IEC标准和国标规定,镍氢和镍镉电池是指在25±5℃的条件下,以0.1C充电16小时,以0.2C放电至1.0V时放出的容量。 锂离子电池是指在常温的条件下,以恒流(1C)、恒压(4.2V)充电3小时,以0.2C放电至2.75V时放出的容量。 容量单位:安时(Ah)或毫安时(mAh) 3、内阻 是指电流流过电池内部所受到的阻力。充电电池的内阻很小,一般要用专门仪器测试。充电态内阻和放电态内阻有差异,放电态内阻稍大,而且不太稳定。内阻越大,消耗的能量越大,充电发热越大。随着电池使用次数的增多,电解液消耗及活性物质减少,内阻会增大,质量越差,内阻增大越快。 4、循环寿命 电池可重复充放电的次数。寿命与容量成反比,与充放电条件密切相关,一般充电电流越大,寿命越短。 5、荷电保持能力 指自放电率。与电池材料、生产工艺和储存条件有关,一般温度越高,自放电率越高。 6、大电流放电能力 主要与电池材料、生产工艺有关,一般用于动力电池。 7、充电电池的可靠性测试项目 (1)循环寿命(2)不同倍率放电特性(3)不同温度放电特性(4)充电特性(5)自放电特性(6)不同温度自放电特性(7)储存特性(8)过放电特性(9)不同温度内阻特性(10)高温测试(11)温度循环测试(12)跌落测试(13)振动测试(14)容量分布测试(15)内阻分布测试(16)静态放电测试ESD 。

电池容量(C)的计算方法 蓄电池充电机的电流

农夫空间 农夫三拳有点痒 主页博客相册|个人档案 |好友 查看文章 电池容量(C)的计算方法蓄电池充电机的电流(转) 2010-06-29 15:49 充电池是一样的道理,理论上如果你按36A充,那么一个小时就充满了,如果3.6A电流充,那要充十个小时。但是,充电不是装水,如果你按36A充,那蓄电池将会很快发热并使电池内的酸液沸腾,损坏你的电池,重则发生爆裂。因此一般按照AH量的十分之一至十分之4左右的电流充,也就是说你的电池是 36AH,那就就得用3.6A到15A电流进行充电。不过还得看电池的发热情况,如果太热就降低点充电电流。我这么说希望你能听懂些了? 电池容量(C)的计算方法: 容量C=放电电池(恒流)I×放电时间(小时)T 反过来: 放电时间T=容量C/放电电流(恒流)I 比如一个电池用500MA(毫安)的恒定电流放了2 个小时,那么这个电池的容量就等于500MA*2H=1000MAH=1AH 再如一个电池用5安的电流放了2个小时,那么该电池的容量就是10AH 另外跟电压的关系就是:放电电流I*电池电压U=功率W 镍氢镍镉电池用峰值检测法才能准确知道是否充足。电压法不准因为随电池使用状况和役龄,充满电的电压不是一个常数。-△v/dt 检测法。电池充满电的准确标准是按压降来衡量的。电池厂家的质量不一。充满电的电压都不太一样。一般充满电后。那是虚电。稍微搁置。电压又会降下来。对于广大模友来说,衡量充足电的土办法就是用手摸。能感觉到电池微微发热就算是充满了。当然。这不是很准确。 按照中国的国家标准和国际IEC标准。电池的充电电流一般为0.1C或0.2C为宜。但这只是个理想状态。这个电流充电对电池是最有利的。也最能充满电。但这样时间不允许。所以很多厂家用大电流0.5C或1C充电。对于航模专用的高功率电池。甚至可以2C充电。但这样充电的效率就不是很高。 但这个C如何换算成电流A的?给你举个例子就明白了。比如AA2000MAH的电池。1C充电就是2000MA充电。0.1C充电就是200MA充电。0.5C就是1000MA充电。

基于智能化锂电池充电管理系统的研究

摘要 本文主要介绍的智能化锂电池充电系统是专门为锂电池设计的高端技术解决方案。该系统适用于锂离子、镍氢、铅酸蓄电池单体及整组进行实时监控、电池均衡、充放电电压、温度监测等,采用了电压均衡控制、超温保护等智能化技术,是功能强大、技术指标完善的动力电池充电管理系统[ 1]。 关键词:智能化锂电池恒流恒压充电系统SMBus1.1 引言 随着社会经济的迅速发展,移动电话、数码相机、笔记本电脑等便携式电子产品的普及,消费者对电池电能要求日渐提高;人们希望在获得大容量电能的同时, 能够尽量减轻重量, 提高整个电源系统的使用效率和寿命。锂电池作为上世纪九十年代发展起来的一种新型电池[ 2], 因具有能量密度高、性能稳定、安全可靠和循环寿命长等一系列的优点,很快在便携式电子设备中获得广泛应用,更获得了广大消费者的青睐。由此可见,设计一套高精度锂电池充电管理系统对于锂电池应用至关重要。 1 锂电池充放电原理 锂电池主要由正极活性材料、易燃有机电解液和碳负极等组件构成[ 3]。因此,锂电池的安全性能主要是由这些组件间的化学反应所决定的。 根据锂电池的结构特性,锂电池的最高充电电压应低于4.2 V[ 4],不能过充,否则会因正极锂离子拿走太多,发生危险。其充放电要求较高,一般采用专门的恒流恒压充电器进行充电。通常恒流充电至设定值后转入恒压充电状态,当恒压充电至0.1 A以下时[ 5],应立即停止充电。 锂电池的放电由于内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极[ 6],以保证下次充电时锂离子能够畅通地嵌入通道。否则电池寿命会缩短,因此在放电时需要严格控制放电终止电压。

毕业设计--电池充电箱输送机设计

毕业设计(论文)UNDERGRADUATE PROJECT (THESIS) 题目:电池充电箱输送机设计

目录 目录.................................................. . (1) 摘要.................................................. . (3) ABSTRACT (4) 第一章绪论 (6) 1.1选题背景 (7) 1.2研究目标和研究内容 (7) 1.2.1 研究目标 (7) 1.2.2 研究内容 (7) 第二章输送机总体方案设计 (8) 2.1输送机总体功能分析 (8) 2.2 常用输送机分析 (8) 2.2.1输送机种类 (8) 2.2.2滚筒输送机的设备特点 (9) 2.2.3链条输送机的设备特点 (10) 2.3 输送机的设计方案选择 (11) 第三章滚筒输送机设计 (13) 3.1滚筒设计 (13) 3.1.1 滚筒总体设计 (13) 3.1.2链轮设计 (14) 3.1.3轴承选择 (15) 3.1.4其他具体零件 (16) 3.2机架设计 (16) 3.3滚筒支架设计 (17) 3.4电机选择 (19) 3.5减速机的选择 (20) 第四章链输送机的设计 (22) 4.1链传动的设计 (22) 4.2链条及导轨设计 (23) 4.3张紧轮的设计 (24) 4.4电机和减速机选择 (24) 4.5轴承座设计 (25) 第五章升降装置设计 (26) 5.1升降装置组成 (26) 5.2升降台工作原理与步骤 (27) 5.2.1工作原理 (27) 5.2.2工作步骤 (27) 5.3支撑台设计 (28) 5.3.1横梁的设计 (28) 5.3.2支撑台方管的设计 (29) 5.3.3气缸选择 (30) 5.3.4导柱导套选择 (32)

基于单片机的智能锂电池充电管理系统设计

题目:基于单片机的智能锂电池充电管理系统设计系部:电子信息系 专业:应用电子技术 学号: _ 学生姓名: ___ ____ 指导教师: _____ ___ 职称: ______ ___ 目录 1摘要 (2) 1.1 课题研究的背景 (3) 1.2镍氢电池、镍镉电池与锂离子电池之间的差异 (4) 1.3 课题研究的意义 (5) 2 电池的充电方法与充电控 (6) 2.1电池的充电方法和充电器 (5) 2.1.1 电池的充电方法 (5) 2.2 充电控制技术 (9) 2.2.1 快速充电器介绍 (9) 2.2.2 快速充电终止控制方法 (10) 3锂电池充电器硬件设计 (12) 3.1 AT89C51 (13) 3.2 电压转换及光耦隔离电路部分 (15)

3.3 充电控制电路部分 (17) 3.3.1 MAX1898充电芯片充电芯片充电芯片充电芯片 (17) 4 锂电池充电器软件设计 (22) 4.1程序功能 (22) 4.2 主要变量说明 (22) 4.3 程序流程图 (23) 致谢 (28) 参考文献 (29) 1摘要 本课题设计是一种基于单片机的锂离子电池充电器,在设计上,选择了简洁、高效的硬件,设计稳定可靠的软件,详细说明了系统的硬件组成,包括单片机电路、充电控制电路、电压转换及光耦隔离电路,并对本充电器的核心器件—MAX1898充电芯片、AT89C2051单片机进行了较详细的介绍。阐述了系统的软硬件设计。以C语言为开发工具,进行了详细设计和编码。实现了系统的可靠性、稳定性、安全性和经济性。 该智能充电器具有检测锂离子电池的状态;自动切换充电模式以满足充电电池的充电需要;充电器短路保护功能;充电状态显示的功能。在生活中更好的维护了充电电池,延长了它的使用寿命。 关键词:充电器;单片机;;锂电池;MAX1898 Abstract:This topic design is one kind lithium ion battery charger which is based on Single Chip, in the design, it has chosen succinctly, the highly effective hardware, the design stable reliable software, explained in detail system's hardware composition, including the monolithic integrated circuit electric circuit, the charge control electric circuit, the voltage transformation and the light pair isolating circuit, and to this battery charger's core component - MAX1898 charge chip, at89C2051 monolithic integrated circuit has carried on the detailed introduction. Elaborated system's software and hardware design. Take the C language as the development kit, has carried on the detailed design and the code. Has realized system's reliability, the stability, the security and the efficiency. The intelligence battery charger has the examination lithium ion battery's

锂电池充电器的设计毕业设计

毕业设计课题名称:锂电池充电器的设计

总目录 第一部分任务书 第二部分开题报告 第三部分毕业设计正文

第一部分 任 务 书

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

充电电池充电时间计算

充电电池充电时间计算 SANY GROUP system office room 【SANYUA16H-SANYHUASANYUA8Q8-

一、充电常识 在这里,首先要说明的是,充电是使用充电电池的重要步骤。适当合理的充电对延长电池寿命很有好处,而野蛮胡乱充电将会对电池寿命有很大影响。上一篇曾说过,目前的锂电池基本都是根据各个产品单独封装,互不通用的,因此各个产品也提供各自的充电设备,互不通用,在使用时只要遵循各自的说明书使用即可。所以本篇对电池充电的介绍主要是指镍镉电池和镍氢电池。 对镍隔电池和镍氢电池充电有两种方式,就是我们大家所熟知的“快充”和“慢充”。快充和慢充是充电的一个重要概念,只有了解了快充和慢充才能正确掌握充电。 首先,快充和慢充是个相对的概念。有人曾问,我的充电器充电电流有200mA,是不是快充?这个答案并不绝对,应该回答对于某些电池来说,它是快充,而对于某些电池来说,它只是慢充。那我们究竟怎样来判别快充还是慢充呢? 例如一节5号镍氢电池的电容量为1200mAH,而另一节则为1600mAH。我们把一节电池的电容量称为1C,可见1C只是一个逻辑概念,同样的1C,并不相等。 在充电时,充电电流小于0.1C时,我们称为涓流充电。顾名思义,是指电流很小。一般而言,涓流充电能够把电池充的很足,而不伤害电池寿命,但用涓流充电所花的时间实在太长,因此很少单独使用,而是和其它充电方式结合使用。 充电电流在0.1C-0.2C之间时,我们称为慢速充电。充电电流大于0.2C,小于0.8C则是快速充电。而当充电电流大于0.8C时,我们称之为超高速充电。 正因为1C是个逻辑概念而非绝对值,因此根据1C折算的快充慢充也是一个相对值。前面例子中提到的200mA充电电流对于1200mAH的电池来说是慢充,而对于700mAH的电池来说就是快充。 知道了快慢充的概念后,我们还需要了解充电器的情况才能对电池正确充电。目前市场上的充电器主要分为恒流充电器和自动充电器两种 二、恒流充电器 恒流充电器是市场上最常见的充电器,从镍镉电池时代,我们就开始使用恒流充电器。恒流充电器通常使用慢速充电电流,它的使用相对比较简单,只需将电池放在电池仓中即可充电。需要注意的是,对充电时间的计算要准确。 对充电时间的计算有个简单的公式:Hour=1.5C/充电电流。例如:对1200mAH的电池充电,充电器的充电电流为150mA,则时间为1800mAH/150mA等于12小时。

电动车充电管理系统

专利名称:电动车物联网充电管理系统 技术领域: 物联网控制电动车充电 技术背景:受蓄电池技术制约,电动车不能满足人们远距离行驶,这就需要人们给蓄电池充电。但是由于人们的作息规律,一般都是白天给电动自行车充电,而白天又是用电高峰,电压电流比较不稳定,容易对蓄电池造成冲击。而在晚上22:00-7:00时段是电网低谷,此时用电能有效利用电网,而且电压电流比较稳定,不容易对蓄电池造成损伤。但是这是人们一般都已经休息,不在电动车旁,所以这就需要远程控制,实现电动车自动充电。 实用新型内容: 物联网电动车充电系统包括蓄电池,充电器,市电,充电器的输出端 与蓄电池连接,充电器的输入端与市电连接,还包括:用于发送控制指令信号的移动终端,用于接收控制指令信号的车载信号接收模块,用于实现移动终端和车载信号接收模块之间数据通信的基站,以及用于控制蓄电出和充电器连通和断开的控制开关电路;所述的移动终端通过基站与车载信号接收模块连接,所述的车载信号接收模块﹑转换模块、控制开关电路依次相连.. 所述的移动终端为手机,在远距离外控制电动车蓄电池充电.利用移动终端发送控制指令,指令信号通过基站传送给电动车车载信号接收模块,D/C转换模块将车载信号接收模块接收到的数字信号转换成模拟信号,得到的模拟信号经过控制开关电路后,将控制开关电路的继电器关断或者导通,而继电器的输出端串联与充电电路,继电器的关断或导通直接影响充电电路是否处于充电状态. 本实用新型的有益效果在于:通过移动终端,电动车放入一个物联网系统,实现远程控制电动车蓄电池充电.只要充电器输入端插在市电上,输出端插在蓄电池充电端上,就可以通过移动终端控制冲、断电。 具体实施方式: 电动车物联网充电系统包括手机,车载SIM卡、以及用于实现手机和车载SIM模块之间的数据通讯基站,车载SIM模块接收到手机发出的控制指令后,生成数字信号,再经过D/A 转换模块,转成模拟信号。所述的控制开关电路包括一个小功率的三极管,三极管的控制极与上述的模拟信号连接,三极管的输出端与继电器的输入端子串联电连接,继电器触头串联于充电电路。 手机方便用户携带,用户编辑短信“CD”,发送至电动车车载SIM模块上,短信息通过基站

基于单片机的铅酸蓄电池充电装置的设计设计

基于单片机的铅酸蓄电池充电装置的设计设计

毕业设计(论文) 题目铅酸蓄电池充电装置的设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

电池充电器课程设计

郑州轻工业学院 课程设计任务书 题目简易5号电池恒流充电器 专业电信09-1 学号姓名 主要内容、基本要求、主要参考资料等: 主要内容 1.阅读相关科技文献。 2.学习protel软件的使用。 3.学会整理和总结设计文档报告。 4.学习如何查找器件手册及相关参数。 技术要求 1.要求电路能够以恒定的电流对两节5号电池进行充电。 2.要求电路能够在电池充满的时候,自动切断电源。 3.要求电路能够显示电池是否充满。 主要参考资料 1.何小艇,电子系统设计,浙江大学出版社,2001年6月 2.姚福安,电子电路设计与实践,山东科学技术出版社,2001年10月3.王澄非,电路与数字逻辑设计实践,东南大学出版社,1999年10月4.李银华,电子线路设计指导,北京航空航天大学出版社,2005年6月5.康华光,电子技术基础,高教出版社,2003 完成期限:2011年7月1日 指导教师签章: 专业负责人签章: 2010年6月27日

简易5号电池恒流充电器 摘要 充电时,电能转换为化学能贮存在电池中,同时伴随找放热过程。电池工作时,化学能转变为电能,实现向负荷供电,伴随吸热过程。对于充电电池的方式一直是人们关心的焦点,正确、良好的充电方法可以确保电池的寿命。 5号电池简易充电器,是由整流电路,恒流可调电路,检测电压电路,充电显示电路四部分构成。利用LM7812型三端稳压集成电路进行恒流充电,用555定时器构成多谢振荡器,控制二极管闪烁发光,当电池两端的电压逐渐增大时,555集成块的电势差逐渐降低,二极管发光逐渐变暗,当电池两端电压大于3V时,利用TL082通用的J-FET双运算放大器,通过与3V基准电压比较,输出高电平,继电器工作,开关吸合,充电断开,同时二极管发光,表示充满。本充电器可实现电压,电流可调,实现不同用户的要求。 关键词整流稳压恒流可调电压可调充满自动断电

智能电池管理系统

智能磷酸铁锂电池电源系统 北京智源联合科技有限公司

磷酸铁锂电池 内部结构: 锂离子电池由正极、负极、电解液和隔膜等组成。 ?正极:由含锂的过渡金属氧化物组成,常用的材料有钴酸锂、锰酸锂、三元材料和磷酸铁锂。 ?负极:石墨、石墨化碳材料、改性石墨、石墨化中间相碳微粒。?电解液:一种有机电解液,大部分是由六氟磷酸锂(LiFL6)加上有机溶剂配成。 ?隔膜:一种特殊的复合膜,它的功能是隔离正负极,阻止电子穿过,同时能够允许锂离子通过,从而完成在电化学充放电过程中锂离子在正负极之间的快速传输。目前主要是聚乙烯(PE)或者聚丙烯 (PP)微孔膜。 北京智源联合科技有限公司

磷酸铁锂电池 工作原理: 当外部电源给电池充电,此时正极上的电子e通过外部电路跑到负极上,锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。当电池放电时,机理与充电是刚好是相反的,以LiFePO4为例,其化学反应方程式为: 北京智源联合科技有限公司

磷酸铁锂电池 特点: ?安全环保无污染,工作温度范围宽广(-20 ℃ ——+75 ℃ );即使电池内部或外部受到伤害,电池不燃烧、不爆炸。 ?单节电压高,标称电压是3.2 V(稳定的放电平台)、终止充电电压是3.6V、终止放电压是2.0V。 ?比容量大,内阻低,高效率输出:标准放电为2--5C、连续高电流放电可达10C,瞬间脉冲放电(10S)可达20C。 ?极好的循环寿命,经500次循环,其放电容量仍大于95%;实验室制备的磷酸铁锂单体电池在进行1C的循环测试时,循环寿命高达2000次。 ?使用问题: ?对充放电控制的要求严格,过充过放都将影响使用寿命。 ?在串联成组使用锂电池时,需要解决均衡问题。 ?任何电芯的过充或过热将导致整个电池组的严重问题,比如加速老化、寿命衰退、损坏失效。 北京智源联合科技有限公司

BMS电池管理系统

一.电池电压问题 电池电压是和所用的电机配套的,根据《GB/T 18488.1-2001电动汽车用电机及其控制器技术条件》的标准中,目前的电机所用的电源的电压等级为120 V、144 V、168 V、192 V、216 V、24O V、264 V、288 V、312 V、336 V、360 V、384 V、408 V。 二.BMS完成的功能 BMS主要完成的功能有:电池电源的开关(电池紧急情况断开)管理、电池充电和放电管理、电池充电放电状态管理、电池状态管理和SOC检测、主动式平衡充、电池温度电流电压监控(过温过流过压保护)、高阻抗负载断开管理、电池泄漏检测、BMS的通信、延长电池寿命、优化电池容量、补偿电池的差异、补偿电池的新旧、监控电池的温度、降温和加热控制。 1)电池连接方式:多组串联达到电机所用的电压(图一)、多节串联未达到电机所用的电压通过DCDC升压(图二)。 图一 图二 2)电池块管理:多节锂电串并联(图三)

目前找到的对多节电池串联管理的芯片有OZ890(最多支持16颗串联可支持208节的应用)图四所示. 图三 图四

图五 2)电池充电电路:主动式平衡充 为什么使用平衡充? 图六图七 从图六看出在充电时最上面的一节已经充满,而下面的还没有满;图七的放电过程中最下面的已经放完了,最上面的还有很多。这样电池寿命变短了。 平衡充的方法:被动式平衡充、主动式平衡充。 平衡充电效果如图八所示 说明:该图是旧的十节电池放电的测试,电池充电的截至电压为3.4V,放电电流1.8A,到达2V时停止放电。45分钟后黄色线和蓝色线停止放电(上面的图)。下面的图是使用主动平衡充的效果(不同颜色的代表不同节电池的电压)

相关主题
文本预览
相关文档 最新文档