当前位置:文档之家› 水晶的基本性质

水晶的基本性质

水晶的基本性质
水晶的基本性质

水晶的基本性质

水晶的基本性质:水晶的基本性质由其化学成分和晶体结构所决定,构成其科学鉴定的依据。

(1)矿物名称,水晶的矿物名称为石英。

(2)化学成分,水晶的化学成分为sio2,晶体中也含有微量的Al、Tt、Fe等离子而呈现不同的颜色。

(3)形态,水晶属于三方晶系,晶体呈菱面体、六方柱及三方双锥的聚形体,晶体柱面上常发育有横纹。

(4)透明度,水晶的透明度与其颜色有关,无色水晶的透明度很高,随着颜色的加深而透明度降低。

(5)光泽,水晶呈典型的玻璃光泽,断口呈油脂光泽。

(6)硬度,水晶硬度较大且比较稳定,其Hm=7。

(7)相对密度、水晶的相对密度比较低且较稳定,其值为2.65。

(8)折射率,水晶的折射率比较稳定,其折射率值为1.544-1.553,双折射率值为0.009,宝石色散低。

(9)颜色,水晶的颜色比较丰富,常呈无色、紫色、黄色、绿色、粉红色、褐色、黑色等颜色,晶体大多数无二色性,仅紫晶具有明显的二色性。

(10)包体特征,水晶中常含不规则的絮状气、液两相包体。紫晶中见有虎纹状裂痕包体;发晶中可见呈纤细状、纤维状的角闪石、电气石、针铁矿等矿物包体。

(11)特殊光学效应,水晶中的固体包体或气液包体呈定向排列时会产生六射星光效应、猫眼效应等待殊光学效应现象。

水晶的性质https://www.doczj.com/doc/0113657147.html,

晶体的类型及性质

晶体的类型及性质 二. 知识重点: 1. 复习有关化学键的知识 2. 晶体的类型: (1)离子晶体 (2)原子晶体 (3)分子晶体 (4)金属晶体 4. 性质与结构的关系: 形成晶体的作用力强弱直接影响晶体的物理性质。 5. 常见的几种晶体模型:(NaCl 、CsCl 、干冰、金刚石及2SiO 等) 【典型例题】 [例1] 下列物质的熔点由高到低排列,正确的是( ) A. Cs K Na Li >>> B. CsCl RbCl KCl NaCl >>> C. 2222I Br Cl F >>> D. 金刚石>硅>碳化硅 解析: 根据晶体类型判断熔沸点高低的规律为:(一般) 原子晶体>离子晶体>分子晶体 而同类晶体内熔、沸点高低判断规律是: 原子晶体内原子的半径越小,形成共价键的键长短,键能大则键牢固,熔沸点高。 离子晶体内阴、阳离子的半径越小,离子所带电荷越多则形成的离子键越牢固,熔沸点越高。 相同结构的分子形成晶体,相对分子质量越大,分子间作用力越强,熔、沸点越高。

金属晶体的熔沸点高低取决于金属离子的半径和自由电子数,离子半径小,自由电子数多,则熔沸点高。 故应选A 、B 。 答案:A 、B [例2] 下图表示一些晶体中的某些结构,它们分别是NaCl 、CsCl 、干冰、金刚石、石墨结构中的某一种的某一部分。 A B C D E (1)其中代表金刚石的是 (填编号字母,下同),其中每个碳原子最接近且距离相等。金刚石属于 晶体。 (2)其中代表石墨的是 ,其每个正六边形占有的碳原子数平均为 个。 mol 1石墨中碳原子数与所形成的共价键数之比为 。 (3)其中表示NaCl 的是 ,每个+ Na 周围与它最接近且距离相等的+ Na 有 个。 (4)代表CsCl 的是 ,它属于 晶体,每个+ Cs 与 个- Cl 紧邻。 (5)代表干冰的是 ,它属于 晶体,每个2CO 分子与 个2CO 分子紧邻。 (6)上述五种物质熔点由高到低的排列顺序为: 。 解析:解此题首先要记住几种晶体的基本模型。金刚石为D ,石墨为E ,干冰为B , NaCl 为A ,CsCl 为C ,然后根据晶体的组成及空间构型回答后面问题。 值得注意的应为(2)和(3)、(4)、(5)中粒子紧邻的数值关系。 (2)当碳原子通过共用电子对形成六元环时,每一个碳原子被三个环所共用,则形成

晶体的类型与性质

晶体的类型与性质 一、四种晶体类型的比较 想一想 1.离子晶体中有无共价键?举例说明。离子晶体熔化时,克服了什么作用? 2.分子晶体中存在共价键,分子晶体熔化时,共价键是否被破坏? 3.稀有气体的单质属于什么晶体? 4.晶体微粒间的作用力只影响晶体的物理性质吗?举例说明研究晶体性质的一般思路。 5.离子晶体在熔融状态下能导电,这与金属导电的原因是否相同? 6.分子晶体的熔点一定低于金属晶体,这种说法对吗?为什么? 二、四种晶体类型的判断 1.依据组成晶体的晶格质点和质点间的作用判断 (1)若晶格质点是阴阳离子,质点间的作用是离子键,则该晶体是离子晶体。 (2)若晶格质点是原子,质点间的作用是共价键,则该晶体是原子晶体。 (3)若晶格质点是分子,质点间的作用是分子间作用力,则该晶体是分子晶体。 (4)若晶格质点是金属阳离子和自由电子,质点间的作用是金属键,则该晶体是金属晶体。 2.依据物质的分类判断 (1)金属氧化物、强碱、绝大多数的盐类是离子晶体。 (2)大多数非金属单质、气态氢化物、非金属氧化物(除SiO2外)、酸、绝大多数有机物(除 有机盐外)是分子晶体。 (3)金刚石、晶体硅、碳化硅(SiC)、二氧化硅等是原子晶体。 (4)金属单质与合金是金属晶体。 3.依据晶体的熔点判断 (1)离子晶体的熔点较高。 (2)原子晶体熔点高。 (3)分子晶体熔点低。 (4)金属晶体多数熔点高,部分较低。 4.依据导电性判断 (1)离子晶体溶于水及熔融状态时能导电。 (2)原子晶体一般为非导体。 (3)分子晶体为非导体。 (4)金属晶体是电的良导体。 5.依据硬度和机械性能判断 (1)离子晶体硬度较大或略硬而脆。 (2)原子晶体硬度大。 (3)分子晶体硬度小且较脆。 (4)金属晶体多数硬度大,但也有较低的,且具有延展性。

晶体类型和性质

第一单元晶体的类型与性质 第一节离子晶体、分子晶体和原子晶体 【教学目的】 1.使学生了解离子晶体、分子晶体和原子晶体的结构模型及其性质的一般特点。 2.使学生理解离子晶体、分子晶体和原子晶体的晶体类型与性质的关系。 3.初步了解分子间作用力、氢键的概念及氢键对物质性质的影响。 4.培养学生的空间想像能力和进一步认识“物质的结构决定物质的性质”的客观规律。 【教学重点】 离子晶体、分子晶体和原子晶体的概念;晶体的类型与性质的关系。 【教学难点】 离子晶体、分子晶体和原子晶体的结构模型。 【教学用具】 多媒体电教设备、投影仪、自制课件、晶体模型等。 【课时安排】 3课时。 第一课时离子晶体 第二课时分子晶体 第三课时原子晶体 【教学方法】 观察、对比、分析、归纳相结合的方法。 【教学过程】

第一课时 【复习提问】在高一年级时,我们已经学习了化学键的有关知识。化学键是如何定义和分类的? (化学键:相邻的原子之间强烈的相互作用叫做化学键。) 【回答】(教师矫正) 【副板书】 【提问】什么是离子化合物?什么是共价化合物? (含有离子键的化合叫离子化合物;只含有共价键的化合叫共价化合物。)【练习】1.指出下列物质中的化学键类型。 KBr、CCl4、N2、CaO、H2S、NaOH 2.下列物质中哪些是离子化合物?哪些是共价化合物?哪些是只含离子键的离子化合物?哪些是既含离子键又含共价键的离子化合物? Na2O、KCI、NH4Cl、HCI、O2、HNO3、Na2SO4 【讲解】我们也可以用化学键的观点概略地分析化学反应的过程。可以认为,一个化学反应的过程,本质上就是旧化学键断裂和新化学键形成的过程。通常认为旧键断裂过程为吸收能量过程,而新键形成为放出能量过程,能量的变化在化学反应中通常表现为热量变化,所以化学反应过程通常伴随着热量的变化。化学键对化学反应中能量的变化起着决定作用。当今社会,人类所需能量绝大部分由化学反应产生,由此可见,研究化学键对物质性质的影响是多么重要啊! 【引言】我们日常接触很多的物质是固体,其中多数固体是晶体。什么是晶体呢? 【简介】晶体:内部原子(或分子、离子、原子集团)有规则地呈周期排列的

晶体学基础资料

竞赛要求: 初赛要求:晶体结构。晶胞。原子坐标。晶格能。晶胞中原子数或分子数的计算及与化学式的关系。分子晶体、原子晶体、离子晶体和金属晶体。配位数。晶体的堆积与填隙模型。常见的晶体结构类型,如NaCl、CsCl、闪锌矿(ZnS)、萤石(CaF2)、金刚石、石墨、硒、冰、干冰、尿素、金红石、钙钛矿、钾、镁、铜等。 决赛要求:晶体结构。点阵的基本概念。晶系。宏观对称元素。十四种空间点阵类型。 第七章晶体学基础 Chapter 7. The basic knowledge of crystallography §7.1 晶体结构的周期性和点阵 (Periodicity and lattices of crystal structures) 一、.晶体 远古时期,人类从宝石开始认识晶体。红宝石、蓝宝石、祖母绿等晶体以其晶莹剔透的外观,棱角分明的形状和艳丽的色彩,震憾人们的感官。名贵的宝石镶嵌在帝王的王冠上,成为权力与财富的象征,而现代人类合成出来晶体,如超导晶体YBaCuO、光学晶体BaB2O4、LiNbO3、磁学晶体NdFeB等高科技产品,则推动着人类的现代化进程。 世界上的固态物质可分为二类,一类是晶态,一类是非晶态。自然界存在大量的晶体物质,如高山岩石、地下矿藏、海边砂粒、两极冰川都是晶体组成。人类制造的金属、合金器材,水泥制品及食品中的盐、糖等都属于晶体,不论它们大至成千万吨,小至毫米、微米,晶体中的原子、分子都按某种规律周期性地排列。另一类固态物质,如玻璃、明胶、碳粉、塑料制品等,它们内部的原子、分子排列杂乱无章,没有周期性规律,通常称为玻璃体、无定形物或非晶态物质。 晶体结构最基本的特征是周期性。晶体是由原子或分子在空间按一定规律周期重复排列构成的固态物质,具有三维空间周期性。由于这样的内部结构,晶体具有以下性质: 1、均匀性:一块晶体内部各部分的宏观性质相同,如有相同的密度,相同的化学组成。晶体的均匀性来源于晶体由无数个极小的晶体单位(晶胞)组成,每个单位里有相同的原子、

晶体的类型与性质

晶体的类型与性质 本单元知识概要 【学习目标】 1. 了解离子晶体、分子晶体、原子晶体、金属晶体的结构和性质。 2. 理解组成晶体的粒子间相互作用及其与晶体性质之间的相互关系。 3. 掌握晶体类型的判断方法。 4. 借助数学方法,培养空间想象能力。 【知识概要】 晶体的类型和性质 1. 晶体类型的判断方法 ⑴依据组成晶体的粒子和粒子间的相互作用判断 离子晶体的组成粒子是阴、阳离子,粒子间的相互作用是离子键;原子晶体的组成粒子是原子,粒子间的相互作用是共价键;分子晶体的组成粒子是分子,粒子间的相互作用是分子间作用力(即范德瓦耳斯力);金属晶体的组成粒子是金属阳离子和自由电子,粒子间的相互作用是金属键。 (2)依据物质的分类判断 金属氧化物(如K2O、Na2O2等)、强碱(如NaOH、KOH等)和绝大多数的盐类(AlCl3除外)是离子晶体。大多数非金属单质(除金刚石、石墨、晶体硅、晶体硼外)、气态氢化物、非金属氧化物(除S i O2外)、酸、绝大多数有机物(除有机盐外)、稀有气体的固态是分子晶体。常见的原子晶体单质有金刚石、晶体硅、晶体硼等;常见的原子晶体化合物有碳化硅、二氧化硅、刚玉等。常温下,金属单质(汞除外)与合金都是金属晶体。 (3)依据晶体的熔点判断 离子晶体的熔点较高,常在数百至1000余度。原子晶体的熔点最高,常在1000度至几千度。分子晶体的熔点低,常在数百度以下至很低温度。多数金属晶体的熔点高,但也有

相当低的(如汞)。 ⑷ 依据导电性判断 离子晶体在水溶液中及熔化时都能导电。原子晶体一般为非导体,不能导电。分子晶体为非导体,固态、液态均不导电,但分子晶体中的电解质(主要是酸和典型非金属氢化物)溶于水,使分子内的化学键断裂形成自由离子,故溶液能导电,金属晶体是电的良导体,能导电。 ⑸ 依据硬度和机械性能判断 离子晶体硬度较大或略硬而脆。原子晶体硬度大。分子晶体硬度小且较脆。金属晶体多数硬度大,但也有较低的,且具有延展性。 2. 晶体熔、沸点高低的比较方法 ⑴ 离子晶体 一般地讲,化学式与结构相似的离子晶体,阴、阳离子半径越小,所带电荷越多,离子键越强,熔、沸点越高,如:NaCl>KCl>CsCl 。 ⑵ 原子晶体 键长(成键原子半径之和)越短,键能越大,共价键越强,熔、沸点越高。如:金刚石>碳化硅>晶体硅。 ⑶ 分子晶体 组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,熔、沸点越高,如:I 2>Br 2>Cl 2>F 2;H 2Te>H 2Se>H 2S 。但具有氢键的分子晶体,如:NH 3、H 2O 、HF 等熔、沸点反常地高。绝大多数有机物属于分子晶体,其熔、沸点遵循以下规律: ① 组成和结构相似的有机物(同系物),随相对分子质量增大,其熔、沸点升高,如:CH 4 CH 3 CH 2CH(CH 3)2>(CH 3)4C ;芳香烃的异构体有两个取代基时,熔、沸点按邻、间、对位降低。如: > > ③ 在高级脂肪酸和油脂中,不饱和程度越大,熔、沸点越低。例如: C 17H 35COOH >C 17H 33COOH ;(C 17H 35COO)3C 3H 5>(C 17H 33COO)3C 3H 5。 ⑷ 金属晶体 在同类金属晶体中,金属离子半径越小,阳离子所带的电负荷数越多,金属键越强,熔、沸点越高,如:Li >Na >K >Rb >Cs ,合金的熔点低于它的各成分金属的熔点,如Al >Mg >铝镁合金。 ⑸ 不同类型的晶体 一般是原子晶体的熔、沸点最高,分子晶体的熔、沸点最低,离子晶体的熔、沸点较高,大多数金属晶体的熔、沸点较高,如:金刚石>氧化镁;铁>水。 应注意离子晶体、原子晶体、分子晶体、金属晶体熔化时,化学键不被破坏的只有分子晶体,分子晶体熔化时,被破坏的是分子间作用力。 第一节 离子晶体、分子晶体和原子晶体 CH 3CH 3 CH 3 CH 3 CH 3CH 3

四种晶体性质比较

四种晶体性质比较1.晶体 (1)晶体与非晶体 (2)得到晶体的途径 ①熔融态物质凝固。 ②气态物质冷却不经液态直接_______________。 ③溶质从溶液中析出。 (3)晶胞 ①概念 描述晶体结构的基本单元。

②晶体中晶胞的排列——无隙并置 a.无隙:相邻晶胞之间没有____________。 b.并置:所有晶胞______排列、取向相同。 (4)晶格能 ①定义:气态离子形成1摩离子晶体释放的能量,通常取正值,单位:_________________。 ②影响因素 a.离子所带电荷数:离子所带电荷数越多,晶格能越大。 b.离子的半径:离子的半径________,晶格能越大。 ③与离子晶体性质的关系 晶格能越大,形成的离子晶体越稳定,且熔点越高,硬度___________。2.四种晶体类型的比较

3.晶体熔沸点的比较 (1)不同类型晶体熔、沸点的比较 ①不同类型晶体的熔、沸点高低的一般规律:________________>离子晶体>____________。 ②金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。 (2)同种晶体类型熔、沸点的比较

①原子晶体: 原子半径越小―→键长越短―→键能越大―→ ②离子晶体: a .一般地说,阴、阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,其离子晶体的熔、沸点就越高,如熔点:MgO____MgCl 2______NaCl______CsCl 。 b .衡量离子晶体稳定性的物理量是晶格能。晶格能越大,形成的离子晶体越稳定,熔点越高,硬度越大。 ③分子晶体: a .分子间作用力越大,物质的熔、沸点越高;具有氢键的分子晶体熔、沸点反常地高。如H 2O >H 2Te >H 2Se >H 2S 。 b .组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高,如SnH 4>GeH 4>SiH 4>CH 4。 c .组成和结构不相似的物质(相对分子质量接近),分子的极性越大,其熔、沸点____________,如CO >N 2,CH 3OH >CH 3CH 3。 d .同分异构体,支链越多,熔、沸点越低。 ④金属晶体: 金属离子半径越小,离子电荷数越多,其金属键越强,金属熔、沸点就越高,如熔、沸点:Na <Mg <Al 。 2.在下列物质中:NaCl 、NaOH 、Na 2S 、H 2O 2、Na 2S 2、(NH 4)2S 、CO 2、CCl 4、C 2H 2、SiO 2、SiC 、晶体硅、金刚石。 (1)其中只含有离子键的离子晶体是________;

晶体的类型和性质

高三化学教案:晶体的类型和性质 1.四种基本晶体类型 分类 晶体质点间作用力 物理性质 熔化时的变化 代表物 离子晶体 原子晶体 分子晶体 金属晶体 混合型晶体 要求: 物理性质应从熔、沸点、硬度、导电性等方面展开并回答。 熔化时的变化应从化学键或分子间作用力的破坏,以及破坏后成为的粒子来回答。 代表物应从物质的分类来回答,不能回答一些具体的物质。 2.四种基本晶体类型的判断方法 (1)从概念,物质分类上看,由__________组成,通过_________和_________强烈相互作用而形成的晶体为金属晶体。

构成晶体质点为_________,这些质点间通过_________间作用力,而形成的晶体为分子晶体。共价化合物一般为_________晶体,但SiO2、SiC为_________晶体;离子化合物一定为 _________晶体 (2)由晶体的物理性质来看 ①根据导电性,一般地:熔融或固态时都不导电的是_________晶体或_________晶体,熔融或固态都能导电的为_________晶体;固态时不导电,熔化或溶于水时能导电的一般为 _________晶体;液态、固态、熔融都不能导电,但溶于水后能导电的晶体是_________晶体。一种称为过渡型或混合型晶体是_________,该晶体_________导电 ②根据机械性能:具有高硬度,质脆的为_________晶体,较硬且脆的为_________晶体,硬度较差但较脆的为 _________晶体,有延展性的为_________晶体。 ③根据熔、沸点:_________晶体与_________晶体高于 _________晶体。_________晶体熔沸点有的高,有的低。 3.典型晶体的粒子数 物质 晶型 重复单位几何形状 粒子数 NaCl 每个Cl- 周围与它最近等距的Na+有______个 CsCl 立方体 每个Cs+(Cl-)等距的Cl-(Cs+)有______个 金刚石

晶体的基本性质

晶体的基本性质 自限性:晶体具有自发形成几何多面体形态的性质,这种性质成为自限性。2、均一性和异向性:因为晶体是具有格子构造的固体,同一晶体的各个部分质点分布是相同的,所以同一晶体的各个部分的性质是相同的,此即晶体的均一性;同一晶体格子中,在不同的方向上质点的排列一般是不相同的,晶体的性质也随方向的不同而有所差异,此即晶体的异向性。3、最小内能与稳定性:晶体与同种物质的非晶体、液体、气体比较,具有最小内能。晶体是具有格子构造的固体,其内部质点作规律排列。这种规律排列的质点是质点间的引力与斥力达到平衡,使晶体的各个部分处于位能最低的结果。 溶剂的选择方法 溶剂的选择运用溶剂提取法的关键,是选择适当的溶剂。溶剂选择适当,就可以比较顺利地将需要的成分提取出来。医学教育网搜集整理了溶剂的选择方法内容供大家参考,助大家顺利通过初级中药师考试。 选择溶剂要注意以下三点:①溶剂对有效成分溶解度大,对杂质溶解度小;②溶剂不能与中药的成分起化学变化;③溶剂要经济、易得、使用安全等。 1)水:水是一种强的极性溶剂。中草药中亲水性的成分,如无机盐、糖类、分子不太大的多糖类、鞣质、氨基酸、蛋白质、有机酸盐、生物碱盐及甙类等都能被水溶出。为了增加某些成分的溶解度,也常采用酸水及碱水作为提取溶剂。酸水提取,可使生物碱与酸生成盐类而溶出,碱水提取可使有机酸、黄酮、蒽醌、内酯、香豆素以及酚类成分溶出。但用水提取易酶解甙类成分,且易霉坏变质。某些含果胶、粘液质类成分的中草药,其水提取液常常很难过滤。沸水提取时,中草药中的淀粉可被糊化,而增加过滤的困难。故含淀粉量多的中草药,不宜磨成细粉后加水煎煮。中药传统用的汤剂,多用中药饮片直火煎煮,加温可以增大中药成分的溶解度外,还可能有与其他成分产生"助溶"现象,增加了一些水中溶解度小的、亲脂性强的成分的溶解度。但多数亲脂性成分在沸水中的溶解度是不大的,既使有助溶现象存在,也不容易提取完全。如果应用大量水煎煮,就会增加蒸发浓缩时的困难,且会溶出大量杂质,给进一步分离提纯带来麻烦。中草药水提取液中含有皂甙及粘液质类成分,在减压浓缩时,还会产生大量泡沫,造成浓缩的困难。通常可在蒸馏器上装置一个汽一液分离防溅球加以克服,工业上则常用薄膜浓缩装置。医学教育网 2)亲水性的有机溶剂:也就是一般所说的与水能混溶的有机溶剂,如乙醇(酒精)、甲醇(木精)、丙酮等,以乙醇最常用。乙醇的溶解性能比较好,对中草药细胞的穿透能力较强。亲水性的成分除蛋白质、粘液质、果胶、淀粉和部分多糖等外,大多能在乙醇中溶解。难溶于水的亲脂性成分,在乙醇中的溶解度也较大。还可以根据被提取物质的性质,采用不同浓度的乙醇进行提取。用乙醇提取比用水量较少,提取时间短,溶解出的水溶性杂质也少。乙醇为有机溶剂,虽易燃,但毒性小,价格便宜,来源方便,有一定设备即可回收反复使用,而且乙醇的提取液不易发霉变质。由于这些原因,用乙醇提取的方法是历来最常用的方法之一。甲醇的性质和乙醇相似,沸点较低(64℃),但有毒性,使用时应注意。 第四章溶剂选择

高中化学精讲晶体的类型与性质

高中化学58个考点精讲 16、晶体的类型与性质 1.复习重点 1.离子晶体、分子晶体、原子晶体和金属晶体组成粒子,粒子间作用力、熔沸点、硬度、导电性; 2.影响晶体熔点和沸点的因素; 3.分子间作用力及其对物质熔点、沸点等物理性质的影响。 2.难点聚焦 (4)晶体性质的比较:比较晶体的硬度大小、熔沸点高低等物理性质的依据是: (5)非极性分子和极性分子 分子空间构型对称,正负电荷重心重合的分子叫非极性分子。 分子空间构型不对称,正负电荷重心不重合的分子叫极性分子。 (6)共价键与离子键之间没有绝对的界限

3.例题精讲 [例1](98’全国)下列分子所有原子都满足8电子的结构的是( ) A. 光气(2COCl ) B. 六氟化硫 C. 二氟化氙 D. 三氟化硼 分析:从光气的结构式O Cl C Cl --|| 可以看出各原子最外层都满足8电子结构,应选A 。 硫最外层有6个电子,氟已然形成8个电子,分别形成共价的二氟化物,六氟化物后,最外层必然超过8个电子。 3BF 中B 原子最外层只有6个电子,可见3BF 是一种“缺电子化合物” 。 [例2] 下图是NaCl 晶体结构的示意图:(1)若用+ -?Na - -Cl O ,请将位置表示出来;(2)每个+ Na 周围与它最接近且距离相等的+ Na 有 个。 分析:解答此类问题常用的是“分割法”——从晶体中分出最小的结构单元,或将最小的结构单元分成若干个面。 答案:12 x —平面 y —平面 z —平面 [例3] 在金刚石结构中,碳原子与共价键数目之比 。 分析:取一结构单元,1个C 原子连4条键,一条键为二个原子所共用,为每个C 原子只提供2y ,所以C 原子与C C -键数目之比:2:12 1 4:1=? 答案:2:1 [例4] 如下图,是某晶体最小的结构单元,试写出其化学式。

晶体的基本性质

晶体的基本性质 一晶体的基本性质 定义——为一切晶体所共有的,并能以此与其他性质的物质相区别的性质。 本质——晶体的格子构造所决定的。 1.自限性(自范性) 晶体在生长过程中,在适当的条件下,可以自发地形成几何凸多面体外形的性质。 晶体的多面体形态是其格子构造在外形上的直接反映。晶面、晶棱和角顶分别与格子构造中的面网、行列和结点相对应。 布拉维法则 实际晶体通常由面网密度大的面网所包围——晶体上的实际晶面平行于对应空间格子中面网密度大的面网,且面网密度越大,相应晶面的重要性越大。 1855(1866,1885)年,布拉维(法国)根据晶体上不同晶面的相对生长速度与面网上结点的密度成反比的推论导出的。该法则阐明了晶面发育的基本规律。 晶面生长速度(growth velocity)?a?a单位时间内晶面在其垂直方向上增长的厚度。 当晶面上结点密度大时,面网间距也大,面网对外来质点的引力小,生长速度慢,晶面横向扩展,最终保留在晶体上;而晶面上结点密度小时,面网间距也小。面网对外来质点引力大,生长速度快,横向逐渐缩小以致于晶面最终消失。 2.均一性 指晶体中各个部分的物理性质和化学性质是相同的。 由于质点周期性重复排列,晶体的任何一部分在结构上都是相同的,由此,由结构决定的一切物理性质,如密度、导热性、膨胀性等也都具有均一性。 非晶体、液体和气体具有统计均一性 晶体取决于其格子构造,称为结晶均一性 3.异向性(各向异性) 同一格子构造中,在不同方向上质点排列一般是不一样的,因此,晶体的性质也随方向的不同而有所差异这就是晶体的异向性。 例:蓝晶石的硬度。 矿物的解理 Z(AA)=4-5 Y(BB)=6.5-7 4.对称性 晶体相同的性质在不同方向或位置上作有规律的重复。 宏观对称——晶体相同部位能够在不同的方向或位置上有规律重复出现的特性,宏观对称是晶体分类的基础。 微观结构对称——格子状构造本身就是质点在三维空间呈周期性重复的体现,从这个意义上说,所以的晶体都是对称的。 5.最小内能性 在相同热力学条件下,晶体与同种物质的非晶质体、液体、气体状态相比较,其内能最

高三化学晶体的类型和性质单元测试

晶体的类型和性质单元测试 一、选择题 1.含有非极性键的离子化合物是 ( ) A.C2H2 B.Na2O2 C.(NH4)2S D.CaC2 2.下列物质的熔、沸点高低顺序正确的是 ( ) A.金刚石,晶体硅,二氧化硅,碳化硅 B.Cl4>CBr4>CCl4>CH4 C.MgO>H20>02>N2 D.金刚石>生铁>纯铁>钠 3.有下列两组命题 A组B组 Ⅰ.H—I键键能大于H—Cl键键能①HI比HCI稳定 Ⅱ.H—I键键能小于H—C1键键能②HCl比HI稳定 Ⅲ.HI分子间作用力大于HCl分子间作用力③HI沸点比HCl高 Ⅳ.HI分子间作用力小于HCl分子间作用力④HI沸点比HCl低 B组中命题正确,且能用A组命题加以正确解释的是 A.Ⅰ① B.Ⅱ② C.Ⅲ③ D.Ⅳ④ 4.据报道,科研人员应用电子计算机模拟出类似C60的物质N60,试推测出该物质不可能具有的性质是 A.N60易溶于水 B.稳定性,N60N2 D.熔点N60

四种晶体性质比较

四种晶体性质比较 This model paper was revised by the Standardization Office on December 10, 2020

四种晶体性质比较 1.晶体 (1)晶体与非晶体 (2)得到晶体的途径 ①熔融态物质凝固。 ②气态物质冷却不经液态直接_______________。 ③溶质从溶液中析出。 (3)晶胞 ①概念 描述晶体结构的基本单元。 ②晶体中晶胞的排列——无隙并置 a.无隙:相邻晶胞之间没有____________。 b.并置:所有晶胞______排列、取向相同。 (4)晶格能 ①定义:气态离子形成1摩离子晶体释放的能量,通常取正值,单位:_________________。 ②影响因素 a.离子所带电荷数:离子所带电荷数越多,晶格能越大。 b.离子的半径:离子的半径________,晶格能越大。 ③与离子晶体性质的关系

晶格能越大,形成的离子晶体越稳定,且熔点越高,硬度___________。2.四种晶体类型的比较 3.晶体熔沸点的比较 (1)不同类型晶体熔、沸点的比较 ①不同类型晶体的熔、沸点高低的一般规律:________________>离子晶体>____________。

②金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。 (2)同种晶体类型熔、沸点的比较 ①原子晶体: 原子半径越小―→键长越短―→键能越大―→ ②离子晶体: a.一般地说,阴、阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,其离子晶体的熔、沸点就越高,如熔点: MgO____MgCl 2______ NaCl______CsCl。 b.衡量离子晶体稳定性的物理量是晶格能。晶格能越大,形成的离子晶体越稳定,熔点越高,硬度越大。 ③分子晶体: a.分子间作用力越大,物质的熔、沸点越高;具有氢键的分子晶体熔、沸 点反常地高。如H 2O>H 2 Te>H 2 Se>H 2 S。 b.组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高,如 SnH 4>GeH 4 >SiH 4 >CH 4 。 c.组成和结构不相似的物质(相对分子质量接近),分子的极性越大,其 熔、沸点____________,如CO>N 2,CH 3 OH>CH 3 CH 3 。 d.同分异构体,支链越多,熔、沸点越低。 ④金属晶体: 金属离子半径越小,离子电荷数越多,其金属键越强,金属熔、沸点就越高,如熔、沸点:Na<Mg<Al。 2.在下列物质中:NaCl、NaOH、Na 2S、H 2 O 2 、Na 2 S 2 、(NH 4 ) 2 S、CO 2 、CCl 4 、 C 2H 2 、SiO 2 、SiC、晶体硅、金刚石。 (1)其中只含有离子键的离子晶体是________; (2)其中既含有离子键又含有极性共价键的离子晶体是________; (3)其中既含有离子键,又含有极性共价键和配位键的离子晶体是________; (4)其中既含有离子键又含有非极性共价键的离子晶体是________;

晶体的类型与性质知识总结

晶体的类型与性质知识规律总结 晶体类型离子晶体分子晶体原子晶体金属晶体 定义离子间通过离子 键相结合而成的 晶体 分子间以分子间作用 力相结合的晶体 相邻原子间以共价 键相结合而形成的 空间网状结构的晶 体 金属阳离子和自 由电子之间的较 强作用形成的单 质晶体 构成粒子阴、阳离子分子原子金属离子、自由电 子 粒子间作用力 离子间肯定有离 子键,可能有原子 间的共价键 分子间:分子间作用 力。可能有分子内共 价键(稀有气体例外) 共价键 金属离子和自由 电子之间较强的 相互作用 代表物NaCl,NaOH,MgSO4干冰,I2,P4,H2O 金刚石,SiC,晶体 硅,SiO2 镁、铁、金、钠 熔、沸点熔点、沸点较高熔点、沸点低熔点、沸点高熔点、沸点差异较大(金属晶体熔沸点一般较高,少部 分低) 导热性不良不良不良良好 导电性固态不导电,熔化 或溶于水导电 固态和液态不导电, 溶于水可能导电 不导电。有的能导 电,如晶体硅,但金 刚石不导电。 晶体、熔化时都导 电 硬度硬度较大硬度很小硬度很大硬度差异较大 溶解性多数易溶于水等 极性溶剂 相似相溶难溶解 难溶于水(钠、钙 等与水反应) 决定熔点、 沸点高主要 因素 离子键强弱分子间作用力大小共价键强弱金属键强弱 二、几种典型的晶体结构 ①、NaCl晶体 1)在NaCl晶体的每个晶胞中,Na+占据的位置有 2 种。顶点8个,面 心6个

2)Cl-占据的位置有 2 种。棱上12个,体心1个 3)在NaCl晶体中,每个Na+周围与之等距离且最近的Na+有 12 个;每个Cl-周围与之等距离且最近的Cl-有12 个。 4)在NaCl晶体中每个Na+同时吸引着6个Cl-,每个Cl-同时也吸引着 6个Na+,向空间延伸,形成NaCl晶体。 5)每个晶胞平均占有 4 个Na+和 4 个Cl-。1molNaCl能构成这样的晶胞个。 6) Na+与其等距紧邻的6个Cl-围成的空间构型为_____正八面体_________ ②、CsCl晶体 1)每个Cs+同时吸引着 8 个Cl-,每个Cl-同时吸引着 8 个Cs+; 2)在CsCl晶体中,每个Cs+周围与它等距离且最近的Cs+有6个,每个Cl-周围与它等距离且最近的Cl-有 6 个; 3)一个CsCl晶胞有 1 个Cs+和 1 个Cl-组成;4)在CsCl晶体中,Cs+与Cl-的个数比为 1:1 。 ③、金刚石(如图3):每个碳原子都被相邻的四个碳原子包围,以共价键结合成为正四面体结构并向空间发展,键角都是109o28',最小的碳环上有六个碳原子,但六个碳原子不在同一平面上。 ④石墨(如图4、5):层状结构,每一层内,碳原子以正六边形排列成平面的网状结构,碳原子之间存在很强的共价键(大π键),故熔沸点很高。每个正六边形平均拥有两个碳原子、3个C-C。片层间存在范德华力,是混合型晶体。熔点比金刚石高。石墨为层状结构,各层之间以范德华力结合,容易滑动,所以石墨很软。在金刚石中每个碳原子与相邻的四个碳原子经共价键结合形成正四面体结构,碳原子所有外层电子均参与成键,无自由电子,所以不导电。而石墨晶体中,每个碳原子以三个共价键与另外三个碳原子相连,在同一平面内形成正六边形的环。这样每个碳原子上仍有一个电子未参与成键,电子比较自由,相当于金属中的自由电子,所以石墨能导电。 ⑤干冰(如图6):分子晶体,每个CO2分子周围紧邻其他12个CO2分子。平均每个CO2晶胞中含4个CO2分子。

晶体的类型和性质

1、晶体类型判别: 分子晶体:大部分有机物、几乎所有酸、大多数非金属单质、所有非金属氢化物、部分非金属氧化物。 原子晶体:仅有几种,晶体硼、晶体硅、晶体锗、金刚石、金刚砂(SiC)、氮化硅(Si3N4)、氮化硼(BN)、二氧化硅(SiO2)、氧化铝(Al2O3)、石英等; 金属晶体:金属单质、合金; 离子晶体:含离子键的物质,多数碱、大部分盐、多数金属氧化物; 2、不同晶体的熔沸点由不同因素决定: 离子晶体的熔沸点主要由离子半径和离子所带电荷数(离子键强弱)决定,分子晶体的熔沸点主要由相对分子质量的大小决定,原子晶体的熔沸点主要由晶体中共价键的强弱决定,且共价键越强,熔点越高。 3晶体熔沸点高低的判断? (1)不同类型晶体的熔沸点:原子晶体>离子晶体>分子晶体;金属晶体(除少数外)>分子晶体;金属晶体熔沸点有的很高,如钨,有的很低,如汞(常温下是液体)。 (2)同类型晶体的熔沸点: ①原子晶体:结构相似,半径越小,键长越短,键能越大,熔沸点越高。如金刚石>氮化硅>晶体硅。 ②分子晶体: 组成和结构相似的分子,相对分子质量越大,分子间作用力越强,晶体熔沸点越高。如CI4>CBr4>CCl4>CF4。 若相对分子质量相同,如互为同分异构体,一般支链数越多,熔沸点越低,特殊情况下分子越对称,则熔沸点越高。

若分子间有氢键,则分子间作用力比结构相似的同类晶体强,故熔沸点特别高。 ③ 金属晶体:所带电荷数越大,原子半径越小,则金属键越强,熔沸点越高。如Al >Mg >Na >K 。 ④ 离子晶体:离子所带电荷越多,半径越小,离子键越强,熔沸点越高。如KF >KCl >KBr >KI 。 1. 60C 与现代足球(如图6-1)有很相似的结构,它与石墨互为 ( ) A .同位素 B .同素异形体 C .同分异构体 D .同系物 2.下列物质为固态时,必定是分子晶体的是 ( ) A .酸性氧化物 B .非金属单质 C .碱性氧化物 D .含氧酸 3.金属的下列性质中,不能用金属晶体结构加以解释的是 ( ) A .易导电 B .易导热 C .有延展性 D .易锈蚀 4.氮化硅(43N Si )是一种新型的耐高温耐磨材料,在工业上有广泛的用途,它属于 ( ) A .原子晶体 B .分子晶体 C .金属晶体 D .离子晶体 5.水的状态除了气、液和固态外,还有玻璃态。它是由液态水急速冷却到165K 时形成的,玻璃态的水无固定形状,不存在晶体结构,且密度与普通液态水的密度相同,有关玻璃态水的叙述正确的是 ( ) A .水由液态变为玻璃态,体积缩小 B .水由液态变为玻璃态,体积膨胀 C .玻璃态是水的一种特殊状态 D .玻璃态水是分子晶体 6.下列各组物质中,按熔点由低到高排列正确的是 ( ) A .2O 、2I 、Hg 、Mg B .2CO 、KCI 、2SiO C .Na 、K 、Rb 、Cs D .SiC 、NaCl 、2SO 7.下列每组物质发生状态变化所克服的微粒间的相互作用力属于同种类型的是 ( ) A .食盐和蔗糖熔化 B .金属钠和晶体硫熔化 C .碘和干冰升华 D .二氧化硅和氧化钠熔化 10.关于晶体的下列说法正确的是 ( ) A .在晶体中只要有阴离子就一定有阳离子 B .在晶体中只要有阳离子就一定有阴离子 C .原子晶体的熔点一定比金属晶体的高 D .稀有气体原子序数越大,沸点越高 11.下列各组物质各自形成的晶体,均属于分子晶体的化合物的是 ( ) A .3NH 、HD 、810H C B .3PCl 、2CO 、42SO H

第六章 晶结构与晶体材料

第六章晶体结构与晶体材料 教学目的: 掌握晶体的概念及晶体结构的特点;掌握晶体的宏观对称性;熟悉晶体的基本性质;了解晶体缺陷的重要性。 教学重点: 晶体材料:石英晶体与压电材料、钛酸钡晶体与非线性光学材料、BGO晶体材料。教学难点: 晶体的对称性与晶系。 第一节晶体的结构特点 一、晶体 晶体是由原子或分子按照一定的周期性规律在空间重复排列而成的固体物质。 二、晶体结构的特点 1. 晶体结构的特点 以NaCl晶体为例讨论晶体结构的特点。 NaCl是食盐的主要成分,市售粗盐经过重结晶可得到纯净、漂亮的NaCl晶体。NaCl晶体呈立方体外形,肉眼可以看到平滑的晶面,尖锐的顶角和笔直的棱边。NaCl晶体整齐的外形反映了晶体的内部结构规整性。用X射线衍射法测定的NaCl的晶体结构,如图6-1所示。 2. 晶胞

晶胞晶胞是晶体的一个基本结构单位,它的形状是一个平行六面体。图6-1给出了NaCl晶体的一个晶胞,无数的这种晶胞在空间规则地重复排列就形成NaCl晶体。 要确定晶体的结构,首先要知道晶胞的大小和形状,其次要知道晶胞中原子的种类、数目和原子的坐标位置。 晶胞的大小和形状由晶胞参数规定。若把晶胞放在坐标系中,如图6-2所示,它的三条棱边a,b,c和三条棱边两两之间的夹角α,β,γ合称为晶胞参数。如NaCl晶体的晶胞参数为:a=b=c=562.8 pm,α=β=γ=90°,这种晶胞称为立方晶胞。NaCl晶体中Na+与Cl-以离子键结合,所以NaCl晶体称为离子晶体。在NaCl晶体中,一个Na+周围配有6个Cl-(配位数为6)。这6个配位Cl-形成一个八面体,Na+处于八面体的空隙中。同样地,以一个Cl-为中心,周围也配有6个Na+,Cl-也处于Na+的八面体空隙中。由此可见,NaCl只是个化学式,整块NaCl 晶体是个巨大的分子,把NaCl看作一个分子(或分子式)是不确切的。 3. 结构基元 结构基元是指晶体中作周期性规律重复排列的那一部分内容。它是晶体中重复排列的基本单位,必须满足化学组成相同、空间结构相同、排列取向相同和周围环境相同的条件。晶胞中含一个结构基元的称为素晶胞,含2个和2个以上结构基元的称复晶胞。图6-1的NaCl晶胞中含4个Na—Cl结构基元,是面心立方型式的复晶胞。图6-3给出了CsCl晶体和金属钨晶体的晶胞结构。CsCl晶胞中只含1个结构基元(Cs—Cl),所以是素晶胞,它是立方晶胞,故称为简单立方。

第1章金属晶体与晶体结构1.1晶体的基本特性

目录: 第1章金属晶体与晶体结构 1.1晶体的基本特性 1.1.1晶体的概念 1.1.2晶体的基本共性 1.1.3晶体的稳定性和不完整性 1.2晶体的基本对称性 1.2.1点对称操作 1.2.2 7种晶系 1.2.3平移对称操作 1.2.4 14种布拉菲点阵 1.3金属晶体的常见结构 1.3.1单质晶体结构 1.3.2 AX型化合物 1.3.3 AX2型化合物 1.3.4 AX3型化合物 1.3.5结构转变及概率占位 1.3.6拓扑密堆型化合物 1.4晶体取向与多晶体织构 1.4.1晶体取向 1.4.2晶体学织构 1.4.3取向分布函数的数学原理 1.4.4织构的表达与定量分析 1.4.5六方晶系与四方晶系的取向空间 1.5金属晶体结构的X衍射分析简介 1.5.1 X射线衍射的布拉格方程 1.5.2 X射线衍射强度 1.5.3 X射线衍射的结构因子 1.5.4晶体点阵类型所引发的系统消光 1.5.5多晶体极图的X射线测量原理 1.5.6中子衍射结构分析 第2章金属中的点缺陷 2.1点缺陷的热力学分析

2.1.1点缺陷的基本热力学关系 2.1.2空位浓度的测量 2.1.3自间隙原子的产生 2.2受辐照金属的点缺陷组态 2.2.1自间隙原子与空位的组态 2.2.2点缺陷的聚集和自组织 2.2.3合金体系中持续点缺陷流引起的原子再分布 2.3受辐照金属的回复与辐照损伤 2.3.1辐照后的回复 2.3.2辐照损伤 第3章金属晶体中的线缺陷 3.1位错学说的产生 3.1.1理论剪切强度的估算 3.1.2位错理论的提出 3.2位错的几何形态 3.2.1位错的基本类型 3.2.2柏氏回路及位错的柏氏矢量 3.2.3位错的实验观察 3.2.4位错的密度 3.3位错的运动 3.3.1位错的运动方向 3.3.2位错的滑移运动 3.3.3位错的攀移运动 3.3.4位错的交滑移运动 3.3.5位错运动的点阵阻力——PN力 3.3.6位错运动与晶体的塑性变形 3.3.7位错滑移造成的取向变化 3.4位错的弹性性质 3.4.1应力和应变分析 3.4.2位错的应力场 3.4.3位错的弹性应变能 3.4.4作用在位错线上的力 3.5位错与溶质原子的交互作用

晶体学基础知识点小节

第一章晶体与非晶体 ★相当点(两个条件:1、性质相同,2、周围环境相同。) ★ 空间格子的要素:结点、行列、面网 ★ 晶体的基本性质: 自限性: 晶体能够自发地生长成规则的几何多面体形态。 均一性:同一晶体的不同部分物理化学性质完全相同。晶体是绝对均一性,非晶体是统计的、平均近似均一性。 异向性:同一晶体不同方向具有不同的物理性质。例如:蓝晶石的不同方向上硬度不同。 对称性:同一晶体中,晶体形态相同的几个部分(或物理性质相同的几个部分)有规律地重复出现。最小内能性:晶体与同种物质的非晶体相比,内能最小。 稳定性:晶体比非晶体稳定。 ■本章重点总结:本章包括3 组重要的基本概念: 1)晶体、格子构造、空间格子、相当点;它们之间的关系。 2)结点、行列、面网、平行六面体; 结点间距、面网间距与面网密度的关系. 3)晶体的基本性质:自限性、均一性、异向性、对称性、最小内能、稳定性,并解释为什么。 第二章晶体生长简介 2.1 晶体形成的方式 ★液-固结晶过程:⑴溶液结晶: ①降温法②蒸发溶剂法③沉淀反应法 ⑵熔融结晶: ①熔融提拉②干锅沉降③激光熔铸④区域熔融 ★固-固结晶过程: ①同质多相转变②晶界迁移结晶③固相反应结晶④重结晶⑤脱玻化 2.2 晶核的形成 ?思考:怎么理解在晶核很小时表面能大于体自由能,而当晶核长大后表面能小于体自由能?因为成核过程有一个势垒:能越过这个势垒的就可以进行晶体生长了,否则不行。 ★均匀成核:在体系内任何部位成核率是相等的。 ★非均匀成核:在体系的某些部位(杂质、容器壁)的成核率高于另一些部位。 ?思考:为什么在杂质、容器壁上容易成核?为什么人工合成晶体要放籽晶? 2.3 晶体生长 ★层生长理论模型(科塞尔理论模型)层生长理论的中心思想是:晶体生长过程是晶面层层外推的过程。 ★ 螺旋生长理论模型(BCF 理论模型) ? 思考:这两个模型有什么联系与区别?联系:都是层层外推生长;区别:生长新的一层的成核机理不同。 ?思考:有什么现象可证明这两个生长模型?环状构造、砂钟构造、晶面的层状阶梯、螺旋 纹 2.4 晶面发育规律 ★★布拉维法则(law of Bravais):晶体上的实际晶面往往平行于面网密度大的面网。 为什么?面网密度大—面网间距大—对生长质点吸引力小—生长速度慢—在晶形上保留—生长速度快—尖灭 ★ PBC (周期性键链)理论: 晶面分为三类:F面(平坦面,两个Periodic Bond Chain PBC)晶形上易保留。 S面(阶梯面,一个PBC)可保留或不保留。K面(扭折面,不含PBC),晶形上不易保留。 ★居里-吴里弗原理(最小表面能原理):晶体上所有晶面的表面能之和最小的形态最稳定。 ?思考:以上三个法则-理论-原理的联系?

相关主题
文本预览
相关文档 最新文档