当前位置:文档之家› 数学建模8-动态规划和目标规划

数学建模8-动态规划和目标规划

数学建模8-动态规划和目标规划
数学建模8-动态规划和目标规划

数学建模8-动态规划和目标规划

一、动态规划

1.动态规划是求解决策过程最优化的数学方法,主要用于求解以时间划分阶段的动态过程的

优化问题。但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。

2.基本概念、基本方程:

(1)阶段

(2)状态

(3)决策

(4)策略

(5)状态转移方程:

(6)指标函数和最优值函数:

(7)最优策略和最优轨线

(8)递归方程:

3.计算方法和逆序解法(此处较为抽象,理解较为困难,建议结合例子去看)

4.动态规划与静态规划的关系:一些静态规划只需要引入阶段变量、状态、决策等就可以用动态规划方法求解(详见书中例4)

5.若干典型问题的动态规划模型:

(1)最短路线问题:

(2)生产计划问题:状态定义为每阶段开始时的储存量x k,决策为每个阶段的产量,记每个阶段的需求量(已知量)为d k,则状态转移方程为

(3)资源分配问题:详见例5

状态转移方程:

最优值函数:

自有终端条件:

(4)具体应用实例:详见例6、例7。

二、目标规划

1.实际问题中,衡量方案优劣要考虑多个目标,有主要的,有主要的,也有次要的;有最大值的,也有最小值的;有定量的,也有定性的;有相互补充的,也有相互对立的,这时可用目标规划解决。其求解思路有加权系数法、优先等级法、有效解法等。

2.基本概念:

(1)正负偏差变量:

(2)绝对(刚性)约束和目标约束

,次位赋(3)优先因子(优先等级)与权系数:凡要求第一位达到的目标赋予优先因子P

1……以此类推。

予P

2

(4)目标规划的目标函数:

(5)一般数学模型:

3.求解目标规划的解法:

(1)序贯式算法(用LINGO软件求解,有编程模板可以使用,下面以书中例3说明,具体还可以参考书中例6-例8):

model:

sets:

level/1..3/:p,z,goal;

variable/1..2/:x;

h_con_num/1..1/:b;

s_con_num/1..4/:g,dplus,dminus;

h_con(h_con_num,variable):a;

s_con(s_con_num,variable):c;

obj(level,s_con_num)/1 1,2 2,3 3,3 4/:wplus,wminus;

endsets

data:

ctr=?;

goal=? ? 0;

b=12;

g=1500 0 16 15;

a=2 2;

c=200 300 2 -1 4 0 0 5;

wplus=0 1 3 1;

wminus=1 1 3 0;

enddata

min=@sum(level:p*z);

p(ctr)=1;

@for(level(i)|i#ne#ctr:p(i)=0);

@for(level(i):z(i)=@sum(obj(i,j):wplus(i,j)*dplus(j)+wminus(i,j)*

dminus(j)));

@for(h_con_num(i):@sum(variable(j):a(i,j)*x(j))

@for(s_con_num(i):@sum(variable(j):c(i,j)*x(j))+dminus(i)-dplus(i

)=g(i));

@for(level(i)|i #lt# @size(level):@bnd(0,z(i),goal(i)));

end

(2)多目标规划的MATLAB解法:

以书中例5详细说明如下:

a=[-1 -1 0 0

0 0 -1 -1

3 0 2 0

0 3 0 2];

b=[-30 -30 120 48]';

c1=[-100 -90 -80 -70];

c2=[0 3 0 2];

[x1,g1]=linprog(c1,a,b,[],[],zeros(4,1)) %求第一个目标函数的目标值

[x2,g2]=linprog(c2,a,b,[],[],zeros(4,1)) %求第二个目标函数的目标值

g3=[g1;g2]; %目标goal的值

[x,fval]=fgoalattain('Fun',rand(4,1),g3,abs(g3),a,b,[],[],zeros(4,1))

数学建模算法动态规划

第四章动态规划 §1 引言 1.1 动态规划的发展及研究内容 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初R. E. Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优性原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法—动态规划。1957年出版了他的名著《Dynamic Programming》,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是一种特殊算法(如线性规划是一种算法)。因而,它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。因此,在学习时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的技巧去求解。 例1 最短路线问题 下面是一个线路网,连线上的数字表示两点之间的距离(或费用)。试寻求一条由A 到G距离最短(或费用最省)的路线。 例2 生产计划问题 工厂生产某种产品,每单位(千件)的成本为1(千元),每次开工的固定成本为3(千元),工厂每季度的最大生产能力为6(千件)。经调查,市场对该产品的需求量第一、二、三、四季度分别为2,3,2,4(千件)。如果工厂在第一、二季度将全年的需求都生产出来,自然可以降低成本(少付固定成本费),但是对于第三、四季度才能上市的产品需付存储费,每季每千件的存储费为0.5(千元)。还规定年初和年末这种产品均无库存。试制定一个生产计划,即安排每个季度的产量,使一年的总费用(生产成本和存储费)最少。 1.2 决策过程的分类 根据过程的时间变量是离散的还是连续的,分为离散时间决策过程(discrete-time decision process)和连续时间决策过程(continuous-time decision process);根据过程的演变是确定的还是随机的,分为确定性决策过程(deterministic decision process)和随

数学建模-动态规划

-56- 第四章动态规划 §1 引言 1.1 动态规划的发展及研究内容 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20 世纪50 年代初R. E. Bellman 等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优性原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法—动态规划。1957 年出版了他的名著《Dynamic Programming》,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广 泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时 间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是 一种特殊算法(如线性规划是一种算法)。因而,它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。因此,在学习时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的技巧去求解。 例1 最短路线问题 图1 是一个线路网,连线上的数字表示两点之间的距离(或费用)。试寻求一条由A 到G 距离最短(或费用最省)的路线。 图1 最短路线问题 例2 生产计划问题 工厂生产某种产品,每单位(千件)的成本为1(千元),每次开工的固定成本为3 (千元),工厂每季度的最大生产能力为6(千件)。经调查,市场对该产品的需求量第一、二、三、四季度分别为2,3,2,4(千件)。如果工厂在第一、二季度将全年的需求都生产出来,自然可以降低成本(少付固定成本费),但是对于第三、四季度才能上市的产品需付存储费,每季每千件的存储费为0.5(千元)。还规定年初和年末这种产品均无库存。试制定一个生产计划,即安排每个季度的产量,使一年的总费用(生产成本和存储费)最少。 1.2 决策过程的分类 根据过程的时间变量是离散的还是连续的,分为离散时间决策过程(discrete-time -57- decision process)和连续时间决策过程(continuous-time decision process);根据过程的演变是确定的还是随机的,分为确定性决策过程(deterministic decision process)和随 机性决策过程(stochastic decision process),其中应用最广的是确定性多阶段决策过程。§2 基本概念、基本方程和计算方法 2.1 动态规划的基本概念和基本方程 一个多阶段决策过程最优化问题的动态规划模型通常包含以下要素。 2.1.1 阶段

10427-数学建模-动态规划的原理及应用

动态规划的原理及应用 动态规划是运筹学的一个分支,是求解多阶段决策过程的最优化数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类问题的新方法——动态规划。 动态规划主要用于以时间划分阶段的动态过程优化问题,但一些与时间无关的静态规划如线性规划或非线性规划,人为引进时间因素后,把它们看成多阶段过程,也可用动态规划求解。 1.动态规划的基本理论 一.动态规划的术语 在研究现实的系统时,我们必须将系统具体的术语抽象为数学统一的术语。在此先简要介绍动态规划中的常用术语。 级:我们把系统顺序地向前发展划分为若干个阶段,称这些阶段为“级”。在离散动态规划中,“级”顺序的用自然整数编号,即1,2,…,n. 状态(λ):用来描述、刻画级的特征。状态可以是单变量,也可以时向量。在此,我们假设研究的状态具有“无记忆性”,即当前与未来的收益仅决定于当前的状态,并不依赖于过去的状态和决策的历史。 状态空间(Λ):由全部系统可能存在的状态变量所组成。

决策:在每一级,当状态给定后,往往可以做出不同的决定,从而确定下一级的状态,这种决定称为决策。描述决策的变量称为决策变量。对每个状态λ∈Λ,有一非空集X(λ)称为λ的决策集。决策变量x(λ)∈X(λ)。 变换:若过程在状态λ,选择决策x(λ),可确定一个状态集T(λ,x(λ)),过程将从λ移动到其中某个状态.T(λ,x(λ))称为变换函数,它确定过程从一个状态到另一个状态的演变。T(λ,x(λ))可分为两种类型,即确定型和不确定型。确定型的T(λ,x(λ))只含有一个元。不确定型指我们不能确切知道决策的结果,但作为某已知概率分布支配的变换结果,在每级状态和决策是确定的。这时,集函数T(λ,x(λ))将包含多个元素。当T(λ,x(λ))=0 时,过程终止。 策略:顺序排列的决策集,记为v。所有可能的策略集构成策略空间Γ。 收益:评价给定策略的目标函数r(λ,v),它依赖于状态和策略。总收益是集收益s(λ,v)的某个组合(通常为集收益之和)。若T(λ,x(λ))=0,则r(λ1,v1)= s(λ1,v1);若T(λ,x(λ))= λ2,则r(λ1,v)= s(λ1,v1)+ r(λ1,v2)。 二.序贯决策过程 动态规划的寻优过程可以有正序、逆序两种方式。当初始状态给定时,用逆序方式比较好,当终止状态给定时,用正序方式较好。 采用分级的序贯决策方法,把一个含有n个变量的问题转化为求解n个单变量问题。为了应用最优化原理,必须满足分级条件,即目标函数可分性和状态可分性。 目标函数可分性:

数学建模8-动态规划和目标规划

数学建模8-动态规划和目标规划 一、动态规划 1.动态规划是求解决策过程最优化的数学方法,主要用于求解以时间划分阶段的动态过程的 优化问题。但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 2.基本概念、基本方程: (1)阶段 (2)状态 (3)决策 (4)策略 (5)状态转移方程: (6)指标函数和最优值函数: (7)最优策略和最优轨线 (8)递归方程: 3.计算方法和逆序解法(此处较为抽象,理解较为困难,建议结合例子去看)

4.动态规划与静态规划的关系:一些静态规划只需要引入阶段变量、状态、决策等就可以用动态规划方法求解(详见书中例4) 5.若干典型问题的动态规划模型: (1)最短路线问题: (2)生产计划问题:状态定义为每阶段开始时的储存量x k,决策为每个阶段的产量,记每个阶段的需求量(已知量)为d k,则状态转移方程为 (3)资源分配问题:详见例5

状态转移方程: 最优值函数: 自有终端条件: (4)具体应用实例:详见例6、例7。 二、目标规划 1.实际问题中,衡量方案优劣要考虑多个目标,有主要的,有主要的,也有次要的;有最大值的,也有最小值的;有定量的,也有定性的;有相互补充的,也有相互对立的,这时可用目标规划解决。其求解思路有加权系数法、优先等级法、有效解法等。 2.基本概念: (1)正负偏差变量: (2)绝对(刚性)约束和目标约束 ,次位赋(3)优先因子(优先等级)与权系数:凡要求第一位达到的目标赋予优先因子P 1……以此类推。 予P 2 (4)目标规划的目标函数: (5)一般数学模型:

数学建模-线性规划

-1- 第一章线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济 效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947 年G. B. Dantzig 提出 求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性 规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000 元与3000 元。 生产甲机床需用A、B机器加工,加工时间分别为每台2 小时和1 小时;生产乙机床 需用A、B、C三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时 数分别为A 机器10 小时、B 机器8 小时和C 机器7 小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1 x 台甲机床和2 x 乙机床时总利润最大,则1 2 x , x 应满足 (目标函数)1 2 max z = 4x + 3x (1) s.t.(约束条件) ?? ? ?? ? ? ≥ ≤ + ≤ + ≤ , 0 7 8 2 10 1 2 2 1 2 1 2 x x x x x x x (2) 这里变量1 2 x , x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。由于上面的目标函数及约束条件均为线性

数学建模常用的十种解题方法

数学建模常用的十种解题方法 摘要 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。数学建模的十种常用方法有蒙特卡罗算法;数据拟合、参数估计、插值等数据处理算法;解决线性规划、整数规划、多元规划、二次规划等规划类问题的数学规划算法;图论算法;动态规划、回溯搜索、分治算法、分支定界等计算机算法;最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法;网格算法和穷举法;一些连续离散化方法;数值分析算法;图象处理算法。 关键词:数学建模;蒙特卡罗算法;数据处理算法;数学规划算法;图论算法 一、蒙特卡罗算法 蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。在工程、通讯、金融等技术问题中, 实验数据很难获取, 或实验数据的获取需耗费很多的人力、物力, 对此, 用计算机随机模拟就是最简单、经济、实用的方法; 此外, 对一些复杂的计算问题, 如非线性议程组求解、最优化、积分微分方程及一些偏微分方程的解⑿, 蒙特卡罗方法也是非常有效的。 一般情况下, 蒙特卜罗算法在二重积分中用均匀随机数计算积分比较简单, 但精度不太理想。通过方差分析, 论证了利用有利随机数, 可以使积分计算的精度达到最优。本文给出算例, 并用MA TA LA B 实现。 1蒙特卡罗计算重积分的最简算法-------均匀随机数法 二重积分的蒙特卡罗方法(均匀随机数) 实际计算中常常要遇到如()dxdy y x f D ??,的二重积分, 也常常发现许多时候被积函数的原函数很难求出, 或者原函数根本就不是初等函数, 对于这样的重积分, 可以设计一种蒙特卡罗的方法计算。 定理 1 )1( 设式()y x f ,区域 D 上的有界函数, 用均匀随机数计算()??D dxdy y x f ,的方法: (l) 取一个包含D 的矩形区域Ω,a ≦x ≦b, c ≦y ≦d , 其面积A =(b 一a) (d 一c) ; ()j i y x ,,i=1,…,n 在Ω上的均匀分布随机数列,不妨设()j i y x ,, j=1,…k 为落在D 中的k 个随机数, 则n 充分大时, 有

数学建模在计算机专业的应用

应用一图论算法 图论在计算机处理问题中占有重要地位,现实中的很多问题最终都可以转化成图论问题,或者要借助图结构来存储和处理。但是怎么把一图存入计算机就要涉及到数学建模的知识。 比如下面一图: 如果要求出从节点v1到节点v5的所有路径,就可以借助计算机来很轻松的解决。但前提条件是,必须要把图以一种计算机可以理解的形式存进去,即要把它抽象为数学问题。 在此,我们需要定义一些关于图的概念,以便更好的描述问题。 边与顶点的关系有如下几种典型情况: 简单图:无自回环,无重边的图。

无向图:边没有指向, 1212 e. i i i i i ψ()={v,v}=v v此时称边e i与顶点12 i i v,v关联,称 顶点 1 i v与顶点 2 i v邻接。 有向图:边有指向, 1212 e. i i i i i ψ u u u u u r ()=(v,v)=v v 下面是具体涉及到图如何存储的问题: 1.图G(V,E)的关联矩阵x R=(r) ij n m ,若G(V,E)为无向图, 1 2 i j ij i j j i j j v e r v e e v e e ? ? =? ? ? 与不关联 与关联,为非自回环 与关联,为自回环 若G(V,E)为有向图, 1 2 i j ij i j i j v e r v e v e ? ? =? ? ? 与不关联 是的起点 是的终点 因此该图可以用关联矩阵表示出来,如下所示 1100000 1010100 0101001 0011010 0000111 R ?? ? ? ? = ? ? ? ?? 这样,我们就可以以矩阵的形式将图存入计算机

数学建模-(动态规划)

1.某公司打算向它的三个营业区增设6个销售店,每个营业区至少增设1个。各营业区每年增加的利润与增设的销售店个数有关,具体关系如表1所示。试规划各营业区应增设销售店的个数,以使公司总利润增加额最大。 : 个销售店,C 区增设1个销售店.最大利润为490万元。 贝尔曼(Bellman )最优化原理:在最优策略的任意一阶段上,无论过去的状态和决策如何,对过去决策所形成的当前状态而言,余下的诸决策必须构成最优子策略。 2.某公司拟将500万元的资本投入所属的甲、乙、丙三个工厂进行技术改造,各工厂获得投资后年利润将有相应的增长,增长额如表所示。试确定500万元资 解:将问题按工厂分为三个阶段3,2,1=k ,设状态变量k (3,2,1=k )代表从第k 个工厂到第3个工厂的投资额,决策变量k x 代表第k 个工厂的投资额。于是有状态转移率k k k x S S -=+1、允许决策集合}0|{)(k k k k k S x x S D ≤≤=和递推关系式: )}()({max )(10k k k k k S x k k x S f x g S f k k -+=+≤≤ )1,2,3(=k

0)(44=S f 当3=k 时: )}({max }0)({max )(330330333333x g x g S f S x S x ≤≤≤≤=+= 于是有表2-1,表中*3x 表示第三个阶段的最优决策。 当2=k 时: )}()({max )(2232202222x S f x g S f S x -+=≤≤ 于是有表7-3。 当1=k 时: )}()({max )(1121101111x S f x g S f S x -+=≤≤ 于是有表2-3。 然后按计算表格的顺序反推算,可知最优分配方案有两个:(1)甲工厂投资200万元,乙工厂投资200万元,丙工厂投资100万元;(2)甲工厂没有投资,乙工厂投资200万元,丙工厂投资300万元。按最优分配方案分配投资(资源),年利润将增长210万元。

数学建模之规划问答

一、线性规划 1.简介 1.1适用情况 用现有资源来安排生产,以取得最大经济效益的问题。如: (1)资源的合理利用 (2)投资的风险与利用问题 (3)合理下料问题 (4)合理配料问题 (5)运 输 问 题 (6)作物布局问题 (7)多周期生产平滑模型 (8)公交车调度安排 1.2建立线性规划的条件 (1)要求解问题的目标函数能用数值指标来反映,且为线性函数; (2)要求达到的目标是在一定条件下实现的,这些约束可用线性等式或不等式描述。 1.3线性规划模型的构成 决策变量、目标函数、约束条件。 2、一般线性规划问题 数学标准形式: 目标函数: 1 max == ∑ n j j j z c x 约束条件:1 ,1,2,...,,..0,1,2,...,.=?==???≥=?∑n ij j i j j a x b i m s t x j n matlab 标准形式:

min , ,.,.?≤?? ?=??≤≤? T s t Aeq beq lb ub f x A x b x x 3、可以转化为线性规划的问题 例:求解下列数学规划问题 1234123412341234min ||2||3||4||,2,..31,123. 2=+++? ?--+≤-?-+-≤-???--+≤-? z x x x x x x x x s t x x x x x x x x 解:作変量変换1||||,,1,2,3,4,22 +-= ==i i i i i x x x x u v i 并把新变量重新排序成一维变量[]1414,,,,,??==???? L L T u y u u v v v ,则可把模型转化为线性规划模型 []min , ,,..0.???-≤???????≥? T c y u A A b s t v y 其中:[]1,2,3,4,1,2,3,4;=T c 12,1,;2??=---??? ?T b 111111131 - - ?? ??= - -???? -1 -1 3??A 。 利用matlab 计算得最优解:12342,0,=-===x x x x 最优值z=2。 程序如下: 略

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

数学建模(工厂资源规划问题)

工厂资源规划问题 冉光明 2010070102019 信息与计算科学 指导老师:赵姣珍

目录 摘要 (1) 关键词 (1) 问题的提出 (2) 问题重述与分析 (3) 符号说明 (4) 模型假设 (4) 模型建立与求解 (5) 模型检验 (9) 模型推广 (10) 参考文献 (11) 附录 (12)

摘要:本问题是个优化问题。问题首先选择合适的决策变量即各种产品数,然后通过决策变量来表达约束条件和目标函数,再利用matlab或lingo编写程序,求得最优产品品种计划;最后通过优化模型对问题作以解释,得出当技术服务消耗33小时、劳动力消耗67小时、不消耗行政管理时,得到的是最优品种规划。 问题一回答:当技术服务消耗33小时、劳动力消耗67小时、不消耗行政管理时, 时,若使产品品产品III不值得生产。用matlab运算分析,当产品III的利润增加至25 3 种计划最优,此时需要消耗技术服务29h,劳动力消耗46h,行政管理消耗25h。 问题二回答:利用lingo得到当技术服务增加1h时,利润增加2.5元;劳动力增加1h,利润增加1元;行政管理的增减不会影响利润。 问题三回答:增加的决策变量,调整目标函数。当技术服务消耗33h,劳动力消耗17h,不消耗行政管理,新增量50h时,管理部门采取这样的决策得到最优的产品品种规划。 问题四回答:增加新的约束条件,此时当技术服务消耗32h,劳动力消耗58h,行政管理消耗10h时,得到最优产品品种规划。 本文对模型的求解给出在线性约束条件下的获利最多的产品品种规划。 关键词:线性规划;优化模型;最优品种规划

问题的提出 某工厂制造三种产品,生产这三种产品需要三种资源:技术服务、劳动力和行政管理。下表列出了三种单位产品对每种资源的需要量: 资源利润 技术服务劳动力行政管理 产品I 1 10 2 10 II 1 4 2 6 III 1 5 6 4 现有100h的技术服务、600h劳动力和300h的行政管理时间可使用,求最优产品品种规划。且回答下列问题: ⑴若产品III值得生产的话,它的利润是多少?假使将产品III的利润增加至25/3元,求获利最多的产品品种规划。 ⑵确定全部资源的影子价格。 ⑶制造部门提出建议,要生产一种新产品,该种产品需要技术服务1h、劳动力4h 和行政管理4h。销售部门预测这种产品售出时有8元的单位利润。管理部门应有怎样的决策? ⑷假定该工厂至少生产10件产品III,试确定最优产品品种规划。

数学建模课程设计——优化问题

在手机普遍流行的今天,建设基站的问题分析对于运营商来说很有必要。本文针对现有的条件和题目的要求进行讨论。在建设此模型中,核心运用到了0-1整数规划模型,且运用lingo 软件求解。 对于问题一: 我们引入0-1变量,建立目标函数:覆盖人口最大数=所有被覆盖的社区人口之和,即max=15 1j j j p y =∑,根据题目要求建立约束条件,并用数学软件LINGO 对其模型求解,得到最优解。 对于问题二: 同样运用0-1整数规划模型,建立目标函数时,此处假设每个用户的正常资费相同,所以68%可以用减少人口来求最优值,故问题二的目标函数为:max=∑=15 1j j j k p 上述模型得到最优解结果如下: 关键字:基站; 0-1整数规划;lingo 软件

1 问题的重述.........................3 2 问题的分析.........................4 3 模型的假设与符号的说明...................5 3.1模型的假设...................... 5 3.2符号的说明...................... 5 4 模型的建立及求解...................... 5 4.1模型的建立...................... 5 4.2 模型的求解...................... 6 5 模型结果的分析.......................7 6 优化方向..........................7 7 参考文献..........................8 8、附录........................... 9

(推荐)数学建模动态规划库存问题

随机库存的分配 摘要 卖方管理库存(VMI,Vendor-Managed Inventory)是现代物流中一个比较新的管理思想,它是指货物的提供者根据所有客户的当前库存量决定在一定时间内对他们的货物分配量。基于VMI思想,设计出当供货方的供应能力有限、客户需求随机情况下的分配方案,能够应用到实际的物流管理信息系统中,具有实际意义。 针对此问题,在客户需求量服从同一指数分布的前提条件下,首先通过MATLAB软件编写程序,得到50个客户的随机需求量和初始库存量,然后从车辆配载能力出发,以客户的库存费用最小为目标函数,以供货总量和每辆车的承载能力为约束条件,建立非线性随机规划模型,通过lingo软件求解模型,得到所有客户库存费用最小时的分配方案,同时得到最小库存费用为699.5543。 关键词:随即需求库存分配随机规划

一、问题重述 考虑由一个供货方和n个客户组成的配送网络,配送活动的组织基于VMI 思想。假设供货方的供应能力有限(意味着某些客户可能得不到供应),可供应的货物总量为A;拥有车辆数为K,车辆k的载重量为b k(k∈K)。每个客户的需求量是随机的,但需求的分布函数F i已知(假设F i是严格增函数,并假设不同客户的需求是相互独立的,且服从相同分布),周期初的初始库存为βi,h+i为单位货物的保管费,h-i为单位货物的缺货损失费。令q i(w i)表示客户i在得到配送量w 时的库存费用函数。令y ik表示车辆k是否服务客户i,是取1,否取0。 i 当y ik(i=1,…,n;k=0,…,K)的取值确定后,也就意味着确定了对所有客户的一个划分,如令Y k表示车辆k服务的客户集合,其应满足Y k={i∶y ik=1}。 请写出库存分配问题的模型,并带入适当规模的数据进行计算,分析其计算结果,得出结论。 二、问题分析 本问题讨论的是当供货方的供应能力不足、客户需求随机情况下的库存分配问题。客户的需求量是随机的,但需求的分布函数F i已知(假设F i是严格增函数,并假设不同客户的需求是相互独立的,且服从相同分布),在处理问题时,可以将需求量当作服从相同参数的同一指数分布,通过MATLAB软件来产生指数分布的随机数作为客户需求量,要使得所有客户的库存费用最小,需要构造与配送量、库存费、保管费等有关的目标函数,将有限的车辆数和每辆车的承载能力以及供货方的总供应量作为约束条件,建立模型,通过lingo软件求解得到具体的配送方案。 三、模型假设 1.假设客户的随即需求量服从参数为0.5的指数分布; 2.假设每个客户的初始库存量在0.1~1.5吨之间随即取值; 3.假设所有客户的库存保管费和缺货损失费相同; 4.假设供货方的总供应量为所有客户随即需求量之和的0.8倍; 5.假设不考虑运货车辆的运费。 四、符号说明

数学建模之线性规划

第一章 线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则2 1,x x 应满足 (目标函数)2134m ax x x z += (1) s.t.(约束条件)???????≥≤≤+≤+0 ,781022122 121x x x x x x x (2) 这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式 是问题的约束条件,记为s.t.(即subject to)。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选适当的决策变量,是我们建立有效模型的关键之一。 1.2 线性规划的Matlab 标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为 b Ax x c x T ≤ that such min beq x Aeq =? ub x lb ≤≤ 其中c 和x 为n 维列向量,A 、Aeq 为适当维数的矩阵,b 、beq 为适当维数的列向 量。 例如线性规划 b Ax x c x T ≥ that such max

数学建模案例分析--最优化方法建模6动态规划模型举例

§6 动态规划模型举例 以上讨论的优化问题属于静态的,即不必考虑时间的变化,建立的模型——线性规划、非线性规划、整数规划等,都属于静态规划。多阶段决策属于动态优化问题,即在每个阶段(通常以时间或空间为标志)根据过程的演变情况确定一个决策,使全过程的某个指标达到最优。例如: (1)化工生产过程中包含一系列的过程设备,如反应器、蒸馏塔、吸收器等,前一设备的输出为后一设备的输入。因此,应该如何控制生产过程中各个设备的输入和输出,使总产量最大。 (2)发射一枚导弹去击中运动的目标,由于目标的行动是不断改变的,因此应当如何根据目标运动的情况,不断地决定导弹飞行的方向和速度,使之最快地命中目标。 (3)汽车刚买来时故障少、耗油低,出车时间长,处理价值和经济效益高。随着使用时间的增加则变得故障多,油耗高,维修费用增加,经济效益差。使用时间俞长,处理价值也俞低。另外,每次更新都要付出更新费用。因此,应当如何决定它每年的使用时间,使总的效益最佳。 动态规划模型是解决这类问题的有力工具,下面介绍相关的基本概念及其数学描述。 (1)阶段 整个问题的解决可分为若干个相互联系的阶段依次进行。通常按时间或空间划分阶段,描述阶段的变量称为阶段变量,记为k 。 (2)状态 状态表示每个阶段开始时所处的自然状况或客观条件,它描述了研究过程的状况。各阶段的状态通常用状态变量描述。常用k x 表示第k 阶段的状态变量。n 个阶段的决策过程有1+n 个状态。用动态规划方法解决多阶段决策问题时,要求整个过程具有无后效性。即:如果某阶段的状态给定,则此阶段以后过程的发展不受以前状态的影响,未来状态只依赖于当前状态。 (3)决策 某一阶段的状态确定后,可以作出各种选择从而演变到下一阶段某一状态,这种选择手段称为决策。描述决策的变量称为决策变量。决策变量限制的取值范围称为允许决策集合。用)(k k x u 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数,用)(k k x D 表示k x 的允许决策集合。 (4)策略 一个由每个阶段的决策按顺序排列组成的集合称为策略。由第k 阶段的状态k x 开始到终止状态的后部子过程的策略记为)}(,),(),({)(11n n k k k k k k x u x u x u x p Λ++=。在实际问题中,可供选择的策略有一定范围,称为允许策略集合。其中达到最优效果的策略称为最优策略。 (5)状态转移方程 如果第k 个阶段状态变量为k x ,作出的决策为k u ,那么第1+k 阶段的状态变量1+k x 也被完全确定。用状态转移方程表示这种演变规律,写作(1k k T x =+k x ,)k u (6)最优值函数 指标函数是系统执行某一策略所产生结果的数量表示,是用来衡量策略优劣的数量指标,它定义在全过程和所有后部子过程上。指标函数的最优值称为最优值函数。 下面的方程在动态规划逆序求解中起着本质的作用。

数学建模,线性规划,运输为问题

有限制的运输问题:6个发点6个收点,其供应量、接收量和运费如下表1(”-”表示某个 设:发点i向收点j的货物供应量为xij. 目标函数: MinZ=20x11+15x12+16x13+5x14+4x15+7x16+17x21+15x22+33x23+12x24+8x25+6x26+9x31 +12x32+18x33+16x34+30x35+13x36+12x41+8x42+11x43+27x44+19x45+14x46+7x52+10x53+ 21x54+10x55+32x56+6x64+11x65+13x66 供应限制:x11+x12+x13+x14+x15+x16=20 x21+x22+x23+x24+x25x+26=30 x31+x32+x33+x34+x35+x36=50 x41+x42+x43+x44+x45+x46=40 x52+x53+x54+x55+x56=30 x64+x65+x66=30 需求限制:x11+x21+x31+x41=30 x12+x22+x32+x42+x52=50 x13+x23+x33+x43+x53=40 x14+x24+x34+x44+x54+x64=30 x15+x25+x35+x45+x55+x65=30 x16+x26+x36+x46+x56+x66=20 LINGO代码: min=20*x11+15*x12+16*x13+5*x14+4*x15+7*x16+17*x21+15*x22+33*x23+12*x24+8*x25+ 6*x26+9*x31+12*x32+18*x33+16*x34+30*x35+13*x36+12*x41+8*x42+11*x43+27*x44+19* x45+14*x46+7*x52+10*x53+21*x54+10*x55+32*x56+6*x64+11*x65+13*x66; x11+x12+x13+x14+x15+x16=20; x21+x22+x23+x24+x25+x26=30; x31+x32+x33+x34+x35+x36=50; x41+x42+x43+x44+x45+x46=40; x52+x53+x54+x55+x56=30; x64+x65+x66=30; x11+x21+x31+x41=30;

数学建模 四大模型总结

四类基本模型 1 优化模型 1.1 数学规划模型 线性规划、整数线性规划、非线性规划、多目标规划、动态规划。 1.2 微分方程组模型 阻滞增长模型、SARS 传播模型。 1.3 图论与网络优化问题 最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。 1.4 概率模型 决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。 1.5 组合优化经典问题 ● 多维背包问题(MKP) 背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。如何将尽可能多的物品装入背包。 多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。如何选取物品装入背包,是背包中物品的总价值最大。 多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。该问题属于NP 难问题。 ● 二维指派问题(QAP) 工作指派问题:n 个工作可以由n 个工人分别完成。工人i 完成工作j 的时间为ij d 。如何安排使总工作时间最小。 二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。 二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。 ● 旅行商问题(TSP) 旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。 ● 车辆路径问题(VRP) 车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在

数学建模数学规划

数模第二阶段培训(数学规划) 例1 油品混合问题 一种汽油的特性可用两个指标来描述,其点火性用“辛烷比率”来描述,其挥发性用“蒸汽压”来描述。某石油炼制厂生产两种汽油,这两种汽油的特性及产量如表1所示 表1 某厂炼制的汽油特性 辛烷比率蒸汽压(10-2克/cm2)可供数量(万公升) 第一种汽油104 4 3 第二种汽油94 9 7 用这两种汽油可以合成航空汽油与车用汽油两种最终产品,其性能如表2所示 表2 航空汽油与车用汽油性能要求 辛烷最小比率最大蒸汽压(10-2克 /cm2)最大需要量(万公 升) 售价(万元/万 公升) 航空汽油102 5 2 1.2 车用汽油96 8 不限0.7 根据油品混合工艺知道,当两种汽油混合时,其产品汽油的蒸汽压及辛烷比率与其组成成分的体积及相应指标成正比。问该厂应如何混合油品才能获得最大收益? 例2企业季度生产计划问题 某厂甲、乙两种产品,第一季度的最大需求量及单位产品利润和每月的库存成本如表1所示。 表1 产品需求量、利润及库存成本 需求量利润 (未计库存成本) (元/单位产品) 每月库存成本(元/单位产品) 一月二月三月 甲产品250 540 700 3.0 0.2 乙产品180 150 700 4.5 0.3 生产这两种产品都必须经过由两道工序,分别使用A、B两类机器。A类机器有4台,B类机器有5台,每台机器每月运转180工时。生产单位甲产品需机器A0.9工时,机器B1.0工时;生产单位乙产品需机器A0.5工时,机器B0.75工时。 该厂仓库容量为100平方米,存贮每单位甲产品需占面积0.75平方米,每单位乙产品需占面积1.2平方米。该季度开始时无库存量,计划在本季度结束时甲、乙两种产品各库存40单位。分别求解以下两个问题:

多目标规划matlab程序实现——【2019数学建模+思路】

优化与决策 ——多目标线性规划的若干解法及MATLAB 实现 摘要:求解多目标线性规划的基本思想大都是将多目标问题转化为单目标规划,本文介绍 了理想点法、线性加权和法、最大最小法、目标规划法,然后给出多目标线性规划的模糊数学解法,最后举例进行说明,并用Matlab 软件加以实现。 关键词:多目标线性规划 Matlab 模糊数学。 注:本文仅供参考,如有疑问,还望指正。 一.引言 多目标线性规划是多目标最优化理论的重要组成部分,由于多个目标之间的矛盾性和不可公度性,要求使所有目标均达到最优解是不可能的,因此多目标规划问题往往只是求其有效解(非劣解)。目前求解多目标线性规划问题有效解的方法,有理想点法、线性加权和法、最大最小法、目标规划法。本文也给出多目标线性规划的模糊数学解法。 二.多目标线性规划模型 多目标线性规划有着两个和两个以上的目标函数,且目标函数和约束条件全是线性函数,其数学模型表示为: 11111221221122221122max n n n n r r r rn n z c x c x c x z c x c x c x z c x c x c x =+++??=+++?? ??=+++? (1) 约束条件为: 1111221121122222112212,,,0 n n n n m m mn n m n a x a x a x b a x a x a x b a x a x a x b x x x +++≤??+++≤?? ??+++≤?≥?? (2) 若(1)式中只有一个1122i i i in n z c x c x c x =+++ ,则该问题为典型的单目标线性规划。我们记:()ij m n A a ?=,()ij r n C c ?=,12(,,,)T m b b b b = ,12(,,,)T n x x x x = ,

相关主题
文本预览
相关文档 最新文档