当前位置:文档之家› 【新教材】 新人教A版必修一 函数与方程 教案

【新教材】 新人教A版必修一 函数与方程 教案

【新教材】 新人教A版必修一 函数与方程 教案
【新教材】 新人教A版必修一 函数与方程 教案

2019-2020学年新人教A版必修一函数与方程教案

1.函数的零点

(1)函数零点的定义

对于函数y=f(x)(x∈D),把使f(x)=0的实数x叫做函数y=f(x)(x∈D)的零点.(2)三个等价关系

方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点.(3)函数零点的判定(零点存在性定理)

如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)〈0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.

2.二次函数y=ax2+bx+c (a〉0)的图象与零点的关系

Δ>0Δ=0Δ〈0

二次函数y=ax2+bx

+c(a〉0)的图象

与x轴的交点(x1,0),(x2,0)(x1,0)无交点

零点个数210

概念方法微思考

函数f(x)的图象连续不断,是否可得到函数f(x)只有一个零点?

提示不能.

题组一思考辨析

1.判断下列结论是否正确(请在括号中打“√”或“×”)

(1)函数的零点就是函数的图象与x轴的交点.(×)

(2)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.(×)

(3)二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零点.(√)

(4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)〈f(x)

2.函数f(x)=ln x-错误!的零点所在的大致区间是( )

A.(1,2) B.(2,3)

C.错误!和(3,4) D.(4,+∞)

答案 B

解析∵f(2)=ln2-1<0,f(3)=ln3-错误!>0

且函数f(x)的图象在(0,+∞)上连续不断,f(x)为增函数,

∴f(x)的零点在区间(2,3)内.

3.函数f(x)=e x+3x的零点个数是( )

A.0B.1C.2D.3

答案 B

解析由f′(x)=e x+3>0,得f(x)在R上单调递增,又f(-1)=错误!-3<0,f(0)=1〉0,因此函数f(x)有且只有一个零点.

题组三易错自纠

4.函数f(x)=ln2x-3ln x+2的零点是( )

A.(e,0)或(e2,0) B.(1,0)或(e2,0)

C.(e2,0) D.e或e2

答案 D

解析f(x)=ln2x-3ln x+2=(ln x-1)(ln x-2),

由f(x)=0得x=e或x=e2。

5.若二次函数f(x)=x2-2x+m在区间(0,4)上存在零点,则实数m的取值范围是.

答案(-8,1]

解析m=-x2+2x在(0,4)上有解,又-x2+2x=-(x-1)2+1,∴y=-x2+2x在(0,4)上的值域为(-8,1],∴-8

6.已知函数f(x)=x-错误!(x>0),g(x)=x+e x,h(x)=x+ln x(x>0)的零点分别为x1,x2,x3,则()

A.x1

C.x2〈x3〈x1D.x3

答案 C

解析作出y=x与y=错误!(x〉0),y=-e x,y=-ln x(x>0)的图象,如图所示,可知选C。

题型一函数零点所在区间的判定

1.设f(x)=ln x+x-2,则函数f(x)的零点所在的区间为()

A.(0,1) B.(1,2) C.(2,3) D.(3,4)

答案 B

解析∵f(1)=ln1+1-2=-1<0,f(2)=ln2>0,

∴f(1)·f(2)〈0,

∵函数f(x)=ln x+x-2的图象在(0,+∞)上是连续的,且为增函数,∴f(x)的零点所在的区间是(1,2).

2.若a〈b

A.(a,b)和(b,c)内B.(-∞,a)和(a,b)内

C.(b,c)和(c,+∞)内D.(-∞,a)和(c,+∞)内

答案 A

解析∵a〈b

f(b)=(b-c)(b-a)〈0,f(c)=(c-a)(c-b)〉0,

由函数零点存在性定理可知,在区间(a,b),(b,c)内分别存在零点,又函数f(x)是二次函数,最多有两个零点.因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内,故选A。

3.已知函数f(x)=log a x+x-b(a〉0且a≠1).当2

答案 2

解析对于函数y=log a x,当x=2时,可得y<1,当x=3时,可得y〉1,在同一坐标系中画出函数y=log a x,y=-x+b的图象,判断两个函数图象的交点的横坐标在(2,3)内,∴函数f(x)的零点x0∈(n,n+1)时,n=2。

思维升华判断函数零点所在区间的基本依据是零点存在性定理.对于含有参数的函数的零点

区间问题,往往要结合图象进行分析,一般是转化为两函数图象的交点,分析其横坐标的情况进行求解.

题型二函数零点个数的判断

例1(1)函数f(x)=错误!的零点个数是.

答案 2

解析当x≤0时,令x2-2=0,解得x=-2(正根舍去),所以在(-∞,0]上,f(x)有一个零点;当x〉0时,f′(x)=2+错误!>0恒成立,所以f(x)在(0,+∞)上是增函数.

又因为f(2)=-2+ln2<0,f(3)=ln3〉0,所以f(x)在(0,+∞)上有一个零点,综上,函数f(x)的零点个数为2。

(2)(2018·天津河东区模拟)函数f(x)=|x-2|-ln x在定义域内的零点的个数为() A.0B.1C.2D.3

答案 C

解析由题意可知f(x)的定义域为(0,+∞),在同一直角坐标系中画出函数y=|x-2|(x〉0),y=ln x(x>0)的图象,如图所示.

由图可知函数f(x)在定义域内的零点个数为2.

(3)函数f(x)=错误!-cos x在[0,+∞)内()

A.没有零点B.有且仅有一个零点

C.有且仅有两个零点D.有无穷多个零点

答案 B

解析当x∈错误!时,因为f′(x)=错误!+sin x,错误!〉0,sin x>0,所以f′(x)〉0,故f(x)在[0,1]上单调递增,且f(0)=-1〈0,f(1)=1-cos1〉0,所以f(x)在[0,1]内有唯一零点.当x〉1时,f(x)=x-cos x>0,故函数f(x)在[0,+∞)上有且仅有一个零点,故选B。

思维升华函数零点个数的判断方法

(1)直接求零点.

(2)利用零点存在性定理再结合函数的单调性确定零点个数.

(3)利用函数图象的交点个数判断.

跟踪训练1(1)已知函数f(x)=错误!则函数g(x)=f(1-x)-1的零点个数为()A.1B.2

C.3D.4

答案 C

解析g(x)=f(1-x)-1

={(1-x)2+2(1-x)-1,1-x≤0

|lg(1-x)|-1,1-x>0

=错误!

易知当x≥1时,函数g(x)有1个零点;当x〈1时,函数g(x)有2个零点,所以函数g(x)的零点共有3个,故选C。

(2)函数f(x)=4cos2错误!·cos错误!-2sin x-|ln(x+1)|的零点个数为.

答案 2

解析f(x)=2(1+cos x)sin x-2sin x-|ln(x+1)|=sin2x-|ln(x+1)|,x>-1,函数f(x)的零点个数即为函数y1=sin2x(x〉-1)与y2=|ln(x+1)|(x>-1)的图象的交点个数.

分别作出两个函数的图象,如图,可知有两个交点,则f(x)有两个零点.

题型三函数零点的应用

命题点1 根据函数零点个数求参数

例2 (1)(2018·石景山模拟)已知函数f(x)=错误!若关于x的方程f(x)=k有两个不同零点,则k的取值范围是__________.

答案(0,1)

解析作出f(x)=错误!的函数图象如图所示:

方程f(x)=k有两个不同零点,即y=k和f(x)=错误!的图象有两个交点,由图可得k 的取值范围是(0,1).

(2)已知函数f(x)=|x2+3x|,x∈R,若方程f(x)-a|x-1|=0恰有4个互异的实数根,则实数a的取值范围是________________.

答案(0,1)∪(9,+∞)

解析由题意知a〉0.

在同一直角坐标系中作出y=|x2+3x|,y=a|x-1|的图象如图所示.

由图可知f(x)-a|x-1|=0有4个互异的实数根等价于y=|x2+3x|与y=a|x-1|的图象有4个不同的交点且4个交点的横坐标都小于1,

所以错误!有两组不同解,

消去y得x2+(3-a)x+a=0有两个不等实根,

所以Δ=(3-a)2-4a>0,即a2-10a+9〉0,

解得a<1或a>9。

又a〉0,∴09.

引申探究

本例(2)中,若f(x)=a恰有四个互异的实数根,则a的取值范围是________________.答案错误!

解析作出y=|x2+3x|,y=a的图象如图所示.

由图象易知,当y=|x2+3x|和y=a的图象有四个交点时,0

命题点2 根据函数零点的范围求参数

例3若函数f(x)=(m-2)x2+mx+2m+1的两个零点分别在区间(-1,0)和区间(1,2)内,则m的取值范围是.

答案错误!

解析依题意,结合函数f(x)的图象分析可知,m需满足{m≠2,f(-1)·f(0)<0,,f(1)·f(2)〈0

即错误!

解得错误!〈m〈错误!.

思维升华根据函数零点的情况求参数有三种常用方法

(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.

(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.

跟踪训练2(1)方程12

log (a -2x

)=2+x 有解,则a 的最小值为.

答案 1

解析 若方程12

log (a -2x

)=2+x 有解,则错误!

2+x

=a -2x 有解,即错误!错误!x +2x

=a

有解,因为错误!错误!x +2x

≥1,故a 的最小值为1.

(2)已知函数f (x )=错误!若函数g (x )=f (x )-m 有三个零点,则实数m 的取值范围是. 答案 错误!

解析 作出函数f (x )的图象如图所示.

当x ≤0时,f (x )=x 2

+x =错误!2

-错误!≥-错误!,若函数f (x )与y =m 的图象有三个不同的交点,则-1

4

〈m ≤0,即实数m 的取值范围是错误!。

利用转化思想求解函数零点问题

在求和函数零点有关的参数范围问题中,一般有两种思路:

(1)函数零点个数可转化为两个函数图象的交点个数,利用数形结合求解参数范围. (2)“a =f (x )有解”型问题,可以通过求函数y =f (x )的值域解决.

例(1)若函数f (x )=|log a x |-2-x

(a >0且a ≠1)的两个零点是m ,n ,则( ) A .mn =1B .mn >1 C .0

解析 由题设可得|log a x |=错误!x

,不妨设a 〉1,m

x

的图象如图所示,结合图象可知0〈m 〈1,n 〉1,且-log a m =错误!m

,log a n =错误!n

,以上两式两边相减可得log a (mn )=错误!n

-错误!m

<0,所以0〈mn 〈1,故选C.

(2)(2018·全国Ⅰ)已知函数f (x )=错误!g (x )=f (x )+x +a 。若g (x )存在2个零点,

则a的取值范围是()

A。[-1,0) B。[0,+∞)

C。[-1,+∞) D。[1,+∞)

答案 C

解析令h(x)=-x-a,

则g(x)=f(x)-h(x).

在同一坐标系中画出y=f(x),y=h(x)图象的示意图,如图所示。

若g(x)存在2个零点,则y=f(x)的图象与y=h(x)的图象有2个交点,平移y=h(x)的图象可知,当直线y=-x-a过点(0,1)时,有2个交点,此时1=-a,a=-1.

当y=-x-a在y=-x+1上方,即a<-1时,仅有1个交点,不符合题意;

当y=-x-a在y=-x+1下方,即a>-1时,有2个交点,符合题意.

综上,a的取值范围为[-1,+∞).故选C。

(3)若关于x的方程22x+2x a+a+1=0有实根,则实数a的取值范围为.

答案(-∞,2-2错误!]

解析由方程,解得a=-错误!,设t=2x(t〉0),

则a=-错误!=-错误!

=2-错误!,其中t+1〉1,

由基本不等式,得(t+1)+错误!≥2错误!,

当且仅当t=错误!-1时取等号,故a≤2-2错误!。

1.已知函数f(x)=错误!-log2x,在下列区间中,包含f(x)零点的区间是( )A.(0,1) B.(1,2)

C.(2,4) D.(4,+∞)

答案 C

解析因为f(1)=6-log21=6>0,f(2)=3-log22=2>0,f(4)=错误!-log24=-错误! <0,所以函数f(x)的零点所在区间为(2,4).

2.函数f(x)=

1

2

x-错误!x的零点个数为()

A.0B.1C.2D.3 答案 B

解析函数f(x)=

1

2

x-错误!x的零点个数是方程

1

2

x-错误!x=0的解的个数,即方程

1

2

x

=错误!x的解的个数,也就是函数y=

1

2

x与y=错误!x的图象的交点个数,在同一坐标系中

作出两个函数的图象如图所示,可得交点个数为1.

3.函数f(x)=2x-错误!-a的一个零点在区间(1,2)内,则实数a的取值范围是( )A.(1,3) B.(1,2)

C.(0,3) D.(0,2)

答案 C

解析因为f(x)在(0,+∞)上是增函数,则由题意得f(1)·f(2)=(0-a)(3-a)<0,解得0〈a<3,故选C。

4.已知函数f(x)=错误!则使方程x+f(x)=m有解的实数m的取值范围是( )A.(1,2)

B.(-∞,-2]

C.(-∞,1)∪(2,+∞)

D.(-∞,1]∪[2,+∞)

答案 D

解析当x≤0时,x+f(x)=m,即x+1=m,解得m≤1;当x>0时,x+f(x)=m,即x+错误!=m,解得m≥2,即实数m的取值范围是(-∞,1]∪[2,+∞).故选D.

5.已知函数f(x)=错误!(a∈R),若函数f(x)在R上有两个零点,则a的取值范围是( ) A.(-∞,-1) B.(-∞,0)

C.(-1,0) D.[-1,0)

答案 D

解析当x>0时,f(x)=3x-1有一个零点x=错误!,所以只需要当x≤0时,e x+a=0有一个根即可,即e x=-a.当x≤0时,e x∈(0,1],所以-a∈(0,1],即a∈[-1,0),故选D。

6.已知函数f(x)=错误!若f(0)=-2,f(-1)=1,则函数g(x)=f(x)+x的零点个数为________.

答案 3

解析依题意得{c=-2,,-1-b+c=1,解得错误!

令g(x)=0,得f(x)+x=0,

该方程等价于①错误!

或②错误!

解①得x=2,解②得x=-1或x=-2,

因此,函数g(x)=f(x)+x的零点个数为3。

7.若函数f(x)=x2+ax+b的两个零点是-2和3,则不等式af(-2x)>0的解集是.

答案错误!

解析∵f(x)=x2+ax+b的两个零点是-2,3.

∴-2,3是方程x2+ax+b=0的两根,

由根与系数的关系知错误!

∴错误!

∴f(x)=x2-x-6.∵不等式af(-2x)〉0,

即-(4x2+2x-6)〉0?2x2+x-3〈0,

解集为错误!。

8.已知函数f(x)=错误!若存在实数b,使函数g(x)=f(x)-b有两个零点,则a的取值范围是.

答案(-∞,0)∪(1,+∞)

解析令φ(x)=x3(x≤a),h(x)=x2(x〉a),函数g(x)=f(x)-b有两个零点,即函数y=f(x)的图象与直线y=b有两个交点,结合图象(图略)可得a〈0或φ(a)>h(a),即a<0或a3〉a2,解得a〈0或a〉1,故a∈(-∞,0)∪(1,+∞).

9.定义在R上的奇函数f(x)满足:当x>0时,f(x)=2019x+log2019x,则在R上,函数f(x)零点的个数为.

答案 3

解析因为函数f(x)为R上的奇函数,

所以f(0)=0,当x>0时,f(x)=2019x+log2019x在区间错误!内存在一个零点,又f(x)为增函数,

因此在(0,+∞)内有且仅有一个零点.

根据对称性可知函数在(-∞,0)内有且仅有一个零点,

从而函数f(x)在R上的零点个数为3.

log x,记函数h(x)=错误!则函数F(x)=h(x)+x 10.已知函数f(x)=错误!x,g(x)=

1

2

-5的所有零点的和为.

答案 5

解析由题意知函数h(x)的图象如图所示,易知函数h(x)的图象关于直线y=x对称,函

数F (x )所有零点的和就是函数y =h (x )与函数y =5-x 图象交点横坐标的和,设图象交点的横坐标分别为x 1,x 2,因为两函数图象的交点关于直线y =x 对称,所以错误!=5-错误!,所以x 1+x 2=5。

11.函数f (x )=错误!a ∈R ,当0≤x 〈1时,f (x )=1-x ,则f (x )的零点个数为________. 答案 1

解析 当x 〈0时,必存在x 0=-e -a

<0,使得f (x 0)=0,因此对任意实数a ,f (x )在(-∞,0)内必有一个零点;当x ≥0时,f (x )是周期为1的周期函数,且0≤x <1时,f (x )=1-x .因此可画出函数的大致图象,如图所示,可知函数f (x )的零点个数为1。

12.关于x 的二次方程x 2

+(m -1)x +1=0在区间[0,2]上有解,求实数m 的取值范围. 解 显然x =0不是方程x 2+(m -1)x +1=0的解, 0

又∵y =x +错误!在(0,1]上单调递减,在[1,2]上单调递增, ∴y =x +错误!在(0,2]上的取值范围是[2,+∞), ∴1-m ≥2,∴m ≤-1, 故m 的取值范围是(-∞,-1].

13.已知f (x )是奇函数并且是R 上的单调函数,若函数y =f (2x 2

+1)+f (λ-x )只有一个零点,则实数λ的值是( ) A.错误!B 。错误! C .-错误!D .-错误! 答案 C

解析 依题意,方程f (2x 2

+1)+f (λ-x )=0只有1个解,故f (2x 2+1)=-f (λ-x )=f (x -λ)有1个实数解,

∴2x 2

+1=x -λ,即2x 2

-x +1+λ=0有两相等实数解,

故Δ=1-8(1+λ)=0,解得λ=-7

8

.故选C.

14.定义在R 上的奇函数f (x ),当x ≥0时,f (x )=错误!则函数F (x )=f (x )-错误!的所有零点之和为. 答案 错误!

解析 由题意知,当x 〈0时,

f (x )=错误!作出函数f (x )的图象如图所示,设函数y =f (x )的图象与y =错误!交点的横

坐标从左到右依次为x 1,x 2,x 3,x 4,x 5,由图象的对称性可知,x 1+x 2=-6,x 4+x 5=6,x 1+x 2+x 4+x 5=0,令-错误!=错误!,解得x 3=错误!,所以函数F (x )=f (x )-错误!的所有零点之和为错误!.

15.(2018·济南模拟)设x 1,x 2分别是函数f (x )=x -a -x

和g (x )=x log a x -1的零点(其中

a 〉1),求x 1+4x 2的取值范围.

解 f (x )=x -a -x

的零点x 1是方程x =a -x

,即错误!=a x

的解,g (x )=x log a x -1的零点x 2是方程x log a x -1=0,即错误!=log a x 的解,即x 1,x 2是y =a x

与y =log a x 与y =错误!交点A ,

B 的横坐标,可得0

图象也关于y =x 对称,∴A ,B 关于y =x 对称,设A 错误!,B 错误!,∴A 关于y =x 的对称点A ′错误!与B 重合,错误!=x 1,即x 2x 1=1,x 1+4x 2=x 1+x 2+3x 2〉2错误!+3x 2>2+3=5,

x 1+4x 2的取值范围是(5,+∞).

16.已知函数f (x )是偶函数,f (0)=0,且x >0时,f (x )是增函数,f (3)=0,则函数g (x )=f (x )+lg |x +1|的零点个数为. 答案 3

解析 画出函数y =f (x )和y =-lg |x +1|的大致图象,如图所示.

∴由图象知,函数g (x )=f (x )+lg |x +1|的零点的个数为3。

17.已知函数f(x)=错误!若f(x)=m有四个零点a,b,c,d,求abcd的取值范围.解作出函数f(x)的图象,不妨设a

则-log2a=log2b,∴ab=1.

又根据二次函数的对称性,可知c+d=7,

∴cd=c(7-c)=7c-c2(2〈c〈3),∴10

∴abcd的取值范围是(10,12).

人教版九年级数学上册二次函数教案

教材分析 本节课是数学新人教版九级(上)第二十二章《二次函数》第一节课内容 二次函数教学设计 一、教学目标知识方面: 1.理解并掌握二次函数的概念; 2.能根据实际问题中的条件列出二次函数的解析式。 3.经历探索、分析和建立两个变量之间的二次函数关系的过程,体会二次函数是刻画现实世界的一个有效的数学模型。 4.通过分析实际问题列出二次函数关系式,培养学生分析问题、解决问题的能力。情感方面:通过学生的主动参与,师生、学生之间的合作交流,提高学生的学习兴趣,激发他们的求知欲、培养合作意识。 二、教材分析 本节课是数学新人教版九年级(上)第二十二章《二次函数》第一节课内容.知识方面,它是在正比例函数,一次函数,对函数认识的完善与提高;也是对方程的理解的补充,同时也是以后学习初等函数的基础。根据本节的教学内容及学生学情,给彩虹、桥梁等图片这些丰富的生活实例,进一步让学生充分感受到二次函数的应用价值与实际意义。 重点是理解二次函数的概念,能根据已知条件写出函数解析式; 难点是从实例中抽象出二次函数的定义,会分析实例中的二次函数关系。 三、教学过程教学过程: 一、提出问题,导入新课。 1、回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?图象形状各是什么? 2、教师提出问题:投篮球时篮球运行的路线是什么曲线?这种曲线的形状是怎样的?是否象以前学过的函数图象?能否用新的函数关系式来表示?怎样计算篮球达到最高点时的高度?这将在本章——二次函数中学习。 3、你能举出一些生活中类似的曲线吗? 二、合作交流,形成概念。1.列式表示下面函数关系。 问题1:正方体的六个面是全等的正方形,如果正方形 的棱长为x,表面积为y,写出y与x的关系。 问题2:某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的数量y将随计划所定的x的值而定,y与x之间的关系怎样表示? 活动中教师关注: (1)学生参与小组合作讨论后,能否明白题意,写出相应关系式。 (2)问题3中可先分析一年后的产量,再得出两年后的产量。 2.教师引导学生观察,分析上面三个函数关系式的共同点。 学生小组交流、讨论得出结论,它们的共同点: (1)等号左边是变量y,右边是关于自变量x的整式。 a,b,c为常数,且a≠0 (2)等式的右边最高次数为,可以没有一次项和常数项,但不能没有二次项。(3)x的取值范围是任意实数。 教师口述二次函数的定义并板书在黑板上:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫二次函数。

【新教材】 新人教A版必修一 函数与方程 教案

2019-2020学年新人教A版必修一函数与方程教案 1.函数的零点 (1)函数零点的定义 对于函数y=f(x)(x∈D),把使f(x)=0的实数x叫做函数y=f(x)(x∈D)的零点.(2)三个等价关系 方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点.(3)函数零点的判定(零点存在性定理) 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)〈0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根. 2.二次函数y=ax2+bx+c (a〉0)的图象与零点的关系 Δ>0Δ=0Δ〈0 二次函数y=ax2+bx +c(a〉0)的图象 与x轴的交点(x1,0),(x2,0)(x1,0)无交点 零点个数210 概念方法微思考 函数f(x)的图象连续不断,是否可得到函数f(x)只有一个零点? 提示不能. 题组一思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数的零点就是函数的图象与x轴的交点.(×) (2)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.(×) (3)二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零点.(√) (4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)〈f(x)

《一次函数》教案

《一次函数》教案 教学目标 1、理解一次函数和正比例函数的概念. 2、能根据所给条件写出简单的一次函数表达式. 3、经历从实际问题中得到函数关系式这一过程,发展学生的数学应用能力. 教学重点 理解一次函数和正比例函数的概念. 教学难点 能根据所给条件写出简单的一次函数表达式,发展学生的抽象思维能力. 教学过程 一、引入新课 展示一些与学生生活中有关的图片,如弹簧、橡皮筋等等的实物,请同学们思考一些问题.承接上节课函数的关系,让同学们感受到变量之间关系式通过多种形式表达出来的,感受到研究函数的必要性.生活中的实例,更能激发学生学习的激情,起到很好的导入新课的效果. 二、探究新知 例1某弹簧的自然长度为3cm,在弹簧限度内,所挂物体的质量x每增加1kg,弹簧长度y 增加0.5cm. (1)计算所挂物体的质量分别为1kg、2kg、3kg、4kg、5kg时的弹簧长度,并填入下表: 例2某辆汽车油箱有汽油60L,汽车每行驶50km耗油6L. (1)完成下表: (3)你能写出剩油量z与汽车形式路程x之间的关系吗? 例3我国自2011年9月1日起,个人工资、薪金所得税征收办法规定:月收入低于3500元的部分不收税;月收入超过3500元但低于5000元的部分征收3%的所得税……如果某人月收入

3860元. (1)当月收入大于3500元而又小于5000元时,写出应缴纳所得税y(元)与月收入x (元)之间的关系式. (2)某人月收入为4160元,他应该缴纳所得税多少元? (3)如果某人本月缴所得税19.2元,那么此人本月工资、薪金是多少以元? =+(,k b为常数,k≠0)的形一般地,若两个变量x,y间的关系式可以表示成y kx b b=时,则y是x的式,则称y是x的一次函数(x是自变量,y为因变量).特别地,当0 正比例函数. 三、拓展练习 例1、写出下列各题中x与y之间的关系式,并判断:y是否为x的一次函数?是否为正比例函数? (1)汽车以60千米/时的速度匀速行驶,行驶路程y(千米)与行驶时间x(时)之间的关系; (2)圆的面积y(厘米2)与它的半径x(厘米)之间的关系; (3)一棵树现在高50厘米,每个月长高2厘米,x个月后这棵树的高度为y(厘米),则y 与x的关系. 例2:我国自2011年9月1日起,个人工资、薪金所得税征收办法规定:月收入低于3500元的部分不收税:月收入超过3500元但低于5000元的部分征收3%的所得税,如某人月收入38 60元,他应缴个人工资、薪金所得税为(3860-3500)×3%=10.8(元). (1)当月收入大于3500元而又小于5000元时,写出应缴纳个人工资、薪金所得税y(元)与月收入x(元)之间的关系式. (2)某人月收入为4160元,他应缴纳个人工资、薪金所得税多少元? (3)如果某人本月应缴纳个人工资、薪金所得税19.2元,那么此人本月工资、薪金收入是多少元? 四、课堂小结 =+这节课我们学习了一类很有用的函数-一次函数,只要解析式可以表示成y kx b b=时的特(,k b为常数,k≠0)的形式的函数则称为一次函数.正比例函数是一次函数当0 殊情形. 五、布置作业 习题6.2

初中数学二次函数专题复习教案

初中数学二次函数专题复习教案 〖知识点〗二次函数、抛物线的顶点、对称轴和开口方向。 〖大纲要求〗 1.理解二次函数的概念; 2.会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象; 3.会平移二次函数y=a x2 (a≠0)的图象得到二次函数y=a(ax +m)2 +k 的图象,了解特殊与一般相互联系和转化的思想; 4.会用待定系数法求二次函数的解析式; 5.利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。 内容 (1)二次函数及其图象 如果y=ax 2+bx+c (a,b ,c 是常数,a ≠0),那么,y叫做x 的二次函数。 二次函数的图象是抛物线,可用描点法画出二次函数的图象。 (2)抛物线的顶点、对称轴和开口方向 抛物线y=ax 2 +bx +c(a ≠0)的顶点是)44, 2(2a b ac a b --,对称轴是a b x 2-=,当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。 抛物线y =a (x+h)2+k(a ≠0)的顶点是(-h ,k ),对称轴是x=-h. 〖考查重点与常见题型〗 1.考查二次函数的定义、性质,有关试题常出现在选择题中,如: 已知以x 为自变量的二次函数y =(m-2)x2+m 2-m-2额图像经过原点, 则m 的值是 2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数y =k x+b的图像在第一、二、三象限内,那么函数 y =kx 2+bx -1的图像大致是( ) y 0 -1 x

高一数学必修一函数与方程知识梳理

高一数学必修一函数与方程知识梳理 函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,以下是函数与方程知识梳理,请大家学习。 1、函数零点的定义 (1)对于函数)(xfy,我们把方程0)(xf的实数根叫做函数)(xfy 的零点。 (2)方程0)(xf有实根函数()yfx的图像与x轴有交点函数()yfx 有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(xf是否有实数根,有几个实数根。函数零点的求法:解方程0)(xf,所得实数根就是()fx的零点(3)变号零点与不变号零点 ①若函数()fx在零点0x左右两侧的函数值异号,则称该零点为函数()fx的变号零点。②若函数()fx在零点0x左右两侧的函数值同号,则称该零点为函数()fx的不变号零点。 ③若函数()fx在区间,ab上的图像是一条连续的曲线,则 0)()(bfaf是()fx在区间,ab内有零点的充分不必要条件。 2、函数零点的判定 (1)零点存在性定理:如果函数)(xfy在区间],[ba上的图象是连续不断的曲线,并且有()()0fafb,那么,函数)(xfy在区间,ab 内有零点,即存在),(0bax,使得0)(0xf,这个0x也就是方程0)(xf的根。(2)函数)(xfy零点个数(或方程0)(xf实数根的个

数)确定方法 ①代数法:函数)(xfy的零点0)(xf的根; ②(几何法)对于不能用求根公式的方程,可以将它与函数)(xfy的图象联系起来,并利用函数的性质找出零点。(3)零点个数确定 0)(xfy有2个零点0)(xf有两个不等实根; 0)(xfy有1个零点0)(xf有两个相等实根; 0)(xfy无零点0)(xf无实根;对于二次函数在区间,ab上的零点个数,要结合图像进行确定. 3、二分法 (1)二分法的定义:对于在区间[,]ab上连续不断且()()0fafb的函数()yfx,通过不断地把函数()yfx的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; (2)用二分法求方程的近似解的步骤: ①确定区间[,]ab,验证()()0fafb,给定精确度 ②求区间(,)ab的中点c; ③计算()fc; (ⅰ)若()0fc,则c就是函数的零点; (ⅱ) 若()()0fafc,则令bc(此时零点0(,)xac (ⅲ) 若()()0fcfb,则令ac(此时零点0(,)xcb 宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科教师仍沿用“教习”一称。其实“教谕”在明清时还有学官一意,即主管县一级的

确定一次函数表达式教案

确定一次函数表达式教案 教学目标 1.了解两个条件可确定一次函数;能根据所给信息(图象、表格、实际问题等)利用待定系数法确定一次函数的表达式;并能利用所学知识解决简单的实际问题. 2.经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步发展数形结合的思想方法; 3.经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维. 教学重点:根据所给信息,利用待定系数法确定一次函数的表达式. 教学难点:在实际问题情景中寻找条件,确定一次函数的表达式. 教学方法:启发引导. 2.课前准备 教具:教材、课件、电脑. 学具:教材、练习本. 教学过程 一复习旧知:1、y=2x-3的性质 2、点(2,3)(2,1)(0,3)(3,0)在一次函数y=2x-3的图象上的有() 二导入新课:根据表达式,我们可以说出它的有关性质。如果给你信息,你能否求出函数表达式呢?本节课我们一起来探索。板书课题 三探究新知:结合课本自己完成探究一二三 探究一 某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒)的关系如图所示. (1)写出v与t之间的关系式;

(2)下滑3秒时物体的速度是多少? 探究二 例1 在弹性限度内,弹簧的长度y (厘米)是所挂物体的质量x (千克)的一次函数,一根弹簧不挂物体时长14.5厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出y 与x 之间的关系式,并求出所挂物体的质量为4千克时弹簧的长度. 解:设b kx y +=,根据题意,得 14.5=b , ① 16=3k +b ,② 将5.14=b 代入②,得5.0=k . 所以在弹性限度内,5.145.0+=x y . 当4=x 时,5.165.1445.0=+?=y (厘米). 即物体的质量为4千克时,弹簧长度为5.16厘米. 探究三 确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢? 四自学完以后小组交流展示自学成果,自学中遇到的困惑是什么? 教师引导归纳总结 在上面的两个题中,有哪些步骤是相同的,你能否总结出求一次函数表达式的步骤. 求函数表达式的步骤有:1.设一次函数表达式. 2.根据已知条件列出有关方程. 3.解方程. 4.把求出的k ,b 值代回到表达式中即可 五练习巩固 : 1.若一次函数b x y +=2的图象经过A (-1,1),则=b ,该函数图象经过点B (1, )和点C ( ,0). 2.如图,直线l 是一次函数b kx y +=的图象,填空:

高三数学一轮复习教案:函数与方程 必修一

必修Ⅰ—08 函数与方程 1、函数的零点与方程的根:一般地,对于函数 ()f x ,如果存在实数c ,当x c =时,()0f c =,那么把x c = 叫做函数()f x 的零点.解方程()0f x =,即得()f x 的所有零点. 2、二分法的基本思想: (1)先找到a b 、,使(),()f a f b 异号,说明在区间()a b 、内一定有零点,然后求()2 a b f +. (2)假设()0,()0,f a f b a b <><,如果()2a b f +=0,该点就是零点;如果()2 a b f +<0,则在区间(,)2a b b +内有零点,如果()2a b f +>0,则在区间(,)2 a b a +内有零点, (3)按上述方法再求该区间中点的函数值,这样就可以不断接近零点.通过每次把()f x 的零点所在小 区间收缩一半的方法,使区间的两个端点逐步逼近函数的零点,以求得零点的近似值,这种方法叫做二分法. 3、函数的零点存在性: 如果函数()f x 在区间(,)a b 上是连续不间断的,且()()0f a f b ?<,则函数()f x 在区间(,)a b 上 存在实数c ,当x c =时, ()0f c =, x c =称为函数()f x 在区间(,)a b 上的一个零点.它只能判定函数在区间上有零点,但不能判定具体个数. 例1、 已知函数 2()log f x x =,问方程()0f x =在区间1,44??????上有没有实数根,为什么? 例2、 用二分法求函数 3()3f x x =-的一个正实数零点(精确到0.1).

例3、 若函数2()f x x ax b =++的两零点为—2和3,则方程(2)0f x -=的解是 . 例4、 已知二次函数2()f x ax bx c =++.若,a b c >>且(1)0f =,试证明()f x 必有两个零点.

九年级数学一元二次函数教案

个性化教学辅导

设纵坐标为k ,则横坐标是k c bx ax =++2 的两个实数根. (5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02 ≠++=a c bx ax y 的图像G 的交点,由 方程组 c bx ax y n kx y ++=+=2 的解的数目来确定:①方程组有两组不同的解时?l 与G 有两个交 点; ②方程组只有一组解时?l 与G 只有一个交点;③方程组无解时?l 与G 没有交点. (6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2 与x 轴两交点为 ()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故 a c x x a b x x = ?-=+2121,()()a a ac b a c a b x x x x x x x x AB ?=-=-?? ? ??-=--= -= -=44422 212 212 2121 课 后 作 业 1.抛物线y =x 2 +2x -2的顶点坐标是 ( ) A.(2,-2) B.(1,-2) C.(1,-3) D.(-1,-3) 2.已知二次函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( ) A.ab >0,c >0 B.ab >0,c <0 C.ab <0,c >0 D.ab <0,c <0 C A E F B D 第2,3题图 第4题图 3.二次函数c bx ax y ++=2 的图象如图所示,则下列结论正确的是( ) A .a >0,b <0,c >0 B .a <0,b <0,c >0 C .a <0,b >0,c <0 D .a <0,b >0,c >0

高一数学必修一公式

高一数学必修一公式 必修一 一、集合 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集 合 3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋, 大西洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的篮球队 员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x∈R| x-3>2} ,{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形} 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 注意:B A?有两种可能(1)A是B的一部分,;(2)A与 B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A?/B或B?/A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠B那就说集合A是集合B的真子 集,记作A B(或B A) ③如果 A?B, B?C ,那么 A?C ④如果A?B 同时 B?A 那么A=B

人教版数学必修一函数与方程练习题

人教版数学必修一函数与方程练习题 重点:掌握零点定理的内容及应用 二次函数方程根的分布 学会利用图像进行零点分布的分析 1. 下列函数中,不能用二分法求零点的是( ) 2. 如果二次函数 )3(2+++=m mx x y 有两个不同的零点,则m 的取值范围是( ) 3. A.()6,2- B.[]6,2- C.{}6,2- D.( )(),26,-∞-+∞ 4. 已知函数22)(m mx x x f --=,则)(x f ( ) A .有一个零点 B .有两个零点 C .有一个或两个零点 D .无零点 5. 已知函数)(x f 的图象是连续不间断的,有如下的)(,x f x 对应值表 x 1 2 3 4 5 6

函数)(x f 在区间]6,1[上的零点至少有( ) A .2个 B .3个 C .4个 D .5个 6. 若方程0=--a x a x 有两个根,则a 的取值范围是( ) A .)1(∞+ B .)1,0( C .),0(+∞ D .? 7. 设函数???>≤++=,0,3,0,)(2x x c bx x x f 若2)2(),0()4(-=-=-f f f ,则函数 x x f y -=)(的零点的个数为( ) A .1 B .2 C .3 D .4 8. 无论m 取哪个实数值,函数)2 3(232--+-=x m x x y 的零点个数都是( ) A .1 B .2 C .3 D .不确定 9. 已知函数).0(42)(2>++=a ax ax x f 若0,2121=+ B .)()(21x f x f = C .)()(21x f x f < D .)(1x f 与)(2x f 大 小不能确定 10. 若一次函数b ax x f +=)(有一个零点2,则二次函数ax bx x g -=2)(的 零点是 11. 根据下表,能够判断方程)()(x g x f =有实数解的区间 是 .

最全-初中数学-一次函数教案

个性化教学辅导教案 学科: 数学任课教师:张老师授课时间:年11 月16 日

图像性质 1.作法与图形:通过如下3个步骤: (1)列表. (2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。] 一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。 正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。(3)连线,可以作出一次函数的图象——一条直线。 因此,作一次函数的图象只需知道2点,并连成直线即可。 (通常找函数图象与x轴和y轴的交点分别是-k分之b与0,0与b). 2.性质: (1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。 (2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。 () () ()3 2 1 . k ? ? ? ? ? < = > < b b b 3. 在一次函数y=kx+b中: 当0 k>时,y随x的增大而增大, 当0 b>时,直线交y轴于正半轴,必过一、二、三象限; 当0 b<时,直线交y轴于负半轴,必过一、三、四象限. 当0时,直线交y轴于正半轴,必过一、二、四象限; () () ()3 2 1 . k ? ? ? ? ? < = > > b b b

三、例题讲析 一次函数的图像及性质 1、一次函数的图象过点(0,2),且函数y的值随自变量x的增大而增大,请写出一个符合条件的函数解析式: 2、已知关于x、y的一次函数()12 y m x =--的图象经过平面直角坐标系中的第一、三、四象限,那么m的取值范围是 3、函数(0) y kx k k =+≠在直角坐标系中的图象可能是() 4.一次函数21 y x =-的图象大致是() 5.在平面直角坐标系中,直线1 y x =+经过() A.第一、二、三象限B.第一、二、四象限 C.第一、三、四象限D.第二、三、四象限 6、如图,直线l上有一动点P(x, y),则y随x的增大而_____________。 7、已知f (x)为一次函数。若f (-3)>0且f (-1)=0,判断下列四个式子, 哪一个是正确的?( ) A (A) f (0)<0 (B) f (2)>0 (C) f (-2)<0 (D) f (3)>f (-2) 8、已知一次函数的图象过点(03) ,与(21),,则这个一次函数y随x的增大而. O x y O x y O x y y x O A.B.C.D.

高中数学必修一 函数与方程教学设计(3)

函数与方程教学设计(3) 一、教学内容解析 本节课的主要内容有函数零点的的概念、函数零点存在性判定定理。 函数f(x)的零点,是中学数学的一个重要概念,从函数值与自变量对应的角度看,就是使函数值为0的实数x;从方程的角度看,即为相应方程f(x)=0的实数根,从函数的图形表示看,函数的零点就是函数f(x)与x轴交点的横坐标.函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。 函数零点的存在性判定定理,其目的就是通过找函数的零点来研究方程的根,进一步突出函数思想的应用,也为二分法求方程的近似解作好知识上和思想上的准备。定理不需证明,关键在于让学生通过感知体验并加以确认,由些需要结合具体的实例,加强对定理进行全面的认识,比如 对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则.从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形。 函数与方程相比较,一个“动”,一个“静”;一个“整体”,一个“局部”。用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础。 本节是函数应用的第一课,因此教学时应当站在函数应用的高度,从函数与其他知识的联系的角度来引入较为适宜。 二、教学目标解析 1.结合具体的问题,并从特殊推广到一般,使学生领会函数与方程之间的内在联系,从而了解函数的零点与方程根的联系。

初三数学二次函数优秀教案

初三数学二次函数教案 二次函数在初三阶段会学习到,而且是数学学习重点,那么同学们应该如何掌握好二次函数的学习呢?教师又应该如何设计教案帮助同学们更好第学习二次函数呢? 教学目标: 1.经历探索二次函数y=ax2的图象的作法和性质的过程,获得利用图象研究函数性质的经验。 2.能够利用描点法作出函数y=ax2的图象,并能根据图象认识和理解二次函数y=ax2的性质,初步建立二次函数表达式与图象之间的联系。 3.能根据二次函数y=ax2的图象,探索二次函数的性质(开口方向、对称轴、顶点坐标)。 教学重点:二次函数y=ax2的图象的作法和性质 教学难点:建立二次函数表达式与图象之间的联系 教学方法:自主探索,数形结合 教学建议: 利用具体的二次函数图象讨论二次函数y=ax2的性质时,应尽可能多地运用小组活动的形式,通过学生之间的合作与交流,进行图象和图象之间的比较,表达式和表达式之间的比较,建立图象和表达式之间的联系,以达到学生对二次函数性质的真正理解。 教学过程: 一、认知准备: 1.正比例函数、一次函数、反比例函数的图象分别是什么? 2.画函数图象的方法和步骤是什么?(学生口答)

你会作二次函数y=ax2的图象吗?你想直观地了解它的性质吗?本节课我们一起探索。 二、新授: (一)动手实践:作二次函数y=x2和y=-x2的图象 (同桌二人,南边作二次函数y=x2的图象,北边作二次函数y=-x2的图象,两名学生黑板完成) (二)对照黑板图象议一议:(先由学生独立思考,再小组交流) 1.你能描述该图象的形状吗? 2.该图象与x轴有公共点吗?如果有公共点坐标是什么? 3. 当x<0时,随着x的增大,y如何变化?当x>0时呢? 4.当x取什么值时,y值最小?最小值是什么?你是如何知道的? 5.该图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点。 (三) 学生交流: 1.交流上面的五个问题(由问题1引出抛物线的概念,由问题2引出抛物线的顶点) 2.二次函数y=x2 和y=-x2的图象有哪些相同点和不同点? 3.教师出示同一直角坐标系中的两个函数y=x2 和y=-x2 图象,根据图象回答: (1)二次函数y=x2和y=-x2 的图象关于哪条直线对称? (2)两个图象关于哪个点对称? (3)由y=x2 的图象如何得到y=-x2 的图象? (四) 动手做一做:

数学必修1—9.函数与方程

第9讲 函数与方程(2) 考点1函数的零点 考法1函数零点的概念 1.把函数()y f x =的图像与横轴的交点的横坐标称为这个函数的零点.也可说成是使函数值为零的自变量的值. 函数的零点是一个实数,而不是点,例如函数1y x =+的零点为1-,不是(1,0)-. 因此,函数()y f x =的零点就是方程()0f x =实数根.2()23f x x x =--的零点就是方程2230x x --=的两个实根. 2.并不是每一个函数都有零点,如函数2()1f x x =+没有零点. 3.若函数有零点,零点一定在定义域内. 考法2存在性定理 如果函数()y f x =在区间[,]a b 上的图象是连续不断的一条曲线,并且有()f a ()0f b ?<,那么,函数()y f x =在区间(,)a b 内有零点,即存在(,)c a b ∈,使 ()0f c =,这个c 也就是方程()0f x =的根. 函数在区间[,]a b 上有零点必须满足两个条件:①连续;②()()0f a f b ?<. 1.函数1()f x x =,易知(1)(1)0f f -?<,但1()f x x =在(1,1)-内没有零点. 2.函数()y f x =在区间(2,2)-内没有零点. 1.(2011·全国课标卷·文科)在下列区间中,函数34)(-+=x e x f x 的零点所在的区间为 C A.1(,0)4- B.1(0,)4 C.11(,)42 D.13(,)24 考法3唯一性定理

如果函数()y f x =在区间[,]a b 上连续且单调,如果有()()0f a f b ?<,那么函数()y f x =在区间(,)a b 内有且仅有一个零点. 1.(2014·北京卷·文科)已知函数26()log f x x x = -,在下列区间中,包含()f x 零点的区间是 A.(0,1) B.(1,2) C.(2,4) D.(4,)+∞ 考点2判断函数的零点方法 考法1解对应的方程 1.求函数)1lg()(-=x x f 的零点. 2.求函数32()89f x x x x =--的零点. 考法2图像法 1.(2013·江西卷·理科)若a b c <<,则函数()()()()()f x x a x b x b x c =--+--+ ()()x c x a --两个零点分别位于区间 A A.(,)a b 和(,)b c 内 B.(,)a -∞和(,)a b 内 C.(,)b c 和(,)c +∞内 D.(,)a -∞和(,)c +∞内 2.(2010·天津卷·理科)函数()23x f x x =+的零点所在的一个区间是 B A.(2,1)-- B.(1,0)- C.(0,1) D.(1,2) 3.(2010·浙江卷·文科)已知0x 是函数1()21f x x =+-的一个零点,若10(1,)x x ∈ ,20(,)x x ∈+∞,则 B A.1()0f x <,2()0f x < B.1()0f x <,2()0f x > C.1()0f x >,2()0f x < D.1()0f x >,2()0f x > 4.设0x 是函数21()()log 3 x f x x =-的零点,若00a x <<,则()f a 的值满足 A.()0f a = B.()0f a < C.()0f a > D.符号不确定 考点3函数零点的应用 考法1判断函数零点的个数及所在的区间

八年级数学:确定一次函数的表达式(教学实录)

初中数学标准教材 八年级数学:确定一次函数的表达式(教学实录) Mathematics is the door and key to science. Learning mathematics is a very important measure to make yourself rational. 学校:______________________ 班级:______________________ 科目:______________________ 教师:______________________

--- 专业教学设计系列下载即可用 --- 八年级数学:确定一次函数的表达式(教学 实录) 第六章一次函数 4 ●教学目标 (一)教学知识点 1.了解两个条件确定一个一次函数;一个条件确定一个正比例函数. 2.能由两个条件求出一次函数的表达式,一个条件求出正比例函数的表达式,并解决有关现实问题. (二)能力训练要求 能根据函数的图象,培养学生的数形结合能力.

(三)情感与价值观要求 能把实际问题抽象为数字问题,也能把所学知识运用于实际,让学生认识数字与人类生活的密切联系及对人类历史发展的作用. ●教学重点 根据所给信息. ●教学难点 用一次函数的知识解决有关现实问题. ●教学方法 启发引导法. ●教具准备 小黑板、三角板 ●教学过程 Ⅰ.导入新课 [师]在上节课中我们学习了一次函数图象的定义,在给定表达式的前提下,我们可以说出它的有关性质.如果给你有关信息,你能否求出函数的表达式呢?这将是本节课我们要研究的问题.

Ⅱ.讲授新课 一、试一试(阅读课文P167页)想想下面的问题。 某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒 )的关系。 (1)写出v与t之间的关系式; (2)下滑3秒时物体的速度是多少? 分析:要求v与t之间的关系式,首先应观察图象,确定它是正比例函数的图象,还是一次函数的图象,然后设函数解析式,再把已知的坐标代入解析 式求出待定系数即可. [师]请大家先思考解题的思路,然后和同伴进行交流. [生]因为函数图象过原点,且是一条直线,所以这是一个正比例函数的图象,设表达式为v=kt,由图象可知(2,5)在直线上,所以把t=2,v=5代入上式求出k,就可知v与t的关系式了.解:由题意可知v是t的正比例函数. 设v=kt

九年级数学二次函数教学案

第 14周第 1课时总第 43课时 课题:二次函数的定义 【学习目标】 1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义; 2.了解二次函数关系式,会确定二次函数关系式中各项的系数。 【学习重难点】 重点:二次函数的概念。 难点:确定实际问题中二次函数的关系式。 【学习过程】 一、预习交流 1.思考: (1)已知圆的面积是Scm 2,圆的半径是Rcm ,写出圆的面积S 与半径R 之间的函数关系式。 (2)已知一个矩形的周长是60m ,一边长是Lm ,写出这个矩形的面积S (m 2)与这个矩形的一边长L 之间的函数关系式。 (3)农机厂第一个月水泵的产量为50台,第三个月的产量y (台)与月平均增长率x 之间的函数关系如何表示? 2.归纳: (1)函数解析式均为整式;(2)自变量的最高次数是2。 3.定义: 一般地,如果y=ax 2+bx+c (a ≠0),那么y 叫做x 的二次函数。 【注意】这里b ,c 没有限制,而a ≠0。 练习一:下列函数中,哪些是二次函数?哪些不是二次函数?若是二次函数,指出a ,b ,c ? (1)y=2-3x 2; (2)y=x (x-4); (3)y= 2 1x 2-3x-1; (4)y= 4 1x 2+3x-8; (5)y=7x (1-x )+4x 2; (6)y=(x-6)(6+x )。 (7 ) y= 2 2561 x x - (8)y=(x-2)2 - x 2 ; 练习二:若函数( ) m m x m y --=2 12 是二次函数,则m 为 二、精讲点拨

例1.当k 为何值时,函数2 (1)1k k y k x +=-+为二次函数? 例2.写出下列各函数关系,并判断它们是什么类型的函数. ⑴圆的面积y (cm 2)与它的周长x (cm )之间的函数关系; ⑵某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y (元)与所存年数x 之间的函数关系; ⑶菱形的两条对角线的和为26cm ,求菱形的面积S (cm 2)与一对角线长x (cm )之间的函数关系. 例3.已知二次函数2y ax =,当3x =时,5y =-。当5x =-时,求y 的值. 三、拓展延伸 1.考察下列函数:①2 13y x =+,②2 251y x x =-+,③3(1)y x x =-, ④3y x =-, ⑤234v t t =-(t 是自变量)中,二次函数是: 。 2.若一个边长为x cm 的无盖..正方体形纸盒的表面积为y cm 2 ,则 ___________y =,其中x 的取值范围是 。 3.一矩形的长是宽的1.6倍,则该矩形的面积S 与宽x 之间函数关系式:S = 。 4. 如图在长200米,宽80米的矩形广场内修建等宽的 十字形道路,请写出绿地面积y (㎡)与路宽x (m)之间 的函数关系式:y = 。 5. 如图,用50m 长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y (㎡)与它与墙平行的边的长x (m)之间的函数 关系式:y = 。 6.已知函数2 7 (3)m y m x -=-是二次函数,求m 的值. 四、系统总结 学生谈谈自己的收获 五、限时作业

高一数学必修1函数与方程知识点总结

高一数学必修1函数与方程知识点总结 1、函数零点的定义 (1)对于函数)(xfy,我们把方程0)(xf的实数根叫做函数)(xfy 的零点。 (2)方程0)(xf有实根?函数()yfx的图像与x轴有交点?函数()yfx有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(xf是否有实数根,有几个实数根。函数零点的求法:解方程0)(xf,所得实数根就是()fx的零点(3)变号零点与不变号零点 ①若函数()fx在零点0x左右两侧的函数值异号,则称该零点为函数()fx的变号零点。②若函数()fx在零点0x左右两侧的函数值同号,则称该零点为函数()fx的不变号零点。 ③若函数()fx在区间,ab上的图像是一条连续的曲线,则 0)()(

0)(xfy无零点?0)(xf无实根;对于二次函数在区间,ab上的零点个数,要结合图像进行确定. 3、二分法 (1)二分法的定义:对于在区间[,]ab上连续不断且()()0fafb的函数()yfx,通过不断地把函数()yfx的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法;(2)用二分法求方程的近似解的步骤: ①确定区间[,]ab,验证()()0fafb,给定精确度e; ②求区间(,)ab的中点c;③计算()fc; (ⅰ)若()0fc,则c就是函数的零点; (ⅱ)若()()0fafc,则令bc(此时零点0(,)xac);(ⅲ)若()()0fcfb,则令ac(此时零点0(,)xcb); ④判断是否达到精确度e,即ab,则得到零点近似值为a(或b);否则重复②至④步. 看过"高一数学必修1函数与方程知识点总结"的还看了:

最新人教版初中九年级上册数学《二次函数》教案

第二十二章二次函数 22.1 二次函数的图象和性质 22.1.1 二次函数 【知识与技能】 1.能结合具体情境体会二次函数的意义,理解二次函数的有关概念. 2.能够表示简单变量之间的二次函数关系. 【过程与方法】 通过具体问题情景中的二次函数关系了解二次函数的一般表述式,在类比一次函数、反比例函数表达式时感受二次函数中二次项系数a≠0的重要特征. 【情感态度】 在探究二次函数的学习活动中,体会通过探究发现的乐趣. 【教学重点】 结合具体情境体会二次函数的意义,掌握二次函数的有关概念. 【教学难点】 1.能通过生活中的实际问题情境,构建二次函数关系; 2.重视二次函数y=ax2+bx+c中a≠0这一隐含条件. 一、情境导入,初步认识 问题1 如图所示是一个棱长为xcm的正方体,它的表面积为ycm2,则y与x之间的关系式可表示为,y是x的函数吗? 问题2 n个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m与球队n 有什么关系?这就是说,每个队要与其他个球队各比赛一场,整个比赛场次数应为,这里m是n的函数吗?

问题3 某种产品现在的年产量为20t ,计划今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的产量y 将随计划所定的x 值而确定,y 与x 之间的关系应怎样表示? 二、思考探究,获取新知 全班同学合作交流,共同完成上面三个问题,教师全场巡视,发现问题可给予个 别指导.在同学们基本完成情形下,教师再针对问题2,解释m=12 n(n-1)而不是m=n(n-1)的原因;针对问题3,可引导同学们先算出第二年产量为20(1+x)t ,第三年产量为20(1+x)(1+x)t ,得到y=20(1+x)2. 【教学说明】上述活动的目的在于引导同学们能通过具体问题情境建立二次函数关系式,体会二次函数是刻画实际生活中自变量与因变量的关系的重要模型之一. 思考函数y=6x 2,m=12n 2-12 n,y=20x 2+40x+20有哪些共同点? 【教学说明】在同学们相互交流、发言的过程中,教师应关注:(1)语言是否规范;(2)是否抓住共同点;(3)针对少数同学可能进一步探索出其不同点等问题应及时引导,让同学们在轻松快乐的环境中进入二次函数的学习. 【归纳结论】上述三个函数都是用自变量的二次式表示的,从而引出二次函数定义.一般地,形如y=ax 2+bx+c(a,b,c 为常数,a ≠0)的函数,叫做二次函数.其中x 是自变量,a 、b 、c 分别是二次项系数,一次项系数和常数项. 【教学说明】 针对上述定义,教师应强调以下几个问题:(1)关于自变量x 的二次式必须是二次整式,即可以是二次单项式、二次二项式和二次三项式;(2)二次项的系数a ≠0是定义中不可缺少的条件,若a=0,则它是一次函数;(3)二次项和二次项系数不同,二次项指ax 2,二次项系数则仅是指a 的值;同样,一次项与一次项系数也不同. 教师在学生理解的情况下,引导学生做课本P29练习. 三、运用新知,深化理解 1.下列函数中,哪些是二次函数,哪些不是?若是二次函数,指出它的二次项系数、一次项系数和常数项: (1)y=(x+2)(x-2); (2)y=3x(2-x)+3x 2; (3)y=2 1x -2x+1;

相关主题
文本预览
相关文档 最新文档