当前位置:文档之家› 化工原理设计:列管式换热器设计

化工原理设计:列管式换热器设计

化工原理设计:列管式换热器设计
化工原理设计:列管式换热器设计

化工原理课程设计

设计题目:列管式换热器的设计班级:09化工

设计者:陈跃

学号:20907051006

设计时间:2012年5月20

指导老师:崔秀云

目录

概述

1.1.换热器设计任务书 .................................................................... - 7 -

1.2换热器的结构形式 .................................................................. - 10 -

2.蛇管式换热器 ........................................................................... - 11 -

3.套管式换热器 ........................................................................... - 11 - 1.3换热器材质的选择 .................................................................. - 11 - 1.4管板式换热器的优点 .............................................................. - 13 - 1.5列管式换热器的结构 .............................................................. - 14 - 1.6管板式换热器的类型及工作原理............................................ - 16 -

1.7确定设计方案.......................................................................... - 17 -

2.1设计参数................................................................................. - 18 - 2.2计算总传热系数...................................................................... - 19 - 2.3工艺结构尺寸.......................................................................... - 19 - 2.4换热器核算 ............................................................................. - 21 -

2.4.1.换热器内流体的流动阻力 (21)

2.4.2.热流量核算 (22)

《化工原理及单元操作》课程设计任务

班级: 09化工姓名:陈跃

设计一台用饱和水蒸气300Kpa加热水的列管式固定管板换热器,水流量为 20000 (kg/h),水温由 20 ℃加热到70 ℃。

概述

在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。35%~40%。随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。换热器的设计、制造、结构改进及传热机理的研究十分活跃,一些新型高效换热器相继问世。

随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器各有优缺点,性能各异。在换热器设计中,首先应根据工艺要求选择适用的类型,然后计算换热所需传热面积,并确定换热器的结构尺寸。

换热器按用途不同可分为加热器、冷却器、冷凝器、蒸发器、再沸器、深冷器、过热器等。

换热器按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,按照传热面的形状和结构特点又可分为管壳式换热器、板面式换热器和扩展表面式换热器(板翅式、管翅式等),如表2-1所示。

表2-1 传热器的结构分类

完善的换热器在设计或选型时应满足以下各项基本要求。

(1)合理地实现所规定的工艺条件

传热量、流体的热力学参数(温度、压力、流量、相态等)与物理化学性质(密度、粘度、腐蚀性等)是工艺过程所规定的条件。设计者应根据这些条件进行热力学和流体力学的计算,经过反复比较,使所设计的换热器具有尽可能小的传热面积,在单位时间内传递尽可能多的热量。其具体做法如下。

①增大传热系数? 在综合考虑流体阻力及不发生流体诱发振动的前提下,尽量选择高的流速。

②提高平均温差? 对于无相变的流体,尽量采用接近逆流的传热方式。因为这样不仅可提高平均温差,还有助于减少结构中的温差应力。在允许的条件时,可提高热流体的进口温度或降低冷流体的进口温度。

③妥善布置传热面? 例如在管壳式换热器中,采用合适的管间距或排列方式,不仅可以加大单位空间内的传热面积,还可以改善流体的流动特性。错列管束的传热方式比并列管束的好。如果换热器中的一侧有相变,另一侧流体为气相,可在气相一侧的传热面上加翅片以增大传热面积,更有利于热量的传递。

(2)安全可靠

换热器是压力容器,在进行强度、刚度、温差应力以及疲劳寿命计算时,应遵照我国《钢制石油化工压力容器设计规定》与《钢制管壳式换热器设计规定》等有关规定与标准。这对保证设备的安全可靠起着重要的作用。

(3)有利于安装、操作与维修

直立设备的安装费往往低于水平或倾斜的设备。设备与部件应便于运输与装拆,在厂房移动时不会受到楼梯、梁、柱的妨碍,根据需

要可添置气、液排放口,检查孔与敷设保温层。

(4)经济合理

评价换热器的最终指标是:在一定的时间内(通常为1年)固定费用(设备的购置费、安装费等)与操作费(动力费、清洗费、维修费等)的总和为最小。在设计或选型时,如果有几种换热器都能完成生产任务的需要,这一指标尤为重要。

动力消耗与流速的平方成正比,而流速的提高又有利于传热,因此存在一最适宜的流速。

传热面上垢层的产生和增厚,使传热系数不断降低,传热量随之而减少,故有必要停止操作进行清洗。在清洗时不仅无法传递热量,还要支付清洗费,这部分费用必须从清洗后传热条件的改善得到补偿,因此存在一最适宜的运行周期。

严格地讲,如果孤立地仅从换热器本身来进行经济核算以确定适宜的操作条件与适宜的尺寸是不够全面的,应以整个系统中全部设备为对象进行经济核算或设备的优化。但要解决这样的问题难度很大,当影响换热器的各项因素改变后对整个系统的效益关系影响不大时,按照上述观点单独地对换热器进行经济核算仍然是可行的。

1.1.换热器设计任务书

1.设计题目

设计一台用饱和水蒸气加热水的列管式固定管板换热器

2.设计任务及操作条件

(1)处理能力65吨水/ 小时

(2)设备型式列管式换热器

(3)操作条件

①水蒸气:入口温度133.3℃,出口温度133.3℃

②冷却介质:自来水,入口温度20℃,出口温度70℃

③允许压强降:管程10^4-10^5,壳程10^3-10^4.

(4)设计项目

①设计方案简介:对确定的工艺流程及换热器型式进行简要论述。

②换热器的工艺计算:确定换热器的传热面积。

③换热器的主要结构尺寸设计。

④主要辅助设备选型。

⑤绘制换热器总装配图。

3.设计说明书的内容

(1)目录;

(2)设计题目及原始数据(任务书);

(3)论述换热器总体结构(换热器型式、主要结构)的选择;

(4)换热器加热过程有关计算(物料衡算、热量衡算、传热面积、换热管型号、壳体直径等);

(5)设计结果概要(主要设备尺寸、衡算结果等);

(6)主体设备设计计算及说明;

(7)主要零件的强度计算(选做);

(8)附属设备的选择(选做);

(9)参考文献;

(10)后记及其它。

4.设计图要求

用A1图纸绘制换热器一张:一主视图,一左视图,部分局部放大图,剖面图.

5.设计思考题

(1)设计列管式换热器时,通常都应选用标准型号的换热器,为什么?

(2)为什么在化工厂使用列管式换热最广泛?

(3)在列管式换热器中,壳程有挡板和没有挡板时,其对流传热系数的计算方法有何不同?

(4)说明列管式换热器的选型计算步骤?

(5)在换热过程中,冷却剂的进出口温度是按什么原则确定的?(6)说明常用换热管的标准规格(批管径和管长)。

(7)列管式换热器中,两流体的流动方向是如何确定的?比较其优缺点?

6. 部分设计问题指导

(1)列管式换热器基本型式的选择

(2)冷却剂的进出口温度的确定原则

(3)流体流向的选择

(4)流体流速的选择

(5)管子的规格及排列方法

(6)管程数和壳程数的确定

(7)挡板的型式

1.2换热器的结构形式

1.管壳式换热器

管壳式换热器又称列管式换热器,是一种通用的标准换热设备,它具有结构简单,坚固耐用,造价低廉,用材广泛,清洗方便,适应性强等优点,应用最为广泛。管壳式换热器根据结构特点分为以下几种:

(1)固定管板式换热器

固定管板式换热器两端的管板与壳体连在一起,这类换热器结构简单,价格低廉,但管外清洗困难,宜处理两流体温差小于50℃且壳方流体较清洁及不易结垢的物料。

带有膨胀节的固定管板式换热器,其膨胀节的弹性变形可减小温差应力,这种补偿方法适用于两流体温差小于70℃且壳方流体压强不高于600Kpa的情况。

(2)浮头式换热器

浮头式换热器的管板有一个不与外壳连接,该端被称为浮头,管束连同浮头可以自由伸缩,而与外壳的膨胀无关。浮头式换热器的管束可以拉出,便于清洗和检修,适用于两流体温差较大的各种物料的换热,应用极为普遍,但结构复杂,造价高。

(3)填料涵式换热器

填料涵式换热器管束一端可以自由膨胀,与浮头式换热器相比,结构简单,造价低,但壳程流体有外漏的可能性,因此壳程不能处理易燃,易爆的流体。

2.蛇管式换热器

蛇管式换热器是管式换热器中结构最简单,操作最方便的一种换热设备,通常按照换热方式不同,将蛇管式换热器分为沉浸式和喷淋式两类。

3.套管式换热器

套管式换热器是由两种不同直径的直管套在一起组成同心套管,其内管用U型时管顺次连接,外管与外管互相连接而成,其优点是结构简单,能耐高压,传热面积可根据需要增减,适当地选择管内、外径,可使流体的流速增大,两种流体呈逆流流动,有利于传热。此换热器适用于高温,高压及小流量流体间的换热。

1.3换热器材质的选择

在进行换热器设计时,换热器各种零、部件的材料,应根据设备的操作压力、操作温度。流体的腐蚀性能以及对材料的制造工艺性能等的要求来选取。当然,最后还要考虑材料的经济合理性。一般为了满足设备的操作压力和操作温度,即从设备的强度或刚度的角度来考虑,是比较容易达到的,但材料的耐腐蚀性能,有时往往成为一个复

杂的问题。在这方面考虑不周,选材不妥,不仅会影响换热器的使用寿命,而且也大大提高设备的成本。至于材料的制造工艺性能,是与换热器的具体结构有着密切关系。

一般换热器常用的材料,有碳钢和不锈钢。

(1)碳钢

价格低,强度较高,对碱性介质的化学腐蚀比较稳定,很容易被酸腐蚀,在无耐腐蚀性要求的环境中应用是合理的。如一般换热器用的普通无缝钢管,其常用的材料为10号和20号碳钢。

(2)不锈钢

奥氏体系不锈钢以1Crl8Ni9Ti为代表,它是标准的18-8奥氏体不锈钢,有稳定的奥氏体组织,具有良好的耐腐蚀性和冷加工性能。

正三角形排列结构紧凑;正方形排列便于机械清洗;同心圆排列用于小壳径换热器,外圆管布管均匀,结构更为紧凑。我国换热器系列中,固定管板式多采用正三角形排列;浮头式则以正方形错列排列居多,也有正三角形排列。

(2)管板

管板的作用是将受热管束连接在一起,并将管程和壳程的流体分隔开来。

管板与管子的连接可胀接或焊接。胀接法是利用胀管器将管子扩胀,产生显著的塑性变形,靠管子与管板间的挤压力达到密封紧固的目的。胀接法一般用在管子为碳素钢,管板为碳素钢或低合金钢,设计压力不超过4 MPa,设计温度不超过350℃的场合。

(3)封头和管箱

封头和管箱位于壳体两端,其作用是控制及分配管程流体。

①封头当壳体直径较小时常采用封头。接管和封头可用法兰或螺纹连接,封头与壳体之间用螺纹连接,以便卸下封头,检查和清洗管子。

②管箱换热器管内流体进出口的空间称为管箱,壳径较大的换热器大多采用管箱结构。由于清洗、检修管子时需拆下管箱,因此管箱结构应便于装拆。

③分程隔板当需要的换热面很大时,可采用多管程换热器。对于多管程换热器,在管箱内应设分程隔板,将管束分为顺次串接的若干组,各组管子数目大致相等。这样可提高介质流速,增强传热。管程多者可达16程,常用的有2、4、6程。在布置时应尽量使管程流体与壳程流体成逆流布置,以增强传热,同时应严防分程隔板的泄漏,以防止流体的短路。

1.4管板式换热器的优点

(1) 换热效率高,热损失小

在最好的工况条件下, 换热系数可以达到6000W/ m2K, 在一般的工况条件下, 换热系数也可以在3000~4000 W/ m2K左右,是管壳式换热器的3~5倍。设备本身不存在旁路,所有通过设备的流体都能在板片波纹的作用下形成湍流,进行充分的换热。完成同一项换热过程, 板式换热器的换热面积仅为管壳式的1/ 3~1/ 4。

(2) 占地面积小重量轻

除设备本身体积外, 不需要预留额外的检修和安装空间。换热所用板片的厚度仅为0. 6~0. 8mm。同样的换热效果, 板式换热器比管壳式换热器的占地面积和重量要少五分之四。

(3) 污垢系数低

流体在板片间剧烈翻腾形成湍流, 优秀的板片设计避免了死区的存在, 使得杂质不易在通道中沉积堵塞,保证了良好的换热效果。

(4) 检修、清洗方便

换热板片通过夹紧螺柱的夹紧力组装在一起,当检修、清洗时, 仅需松开夹紧螺柱即可卸下板片进行冲刷清洗。

(5) 产品适用面广

设备最高耐温可达180 ℃, 耐压2. 0MPa , 特别适应各种工艺过程中的加热、冷却、热回收、冷凝以及单元设备食品消毒等方面, 在低品位热能回收方面, 具有明显的经济效益。各类材料的换热板片也可适应工况对腐蚀性的要求。

当然板式换热器也存在一定的缺点, 比如工作压力和工作温度不是很高, 限制了其在较为复杂工况中的使用。同时由于板片通道较小,也不适宜用于杂质较多,颗粒较大的介质。

1.5列管式换热器的结构

介质流经传热管内的通道部分称为管程。

(1)换热管布置和排列间距

常用换热管规格有ф19×2 mm、ф25×2 mm(1Crl8Ni9Ti)、ф25×2.5 mm(碳钢10)。小直径的管子可以承受更大的压力,而且管壁较薄;同时,对于相同的壳径,可排列较多的管子,因此单位体积的传热面积更大,单位传热面积的金属耗量更少。换热管管板上的

排列方式有正方形直列、正方形错列、三角形直列、三角形错列和同心圆排列。

(A)(B)(C)

(D)(E)图 1-4 换热管在管板上的排列方式

(A) 正方形直列(B)正方形错列 (C) 三角形直列

(D)三角形错列(E)同心圆排列

正三角形排列结构紧凑;正方形排列便于机械清洗;同心圆排列用于小壳径换热器,外圆管布管均匀,结构更为紧凑。我国换热器系列中,固定管板式多采用正三角形排列;浮头式则以正方形错列排列居多,也有正三角形排列。

(2)管板

管板的作用是将受热管束连接在一起,并将管程和壳程的流体分隔开来。

管板与管子的连接可胀接或焊接。胀接法是利用胀管器将管子扩胀,产生显著的塑性变形,靠管子与管板间的挤压力达到密封紧固的目的。胀接法一般用在管子为碳素钢,管板为碳素钢或低合金钢,设计压力不超过4 MPa,设计温度不超过350℃的场合。

(3)封头和管箱

封头和管箱位于壳体两端,其作用是控制及分配管程流体。

①封头当壳体直径较小时常采用封头。接管和封头可用法兰或螺纹连接,封头与壳体之间用螺纹连接,以便卸下封头,检查和清洗管子。

②管箱换热器管内流体进出口的空间称为管箱,壳径较大的换热器大多采用管箱结构。由于清洗、检修管子时需拆下管箱,因此管箱结构应便于装拆。

③分程隔板当需要的换热面很大时,可采用多管程换热器。对于多管程换热器,在管箱内应设分程隔板,将管束分为顺次串接的若干组,各组管子数目大致相等。这样可提高介质流速,增强传热。管程多者可达16程,常用的有2、4、6程。在布置时应尽量使管程流体与壳程流体成逆流布置,以增强传热,同时应严防分程隔板的泄漏,以防止流体的短路。

1.6管板式换热器的类型及工作原理

板式换热器按照组装方式可以分为可拆式、焊接式、钎焊式等形式;按照换热板片的波纹可以分为人字波、平直波、球形波等形式; 按照密封垫可以分为粘结式和搭扣式。各种形式进行组合可以满足不同的工况需求,在使用中更有针对性。比如同样是人字形波纹的板片还因采用粘结式还是搭扣式密封垫而有所不同, 采用搭扣式

密封垫可以有效的避免胶水中可能含有的氯离子对板片的腐蚀, 并且设备拆装更加方便。又如焊接式板式换热器的耐温耐压明显好于可拆式板式换热器, 可以达到250 ℃、2. 5MPa 。因此同样是板式换热器, 因其形式的多样性,可以应用于较为广泛的领域,在大多数热交换工艺过程都可以使用。

虽然板式换热器有多种形式, 但其工作原理大致相同。板式换热器主要是通过外力将换热板片夹紧组装在一起, 介质通过换热板片上的通孔在板片表面进行流动, 在板片波纹的作用下形成激烈的湍流, 犹如用筷子搅动杯中的热水, 加大了换热的面积。冷热介质分别在换热板片的两侧流动,湍流形成的大量换热面与板片接触, 通过板片来进行充分的热传递,达到最终的换热效果。冷热介质的隔离主要通过密封垫的分割, 或者通过大量的焊缝来保证, 在换热板片不开裂穿孔的情况下, 冷热介质不会发生混淆。

1.7确定设计方案

1选择换热器的类型

两流体温的变化情况:热流体进口温度133.3℃出口温度133.3℃;冷流体进口温度20℃,出口温度为70℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用列管式换热器。

2 管程安排

从两物流的操作压力看,应使水蒸气走管程,循环冷却水

走壳程。但由于循环冷却水较易结垢,若其流速太低,将会加

快污垢增长速度,使换热器的热流量下降,所以从总体考虑,应使循环水走管程,水蒸气走壳程。

2.1设计参数

水蒸气的定性温度:

T=133.3℃

密度ρ0=1.650kg/m3

气化潜热r=2168.1KJ/kg

水的定性温度:

T=(20+70)/2=45℃

密度ρi=990.15kg/m3

定压比热容 Cpi=4.174kJ/kg℃

热导率λi=0.6408W/ m℃

粘度μi=60.27×10-5Pa﹒s

2.2计算总传热系数

1、热流量 T

c m p ?=000

Q

=20000×4.174×(70-20)=4174000 kJ/s

平均传热温差

△tm1=(△t1-△t2)/㏑(△t1/△t2)=(113.3-63.3)/㏑(113.3/63.3)

求得△tm1=85.881℃

2、 冷却水用量

考虑热损失3%-5%取3%, 则 Q=4658

)%3100

(Q 0=+ kJ/s

23

.21

.20914658==

?=

t

c Q m pi i (kg/h) 3计算传热面积

求传热面积需要先知道K 值,根据资料查得和水之间的传热系数在 610W/(㎡.℃)左右,先取K 值为610W/(㎡.℃)计算

由Q=KA △tm 得 m

t K Q A ?=

00

=4174000/(610*85.881*3.6)=22.13(㎡) 考虑安全系

数5%-15%,取15%,则 A=22.13×(100+15)%=25.44(㎡) 2.3工艺结构尺寸

1.管径和管内流速选用Φ25×2.5较高级冷拔传热管(碳钢),取管内流速u 1=1.23m/s 。

2.管程数和传热管数 可依据传热管内径和流速确定单程传热管数

按单程管计算,所需的传热管长度为 L=6000mm

按单程管设计,传热管过长,宜采用多管程结构。根据本设计实际情况,采用标准设计,现取传热管长l=4.5m ,则该换热器的管程数为 Np=

25

.468.8==l L

传热管总根数 Nt=28×2=56

4.传热管排列和分程方法 采用组合排列法,即每程内均按正三角形排列,隔板两侧采用正方形排列。

取管心距t=1.25d 0,则 t=1.25×25=31.25≈32㎜ 隔板中心到离其最.近一排管中心距离按式(3-16)计算 S=t/2+6=32/2+6=22㎜ 各程相邻管的管心距为44㎜。

5.壳体内径 采用多管程结构,取管板利用率η=0.7 ,则壳体内径为:

D=1.05t mm

N T 3897.0/943205.1/=?=η

可取D=300mm

6.折流板 采用弓形折流板,去弓形之流板圆缺高度为壳体内径的25%,则切去的圆缺高度为:

化工原理课程设计

《化工原理》课程设计报告精馏塔设计 学院 专业 班级 学号 姓名 指导教师

目录 苯-氯苯分离过程板式精馏塔设计任务 (3) 一.设计题目 (3) 二.操作条件 (3) 三.塔设备型式 (3) 四.工作日 (3) 五.厂址 (3) 六.设计内容 (3) 设计方案 (4) 一.工艺流程 (4) 二.操作压力 (4) 三.进料热状态 (4) 四.加热方式 (4) 精馏塔工艺计算书 (5) 一.全塔的物料衡算 (5) 二.理论塔板数的确定 (5) 三.实际塔板数的确定 (7) 四.精馏塔工艺条件及相关物性数据的计算 (8) 五.塔体工艺尺寸设计 (10) 六.塔板工艺尺寸设计 (12) 七.塔板流体力学检验 (14) 八.塔板负荷性能图 (17) 九.接管尺寸计算 (19) 十.附属设备计算 (21) 设计结果一览表 (24) 设计总结 (26) 参考文献 (26)

苯-氯苯精馏塔的工艺设计 苯-氯苯分离过程精馏塔设计任务 一.设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为99.6%的氯苯140000t,塔顶馏出液中含氯苯不高于0.1%。原料液中含氯苯为22%(以上均为质量%)。 二.操作条件 1.塔顶压强自选; 2.进料热状况自选; 3.回流比自选; 4.塔底加热蒸汽压强自选; 5.单板压降不大于0.9kPa; 三.塔板类型 板式塔或填料塔。 四.工作日 每年300天,每天24小时连续运行。 五.厂址 厂址为天津地区。 六.设计内容 1.设计方案的确定及流程说明 2. 精馏塔的物料衡算; 3.塔板数的确定; 4.精馏塔的工艺条件及有关物性数据的计算; 5.精馏塔主要工艺尺寸;

化工原理课程设计样板

课程设计 课程名称化工原理课程设计 题目名称热水泠却器的设计 专业班级XX级食品科学与工程(X)学生姓名XXXX 学号XXXXXXXX 指导教师 二O一年月日

锯齿形板式热水冷却器的设计任务书一、设计题目: 锯齿形板式热水冷却器的设计 二、设计参数: (1)处理能力:7.3×104t/Y热水 (2)设备型式:锯齿形板式热水冷却器 (3)操作条件: 1、热水:入口温度80℃,出口温度60℃。 2、冷却介质:循环水,入口温度30℃,出口温度40℃。 3、允许压降:不大于105Pa。 4、每年按330天,每天按24小时连续运行。 5、建厂地址:蚌埠地区。

目录 1 概述 (1) 1. 1 换热器简介 (1) 1. 2 设计方案简介 (2) 1. 3 确定设计方案 (2) 1. 3. 1 设计流程图 (3) 1. 3. 2 工艺流程简图 (4) 1. 3. 3 换热器选型 (4) 1. 4 符号说明 (4) 2 锯齿形板式热水冷却器的工艺计算 (5) 2.1 确定物性数据 (5) 2.1.1 计算定性温度 (5) 2.1.2 计算热负荷 (6) 2. 1. 3 计算平均温差 (6) 2. 1. 4 初估换热面积及初选板型 (6) 2. 1. 5 核算总传热系数K (7) 2. 1. 6 计算传热面积S (9) 2. 1. 7 压降计算 (10) 2.2 锯齿形板式热水冷却器主要技术参数和计算结果 (10) 3 课程设计评述 (11) 参考文献 (12) 附录 (13)

1 概述 1.1 换热器简介 换热器,是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛,日常生活中取暖用的暖气散热片、汽轮机装置中的凝汽器和航天火箭上的油冷却器等,都是换热器。它的主要功能是保证工艺过程对介质所要求的特定温度,同时也是提高能源利用率的主要设备之一。换热器种类很多,若按换热器传热面积形状和结构可分为管式换热器和特殊形式换热器。由于生产规模、物料的性质、传热的要求等各一相同,故换热器的类型很多,特点不一、可根据生产工艺要求进行选择。 1.2 设计方案简介 根据设计要求:用入口温度30 ℃,出口温度40℃的循环水冷却热水(热水的入口温度80℃,出口温度60℃),通过传热量、阻力损失传热系数、传热面积的计算,并结合经验值确定换热器的工艺尺寸、设备型号、规模选定,然后通过计算来确定各工艺尺寸是否符合要求,符合要求后完成工艺流程图和设备主体条件图,进而完成设计体系。 设计要求:选择一台适宜的锯齿形换热器并进行核算。下图中左面的为板式换热器外形,右边的是板式换热器工作原理图。

化工原理课程设计最终版

青岛科技大学 化工课程设计 设计题目:乙醇-正丙醇溶液连续板式精馏塔的设计指导教师: 学生姓名: 化工学院—化学工程与工艺专业135班 日期:

目录一设计任务书 二塔板的工艺设计 (一)设计方案的确定 (二)精馏塔设计模拟 (三)塔板工艺尺寸计算 1)塔径 2)溢流装置 3)塔板分布、浮阀数目与排列 (四)塔板的流体力学计算 1)气相通过浮阀塔板的压强降2)淹塔 3)雾沫夹带 (五)塔板负荷性能图 1)雾沫夹带线 2)液泛线 3)液相负荷上限 4)漏液线 5)液相负荷上限 (六)塔工艺数据汇总表格 三塔的附属设备的设计 (一)换热器的选择 1)预热器 2)再沸器的换热器 3)冷凝器的换热器 (二)泵的选择 四塔的内部工艺结构 (一)塔顶 (二)进口 ①塔顶回流进口 ②中段回流进口 (三)人孔 (四)塔底 ①塔底空间 ②塔底出口 五带控制点工艺流程图 六主体设备图 七附件 (一)带控制点工艺流程图 (二)主体设备图 八符号表 九讨论 十主要参考资料

一设计任务书 【设计任务】设计一板式精馏塔,用以完成乙醇-正丙醇溶液的分离任务 【设计依据】如表一 表一 【设计内容】 1)塔板的选择; 2)流程的选择与叙述; 3)精馏塔塔高、塔径与塔构件设计; 4)预热器、再沸器热负荷及加热蒸汽消耗量,冷凝器热负荷及冷却水用量,泵的选择; 5)带控制点工艺流程图及主体设备图。 二塔板的工艺设计 (一)设计方案的确定 本设计的任务是分离乙醇—正丙醇混合液,对于二元混合物的分离,应采用连续精馏流程,运用Aspen软件做出乙醇—正丙醇的T-x-y 相图,如图一:

图一:乙醇—正丙醇的T-x-y相图 由图一可得乙醇—正丙醇的质量分数比为0.5:0.5时,其泡点温度是84.40o C (二)精馏塔设计模拟 1.初步模拟过程 运用Aspen软件精馏塔Columns模块中DSTWU模型进行初步模拟,并不断进行调试,模拟过程及结果如下:

化工原理课程设计心得

小结本次化工原理课程设计历时两周,是学习化工原理以来第一次独立的工业设计。化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形;理解计算机辅助设计过程,利用编程使计算效率提高。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。在短短的两周里,从开始的一头雾水,到同学讨论,再进行整个流程的计算,再到对工业材料上的选取论证和后期的程序的编写以及流程图的绘制等过程的培养,我真切感受到了理论与实践相结合中的种种困难,也体会到了利用所学的有限的理论知识去解决实际中各种问题的不易。我们从中也明白了学无止境的道理,在我们所查找到的很多参考书中,很多的知识是我们从来没有接触到的,我们对事物的了解还仅限于皮毛,所学的知识结构还很不完善,我们对设计对象的理解还仅限于书本上,对实际当中事物的方方面面包括经济成本方面上考虑的还很不够。在实际计算过程中,我还发现由于没有及时将所得结果总结,以致在后面的计算中不停地来回翻查数据,这会浪费了大量时间。由此,我在每章节后及时地列出数据表,方便自己计算也方便读者查找。在一些应用问题上,我直接套用了书上的公式或过程,并没有彻底了解各个公式的出处及用途,对于一些工业数据的选取,也只是根据范围自己选择的,并不一定符合现实应用。因此,一些计算数据有时并不是十分准确的,只是拥有一个正确的范围及趋势,而并没有更细地追究下去,因而可能存在一定的误差,影响后面具体设备的选型。如果有更充分的时间,我想可以进一步再完善一下的。通过本次课程设计的训练,让我对自己的专业有了更加感性和理性的认识,这对我们的继续学习是一个很好的指导方向,我们了解了工程设计的基本内容,掌握了化工设计的主要程序和方法,增强了分析和解决工程实际问题的能力。同时,通过课程设计,还使我们树立正确的设计思想,培养实事求是、严肃认真、高度负责的工作作风,加强工程设计能力的训练和培养严谨求实的科学作风更尤为重要。我还要感谢我的指导老师***老师对我们的教导与帮助,感谢同学们的相互支持。限于我们的水平设计中难免有不足和谬误之处,恳请老师批评参考文献[1]陈英男、刘玉兰.常用华工单元设备的设计[M].上海:华东理工大学出版社,2005、4[2]刘雪暖、汤景凝.化工原理课程设计[M].山东:石油大学出版社,2001、5 [3]贾绍义、柴诚敬.化工原理课程设计[M].天津:天津大学出版社,2002、8 [4]路秀林、王者相.塔设备[M].北京:化学工业出版社,2004、1 [5]王明辉.化工单元过程课程设计[M].北京:化学工业出版社,2002、6 [6]夏清、陈常贵.化工原理(上册)[M].天津:天津大学出版社,2005、1 [7]夏清、陈常贵.化工原理(下册)[M].天津:天津大学出版社,2005、1 [8]《化学工程手册》编辑委员会.化学工程手册—气液传质设备[M]。北京:化学工业出版社,1989、7 [9]刘光启、马连湘.化学化工物性参数手册[M].北京:化学工业出版社,2002 [10]贺匡国.化工容器及设备简明设计手册[M].北京:化学工业出版社,2002 通过这次课程设计使我充分理解到化工原理课程的重要性和实用性,更特别是对精馏原理及其操作各方面的了解和设计,对实际单元操作设计中所涉及的个方面要注意问题都有所了解。通过这次对精馏塔的设计,不仅让我将所学的知识应用到实际中,而且对知识也是一种巩固和提升充实。在老师和同学的帮助下,及时的按要求完成了设计任务,通过这次课程设计,使我获得了很多重要的知识,同时也提高了自己的实际动手和知识的灵活运用能力。

化工原理课程设计说明书(换热器的设计)

中南大学 化工原理课程设计 2010年01月22日 <

目录 一、设计题目及原始数据(任务书) (3) 二、设计要求 (3) 三、列环式换热器形式及特点的简述 (3) 四、论述列管式换热器形式的选择及流体流动空间的选择 (8) 五、换热过程中的有关计算(热负荷、壳层数、总传热系数、传热 面积、压强降等等) (10) ①@ 14 ②物性数据的确定……………………………………………… ③总传热系数的计算 (14) ④传热面积的计算 (16) ⑤工艺结构尺寸的计算 (16) ⑥换热器的核算 (18) 六、设计结果概要表(主要设备尺寸、衡算结果等等) (22) 七、主体设备计算及其说明 (22) 八、主体设备装置图的绘制 (33) 九、? 33十、课程设计的收获及感想………………………………………… 十一、附表及设计过程中主要符号说明 (37) 十二、参考文献 (40)

一、设计题目及原始数据(任务书) 1、生产能力:17×104吨/年煤油 # 2、设备形式:列管式换热器 3、设计条件: 煤油:入口温度140o C,出口温度40 o C 冷却介质:自来水,入口温度30o C,出口温度40 o C 允许压强降:不大于105Pa 每年按330天计,每天24小时连续运行 二、设计要求 1、选择适宜的列管式换热器并进行核算 【 2、要进行工艺计算 3、要进行主体设备的设计(主要设备尺寸、横算结果等) 4、编写设计任务书 5、进行设备结构图的绘制(用420*594图纸绘制装置图一张:一主视图,一俯视图。一剖面图,两个局部放大图。设备技术要求、主要参数、接管表、部件明细表、标题栏。) 三、列环式换热器形式及特点的简述 换热器概述

化工原理课程设计——换热器的设计

中南大学《化工原理》课程设计说明书 题目:煤油冷却器的设计 学院:化学化工学院 班级:化工0802 学号: 1505080802 姓名: ****** 指导教师:邱运仁 时间:2010年9月

目录 §一.任务书 (2) 1.1.题目 1.2.任务及操作条件 1.3.列管式换热器的选择与核算 §二.概述 (3) 2.1.换热器概述 2.2.固定管板式换热器 2.3.设计背景及设计要求 §三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 §四. 机械结构设计 (9) 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.壳程内径及换热管选型汇总 4.4.折流板 4.6.接管 4.7.壁厚的确定、封头 4.8.管板 4.9.换热管 4.10.分程隔板 4.11拉杆 4.12.换热管与管板的连接 4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI型) 4.14.膨胀节的设定讨论 §五.换热器核算 (21) 5.1.热量核算 5.2.压力降核算 §六.管束振动 (25) 6.1.换热器的振动 6.2.流体诱发换热器管束振动机理 6.3.换热器管束振动的计算 6.4.振动的防止与有效利用 §七. 设计结果表汇 (28) §八.参考文献 (29) §附:化工原理课程设计之心得体会 (30)

§一.化工原理课程设计任务书 1.1.题目 煤油冷却器的设计 1.2.任务及操作条件 1.2.1处理能力:40t/h 煤油 1.2.2.设备形式:列管式换热器 1.2.3.操作条件 (1).煤油:入口温度160℃,出口温度60℃ (2).冷却介质:循环水,入口温度17℃,出口温度30℃ (3).允许压强降:管程不大于0.1MPa,壳程不大于40KPa (4).煤油定性温度下的物性数据ρ=825kg/m3,黏度7.15×10-4Pa.s,比热容2.2kJ/(kg.℃),导热系数0.14W/(m.℃) 1.3.列管式换热器的选择与核算 1.3.1.传热计算 1.3. 2.管、壳程流体阻力计算 1.3.3.管板厚度计算 1.3.4.膨胀节计算 1.3.5.管束振动 1.3.6.管壳式换热器零部件结构 §二.概述 2.1.换热器概述 换热器是化工、炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。 换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,如表2-1所示。 表2-1 传热器的结构分类

化工原理课程设计模板-换热器

化工原理课程设计 学院: 班级: 姓名: 学号:(长号) 指导教师: 2016年11月

化工原理课程设计 《列管式换热器》设计任务书 班级姓名 一、设计题目:列管式柴油冷却器的工艺设计 二、设计任务及操作条件 (1)设计任务 非标准系列列管式柴油冷却器的工艺设计。 说明:对于非标准系列列管式换热器的设计,因是非标,显然不能按照标准系列列管式换热器在标准系列规格中进行选型设计,而应按照非标准系列列管式换热器的设计程序进行。 (2)操作条件 ①处理能力(班级×0.3)×104t/a柴油 ②设备型式列管式换热器(或立式、或卧式)。 ③操作条件 柴油入口温度:100+班级+学号℃,出口温度:25+班级+学号℃冷却介质:自来水,入口温度:29 ℃,出口温度:49 ℃ 允许压降:不大于105Pa 每年按330天计,每天24h连续运行 已知柴油的有关物性数据:密度ρ1=994kg/m3;定压热比容c p,1=2.22kJ/(kg·℃);热导率λ1=0.14W/(m·℃);黏度μ1=7.15×10-4 Pa·s 三、设计项目(说明书格式) 1、封面、任务书、目录。 2、设计方案简介:对确定的换热器类型进行简要论述。 3、换热器的工艺计算: 1)确定物性数据 2)估算传热面积 3)工艺结构尺寸 4)换热器核算:包括传热面积核算和换热器压降核算 4、换热器的机械设计 5、绘制列管式换热器结构图(CAD)。 6、对本设计进行评述。 7、参考文献 成绩评定指导教师 2016年月日

课程设计内容1设计方案简介 1.1选择换热器类型 1.2冷热流体流动通道的选择 2工艺设计计算 2.1 确定物性数据 2.2估算传热面积 2.3 工艺结构尺寸 2.3.1 管径和管内流速 2.3.2 管程数和传热管数 2.3.3 管子排列方式和分程方法 2.3.4 平均传热温差校正及壳程数 2.3.5 壳体内径 2.3.6 折流板 2.4 换热器核算 2.4.1 传热面积校核 2.4.2 换热器内流体流动阻力 2.5 换热器主要结构尺寸和计算结果 3换热器机械设计 3.1 壳体壁厚 3.2 管板尺寸 3.3 接管尺寸 3.4 换热器封头选择 3.5 膨胀节选择(根据设计可选可不选) 3.6其他部件 4评述 4.1 可靠性评价 4.2 个人感想 5参考文献 附表换热器主要结构尺寸和计算结果 附录换热器结构图 时间安排: 2016-11-1 发任务书,设计指导 6 2016-12-0 完成计算 6 2016-12-1 完成初稿(包括绘图) 6

化工原理课程设计

化工原理课程设计 设计题目:列管式换热器的设计 指导教师 专业班级 学生姓名 学 号 2009 年 1 月 5 日 目录 1.设计任务书及操作条件 2.前言 2.1 设计方案简介 2.2工艺流程草图及说明 3 工艺设计及计算 3.1、铺助设备计算及选型 3.2、设计结果一览表 4.设计的评述 5、主要符号说明

6、参考文献 7.主体设备条件图及生产工艺流程图(附后) 1.设计任务书及操作条件 (1)处理能力:1×104吨/年正己烷。 (2)设备型式:列管式换热器 (3)操作条件 1 正己烷(含水蒸汽20%):入口温度1000C, 出口温度350C。 2 冷却介质:循环水,入口温度250C,出口温 度350C。

3 允许压降:不大于105Pa。 4 每年按330天计。 5 建厂地址广西 (三)设计要求 1.选择适宜的列管式换热器并进行核算。 2.要进行工艺计算 3.要进行主体设备的设计(主要设备尺寸、衡算结果等) 4.编写任务设计书 5.进行设备结构图的绘制(用420*594图纸绘制装置图一张) 2.前言

2.1 设计方案简介 固定管板式换热器 换热管束固定在两块管板上,管板又分别焊在外壳的两端,管子、管板和壳体都是刚性连接。当管壁与壳壁的壁温相差大于50℃时,为减小或消除温差产生的热效应力,必须设有温差补偿装置,如膨胀节。 固定管板式换热器结构比较简单,制造简单,制造成本低,管程可用多种结构,规格范围广,在生产中广泛应用。因壳侧不易清洗,故不适宜较脏或有腐蚀性的物流的换热,适用于壳壁与管壁温差小于70℃、壳程压力不高、壳程结垢不严重、并可用化学方法清洗的场合。 本设计任务为正己烷冷却器的设计,两流体在传热过程中无相的变化,且冷、热流体间的温差不是太大或温差较大但壳程压力不高的场合。当换热器传热面积较大,所需管子数目较多时,为提高管流速,常将换热管平均分为若干组,使流体在管内依次往返多次,即为多管程,从而增大了管内对流传热系数。固定管板式换热器的优点是结构简单、紧凑。在相同的壳体直径内,排管数最多,旁路最少;每根换热管都可以进行更换,且管内清洗方便。 2.2工艺流程草图及说明 工艺流程草图附后 流程图说明: 正己烷和循环冷却水经泵以一定的流速(由泵来调控)输入换热器中经换热器进行顺流换热。正己烷由100℃降到35℃,循环冷水由25℃升到35℃,且35℃的冷水回到水槽后,由于冷水的量多,回槽的水少,且流经管路时也有被冷凝,因此不会引起槽中水温太大的变化从而使水温保持25℃左右。 3 工艺设计及计算 (1) 确定设计方案 1. 选择换热器的类型 两流体温度变化情况:热流体进口温度100℃,出口温度35℃;冷

化工原理课程设计范例

专业:化学工程与工艺 班级:黔化升061 姓名:唐尚奎 指导教师:王瑾老师 设计时间: 2007年1月 前言 在化学工业和石油工业中广泛应用的诸如吸收、解吸、精馏、萃取等单元操作中,气液传质设备必不可少。塔设备就是使气液成两相通过精密接触达到相际传质和传热目的的气液传质设备之一。 塔设备一般分为级间接触式和连续接触式两大类。前者的代表是板式塔,后者的代表则为填料塔,在各种塔型中,当前应用最广泛的是筛板塔与浮阀塔。 筛板塔在十九世纪初已应用与工业装置上,但由于对筛板的流体力学研究很少,被认为操作不易掌握,没有被广泛采用。五十年代来,由于工业生产实践,对筛板塔作了较充分的研究并且经过了大量的工业生产实践,形成了较完善的设计方法。筛板塔和泡罩塔相比较具有下列特点:生产能力大于10.5%,板效率提高产量15%左右;而压降可降低30%左右;另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右;安装容易,也便于清理检修。本次设计就是针对水乙醇体系,而进行的常压二元筛板精馏塔的设计及其辅助设备的选型。由于此次设计时间紧张,本人水平有限,难免有遗漏谬误之处,恳切希望各位老师指出,以便订正。 目录 一、设计任务 二、方案选定 三、总体设计计算-------------------------------05 3.1气液平衡数据------------------------------ 05 3.2物料衡算------------------------------------- 05 3.3操作线及塔板计算------------------------- 06 3.4全塔Et%和Np的计算----------------------06 四、混合参数计算--------------------------------07 4.1混合参数计算--------------------------------07 4.2塔径计算--------------------------------------08 4.3塔板详细计算-------------------------------10 4.4校核-------------------------------------------12 4.5负荷性能图----------------------------------14 五、筛板塔数据汇总-----------------------------16 5.1全塔数据-------------------------------------16 5.2精馏段和提馏段的数据-------------------17 六、讨论与优化-----------------------------------18 6.1讨论-------------------------------------------18 6.2优化--------------------------------------------18

化工原理课程设计

化工原理课程设计 课程名称: ____填料塔设计____ 设计题目: ____水吸收丙酮____ 院系: ___ 化工学院_____ 学生姓名: _____ 马学成______ 学号: ____ 201007042____ 专业班级: ____化艺1001班____ 指导教师: ______张玉洁______

化工原理课程设计任务书 (一)设计题目:水吸收空气中的丙酮填料塔的工艺设计(二)设计条件 1.生产能力:每小时处理混合气体8000Nm3 /h 2.设备形式:填料塔 3.操作压力:101.3KPa 4.操作温度:298K 5.进塔混合气体中含丙酮6%(体积比) 6.丙酮的回收率为99% 7.每年按330天计,每天按24小时连续生产 8.建厂地址:兰州地区 9.要求每米填料的压降都不大于103Pa。 (三)设计步骤及要求 1.确定设计方案 (1)流程的选择 (2)初选填料的类型 (3)吸收剂的选择 2.查阅物料的物性数据 (1)溶液的密度、粘度、表面张力、丙酮在水中的扩散系数(2)气相密度、粘度、表面张力、丙酮在空气中的扩散系数

(3)丙酮在水中溶解的相平衡数据 3.物料衡算 (1)确定塔顶、塔底的气流量和组成 (2)确定泛点气速和塔径 (3)校核D/d>8~10 (4)液体喷淋密度校核:实际的喷淋密度要大于最小的喷淋密度。4.填料层高度计算 5.填料层压降核算 如果不符合上述要求重新进行以上计算 6.填料塔附件的选择 (1)液体分布装置 (2)液体再分布装置 (3)填料支撑装置 (4)气体的入塔分布. (四)参考资料 1、《化工原理课程设计》贾绍义柴诚敬天津科学技术出版 2、《现代填料塔技术》王树盈中国石化出版 3、《化工原理》夏清天津科学技术出版 (五)计算结果列表(见下页)

化工原理课程设计 (3)

化工原理课程设计(3)文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

化工原理课程设计题目: 姓名: 班级: 学号: 指导老师: 设计时间: 序言 化工原理课程设计是综合运用《化工原理》课程和有关先修课程(《物理化学》,《化工制图》等)所学知识,完成一个单元设备设计为主的一次性实践教学,是理论联系实际的桥梁,在整个教学中起着培养学生能力的重要作用。 通过课程设计,要求更加熟悉工程设计的基本内容,掌握化工单元操作设计的主要程序及方法,锻炼和提高学生综合运用理论知识和技能的能力,问题分析能力,思考问题能力,计算能力等。 精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,在化工,炼油,石油化工等工业中得到广泛应用。精馏过程在能量剂驱动下(有时加质量剂),使气液两相多次直接接触和分离,利用液相混合物中各组分的挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离。根据生产上的不同要求,精馏操作可以是连续的或间歇的,有些特殊的物系还可采用衡沸精馏或萃取精馏等特殊

方法进行分离。本设计的题目是苯-甲苯连续精馏筛板塔的设计,即需设计一个精馏塔用来分离易挥发的苯和不易挥发的甲苯,采用连续操作方式,需设计一板式塔将其分离。 目录 一、化工原理课程设计任书 (3) 二、设计计算 (3) 1.设计方案的确定 (3) 2.精馏塔的物料衡算 (3) 3.塔板数的确定 (4) 4.精馏塔的工艺条件及有关物性数据的计算 (8) 5.精馏塔的塔体工艺尺寸计算 (10) 6.塔板主要工艺尺寸的计算 (11) 7.筛板的流体力学验算 (13) 8.塔板负荷性能图 (15) 9.接管尺寸确定 (30)

化工原理课程设计

化工原理课程设计设计题目:空气中丙酮的回收工艺操作 学院:化学化工学院 班级:化工 0902 姓名(学号):侯祥祥 3091303039 朱晓燕 3091303036 熊甜甜 3091303035 周利芬 3091303033 指导教师:吴才玉 2012年01月

化工原理课程设计 目录 一、前言 (3) 二、设计内容 (5) (一)设计对象 (5) (二)工艺路线设计 (5) 1.路线选择 (5) 2.流程示意图 (8) 3.流程说明 (9) (三)工艺的设计计算 (10) 1.物料衡算 (10) 2.热量衡算 (12) (四)设备的设计计算 (21) 1.主要参数 (21) 2.直径 (21) 3.附加条件 (21) (五)设备示意图 (23) 三、总结体会 (24) 四、参考文献 (29) 五、附录 (31)

江苏大学化学化工学院

化工原理课程设计 前言 化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设 计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使 用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画 出工艺流程、塔板结构等图形。在设计过程中不仅要考虑理论上的可行性,还 要考虑生产上的安全性、经济合理性。 在化工生产中,常常需要进行混合物的分离以达到提纯或回收有用组分的 目的,吸收和精馏两个单元操作为此提供了重要措施。气体吸收过程是化工生 产中常用的气体混合物的分离操作,其基本原理是利用气体混合物中各组分在 特定的液体吸收剂中的溶解度不同,实现各组分分离的单元操作。精馏是常用 的液体混合物的分离操作,它利用液体混合物中各组分挥发度的不同并借助于 多次部分汽化和部分冷凝,从而达到轻重组分分离的目的。 塔设备是一种重要的单元操作设备,其作用实现气—液相或液—液相之间 的充分接触,从而达到相际间进行传质及传热的过程。它广泛用于吸收、精馏、萃取等单元操作,随着石油、化工的迅速发展,塔设备的合理造型设计将越来 越受到关注和重视。塔设备一般分为连续接触式和阶跃接触式两大类。前者的 代表是填料塔,后者的代表则为板式塔。在本次课程设计中,吸收操作采用的 是填料塔,而精馏操作采用的则为板式塔。 填料塔的基本特点是结构简单,压力降小,传质效率高,便于采用耐腐蚀 材料制造等,对于热敏性及容易发泡的物料,更显出其优越性。过去,填料塔 多推荐用于0.6~0.7m以下的塔径。近年来,随着高效新型填料和其他高性能 塔内件的开发,以及人们对填料流体力学、放大效应及传质机理的深入研究, 使填料塔技术得到了迅速发展。 筛板塔是1932年提出的,当时主要用于酿造,其优点是结构简单,制造 维修方便,造价低,气体压降小,板上液面落差较小,相同条件下生产能力高 于浮阀塔,塔板效率接近浮阀塔。其缺点是稳定操作范围窄,小孔径筛板易堵塞,不适宜处理粘性大的、脏的和带固体粒子的料液。但设计良好的筛板塔仍

化工原理课程设计模板

化工原理课程设计 1 引言 塔设备是化工﹑石油化工﹑生物化工﹑制药等生产过程中广泛应用的气液传质设备。根据塔内气液接触构件的结构形式,可以分为板式塔和填料塔。 本设计的目的是设计符合设计任务的苯-甲苯分离过程板式精馏塔以及附属设备。通过设计工艺流程草图板式塔主体设备计算及选型、辅助设备的计算及选型等阶段,最终完成各项参数的设计、验算,认为设计符合设计任务要求。并作出相关装配图和工艺流程图。 2 设计方案简介 确定设计方案总的原则是在可能的条件下,尽量采用科学技术上的最新成就,使生产达到技术上最先进、经济上最合理的要求,符合优质、高产、安全、低消耗的原则。为此,必须具体考虑如下几点、满足工艺和操作的要求、满足经济上的要求、保证安全生产。在化工原理课程设计中,对第一个原则作较多的考虑,对第二个原则只作定性的考虑,而对第三个原则只要求作一般的考虑。 本设计按以下几个阶段进行: 1)设计方案确定和说明。根据给定任务,对精馏装置的流程、操作条件、主要设备 型式及其材质的选取等进行论述。 2)蒸馏塔的工艺计算,确定塔高和塔径。 3)塔板设计:计算塔板各主要工艺尺寸,进行流体力学校核计算。接管尺寸、泵等, 并画出塔的操作性能图。 4)管路及附属设备的计算与选型,如再沸器、冷凝器。 5)抄写说明书。 6)绘制精馏装置工艺流程图和精馏塔的设备图。 本设计任务将采用连续精馏流程。设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2倍。塔釜采用间接蒸汽加热,塔底产品经冷

化工原理课程设计

《化工原理》课程设计 设计(论文)题目:板式精馏塔的设计 学院名称:材料与化学工程学院 专业:化学工程与工艺 班级:化工151 姓名:学号 指导教师:职称 定稿日期:2018年1月7日

目录 1设计任务书 (4) 1.1设计任务 (4) 1.2工艺操作条件 (4) 1.3设计内容要求 (4) 2精馏塔设计 (5) 2.1塔设备设计思路 (5) 2.2乙醇—水溶液的分析 (5) 2.2.1乙醇—水溶液的性质 (5) 2.2.2乙醇—水溶液气液平衡数据的获取 (5) 2.3工艺操作条件的确定 (7) 2.3.1压力的确定 (7) 2.3.2进料热状态的确定 (7) 2.3.3回流比的确定 (8) 2.3.4塔盘类型与选择 (9) 2.3.5塔釜加热、塔顶冷凝方式 (12) 2.3.6工艺流程图 (12) 3精馏塔的工艺计算 (13) 3.1物料衡算 (13) 3.2操作线的计算 (13) 3.3精馏塔工艺条件及有关物性数据 (14) 3.3.1Aspen plus简捷计算法 (14) 3.3.2AspenPlus严格计算法 (14) 3.4塔径计算 (16) 3.5溢流装置计算 (17) 3.6塔板布置及浮阀数目与排列 (20) 3.7塔板流体力学校验 (21) 3.7.1气相通过浮阀塔板的压强降 (21) 3.7.2液泛 (21) 3.7.3雾沫夹带 (22) 3.8塔板负荷性能图 (23) 3.8.1雾沫夹带线 (23) 3.8.2液泛线 (24)

3.8.3液相负荷上限线 (24) 3.8.4漏液线 (25) 3.8.5液相负荷下限线 (25) 3.9水力学校核 (26) 4计算结果汇总 (30) 5Aspen软件验算 (31) 5.1达到目标要求回流比的计算 (31) 5.2最佳进料位置的计算 (31) 5.3塔径验算 (32) 6参考文献 (34)

化工原理课程设计计算示例

化工原理壳程设计计算示例 一浮阀塔工艺设计计算示例 拟设计一生产酒精的板式精馏塔。来自原料工段的乙醇-水溶液的处理量为48000吨/年,乙醇含量为35%(质量分率)原料温度为45℃。 设计要求:塔顶产品的乙醇含量不小于90%(质量分率),塔底料液的乙醇含量不大于0.5%。 一、塔形选择及操作条件的确定 1.塔形:选用浮阀塔 2.操作条件: 操作压力:常压;其中塔顶:1.013×105Pa 塔底:[1.013×105+N(265~530)Pa] 进料状态:饱和液体进料 加热方式:用直接水蒸气加热 热能利用:拟采用釜残液加热原料液 二、工艺流程

三、有关工艺计算 首先,根据题目要求,将各组成要求由质量分率转换为摩尔分率,其后由 2 3971.1/H O kg m ρ=,3735/kg m ρ=乙醇 参考资料(一),查出相应泡点温度及计算平均分子量。 同理求得0.779D x = 0.0002 W x = (1)0.17646(10.176)1822.3/f f f M x M x M kg kmol =+-=?+-?=乙醇水 同理求得:39.81/D M kg kmol =,18.1/D M kg kmol = 1. 最小回流比及操作回流比的确定 由于是泡点进料,x q =x f =0.174过点e(0.174,0.174)作x=0.174直线与平衡线交与点d ,由点d 可以读得y q =0.516,因此, min(1)0.7790.516 0.7690.5160.174 D q q q x y R y x --= = =-- 又过点a (0.779,0.779)作平衡线的切线,可得切点g 由切点g 可读得' 0.55q x =,' 0.678q y =,

04 化工原理课程设计考试-2009

姓名:__________大连理工大学 学号:__________ 课程名称: 化工原理课程设计试卷:考试形式:闭卷 院系:__________授课院(系):_化工学院考试日期: 2009年 7月5日试卷共 4 页_____ 级_____ 班 一、板式塔设计部分(40分) 1.(8分)论述板式塔设计中,板间距设计偏大的优点和缺点是 什么? 2.(8分)论述塔板中溢流堰的主要作用是什么?溢流堰堰高过 大、过小各有何缺点?对于单流型塔板,堰长与塔径的比值 范围是多少? 3.(8分)板式塔负荷性能图有几条线?说出其名称?你所设计 的筛板塔或浮阀塔每条线推导的依据是什么(不必写具体公 式)?

4.(16分)用流程框图描绘出塔板设计的计算过程? 二、再沸器设计部分(40分) 1. 简述立式热虹吸再沸器工艺设计的基本步骤? 2. 立式热虹吸再沸器的传热管根据管内流体的相态可分为两段,分别是什么?立式热虹吸再沸器总传热系数的计算步骤是什么?

3. 立式热虹吸再沸器的循环推动力是什么?如在再沸器设计工程中,循环推动力小于循环阻力,应如何调整出口汽含率? 4. 课程设计过程中,如何确定再沸器的热负荷? 三、画图部分(20分) 1.请在相应位置上正确画出精馏塔的常规接口和附属设备,标出名称。 2. 请画出工艺流程图中以下设备或仪表的图例: (1)输送液体乙烷或乙烯用的离心泵

(2)单管程固定管板式列管换热器; (3)存放液态乙烷或乙烯的储罐 (4)集中仪表盘面安装仪表 3.填空: 在带控制点的工艺流程图中,工艺物料管线用线画出; 辅助物料管道用线画出;仪表控制线用或线绘制。(中实线,粗实线,细实线,细虚线,中虚线)。

化工原理课程设计模板123

目录 第一章前言 (1) 1.1 精馏及精馏流 (1) 1.2 精馏的分类 (2) 1.3精馏操作的特点 (2) 1.3.1沸点升高 (2) 1.3.2物料的工艺特性 (2) 1.3.3节约能源 (2) 1.4 相关符号说明 (4) 1.5相关物性参数 (6) 1.5.1苯和甲苯的物理参数............................... .6 第二章设计任务书. (7) 第三章设计内容 (8) 3.1设计方案的确定及工艺流程的说明 (8) 3.2全塔的物料衡算 (8) 3.2.1原料液及塔顶底产品含苯的摩尔分率 (8) 3.2.2原料液及塔顶底产品的平均摩尔质量 (8) 3.2.3料液及塔顶底产品的摩尔流率 (9) 3.3塔板数的确定 (9) 3.3.1平衡曲线的绘制 (9) 3.4塔的精馏段操作工艺条件及计算 (12) 3.4.1平均压强p m (12) 12 3.4.2平均温度t m..................................... M (13) 3.4.3平均分子量 m 3.4.4 液体的平均粘度和液相平均表面张力 (14) 3.5 精馏塔的塔体工艺尺寸计算 (16)

3.5.1塔径的计算 (16) 3.5.2精馏塔有效高度的计算 (18) 3.6塔板工艺结构尺寸的设计与计算 (18) 3.6.1溢流装置计算 (18) 3.6.2塔板布置 (19) 3.6.3气象通过塔板压降的计算 (21) 3.7塔板负荷性能图 ................................ ..23 3.7.1漏液线 (23) 3.7.2 雾沫夹带线 (23) 3.7.3 液相负荷下限线 (24) 3.7.4 液相负荷上限线 (24) 3.7.5液泛线 (25) 第四章附属设备的选型及计算 (27) 4.1接管——进料管 (27) 4.2法兰 (27) 4.3筒体与封头 (27) 4.4 人孔 (28) 4.5热量衡算 (28) 参考文献 (31) 课程设计心得 (32)

化工原理课程设计精馏塔详细版模板

重庆邮电大学 化工原理课程设计任务书 专业: 班级: 姓名: 学号: 设计时间: 设计题目: 乙醇——水筛板精馏塔工艺设计 设计条件: 1. 常压操作, P=1 atm( 绝压) 。 2. 原料来至上游的粗馏塔, 为95——96℃的饱和蒸汽。因沿 程热损失, 进精馏塔时原料液温度降为90℃。 3. 塔顶产品为浓度92.41%( 质量分率) 的药用乙醇, 产量为 40吨/日。 4.塔釜排出的残液中要求乙醇的浓度不大于0.03%( 质量分 率) 。 5.塔釜采用饱和水蒸汽加热( 加热方式自选) ; 塔顶采

用全凝 器, 泡点回流。 6.操作回流比R=( 1.1——2.0) R min。 设计任务: 1. 完成该精馏塔工艺设计, 包括辅助设备及进出口接管的计 算和选型。 2.画出带控制点的工艺流程图, t-x-y相平衡图, 塔板负荷性能图, 筛孔布置图以及塔的工艺条件图。 3.写出该精流塔的设计说明书, 包括设计结果汇总和对自己 设计的评价。 指导教师: 时间 1设计任务 1.1 任务 1.1.1 设计题目乙醇—水筛板精馏塔工艺设计

1.1.2 设计条件 1.常压操作, P=1 atm( 绝压) 。 2.原料来至上游的粗馏塔, 为95-96℃的饱 和蒸气。因沿程热损失, 进精馏塔时 原料液温度降为90℃。 3.塔顶产品为浓度92.41%( 质量分率) 的药 用乙醇, 产量为40吨/日。 4.塔釜排出的残液中要求乙醇的浓度不大 于0.03%(质量分率)。 5.塔釜采用饱和水蒸气加热( 加热方式自 选) ; 塔顶采用全凝器, 泡点回流。 6.操作回流比R=(1.1—2.0) R。 min 1.1.3 设计任务 1.完成该精馏塔工艺设计, 包括辅助设备及 进出口接管的计算和选型。 2.画出带控制点的工艺流程示意图, t-x-y相 平衡图, 塔板负荷性能图, 筛孔布置图 以及塔的工艺条件图。 3.写出该精馏塔的设计说明书, 包括设计结 果汇总和对自己设计的评价。 1.2 设计方案论证及确定 1.2.1 生产时日

化工原理课程设计施

化工原理课程设计乙醇-水填料式精馏塔设计学生姓名徐程 学院名称化学化工学院 学号8 班级13级2班 专业名称应用化学 指导教师王菊 2016年5月20日

摘要 填料式精馏塔是化工生产的重要化工设备。精馏塔不仅对产品本身,而且还对产品产量、质量、生产能力和消耗定额,以及三废处理和环境保护等各方面都有重大影响。因此,掌握精馏塔的基本设计对化工专业学生十分重要的。本课程设计是关于乙醇-水的填料式精馏塔的设计,通过对填料式精馏塔的设计,熟练掌握以及运用所学知识并投入到实际生产当中去。 关键词乙醇;水;填料式精馏塔;化工生产;

第一部分概述 概述 乙醇可用来制取、乙醚、、等化工原料,也是制取、、等产品的原料,所以乙醇是一

种重要的化工原料。如今能源消耗有枯竭的趋势,作为一种可再生的能源,乙醇燃料成为未来代替传统化石燃料的重要能源之一。 国内乙醇生产方法主要有发酵法、乙烯水化法、合成气经醋酸制乙醇、合成气直接制乙醇等,国外乙醇生产方法主要有渗透蒸发技术、新型耦合分离技术、渗透气化膜分离技术、PVA膜渗透汽化等。塔设备作为工业生产上最重要的设备之一,在工业生产乙醇的分离中起重要作用。在塔设备中常见的单元操作有:精馏、吸收、解吸和萃取等。乙醇-水是工业上最常见的溶剂,也是十分重要的化工原料之一。长期以来乙醇-水溶液通常都是通过蒸馏法生产,但由于乙醇-水的共沸现象,普通的精馏方法对于高纯度的乙醇来说产量不好,所以设计研究和改进精馏设备是十分重要的。本课程设计主要是采用填料精馏塔对乙醇-水溶液进行分离。 塔设备在经过长期的发展,形成了形式繁多的结构,以满足各方面的特殊需要。在乙醇的工业生产中,主要是通过精馏塔将产物乙醇与水分离,制取高纯度的乙醇。按塔的内件结构的不同可以分为板式塔和填料塔两大类。 填料塔是以塔内的填料作为气液两相间接触构件的传质设备。填料塔的底部安装填料支撑板,填料随意乱堆或整砌的方式放置在支撑板上。填料上方安装有填料压板,以防填料被上升气流吹动。填料塔塔内填充适当高度的填料,以增加两种流体间的接触表面。液体沿填料表面呈膜状向下流动,作为连续相的气体则自下而上地流动,与液体逆流传质。两相的组分浓度沿塔高呈连续变化。 作为产物分离中的最重要的设备之一的塔设备,随着塔设备技术的发展,国内外制定了多种企业接触的元件,从而改善塔设备质量,缩短塔设备的制造、安装周期,以此来减少设备的投资费用。 文献综述 填料类型 气-液传质设备主要分为板式塔和填料塔两大类。精馏操作既可采用板式塔,也可采用填料塔,板式塔的设计将在其他分册中作详细介绍,故本书将只介绍填料塔。 新型高效规整填料的不断开发与应用,冲击了设备以板式塔为主的局面,且大有取代板式塔的趋势。最大直径规整填料塔已达14~20m,结束了填料塔只适用于小直径塔的历史。这标志着填料塔的、塔内件及填料塔本身的综合设计技术进入了一个新阶段。纵观填料塔的发展,新型填料的研究始终十分活跃,尤其是新型规整填料不断涌现。如今,填料主要分为散堆填料、规整填料和毛细管填料。 填料塔 填料塔也是传质过程常用的塔设备,它的主要优点是生产能力大,分离效率高,压降小,持液量小操作弹性大等。

相关主题
文本预览
相关文档 最新文档