当前位置:文档之家› 北京国子监中学数学 二次函数中考真题汇编[解析版]

北京国子监中学数学 二次函数中考真题汇编[解析版]

北京国子监中学数学 二次函数中考真题汇编[解析版]
北京国子监中学数学 二次函数中考真题汇编[解析版]

北京国子监中学数学二次函数中考真题汇编[解析版]

一、初三数学二次函数易错题压轴题(难)

1.如图,二次函数y=ax2+bx+c交x轴于点A(1,0)和点B(3,0),交y轴于点C,抛物线上一点D的坐标为(4,3)

(1)求该二次函数所对应的函数解析式;

(2)如图1,点P是直线BC下方抛物线上的一个动点,PE//x轴,PF//y轴,求线段EF的最大值;

(3)如图2,点M是线段CD上的一个动点,过点M作x轴的垂线,交抛物线于点N,当△CBN是直角三角形时,请直接写出所有满足条件的点M的坐标.

【答案】(1)y=x2﹣4x+3;(2)EF的最大值为

2

4

;(3)M点坐标为可以为(2,

3),(55

2

+

,3),(

55

2

-

,3).

【解析】

【分析】

(1)根据题意由A、B两点坐标在二次函数图象上,设二次函数解析式的交点式,将D点坐标代入求出a的值,最后将二次函数的交点式转化成一般式形式.

(2)由题意可知点P在二次函数图象上,坐标为(p,p2﹣4p+3).又因为PF//y轴,点F 在直线BC上,P的坐标为(p,﹣p+3),在Rt△FPE中,可得FE2PF,用纵坐标差的绝对值可求线段EF的最大值.

(3)根据题意求△CBN是直角三角形,分为∠CBN=90°和∠CNB=90°两类情况计算,利用三角形相似知识进行分析求解.

【详解】

解:(1)设二次函数的解析式为y=a(x﹣b)(x﹣c),

∵y=ax2+bx+与x轴r的两个交点A、B的坐标分别为(1,0)和(3,0),

∴二次函数解析式:y=a(x﹣1)(x﹣3).

又∵点D(4,3)在二次函数上,

∴(4﹣3)×(4﹣1)a=3,

∴解得:a=1.

∴二次函数的解析式:y=(x﹣1)(x﹣3),即y=x2﹣4x+3.

(2)如图1所示.

因点P 在二次函数图象上,设P (p ,p 2﹣4p+3). ∵y =x 2﹣4x+3与y 轴相交于点C , ∴点C 的坐标为(0,3). 又∵点B 的坐标为B (3,0), ∴OB =OC

∴△COB 为等腰直角三角形. 又∵PF//y 轴,PE//x 轴, ∴△PEF 为等腰直角三角形. ∴EF 2PF .

设一次函数的l BC 的表达式为y =kx+b , 又∵B (3,0)和C (0,3)在直线BC 上,

30

3k b b +=??

=?

, 解得:1

3

k b =-??

=?,

∴直线BC 的解析式为y =﹣x+3. ∴y F =﹣p+3.

FP =﹣p+3﹣(p 2﹣4p+3)=﹣p 2+3p . ∴EF 2p 22. ∴线段EF 的最大值为,EF max 42-2

4

. (3)①如图2所示:

若∠CNB =90°时,点N 在抛物线上,作MN//y 轴,l//x 轴交y 轴于点E , BF ⊥l 交l 于点F .

设点N 的坐标为(m ,m 2﹣4m+3),则点M 的坐标为(m ,3), ∵C 、D 两点的坐标为(0,3)和(4,3), ∴CD ∥x 轴.

又∵∠CNE =∠NBF ,∠CEN =∠NFB =90°, ∴△CNE ∽△NBF . ∴

CE NE =NF

BF

, 又∵CE =﹣m 2+4m ,NE =m ;NF =3﹣m ,BF =﹣m 2+4m ﹣3,

∴24m m

m

-+=2343m m m --+-,

化简得:m 2﹣5m+5=0. 解得:m 1=

552

+,m 2=552-.

∴M 点坐标为(

55+,3)或(55-,3)

②如图3所示:

当∠CBN =90°时,过B 作BG ⊥CD , ∵∠NBF =∠CBG ,∠NFB =∠BGC =90°, ∴△BFN ∽△CGB . ∵△BFN 为等腰直角三角形, ∴BF =FN ,

∴0﹣(m 2﹣4m+3)=3﹣m . ∴化简得,m 2﹣5m+6=0. 解得,m =2或m =3(舍去) ∴M 点坐标为,(2,3).

综上所述,满足题意的M 点坐标为可以为(2,3),(52

+,3),(52-,3).

【点睛】

本题考查待定系数法求解函数解析式,二次函数和三角函数求值,三角形相似等相关知识点;同时运用数形结合和分类讨论的思想探究点在几何图形上的位置关系.

2.在平面直角坐标系中,将函数2

263,(y x mx m x m m =--≥为常数)的图象记为G . (1)当1m =-时,设图象G 上一点(),1P a ,求a 的值; (2)设图象G 的最低点为(),o o F x y ,求o y 的最大值;

(3)当图象G 与x 轴有两个交点时,设右边交点的横坐标为2,x 则2x 的取值范围是 ; (4)设1112,,2,16816A m B m ?

???+ ? ?????

,当图象G 与线段AB 没有公共点时,直接写出m 的取值范围.

【答案】(1)0a =或3a =-;(2)

118;(3)21136x -<<-;(4)1

8

m <-或1

16

m >-

【解析】 【分析】

(1)将m=-1代入解析式,然后将点P 坐标代入解析式,从而求得a 的值; (2)分m >0和m ≤0两种情况,结合二次函数性质求最值; (3)结合二次函数与x 轴交点及对称轴的性质确定取值范围; (4)结合一元二次方程根与系数的关系确定取值范围. 【详解】

解:(1)当1m =-时,()2

2613y x x x =++≥

把(),1P a 代入,得

22611a a ++=

解得0a =或3a =- (2)当0m >时,,(3)F m m - 此时,0o y m =-<

当0m ≤时,2

22

3926=2()22

y x mx m x m m m =---

-- ∴239,22F m m m ??

--

???

此时,229911=()22918

m m m -

--++ ∴0y 的最大值1

18

=

综上所述,0y 的最大值为

118

(3)由题意可知:当图象G 与x 轴有两个交点时,m >0

当抛物线顶点在x 轴上时,2

2

=4(6)42()=0b ac m m -=--??-△ 解得:m=0(舍去)或29

m =-

由题意可知抛物线的对称轴为直线x=3

2

m 且x ≥3m

∴当图象G 与x 轴有两个交点时,设右边交点的横坐标为x 2,则x 2的取值范围是

21136

x -<<- (4)18m <-或1

16

m >- 【点睛】

本题属于二次函数综合题,考查了二次函数的性质,不等式等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会用转化的思想思考问题,属于中考压轴题.

3.如图,抛物线2y ax 2x c =++经过,,A B C 三点,已知()()1,0,0,3.A C -

()1求此抛物线的关系式;

()2设点P 是线段BC 上方的抛物线上一动点,过点P 作y 轴的平行线,交线段BC 于点

,D 当BCP 的面积最大时,求点D 的坐标;

()3点M 是抛物线上的一动点,当()2中

BCP 的面积最大时,请直接写出使45PDM ∠=?的点M 的坐标

【答案】(1)2y x 2x 3=-++;(2)点33,22D ?? ???

;(3)点M 的坐标为()0,3或

??

【解析】 【分析】

(1)由2y ax 2x c =++经过点()(),1,00,3A C -,利用待定系数法即可求得此抛物线的解析式.

(2)首先设点()

2

,23,P t t t -++令2230x x -++=,求得()3,0B ,然后设直线BC 的

关系式为y kx b =+,由待定系数法求得BC 的解析式为3y x =-+,可得

()()22,3,2333D t t PD t t t t t -+=-++--+=-+,BCP 的面积为

()213

33,22

S PD t t =

?=-+利用二次函数的性质即可求解; (3)根据PD y 轴,45PDM ∠=?,分别设DM y x b =+,DM y x b =-+,根据点

33D(22,)坐标即可求出b ,再与抛物线联系即可得出点M 的坐标. 【详解】

()1将()(),1,00,3A C -分别代入22,y ax x c =++

可解得1,3,a c =-=

即抛物线的关系式为2y x 2x 3=-++.

()2设点()2,23,P t t t -++令2230,x x -++=

解得121,3,x x =-= 则点()3,0B .

设直线BC 的关系式为(y kx b k =+为常数且0k ≠), 将点,B C 的坐标代入,

可求得直线BC 的关系式为3y x =-+.

∴点()()22,3,2333D t t PD t t t t t -+=-++--+=-+

设BCP 的面积为,S

则()213

33,22

S PD t t =

?=-+ ∴当3

2t =时,S 有最大值,此时点33,22D ?? ???

()3∵

PD y 轴,45PDM ∠=?

第一种情况:令DM y x b =+,33

D(22

,) 解得:b=0

∴2

23y x y x x =??=-++?

解得:113

x 2

=

∴11M 22

+(

, 第二种情况:令DM y x b =-+,33

D(22

,) 解得:b=3

∴2

323y x y x x =-+??=-++?

解得:x=0或x=3(舍去) ∴M 03(,)

满足条件的点M 的坐标为()0,3或1122??+ ? ???

【点睛】

此题主要考查待定系数法求函数解析式和二次函数的性质,熟练掌握二次函数的性质是解题关键.

4.已知点P(2,﹣3)在抛物线L :y =ax 2﹣2ax+a+k (a ,k 均为常数,且a≠0)上,L 交y 轴于点C ,连接CP .

(1)用a 表示k ,并求L 的对称轴及L 与y 轴的交点坐标; (2)当L 经过(3,3)时,求此时L 的表达式及其顶点坐标;

(3)横、纵坐标都是整数的点叫做整点.如图,当a <0时,若L 在点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,求a 的取值范围;

(4)点M(x 1,y 1),N(x 2,y 2)是L 上的两点,若t≤x 1≤t+1,当x 2≥3时,均有y 1≥y 2,直接写出t 的取值范围.

【答案】(1)k=-3-a ;对称轴x =1;y 轴交点(0,-3);(2)2

y=2x -4x-3,顶点坐标(1,-

5);(3)-5≤a <-4;(4)-1≤t ≤2. 【解析】 【分析】

(1)将点P(2,-3)代入抛物线上,求得k 用a 表示的关系式;抛物线L 的对称轴为直线

2a

x==12a

--

,并求得抛物线与y 轴交点; (2)将点(3,3)代入抛物线的解析式,且k=-3-a ,解得a=2,k=-5,即可求得抛物线解析式与顶点坐标;

(3)抛物线L 顶点坐标(1,-a-3),点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,这四个整点都在x=1这条直线上,且y 的取值分别为-2、-1、0、1,可得1<-a-3≤2,即可求得a 的取值范围;

(4)分类讨论取a >0与a <0的情况进行讨论,找出1x 的取值范围,即可求出t 的取值范围. 【详解】

解:(1)∵将点P(2,-3)代入抛物线L :2

y=ax -2ax+a+k ,

∴-3=4a 4a a+k=a+k -+ ∴k=-3-a ;

抛物线L 的对称轴为直线-2a

x=-=12a

,即x =1; 将x=0代入抛物线可得:y=a+k=a+(-3-a)=-3,故与y 轴交点坐标为(0,-3);

(2)∵L 经过点(3,3),将该点代入解析式中, ∴9a-6a+a+k=3,且由(1)可得k=-3-a , ∴4a+k=3a-3=3,解得a=2,k=-5,

∴L 的表达式为2

y=2x -4x-3;

将其表示为顶点式:2

y=2(x-1)-5, ∴顶点坐标为(1,-5);

(3)解析式L 的顶点坐标(1,-a-3),

∵在点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,这四个整点都在x=1这条直线上,且y 的取值分别为-2、-1、0、1, ∴1<-a-3≤2, ∴-5≤a <-4;

(4)①当a <0时,∵2x 3≥,为保证12y y ≥,且抛物线L 的对称轴为x=1, ∴就要保证1x 的取值范围要在[-1,3]上, 即t ≥-1且t+1≤3,解得-1≤t ≤2;

②当a >0时,抛物线开口向上,t ≥3或t+1≤-1,解得:t ≥3或t ≤-2,但会有不符合题意的点存在,故舍去, 综上所述:-1≤t ≤2. 【点睛】

本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,数形结合解题是关键.

5.如图1.在平面直角坐标系xOy 中,抛物线2:C y ax bx c =++与x 轴相交于,A B 两点,顶点为()0,442D AB =,,设点(),0F m 是x 轴的正半轴上一点,将抛物线C 绕点

F 旋转180?,得到新的抛物线'C .

()1求抛物线C 的函数表达式:

()2若抛物线'C 与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围. ()3如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线

'C 上的对应点P',设M 是C 上的动点,N 是'C 上的动点,试探究四边形'PMP N 能否成为正方形?若能,求出m 的值;若不能,请说明理由.

【答案】()12

142

y x

=-+;()2222m <<;()3四边形'PMP N 可以为正方形,6m =

【解析】 【分析】

(1)由题意得出A,B 坐标,并代入,,A B D 坐标利用待定系数法求出抛物线C 的函数表达式;

(2)根据题意分别求出当C '过点()0,4D 时m 的值以及当C '过点()22,0B 时m 的值,并以此进行分析求得;

(3)由题意设(),P n n ,代入解出n ,并作HK OF ⊥,PH

HK ⊥于H ,利用正方形性

质以及全等三角形性质得出M 为()2,2m m --,将M 代入2

1: 42

C y x =-+即可求得答案. 【详解】 解:()

142AB =

()

, 22,0)2,0(2A B ∴-

将,,A B D 三点代入得2

y ax bx c =++

8220.8220.4a b c a b c c ?-+=??

++=??=??

解得1204a b c ?

=-??=??=??

21

42

y x ∴=-+;

()2如图2

1:42

C y x =-

+.

关于(),0F m 对称的抛物线为

()2

1:242

C y x m '=

-- 当C '过点()0,4D 时有()2

140242

m =-- 解得:2m =

当C '过点()22,0B 时有()

21

022242

m =-- 解得:22m =

222m ∴<<;

()3四边形'PMP N 可以为正方形 由题意设(),P n n ,

P 是抛物线C 第一象限上的点

21

42

n n ∴-+=

解得:122,2n n ==-(舍去)即()2,2P 如图作HK OF ⊥,PH

HK ⊥于H ,

MK HK ⊥于K

四边形PMP N '为正方形 易证

PHK FKM ≌

2FK HP m ∴==-

2MK HF ==

M ∴为()2,2m m --

∴将M 代入2

1: 42

C y x =-

+得 ()2

12242

m m -=-

-+ 解得:126,0m m ==(舍去)

∴当6m =时四边形PMP N ''为正方形.

【点睛】

本题考查二次函数综合题、中心对称变换、正方形的性质、全等三角形的判定和性质、一元二次方程的根与系数的关系等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题,难度大.

6.已知抛物线2

(0)y ax bx c a =++≠过点(0,2)A -. (1)若点(2,0)-也在该抛物线上,请用含a 的关系式表示b ;

(2)若该抛物线上任意不同两点()11,M x y 、()22,N x y 都满足:当120x x <<时,

()()12120x x y y --<;当120x x <<时,()()12120x x y y -->;若以原点O 为圆心,

OA 为半径的圆与抛物线的另两个交点为B 、C (点B 在点C 左侧),且ABC ?有一个内

角为60,求抛物线的解析式;

(3)在(2)的条件下,若点P 与点O 关于点A 对称,且O 、M 、N 三点共线,求证:

PA 平分MPN ∠.

【答案】(1)21b a =-;(2)22y x =-;(3)见解析. 【解析】 【分析】

(1)把点()0,2-、()2,0-代入抛物线解析式,然后整理函数式即可得到答案. (2)根据二次函数的性质可得出抛物线的对称轴为y 轴、开口向上,进而可得出0b =,由抛物线的对称性可得出ABC ?为等腰三角形,结合其有一个60?的内角可得出ABC ?为等边三角形,设线段BC 与y 轴交于点D ,根据等边三角形的性质可得出点C 的坐标,再利用待定系数法可求出a 值,此题得解;

(3)由(1)的结论可得出点M 的坐标为1(x ,2

12)x -+、点N 的坐标为2(x ,

22

2)x -+,由O 、M 、N 三点共线可得出21

2

x x =-

,进而可得出点N 及点'N 的坐标,由点A 、M 的坐标利用待定系数法可求出直线AM 的解析式,利用一次函数图象上点的坐标特征可得出点'N 在直线PM 上,进而即可证出PA 平分MPN ∠. 【详解】

解:(1)把点()0,2-、()2,0-分别代入,得

2420c a b c =-?

?

-+=?

. 所以21b a =-.

(2),如图1,

当120x x <<时,()()12120x x y y --<,

120x x ∴-<,120y y ->, ∴当0x <时,y 随x 的增大而减小;

同理:当0x >时,y 随x 的增大而增大,

∴抛物线的对称轴为y 轴,开口向上,

0b ∴=.

OA 为半径的圆与拋物线的另两个交点为B 、C , ABC ∴?为等腰三角形,

又ABC ?有一个内角为60?, ABC ∴?为等边三角形.

设线段BC 与y 轴交于点D ,则BD CD =,且30OCD ∠=?, 又2OB OC OA ===,

·303CD OC cos ∴=?=,·

301OD OC sin =?=. 不妨设点C 在y 轴右侧,则点C 的坐标为31). 点C 在抛物线上,且2c =-,0b =,

321a ∴-=,

1a ∴=,

∴抛物线的解析式为22y x =-.

(3)证明:由(1)可知,点M 的坐标为1(x ,212)x -,点N 的坐标为2(x ,2

22)x -.

如图2,直线OM 的解析式为()110y k x k =≠.

O 、M 、N 三点共线,

10x ∴≠,20x ≠,且221212

22

x x x x --=,

1212

22

x x x x ∴-

=-, ()121212

2x x x x x x -∴-=-

122x x ∴=-,即21

2

x x =-, ∴点N 的坐标为12(x -

,21

4

2)x -. 设点N 关于y 轴的对称点为点'N ,则点'N 的坐标为12(x ,21

4

2)x -. 点P 是点O 关于点A 的对称点,

24OP OA ∴==,

∴点P 的坐标为()0,4-.

设直线PM 的解析式为24y k x =-,

点M 的坐标为1(x ,2

12)x -,

212124x k x ∴-=-,

2121

2x k x +∴=,

∴直线PM 的解析式为211

2

4x y x x +=-.

()

222111221111

224224

·42x x x x x x x +-+-==-,

∴点'

N在直线PM上,

∠.

∴平分MPN

PA

【点睛】

本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质、等边三角形的性质以及一次(二次)函数图象上点的坐标特征,解题的关键是:(1)利用二次函数图象上点的坐标特征求出a、b满足的关系式;(2)①利用等边三角形的性质找出点C的坐标;

②利用一次函数图象上点的坐标特征找出点'N在直线PM上.

7.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.

(1)求该抛物线的函数关系式;

(2)当△ADP是直角三角形时,求点P的坐标;

(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.

【答案】(1) y=x2﹣4x+3;(2) P1(1,0),P2(2,﹣1);(3) F1(22,1),F2(22,1).

【解析】

【分析】

(1)已知了抛物线的顶点坐标,可将抛物线的解析式设为顶点式,然后将函数图象经过的C点坐标代入上式中,即可求出抛物线的解析式;

(2)由于PD∥y轴,所以∠ADP≠90°,若△ADP是直角三角形,可考虑两种情况:

①以点P为直角顶点,此时AP⊥DP,此时P点位于x轴上(即与B点重合),由此可求出P点的坐标;

②以点A为直角顶点,易知OA=OC,则∠OAC=45°,所以OA平分∠CAP,那么此时D、P关于x轴对称,可求出直线AC的解析式,然后设D、P的横坐标,根据抛物线和直线AC的解析式表示出D、P的纵坐标,由于两点关于x轴对称,则纵坐标互为相反数,可据此求出P 点的坐标;

(3)很显然当P、B重合时,不能构成以A、P、E、F为顶点的四边形,因为点P、F都在抛物线上,且点P为抛物线的顶点,所以PF与x轴不平行,所以只有(2)②的一种情况符合题意,由②知此时P、Q重合;假设存在符合条件的平行四边形,那么根据平行四边形

的性质知:P 、F 的纵坐标互为相反数,可据此求出F 点的纵坐标,代入抛物线的解析式中即可求出F 点的坐标. 【详解】

(1)∵抛物线的顶点为Q (2,﹣1), ∴设抛物线的解析式为y=a (x ﹣2)2﹣1, 将C (0,3)代入上式,得: 3=a (0﹣2)2﹣1,a=1;

∴y=(x ﹣2)2﹣1,即y=x 2﹣4x+3; (2)分两种情况:

①当点P 1为直角顶点时,点P 1与点B 重合; 令y=0,得x 2﹣4x+3=0,解得x 1=1,x 2=3; ∵点A 在点B 的右边, ∴B (1,0),A (3,0); ∴P 1(1,0);

②当点A 为△AP 2D 2的直角顶点时; ∵OA=OC ,∠AOC=90°, ∴∠OAD 2=45°;

当∠D 2AP 2=90°时,∠OAP 2=45°, ∴AO 平分∠D 2AP 2; 又∵P 2D 2∥y 轴, ∴P 2D 2⊥AO ,

∴P 2、D 2关于x 轴对称;

设直线AC 的函数关系式为y=kx+b (k≠0). 将A (3,0),C (0,3)代入上式得:

30

3k b b +=??

=?

, 解得13k b =-??=?

∴y=﹣x+3;

设D 2(x ,﹣x+3),P 2(x ,x 2﹣4x+3), 则有:(﹣x+3)+(x 2﹣4x+3)=0,

即x2﹣5x+6=0;

解得x1=2,x2=3(舍去);

∴当x=2时,y=x2﹣4x+3=22﹣4×2+3=﹣1;

∴P2的坐标为P2(2,﹣1)(即为抛物线顶点).

∴P点坐标为P1(1,0),P2(2,﹣1);

(3)由(2)知,当P点的坐标为P1(1,0)时,不能构成平行四边形;

当点P的坐标为P2(2,﹣1)(即顶点Q)时,

平移直线AP交x轴于点E,交抛物线于F;

∵P(2,﹣1),

∴可设F(x,1);

∴x2﹣4x+3=1,

解得x1=2﹣2,x2=2+2;

∴符合条件的F点有两个,

即F1(2﹣2,1),F2(2+2,1).

【点睛】

此题主要考查了二次函数的解析式的确定、直角三角形的判定、平行四边形的判定与性质等重要知识点,同时还考查了分类讨论的数学思想,能力要求较高,难度较大.

8.如图,在平面直角坐标系中,抛物线y=﹣1

2

x2+bx+c与x轴交于B,C两点,与y轴交

于点A,直线y=﹣1

2

x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与

对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN=7.

(1)求此抛物线的解析式.(2)求点N的坐标.

(3)过点A的直线与抛物线交于点F,当tan∠FAC=1

2

时,求点F的坐标.

(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC 以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t(0≤t5S与t的函数关系式.

【答案】(1)y=﹣1

2

x2+

3

2

x+2;(2)点N的坐标为(5,-3);(3)点F的坐标为:

(3,2)或(17

3

,﹣

50

9

);(4)

2

535

,0

45

3593535

,(

4

35935

5)

4

t t

S t

t

???

≤≤

? ?

?

???

=-<≤

+<≤

【解析】

【分析】

(1)点A、C的坐标分别为(0,2)、(4,0),将点A、C坐标代入抛物线表达式即可求解;

(2)抛物线的对称轴为:x=3

2

,点N的横坐标为:

37

5

22

+=,即可求解;

(3)分点F在直线AC下方、点F在直线AC的上方两种情况,分别求解即可;

(4)分0≤t 3535

<t

3535<t5

【详解】

解:(1)直线y=﹣1

2

x+2经过A,C两点,则点A、C的坐标分别为(0,2)、(4,

0),

则c=2,抛物线表达式为:y=﹣1

2

x2+bx+2,

将点C坐标代入上式并解得:b=3

2

故抛物线的表达式为:y=﹣1

2

x2

+

3

2

x+2…①;

(2)抛物线的对称轴为:x=

3

2

点N的横坐标为:

37

5

22

+=,

故点N的坐标为(5,-3);

(3)∵tan∠ACO=

21

42

AO

CO

===tan∠FAC=

1

2

即∠ACO=∠FAC,

①当点F在直线AC下方时,

设直线AF交x轴于点R,

∵∠ACO=∠FAC,则AR=CR,

设点R(r,0),则r2+4=(r﹣4)2,解得:r=

3

2

即点R的坐标为:(

3

2

,0),

将点R、A的坐标代入一次函数表达式:y=mx+n得:

2

3

2

n

m n

=

?

?

?

+=

??

,解得:

4

3

2

m

n

?

=-

?

?

?=

?

故直线AR的表达式为:y=﹣

4

3

x+2…②,

联立①②并解得:x=

17

3

,故点F(

17

3

,﹣

50

9

);

②当点F在直线AC的上方时,

∵∠ACO=∠F′AC,∴AF′∥x轴,

则点F′(3,2);

综上,点F 的坐标为:(3,2

)或(

173,﹣509

); (4)如图2,设∠ACO =α,则tanα=

1

2

AO CO =,则sinα=5,cosα=5;

①当0≤t ≤

35

时(左侧图), 设△AHK 移动到△A ′H ′K ′的位置时,直线H ′K ′分别交x 轴于点T 、交抛物线对称轴于点S ,

则∠DST =∠ACO =α,过点T 作TL ⊥KH , 则LT =HH ′=t ,∠LTD =∠ACO =α,

则DT ='5

2co 5

c s 2

os L HH T t αα===,DS =tan DT α

, S =S △DST =12?DT ×DS =2

54

t ; ②当

355

<t 35

时(右侧图),

同理可得:

S =''DGS T S 梯形=12

?DG ×(GS ′+DT ′)=12?3+55﹣323594

-; 35

<t 53594

+; 综上,S =2535,023593535,(435935(5)4t t t t ??≤≤? ???

??

?-<≤?

?+<≤?.

【点睛】

本题考查的是二次函数综合运用,涉及到一次函数、图形平移、图形的面积计算等,其中

相关主题
文本预览
相关文档 最新文档