当前位置:文档之家› 推荐-煤油冷却器的课程设计课程设计 精品

推荐-煤油冷却器的课程设计课程设计 精品

推荐-煤油冷却器的课程设计课程设计 精品
推荐-煤油冷却器的课程设计课程设计 精品

x x x x x大学

化工原理课程设计题目煤油冷却器的设计

教学院

专业班级

学生姓名

学生学号

指导教师

20XX年6月8日

目录

第一章绪论 (1)

第二章方案设计说明 (1)

2.1换热器的选型 (1)

2.1.1 换热器的分类 (1)

2.1.2 间壁式换热器 (1)

2.1.3 管壳式换热器 (1)

2.1.4 换热器的选型 (2)

2.2材质的选择 (2)

2.3换热器其他结构设计 (2)

2.3.1 管程机构 (2)

2.3.2 壳程结构 (2)

第三章管壳式换热器的设计计算 (3)

3.1确定设计方案 (3)

3.1.1 选择换热器类型 (3)

3.3.2 流动空间及流苏确定 (3)

3.2 确定物性参数 (3)

3.3 计算总传热系数 (4)

3.3.1 热流量 (4)

3.3.2 平均传热温差 (4)

3.3.3 冷却水用量 (4)

3.3.4 总传热系数 (4)

3.4 计算传热面积 (5)

3.5 工艺结构尺寸 (5)

3.5.1 管径和管内流速 (5)

3.5.2 管程数和传热管数 (5)

3.5.3 平均传热温差校正及壳程 (6)

3.5.4 传热管排列和分程方法 (6)

3.5.5 壳体内径 (6)

3.5.6 折流板 (7)

3.5.7 接管 (7)

3.6 换热器核算 (7)

3.6.1 热量核算 (7)

3.6.2 换热器内流体的流动阻力 (9)

第四章计算结果一览表 (11)

课程设计心得与体会 (12)

参文文献 (14)

附录(1)油冷却器的设计任务书 (15)

附录(2)符号说明 (16)

第一章绪论

工程设计是工程建设的灵魂,又是科研成果转化为现实生产力的桥梁和纽带,它决定了工业现代化水平。设计是一项政策性很强的工作,它涉及政治、经济、技术、环保、法规等诸多方面,而且还会涉及多专业、多学科的交叉、综合和相互协调,是集体性的劳动。先进的设计思想、科学的设计方法和优秀的设计作品是工程设计人员应坚持的设计方向和追求的目标。而化工原理课程设计,是将所学的化工原理理论知识联系实际生产的重要环节。一方面,它要求综合运用物理,化学,化工原理,工程制图的理论知识,确定生产工艺流程和计算设备的尺寸;另一方面,又要求根据设计对象的具体特征,凭借设计者的经验(或借鉴前人的经验),灵活运用设计的诀窍,对所选设备,工艺过程以及各种参数进行合理的筛选,校正和优化,达到经济合理的生产要求。

第二章设计方案说明

2.1换热器的选型

2.1.1换热器的分类

换热器是化工,炼油工业中普遍应用的工艺设备,用来实现热量的传递,使热量由高温流体传给低温流体。根据传热方式可分为混合式换热器,蓄热式换热器,和间壁式换热器,其中间壁式换热器是工业中应用最为广泛的一类。其主要特点为:冷热流体被一固体间壁隔开,通过壁面进行转热。考虑到间壁式换热器设计技术比较成熟,而且国家在该类换热器的设计,制造,检验和验收等方面已有较为完善的设设计资料和系列化标准,因此选择间壁式换热器。

2.1.2间壁式换热器

按照传热面的形状和结构特点,间壁式换热器又可细分为管式换热器,如套管式,螺旋管式,管壳式,热管式;板面式换热器,如板式,螺旋式,板壳式等;扩展面式换热器,如板翅式,管翅式,强化的传热管等。在管式换热器中,管壳式换热器是应用最广泛的一种,该类换热器结构相对简单,造价不高,壳选用多种结构材料,管内清洗方便,处理量大,在高温条件下也能应用。考虑其诸上优点,以及生产任务均符合管式换热器的要求,选择管壳式换热器。

2.1.3 管壳式换热器

管壳式换热器又称列管式换热器,是一种通用的标准换热设备。它因结构简单、耐用、造价低廉、用材广泛、清洗方便、适应性强等优点而在换热设备中占据主导地位。管壳式换热器根据其结构特点分为:固定管板式换热器,浮头式换热器,U形管式换热器。以下主要介绍固定管板式换热器。

固定管板式换热器,管端以焊接或胀接的方法固定在两块管板上,而管板则以焊接的方法与壳体连接,与其他形式的管壳式换热器相比,结构简单,当壳体

直径相同时,可安排更多的管子,也便于分程。制造成本低,由于不存在弯管部分,管内不易集聚污垢,即使产生污垢也便于清洗。为减少温差应力,壳在壳体上安装膨胀节,利用膨胀节在外力作用下中产生较大的变形能力来降低管束与壳体中的温差应力。

2.1.4选型

本次生产设计要求中,两流体温度变化情况:热流体进口温度130℃,出口温度40℃;冷流体(循环水)进口温度30℃,出口温度40℃。该换热器用循环冷却水冷却,循环冷却水的压力为0.4MPa,冬季操作时进口温度会降低,考虑到这一因素,估计该换热器的管壁温和壳体壁温之差较大,加之其冷、热两流体的温度、压力不高,温差不大,因此初步确定选用带膨胀节的固定管板式换热器。

2.2 材质的选择

换热器的设计时,换热器的各种零件,部件的材料应根据设备的操作压力,操作温度,流体的腐蚀性能以及对材料的制造工艺要求来选取。换热器的常用材料有:碳钢和不锈钢。

碳钢,价格低强度较高,对碱性介质的化学腐蚀比较稳定,很容易被酸腐蚀,在无耐腐蚀性要求的环境中应用是比较合理的,如一般换热器的普通无缝钢管,其常用的材料为10号和20号。

不锈钢,以1Cr18Ni9为代表,它是标准的18-8奥体式不锈钢,有稳定的奥体组织,具有良好的耐腐蚀性和冷加工性能。

据生产要求,冷热流体分别为水合煤油,均无腐蚀性化学性质比较稳定,以及生产经济合理,选择碳钢作为换热器的材料。

2.3 换热器其他结构的选择

2.3.1 管程结构

换热管的布置和排列间距:常用的换热管有φ19×2mm,φ25×2mm,φ25×2.5mm。因选择的为碳钢10,故可选择换换热管径φ25×2.5mm。热管板上的排列方式有正方形直列,正方形错列,三角形直列,三角形错列和同心圆排列。正三角形排列结构紧凑,我国换热器系列中,固定板式多采用正三角形排列。管间距与管外径的壁纸,焊接时为1.25,胀接时1.3至1.5。

2.3.2壳程结构

壳体:直径小于400mm的壳体通常用钢管制成,壳体大于400mm的壳用钢板卷焊而成。

折流板:常用的为圆形折流板,切缺率通常为20%至50%。垂直圆缺用于水平冷凝器,水平再沸器等,选用垂直圆缺。推荐折流板间隔最小值为内径的1/5或小于50mm,最大值取决于支持管所必要的最大间隔。此设计中使用折流

板间隔为内径的1/4。

第三章 管壳式换热器设计

3.1 确定计算方案

3.1.1 选择换热器的类型

本次生产设计要求中,两流体温度变化情况:热流体进口温度130℃,出口温度40℃;冷流体(循环水)进口温度30℃,出口温度40℃。该换热器用循环冷却水冷却,循环冷却水的压力为0.4MPa ,冬季操作时进口温度会降低,考虑到这一因素,估计该换热器的管壁温和壳体壁温之差较大,加之其冷、热两流体的温度、压力不高,温差不大,因此初步确定选用带膨胀节的固定管板式换热器。

3.1.2 流动空间及流速的确定

由于循环冷却水较易结垢以及油品的黏度较大,为便于水垢清洗、减少流动阻力,应使循环冷却水走管程,油品走壳程。选用φ25×2.5mm 的碳钢管,管内流速取s m /.50u i =。

3.2 确定物性数据

定性温度:可取流体进口温度的平均值。 壳程油的定性温度为 13040

T 852

+=

=(℃) 管程流体的定性温度为 3040

35()2

t +=

=℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。 油在85℃下的有关物性数据如下: 密度:3

0825/Kg m ρ-= 定压比热容:00

2.22/()p c KJ Kg C =?

导热系数:3

014010/()W m C λ-=??

粘度:6

074010Pa s μ-=??

循环冷却水在35℃下的物性数据: 密度:3

994i Kg m ρ-=?

定压比热容:0

4.174/()pi c KJ Kg C =? 导热系数:0

0.626/()i W m C λ=?

粘度:6

728.3510i Pa s μ-=??

3.3 计算总传热系数

3.3.1 热流量

()6

0001225000 2.22(13040) 4.99510/1387.5p Q m C T T KJ h Kw =-=??-=?=

3.3.2 平均传热温差

'

0121

2

(13040)(4030)

36.4113040

ln ln 4030m t t t C t t ?-?---?=

==?--? 3.3.3 冷却水用量

6

0 4.99510119669.4(/). 4.174(4030)

i pi i Q W Kg h C t ?=

==??- 3.3.4 总传热系数K

①管程传热系数 0.020.5994

13647.30.00072835

i i i

e i

d u R ρμ??=

=

=

由于管程中的流体为水,其在35℃下的黏度小于2倍的常温水的黏度,属

于低粘度流体,其传热系数应用迪克斯-贝尔特关联式,即:

0.80.4

0.023()()p i i i i i i i i i

c d u d μλραμλ=

330.8

0.4200.626 4.174100.72835100.023(13647.3)()

0.020.6262744.20/(.)

W m C -???=??=

②壳程传热系数

假设壳程的传热系数:20

0290/(.)W m C α=

污垢热阻

2020

00.00034(.)/0.000172(.)/si s R m C W R m C W

==

管壁的导热系数 o

so m o i o si i i o R d bd d d R d a d K αλ1

1

++++=

1

0.0250.0250.00250.02510.0003440.0001722744.200.0200.020450.0225290

=

?+?+++

??

=219.189 20/(.)W m C

3.4 计算传热面积

3

21387.510173.87()219.1836.41o m

Q S m K t ?'=

=='?? 考虑15%的面积裕度(安全系数和初估性质):

21.15 1.15173.87199.94()S S m '=?=?=

3.5 工艺结构尺寸

3.5.1 管径和管内流速

选用φ25×2.5mm 传热管,取管内流速s m /.50u i

=。

3.5.2 管程数和传热管数

依据传热管内径和流速确定单程传热管数

22119669.499436002130.7850.020.54

s i V n d u π?==≈??根 按单程管计算,所需的传热管长度为 199.94

L 11.96()3.140.025213

o s S m d n π=

==??

按单程管设计,传热管过长,宜采用多管程结构。现取传热管长L=6m ,则该换热管管程数为

11.9626

p L N l =

=≈(管程) 传热管总根数

2132426N =?=(根)

3.5.3 平均传热温差校正及壳程数

平均传热温差校正系数 13040

94030

R -=

=-

40300.10013030

P -==-

按单壳程,双管程结构,温差校正系数应查有关图表。但R= 10的点在图上难以读出,因而相应以1/R 代替R ,PR 代替P ,查同一图线,可得 0.8480.8t ??=> 平均传热温差 0.84836.4130.88()m t m t t C ??'?=?=?=?

3.5.4 传热管排列和分程方法

采用组合排列法,即每程内均按正三角形排列隔板两侧采用正方形排列。取管心距025.1d t =,则 1.252531.2532()t

mm =?=≈

横过管束中心线的管数

24.5625c

n ===≈(根)

3.5.5 壳体内径

采用多管程结构,取管板利用率.70=η,则壳体内径为

1.05 1.0532828.9()D mm ==?= 圆整可取:

900()D mm =

3.5.6 折流板

采用弓形折流板,取弓形折流板圆缺高度为壳体内径的25%,则切去的圆缺高度为0.25900225()h mm =?= ,故可取h=220(mm) 取折流板间距B=0.3D ,则

0.3900270()B mm =?=,可取B=300mm

折流板数

B N =传热管长/折流板间距-1=

6000

119300

-=(根) 折流板圆缺面水平装配。

3.5.7 接管

壳程流体进出口接管:取接管内油品流速为 1m/s ,则接管内径为

0.1036()d m =

== 取标准管径为50 mm 。

管程流体进出口接管:取接管内循环水流速为1.5m/s ,则接管内径为

0.169()d m =

== 取标准管径为170 mm 。

3.6 换热器核算 3.6.1 热量核算

(1)壳程对流传热系数 对圆缺形折流板,可采用克恩公式 00.551/30.14

000.36

Pr (

)e w

R de

λμαμ= 当量直径,由正三角形排列得

2222004(

)4(0.0320.7850.025)2420.020()3.140.025

e t d m d d ππ-?-?=

==? 壳程流通截面积

2000.025

(1)0.30.9(1)0.0591()0.032

d S BD m t =-=??-

=

壳程流体流速及雷诺数分别为

025000/(3600825)

0.1424(/)0.0591

u m s ?=

=

06

0.0200.1424825

Re 3175.13574010

-??=

=? 普兰特准数

362.221074010Pr 11.730.140

p c μ

λ-???=== 粘度校正: 0.14

(

)0.95w

μμ≈(由于壁温未知且用试差法比较繁琐,故液体冷却时用近似值)

0.551/32000.140

0.363175.13511.730.95458.66/(.)0.02

W m C α=?

???= (2)管程对流传热系数 0.80.40.023

Re Pr i

i i

d λα=

管程流通截面积 2

224260.7850.020.06688()422

s i i

n S m d π

=

=??= 管程流体流速 119669.4/(36009940.500m/s)0.06688i u ?=

=)

0.0200.50099413647.80.00072835

i i i

e i

d u R ρμ??=

==

普兰特数

364.17410728.3510Pr 4.860.626

p c μ

λ-???===

0.80.4

0.80.4

200.626

0.023

Re Pr

0.023(13647.8) 4.860.022754.08/(.)

i

i i

d W m C λα==???=

(3)热系数K

o

so m o i o si i i o

R d bd d d R d a d K αλ11

++++=

201

0.0250.0250.00250.0251

0.000340.0001722754.080.0200.020450.0225458.66

303.687/(.)

W m C =

?+?+++

??=

(4)传热面积S

3

21387.510147.955()303.68730.88

Q S m K t ?=

==?? 该换热器的实际传热面积p S 20() 3.140.025(60.06)(42625)186.98()p

c S

d L N n m π=-=??-?-=

该换热器的面积裕度为 000000186.98147.955

10010026.38147.955

p S S H S

--=

?=

?=

传热面积裕度合适,该换热器能够完成生产任务。。

3.6.2 换热器内流体的流动阻力

(1)管程流动阻力

1

2

()i

t

s

p

P P P F N N

?=?+?∑

1,2, 1.4s p t N N F ===

22

12,22

i

l u u P P d ρρλξ?=?= 由Re 13647.8=,传热管相对粗糙度0.01/20=0.0005. 查莫狄图得:

20

0.0275/(.)i W m C λ=,流速 1

0.500i u m s

-=?3,994Kg m ρ-=?

所以

2

1 6.009940.5000.02751025.060.022

P Pa ??=??=

2

2

29940.5003372.7522

u P Pa ρξ??==?=

1

2

()(1025.06372.75) 1.4123913.86810i

t

s

p

P P P F N N Pa KPa

?=?+?=+???=<∑

管程流动阻力在允许范围内。

(2)壳程阻力

''

012()t s P P P F N ?=?+?∑

1, 1.15s t N F ==

流体流经管束的阻力 2

'0

1

0(1)2

c B u P F f n N ρ?=??+?

0.2280.228000.5,

5.0Re 5.0(3175.135)0.795

F f --==?=?=

025,19,0.1424c B n N u ===m/s ,

2'0

1

02

(1)2

8250.14240.50.79525(191)1662.46()

2

c B u P F f n N Pa ρ?=??+?

?=???+?=

流体流过折流板缺口的阻力

B=0.3m ,D=0.90m

2'0

22

2(3.5)2

20.38250.142419(3.5)450.293()

0.902

B u B

P N D Pa ρ?=?-???=?-?=

总阻力

''

012()(1662.46450.293) 1.1512429.67()10t s

P P P F N Pa KPa

?=?+?=+??=<∑

因此,壳程流动阻力也比较适宜

(3)换热器主要结构尺寸和计算结果 换热器主要结构尺寸和计算结果见表

第四章计算结果一览表换热器型式:固定管板式管口表

换热面积2

()

m:187 符

尺寸用途

连接型

工艺参数 a Dn180 冷却循环水入口平面名称管程壳程 b Dn180 冷却循环水出口平面物料名称循环水油 c Dn100 煤油入口凹凸面操作压力,Mpa 0.4 0.4 d Dn100 煤油出口凹凸面

操作温度,0C30/40 130/40 e Dn20 排气口凹凸面流量,Kg/h 119669.4 25000 f Dn20 放净口凹凸面流体密度,3

Kg m-

?994 825

流速,m/s 0.500 0.1424

传热量,KW 1387.5

总传热系数,2

/

W m K

?303.687

对流传热系数,2

/

W m K

?2754.08 458.66

污垢系数,2/

m K W0.00034 0.000172

阻力降,Mpa 0.003913 0.002429

程数 2 1

推荐使用材料碳钢碳钢

管子规格φ25×2.

5mm

管数426

长,

mm

6000

管间距,mm 32 排列方式正三角形

折流板型式上下间

距,

mm

300

切口高度25

壳体内径,mm 900 保温层厚度

课程设计与心得

本周顺利完成了我应用化学专业化工原理课程设计,总体来看本人的工艺计算、过程设计及绘图等专业能力得到了真正有效的提高,可以较好地把理论学习中的分散知识点和实际生产操作有机结合起来,得到较为合理的设计成果,达到了课程综合训练的目的,提高了我个人分析和解决化工实际问题的能力。同时,在设计过程中也存在者一些共性的问题,主要表现在:

(1)设计中存在的问题

1.设计过程缺乏工程意识。

身为学生的我在做课程设计时所设计的结果没有与生产实际需要作参考,只是为了纯粹计算为设计,缺乏对问题的工程概念的解决方法。

2.学生对单元设备概念不强。

对化工制图、设备元件、材料与标准不熟悉,依葫芦画瓢的不在少数,没有达到课程设计与实际结合、强化“工程”概念的目的。绘图能力欠缺,如:带控制点工艺流程图图幅设置、比例及线型选取、文字编辑、尺寸标注以及设备、仪表、管件表示等绘制不规范。

3.物性参数选择以及计算。

在化工原理课程设计工程中首要的问题就是物性参数选择以及计算,然而我们于开始并不清楚需要计算哪些物性参数以及如何计算。这对这些问题,指导老师应在开课之初给我们讲一下每个单元操作所需的物性参数,每个物性参数查取方法以及混合物系物性参数的计算方法,还有如何确定体系的定性温度。

(2)解决措施

1.加强工程意识。

设计过程中我们应多做深层次思考,综合考虑经济性、实用性、安全可靠性和先进性,强化自己的综合和创新能力的培养;积极查阅资料和复习有关教科书,学会正确使用标准和规范,强化自己的工程实践能力。为了增强我们的工程意识提出以下措施:一是在化工原理课程讲述过程中老师应加强对我们工程意识的培养,让我们明确什么是工程概念,比如:理论上的正确性,技术上的可行性,操作上的安全性,经济上的合理性,了解工程问题的计算方法。比如试差法、因此分析法等。二是查阅文献或深入生产实际,了解现代化工生产单元设备作用原理

以及设计理念,增强对设备的感性认识。三是老师应让我们明白工程问题的解决方法有多个实施方案,最后应综合考虑操作费用和经济费用以及安全性等多个方面来确定最优方案。

2.强化工程制图本领。

为了提高我们工程制图能力,应强化计算机应用。在课程设计开设之前应开设AutoCAD课程,利用AutoCAD软件绘图,即精确又快速,也有利于适应今后实际工程设计的新要求。此外利用计算机应用程序也可代替试差方法繁琐的人工计算。

3.引导学生学会统筹兼顾,从工艺和设备全方位考虑设计问题。

化工原理课程设计是一个即繁琐又费时的过程,这要求老师和学生都要有耐性,要客观的对待每一个步骤,不能想当然更不能为了凑结果而修改数据。应科学地对待每一个数据,经得起深究和考验。

在以后的课程设计中,要精心准备更先进和工程化的设计任务,我们应多做适当讨论,必将在激发我们学习兴趣、全面培养我们的综合和创新的工程能力方面再走出重要的一步。

参考文献

【1】贾绍义柴诚敬.化工原理课程设计【M】. 天津:天津大学出版社,20XX. 【2】陈声宗.化工设计【M】.北京:化学工业出版社

【3】柴诚敬.化工原理【M】.北京:高等教育出版社

【4】杨树才.化工制图【M】.北京:化学工业出版社

【5】韩冬冰、李叙凤.化工工程设计【M】北京:学苑出版社

【6】聂清德.化工设备设计【M】北京:化学工业出版社

【7】大连理工大学.化工原理(上册)【M】. 大连:大连理工大学出版社,1993. 【8】潘继红.管壳式换热器的分析与计算【M】.北京:科学出版社,1996. 【9】朱聘冠.换热器的原理及计算【M】.北京:清华大学出版社,1987. 【10】尾花英郎.热交换器设计手册【M】.徐中全,译.北京:石油工业出版社【11】GB151—1999.钢制管壳式换热器.北京:国家技术监督局,1999.

附录(1)煤油冷却器的设计任务书

1.设计题目

煤油冷却器的设计。

2.设计任务及操作条件

(1)处理能力6000 kg/h煤油

(2)设备型式列管式换热器

(3)操作条件

①煤油:入口温度120℃,出口温度40℃

②冷却介质:自来水,入口温度28℃,出口温度38℃,循环冷却水的压力为

0.4MPa

(4)设计项目

①设计方案简介:对确定的工艺流程及换热器型式进行简要论述。

②换热器的工艺计算:确定换热器的传热面积。

③换热器的主要结构尺寸设计。

④主要辅助设备选型。

⑤绘制换热器设备图。

3.设计说明书的内容

(1)目录;

(2)设计题目及原始数据(任务书);

(3)论述换热器总体结构(换热器型式、主要结构)的选择;

(4)换热器加热过程有关计算(物料衡算、热量衡算、传热面积、换热管型号、壳体直径等);

(5)设计结果概要(主要设备尺寸、衡算结果等);

(6)主体设备设计计算及说明;

(7)参考文献;

(8)后记及其它。

4.设计图要求

绘制换热器设备图一张(手绘,A2):一主视图,一剖面图。

附录(二)符号说明

T—热流体温度,℃;

t—冷流体温度,℃;

C p—比定压热容,Kg/(Kg.℃);λ—导热系数,W/(m.℃);

Q—传热速率,Kw;

qm,h_—热流体质量流量,Kg/h;

qm,c—冷流体质量流量,Kg/h;

t m—平均传热温度,℃;

Δ

Re—雷诺数;

d—管径,mm ;

u—流速,m/s;

μ—黏度,Pa.s;

α—对流传热系数,W/(m2.℃);R—导热热阻,m2.℃/W;

K—总传热系数,W/(m2.℃);

b—平壁厚度,mm;

S—传热面积,m2;

n—管数;

V—体积流量,m3/s;

L—传热管长度,m;

l—特性尺寸,m;

N—程数;

R,P—因数;

?Δt—平均温度校正系数,量纲为一;t—管心距,mm;

D—壳体内径,mm;

η—利用率;

h—圆缺高度,mm;

B—折流板间距,mm;

N B—折流板数;

d e—当量直径,mm;

Pr—普兰特准数;

H—面积裕度;

p—压力,Pa;

F t—结垢校正系数;

N s—串联壳程数;

ξ—局部阻力系数;

F—管子排列方式对压力降的校正系数;f0—壳程流体摩擦系数;

下标

h—热流体的;c—冷流体的;e—当量的;i—管内的;o—管外的;m—平均的;s—污垢;w—壁面;

列管式换热器课程设计报告书

——大学《化工原理》列管式换热器 课程设计说明书 学院: 班级: 学号: 姓名: 指导教师: 时间:年月日

目录 一、化工原理课程设计任务书............................................................................ . (2) 二、确定设计方案............................................................................ (3) 1.选择换热器的类型 2.管程安排 三、确定物性数据............................................................................ (4) 四、估算传热面积............................................................................ (5) 1.热流量 2.平均传热温差 3.传热面积 4.冷却水用量 五、工艺结构尺寸............................................................................ (6) 1.管径和管内流速 2.管程数和传热管数 3.传热温差校平均正及壳程数 4.传热管排列和分程方法 5.壳体内径 6.折流挡板 (7) 7.其他附件 8.接管 六、换热器核算............................................................................ . (8) 1.热流量核算 2.壁温计算 (10) 3.换热器内流体的流动阻力 七、结构设计............................................................................ . (13) 1.浮头管板及钩圈法兰结构设计 2.管箱法兰和管箱侧壳体法兰设计 3.管箱结构设计 4.固定端管板结构设计 5.外头盖法兰、外头盖侧法兰设计 (14) 6.外头盖结构设计 7.垫片选择

课程设计换热器-煤油汇总

《化工过程设备设计Ⅰ(一)》 说明书 设计题目:换热器的设计 专业: 班级: 学号: 姓名: 指导教师: 设计日期: 设计单位:青海大学化工学院化学工程系

目录 前言 (4) 任务书 (5) 目的与要求 (6) 一、工艺设计方案 (8) 二、确定物性数据 (9) 三、估算传热面积 (9) 四、工艺结构尺寸 (10) 五、换热器核算 (12) 六、设计结果概要一览表 (17) 七、参考文献 (19)

前言 化工原理课程设计是化工原理教学的一个重要环节,是综合应用本门课程和有关先修课程所学知识,完成以单元操作为主的一次设计实践。通过课程设计使学生掌握化工设计的基本程序和方法,并在查阅技术资料、选用公式和数据、用简洁文字和图表表达设计结果、制图以及计算机辅助计算等能力方面得到一次基本训练,在设计过程中能够培养学生树立正确的设计思想和实事求是、严肃负责的工作作风。 化工原理课程设计是化工原理课程教学的一个实践环节,是使学生得到化工设计的初步训练,为毕业设计奠定基础。围绕以某一典型单元设备(如板式塔、填料塔、干燥器、蒸发器、冷却器等)的设计为中心,训练学生非定型设备的设计和定型设备的选型能力。设计时数为3周,其基本内容为: (1)设计方案简介:对给定或选定的工艺流程、主要设备的型式进行简要的论述。 (2)主要设备的工艺设计计算(含计算机辅助计算):物料衡算,能量衡量,工艺参数的选定,设备的结构设计和工艺尺寸的设计计算。 (3)辅助设备的选型:典型辅助设备主要工艺尺寸的计算,设备的规格、型号的选定。 (4)工艺流程图:以单线图的形式绘制,标出主体设备与辅助设备的物料方向,物流量、能流量,主要测量点。 (5)主要设备的工艺条件图:图面应包括设备的主要工艺尺寸,技术特性表和接管表。 (6)设计说明书的编写。设计说明书的内容应包括:设计任务书,目录,设计方案简介,工艺计算及主要设备设计,辅助设备的计算和选型,设计结果汇总,设计评述,参

推荐-煤油冷却器的课程设计课程设计 精品

x x x x x大学 化工原理课程设计题目煤油冷却器的设计 教学院 专业班级 学生姓名 学生学号 指导教师 20XX年6月8日 目录

第一章绪论 (1) 第二章方案设计说明 (1) 2.1换热器的选型 (1) 2.1.1 换热器的分类 (1) 2.1.2 间壁式换热器 (1) 2.1.3 管壳式换热器 (1) 2.1.4 换热器的选型 (2) 2.2材质的选择 (2) 2.3换热器其他结构设计 (2) 2.3.1 管程机构 (2) 2.3.2 壳程结构 (2) 第三章管壳式换热器的设计计算 (3) 3.1确定设计方案 (3) 3.1.1 选择换热器类型 (3) 3.3.2 流动空间及流苏确定 (3) 3.2 确定物性参数 (3) 3.3 计算总传热系数 (4) 3.3.1 热流量 (4) 3.3.2 平均传热温差 (4) 3.3.3 冷却水用量 (4) 3.3.4 总传热系数 (4) 3.4 计算传热面积 (5) 3.5 工艺结构尺寸 (5) 3.5.1 管径和管内流速 (5) 3.5.2 管程数和传热管数 (5) 3.5.3 平均传热温差校正及壳程 (6) 3.5.4 传热管排列和分程方法 (6) 3.5.5 壳体内径 (6) 3.5.6 折流板 (7) 3.5.7 接管 (7) 3.6 换热器核算 (7)

3.6.1 热量核算 (7) 3.6.2 换热器内流体的流动阻力 (9) 第四章计算结果一览表 (11) 课程设计心得与体会 (12) 参文文献 (14) 附录(1)油冷却器的设计任务书 (15) 附录(2)符号说明 (16)

第一章绪论 工程设计是工程建设的灵魂,又是科研成果转化为现实生产力的桥梁和纽带,它决定了工业现代化水平。设计是一项政策性很强的工作,它涉及政治、经济、技术、环保、法规等诸多方面,而且还会涉及多专业、多学科的交叉、综合和相互协调,是集体性的劳动。先进的设计思想、科学的设计方法和优秀的设计作品是工程设计人员应坚持的设计方向和追求的目标。而化工原理课程设计,是将所学的化工原理理论知识联系实际生产的重要环节。一方面,它要求综合运用物理,化学,化工原理,工程制图的理论知识,确定生产工艺流程和计算设备的尺寸;另一方面,又要求根据设计对象的具体特征,凭借设计者的经验(或借鉴前人的经验),灵活运用设计的诀窍,对所选设备,工艺过程以及各种参数进行合理的筛选,校正和优化,达到经济合理的生产要求。 第二章设计方案说明 2.1换热器的选型 2.1.1换热器的分类 换热器是化工,炼油工业中普遍应用的工艺设备,用来实现热量的传递,使热量由高温流体传给低温流体。根据传热方式可分为混合式换热器,蓄热式换热器,和间壁式换热器,其中间壁式换热器是工业中应用最为广泛的一类。其主要特点为:冷热流体被一固体间壁隔开,通过壁面进行转热。考虑到间壁式换热器设计技术比较成熟,而且国家在该类换热器的设计,制造,检验和验收等方面已有较为完善的设设计资料和系列化标准,因此选择间壁式换热器。 2.1.2间壁式换热器 按照传热面的形状和结构特点,间壁式换热器又可细分为管式换热器,如套管式,螺旋管式,管壳式,热管式;板面式换热器,如板式,螺旋式,板壳式等;扩展面式换热器,如板翅式,管翅式,强化的传热管等。在管式换热器中,管壳式换热器是应用最广泛的一种,该类换热器结构相对简单,造价不高,壳选用多种结构材料,管内清洗方便,处理量大,在高温条件下也能应用。考虑其诸上优点,以及生产任务均符合管式换热器的要求,选择管壳式换热器。 2.1.3 管壳式换热器 管壳式换热器又称列管式换热器,是一种通用的标准换热设备。它因结构简单、耐用、造价低廉、用材广泛、清洗方便、适应性强等优点而在换热设备中占据主导地位。管壳式换热器根据其结构特点分为:固定管板式换热器,浮头式换热器,U形管式换热器。以下主要介绍固定管板式换热器。 固定管板式换热器,管端以焊接或胀接的方法固定在两块管板上,而管板则以焊接的方法与壳体连接,与其他形式的管壳式换热器相比,结构简单,当壳体

课程设计—列管式换热器

课程设计设计题目:列管式换热器 专业班级:应化1301班 姓名:王伟 学号: U201310289 指导老师:王华军 时间: 2016年8月

目录 1.课程设计任务书 (5) 1.1 设计题目 (5) 1.2 设计任务及操作条件 (5) 1.3 技术参数 (5) 2.设计方案简介 (5) 3.课程设计说明书 (6) 3.1确定设计方案 (6) 3.1.1确定自来水进出口温度 (6) 3.1.2确定换热器类型 (6) 3.1.3流程安排 (7) 3.2确定物性数据 (7) 3.3计算传热系数 (8) 3.3.1热流量 (8) 3.3.2 平均传热温度差 (8) 3.3.3 传热面积 (8) 3.3.4 冷却水用量 (8) 4.工艺结构尺寸 (9) 4.1 管径和管内流速 (9) 4.2 管程数和传热管数 (9)

4.3 传热管排列和分程方法 (9) 4.4 壳体内径 (10) 4.5 折流板 (10) 4.6 接管 (11) 4.6.1 壳程流体进出管时接管 (11) 4.6.2 管程流体进出管时接管 (11) 4.7 壁厚的确定和封头 (12) 4.7.1 壁厚 (12) 4.7.2 椭圆形封头 (12) 4.8 管板 (12) 4.8.1 管板的结构尺寸 (13) 4.8.2 管板尺寸 (13) 5.换热器核算 (13) 5.1热流量衡算 (13) 5.1.1壳程表面传热系数 (13) 5.1.2 管程对流传热系数 (14) 5.1.3 传热系数K (15) 5.1.4 传热面积裕度 (16) 5.2 壁温衡算 (16) 5.3 流动阻力衡算 (17) 5.3.1 管程流动阻力衡算 (17) 5.3.2 壳程流动阻力衡算 (17)

列管式换热器设计

酒泉职业技术学院 毕业设计(论文) 2013 级石油化工生产技术专业 题目:列管式换热器设计 毕业时间: 2015年7月 学生姓名:陈泽功刘升衡李侠虎 指导教师:王钰 班级: 13级石化(3)班 2015 年 4月20日 酒泉职业技术学院 2013 届各专业 毕业论文(设计)成绩评定表

答辩小 组评价 意见及 评分 成绩:签字(盖章)年月日 教学系 毕业实 践环节 指导小 组意见 签字(盖章)年月日 学院毕 业实践 环节指 导委员 会审核 意见 签字(盖章)年月日 一、列管式换热器计任务书 某生产过程中,需用循环冷却水将有机料液从102℃冷却至40℃。已知有机料液的流量为2.23×104 kg/h,循环冷却水入口温度为30℃,出口温度为40℃,并要求管程压降与壳程压降均不大于60kPa,试设计一台列管换热器,完成该生产任务。 已知: 有机料液在71℃下的有关物性数据如下(来自生产中的实测值) 密度 定压比热容℃ 热导率℃

粘度 循环水在35℃下的物性数据: 密度 定压比热容K 热导率K 粘度 二、确定设计方案 (1)选择换热器的类型 (2)两流体温的变化情况: 热流体进口温度102℃出口温度40℃;冷流体进口温度30℃,出口温度为40℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。 (3)管程安排 从两物流的操作压力看,应使有机料液走管程,循环冷却水走壳程。但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下降,所以从总体考虑,应使循环水走管程,混和气体走壳程。 三、确定物性数据 定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。故壳程混和气体的定性温度为 T= =71℃ 管程流体的定性温度为 t=℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。对有机料液来说,最可靠的无形数据是实测值。若不具备此条件,则应分别查取混合无辜组分的有关物性数据,然后按照相应的加和方法求出混和气体的物性数据。有机料液在71℃下的有关物性数据如下(来自生产中的实测值) 密度

煤油冷却器的设计----原版.doc

课程设计任务书

一、摘要 换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器。换热器是实现化工生产过程中热量交换和传递不可缺少的设备。在换热器中,至少有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。 在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,且它们是上述这些行业的通用设备,占有十分重要的地位。随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,对换热器的要求也日益增强。换热器的设计制造结构改进以及传热机理的研究十分活跃,一些新型高效换热器相继问世。根据不同的目的,换热器可以是热交换器、加热器、冷却器、蒸发器、冷凝器等。由于使用条件的不同,换热器可以有各种各样的形式和结构。在生产中,换热器有时是一个单独的设备,有时则是某一工艺设备的组成部分。 衡量一台换热器好的标准是传热效率高、流体阻力小、强度足够、结构合理、安全可靠、节省材料、成本低,制造、安装、检修方便、节省材料和空间、节省动力。 二、关键字 煤油,换热器,列管式换热器,固定管板式

目录 一、概述 (1) 二、工艺流程草图及设计标准 (1) 2.1工艺流程草图 (1) 2.2设计标准 (2) 三、换热器设计计算 (2) 3.1确定设计方案 (2) 3.1.1选择换热器的类型 (2) 3.1.2流体溜径流速的选择 (2) 3.2确定物性的参数 (3) 3.3估算传热面积 (3) 3.3.1热流量 (3) 3.3.2平均传热温差 (3) 3.3.3传热面积 (3) 3.3.4冷却水用量 (4) 3.4工艺结构尺寸 (4) 3.4.1管径和管内流速 (4) 3.4.2管程数和传热管数 (4) 3.4.3平均传热温差校正及壳程数 (4) 3.4.4传热管排列和分程方法 (5) 3.4.5壳体内径 (5) 3.4.6折流板 (5)

列管式换热器课程设计

(封面) XXXXXXX学院 列管式换热器课程设计报告 题目: 院(系): 专业班级: 学生姓名: 指导老师: 时间:年月日 目录

1、设计题目(任务书) (2) 2、流程示意图 (3) 3、流程及方案的说明和论证 (3) 4、换热器的设计计算及说明 (4) 5、主体设备结构图 (10) 6、设计结果概要表 (11) 7、设计评价及讨论 (12) 8、参考文献 (12) 附图:主体设备结构图和花版设计图 一.任务书

(一)设计题目: 列管式冷却器设计 (二)设计任务: 将自选物料用河水冷却或自选热源加热至生产工艺所要求的温度 (三)设计条件: 1.处理能力:G=学号最后2位×300t物料/d; 2.冷却器用河水为冷却介质,考虑广州地区可取进口水温度为20~30C;加热器用热水或水蒸气为热源,条件自选; 3.允许压降:不大于105Pa; 4.传热面积安全系数5~15% 5.每年按330天计,每天24小时连续运行。 (四)设计要求: 1.对确定的设计方案进行简要论述; 2.物料衡算、热量衡算; 3.确定列管壳式冷却器的主要结构尺寸; 4.计算阻力; 5.选择合宜的列管换热器并运行核算; 6.用Autocad绘制列管式冷却器的结构(3号图纸)、花板布置图(3号图纸); 7.编写设计说明书(包括:①.封面;②.目录;③.设计题目;④.流程示意图;⑤.流程及方案的说明和论证;⑥设计计算及说明;⑦主体设备结构图;⑧设计结果概要表;⑨对设计的评价及问题讨论;⑩参考文献。) (五)设计进度安排: 备注:参考文献格式: 期刊格式为:作者姓名.出版年.论文题目.刊物名称.卷号(期号):起止页码。专著格式为:作者姓名.出版年.专著书名.出版社名.起止页码。 二.流程示意图

煤油冷却器的设计

南京工业大学《材料工程原理B》课程设计 设计题目: 煤油冷却器的设计 专业:高分子材料科学与工程 班级:高材0801 学号: 1102080104 姓名: 夏亚云 指导教师: 周勇敏 日期: 2010/12/30 设计成绩:

目录 一.任务书 (3) 1.1.设计题目 1.2.设计任务及操作条件 1.3.设计要求 二.设计方案简介 (3) 2.1.换热器概述 2.2列管式换热器 2.3.设计方案的拟定 2.4.工艺流程简图 三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 四.工艺结构设计…………………………………………………………………………………………..-8- 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.传热管排列和分程方法 4.5.壳程内径及换热管选型汇总 4.6.折流板 4.7.接管 五.换热器核算………………………………………………………………………………………….-13- 5.1.热量核算 5.2.压力降核算 六.辅助设备的计算和选择……………………………………………………………………………17 6.1.水泵的选择 6.2.油泵的选择 七.设计结果表汇 (20) 八.参考文献. (20) 九.心得体会………………………………………………………………………………….…………… 21附图:(主体设备设计图,工艺流程简图)

§一.化工原理课程设计任务书 1.1设计题目 煤油冷却换热器设计 1.2设计任务及操作条件 1、处理能力 15.8×104t/y 2、设备型式列管式换热器 3、操作条件 (1)煤油: 入口温度140℃,出口温度40℃ (2)冷却介质:工业硬水,入口温度20℃,出口温度40℃ (3)油侧与水侧允许压强降:不大于105 Pa (4)每年按330天计,每天24小时连续运行 (5)煤油定性温度下的物性参数: 1.3设计要求 选择合适的列管式换热器并进行核算 1.4绘制换热器装配图 (见A4纸另附) §二.设计方案简介 2.1换热器概述 换热器是化工,炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门,如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的意义。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。

列管式换热器的设计

化工原理课程设计 学院: 化学化工学院 班级: | 姓名学号: 指导教师: $

目录§一.列管式换热器 ! .列管式换热器简介 设计任务 .列管式换热器设计内容 .操作条件 .主要设备结构图 §二.概述及设计要求 .换热器概述 .设计要求 ~ §三.设计条件及主要物理参数 . 初选换热器的类型 . 确定物性参数 .计算热流量及平均温差 壳程结构与相关计算公式 管程安排(流动空间的选择)及流速确定 计算传热系数k 计算传热面积 ^ §四.工艺设计计算 §五.换热器核算 §六.设计结果汇总 §七.设计评述 §八.工艺流程图 §九.主要符号说明 §十.参考资料

: §一 .列管式换热器 . 列管式换热器简介 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。 列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 设计任务 ¥ 1.任务 处理能力:3×105t/年煤油(每年按300天计算,每天24小时运行) 设备形式:列管式换热器 2.操作条件 (1)煤油:入口温度150℃,出口温度50℃ (2)冷却介质:循环水,入口温度20℃,出口温度30℃ (3)允许压强降:不大于一个大气压。 备注:此设计任务书(包括纸板和电子版)1月15日前由学委统一收齐上交,两人一组,自由组合。延迟上交的同学将没有成绩。 [ .列管式换热器设计内容 1.3.1、确定设计方案 (1)选择换热器的类型;(2)流程安排 1.3.2、确定物性参数 (1)定性温度;(2)定性温度下的物性参数 1.3.3、估算传热面积 (1)热负荷;(2)平均传热温度差;(3)传热面积;(4)冷却水用量 % 1.3.4、工艺结构尺寸 (1)管径和管内流速;(2)管程数;(3)平均传热温度差校正及壳程数;(4)

(完整版)煤油冷却器毕业课程设计

长沙学院 课程设计说明书 题目煤油冷却器的设计系(部) 生环系 专业(班级) 09应化2班 姓名 学号 指导教师宋勇

起止日期2012.5.28——2012.6.16 化工原理课程设计任务书 系主任___________ 指导教师____________ 学生__戴姣______ 2班 编号:2.2.7 一、设计题目名称:煤油冷却器的设计 二、设计条件: 1.煤油:入口温度:130℃,出口温度:50℃; 2.冷却介质,循环水(P为0.3MPa,进口温度28℃,出口温度40℃)3.允许压强降,不超过105Pa;

4.每年按300天计;每天24 s。参考数据见表2.1,表2.2[1]。 表2.1.列管式换热器内的适宜流速范围 流体种类流速(ms) 管程壳程一般液体0.5~3 0.5~1.5 易结垢液体>1 >0.5 气体5~30 3~15 表2.2不同粘度液体的流速(以普通钢壁为例) 液体粘度 mPa.s >1500 1500~ 500 500~ 100 100~35 35~1 <1 最大流速 (ms) 0.6 0.75 1.1 1.5 1.8 2.4

2.3确定物性数据 定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。 壳程流体(煤油)的定性温度为:℃ 管程流体(硬水)的定性温度为:℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。见表2.3[1] 表2.3.物性数据 密度(㎏m3)比热容(kJkg ?℃)粘度(Pa? s) 导热系数(Wm ?℃) 煤油825 2.22 7.15× 10-4 0.14 水34℃) 993.95 4.174 7.27× 10-4 0.62 2.4计算总传热系数 (1).煤油的流量 已知要求处理能力为16.5万吨煤油每年(每年按300天计,每天24小时连续运行),则煤油的流量为:

煤油冷却器设计.docx

河西学院 Hexi University 化工原理课程设计 题目 :煤油冷却器设计 学院 :化学化工学院 专业 :化学工程与工艺 学号 : 姓名 :张冠雄 指导教师 :王兴鹏 2016 年 11 月 21 日

化工原理课程设计任务书一、设计题目 煤油冷却器的设计 二、设计任务及操作条件 1.设计任务 生产能力(进料量)25000吨 / 年 操作周期7200小时 / 年 2. 操作条件 煤油入口温度120 ℃,出口温度40 ℃ 冷却介质自来水,入口温度20 ℃,出口温度40 ℃ 允许压降≦ 105Pa 冷却水温度20℃ 饱和水蒸汽压力( 表压 ) 3. 设备型式列管式换热器 4.厂址上海(压力: 1atm ) 三、设计内容 1.设计方案的选择及流程说明 2.换热器的工艺计算 3.换热器的主要尺寸设计 4.辅助设备选型 5.设计结果汇总 6.绘制换热器总装配图:主视图、俯视图、剖面图、两个局部放大图 7.设计评述

目录 1 概述 .................................................. 化工原理课程设计的目的、要求...........................列管式换热器及其分类................................... 换热器的设计要求....................................... 符号说明 ............................................... 2 确定设计方案 .......................................... 设计任务 ............................................... 列管式换热器形式的选择................................. 管壳程的选择 ........................................... 流体流速的选择......................................... 3 列管式换热器的结构.................................... 管程结构 ............................................... 壳程结构 .............................................. 4 列管式换热器的设计计算................................ 计算步骤 ............................................... 计算传热系数 ........................................... 计算传热面积 ........................................... 5 工艺结构尺寸的计算.................................... 管径和管内流速......................................... 管程数和传热管数....................................... 平均传热温差校正系数................................... 传热管排列和分程方法................................... 壳体内径 ............................................... 折流板 ................................................. 接管 ................................................... 6 换热器核算 ............................................ 热量核算 ............................................... 面积核算 ...............................................错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。

列管式换热器设计

第一章列管式换热器的设计 1.1概述 列管式换热器是一种较早发展起来的型式,设计资料和数据比较完善,目前在许多国家中已有系列化标准。列管式换热器在换热效率,紧凑性和金属消耗量等方面不及其他新型换热器,但是它具有结构牢固,适应性大,材料范围广泛等独特优点,因而在各种换热器的竞争发展中得以继续应用下去。目前仍是化工、石油和石油化工中换热器的主要类型,在高温高压和大型换热器中,仍占绝对优势。例如在炼油厂中作为加热或冷却用的换热器、蒸馏操作中蒸馏釜(或再沸器)和冷凝器、化工厂中蒸发设备的加热室等,大都采用列管式换热器[3]。 1.2列管换热器型式的选择 列管式换热器种类很多,目前广泛使用的按其温度差补偿结构来分,主要有以下几种:(1)固定管板式换热器:这类换热器的结构比较简单、紧凑,造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一系列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温度相差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或使管子从管板上松脱,甚至毁坏整个换热器。 为了克服温差应力必须有温度补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。 (2)浮头换热器:换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以便管子受热或冷却时可以自由伸缩,但在这块管板上来连接有一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。这种型式的优点为:管束可以拉出,以便清洗;管束的膨胀不受壳体的约束,因而当两种换热介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。其缺点为结构复杂,造价高。 (3)填料函式换热器:这类换热器管束一端可以自由膨胀,结构与比浮头式简单,造价也比浮头式低。但壳程内介质有外漏的可能,壳程终不应处理易挥发、易爆、易燃和有毒的介质。 (4)U型管换热器:这类换热器只有一个管板,管程至少为两程管束可以抽出清洗,

化工原理课程设计换热器的设计

中南大学《化工原理》课程设计说明书 题目:煤油冷却器的设计 学院:化学化工学院 班级:化工0802 学号: 1505080802 姓名: ****** 指导教师:邱运仁 时间:2010年9月

目录 §一.任务书 (2) 1.1.题目 1.2.任务及操作条件 1.3.列管式换热器的选择与核算 §二.概述 (3) 2.1.换热器概述 2.2.固定管板式换热器 2.3.设计背景及设计要求 §三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 §四. 机械结构设计 (9) 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.壳程内径及换热管选型汇总 4.4.折流板 4.6.接管 4.7.壁厚的确定、封头 4.8.管板 4.9.换热管 4.10.分程隔板 4.11拉杆 4.12.换热管与管板的连接 4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI型) 4.14.膨胀节的设定讨论 §五.换热器核算 (21) 5.1.热量核算 5.2.压力降核算 §六.管束振动 (25) 6.1.换热器的振动 6.2.流体诱发换热器管束振动机理 6.3.换热器管束振动的计算 6.4.振动的防止与有效利用 §七. 设计结果表汇 (28) §八.参考文献 (29) §附:化工原理课程设计之心得体会 (30)

§一.化工原理课程设计任务书 1.1.题目 煤油冷却器的设计 1.2.任务及操作条件 1.2.1处理能力:40t/h 煤油 1.2.2.设备形式:列管式换热器 1.2.3.操作条件 (1).煤油:入口温度160℃,出口温度60℃ (2).冷却介质:循环水,入口温度17℃,出口温度30℃ (3).允许压强降:管程不大于0.1MPa,壳程不大于40KPa (4).煤油定性温度下的物性数据ρ=825kg/m3,黏度7.15×10-4Pa.s,比热容2.2kJ/(kg.℃),导热系数0.14W/(m.℃) 1.3.列管式换热器的选择与核算 1.3.1.传热计算 1.3. 2.管、壳程流体阻力计算 1.3.3.管板厚度计算 1.3.4.膨胀节计算 1.3.5.管束振动 1.3.6.管壳式换热器零部件结构 §二.概述 2.1.换热器概述 换热器是化工、炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。 换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,如表2-1所示。 表2-1 传热器的结构分类

(完整版)化工原理课程设计---煤油冷却器的设计

课程设计 课程名称化工原理课程设计题目名称煤油冷却器的设计

专业班级08级食品科学与工程(2)班学生姓名纪平平 学号50806022006 指导教师赵大庆 二O一O年十二月三十日

目录 1 《化工原理》课程设计任务书.......................................................................................................... - 1 - 1.1 设计题目..................................................................................................................................... - 1 - 1.2 原始数据及操作条件................................................................................................................. - 1 - 1.3 设计要求..................................................................................................................................... - 1 - 2 《化工原理》课程设计说明书.......................................................................................................... - 2 - 2.1 前言............................................................................................................................................. - 2 - 2.2 工艺流程图及说明..................................................................................................................... - 3 - 3 生产条件的确定.................................................................................................................................. - 4 - 4 换热器的设计计算.............................................................................................................................. - 4 - 4.1 选择换热器类型......................................................................................................................... - 4 - 4.2 流动空间及流速的确定............................................................................................................. - 4 - 4.3 确定物性数据............................................................................................................................. - 4 - 4.4 计算总传热系数......................................................................................................................... - 5 - 4.4.1 热流量............................................................................................................................ - 5 - 4.4.2 平均传热温差................................................................................................................ - 5 - 4.4.3 冷却水用量.................................................................................................................... - 6 - 4.4.4 总传热系数.................................................................................................................... - 6 - 4.5 计算传热面积............................................................................................................................. - 7 - 4.6 工艺结构尺寸............................................................................................................................. - 7 - 4.6.1 管径和管内流速............................................................................................................ - 7 - 4.6.2 管程数和传热管数........................................................................................................ - 7 - 4.6.3 平均传热温差校正及壳程数 ........................................................................................ - 7 - 4.6.4 传热管排列和分程方法................................................................................................ - 8 - 4.6.5 壳体内径........................................................................................................................ - 8 - 4.6.6 折流板............................................................................................................................ - 8 - 4.6.7 接管................................................................................................................................ - 9 - 4.7 换热器核算................................................................................................................................. - 9 - 4.7.1热量核算......................................................................................................................... - 9 - 4.7.2 换热器内流体的流动阻力...........................................................................................- 11 - 5 设计结果汇总表................................................................................................................................ - 13 - 6 设计评述............................................................................................................................................ - 14 - 7 心得体会.............................................................................................................................................. - 15 - 8 参考文献............................................................................................................................................ - 16 -

相关主题
文本预览
相关文档 最新文档