当前位置:文档之家› 高中数学奥赛讲义:竞赛中常用的重要不等式

高中数学奥赛讲义:竞赛中常用的重要不等式

高中数学奥赛讲义:竞赛中常用的重要不等式
高中数学奥赛讲义:竞赛中常用的重要不等式

不等式是数学竞赛的热点之一。由于不等式的证明难度大,灵活性强,要求很高的技巧,常常使它成为各类数学竞赛中的“高档”试题。而且,不论是几何、数论、函数或组合数学中的许多问题,都可能与不等式有关,这就使得不等式的问题(特别是有关不等式的证明)在数学竞赛中显得尤为重要。证明不等式同大多数高难度的数学竞赛问题一样,没有固定的模式,证法因题而异,灵活多变,技巧性强。但它也有一些基本的常用方法,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始。

竞赛中常用的重要不等式

【内容综述】

本讲重点介绍柯西不等式、排序不等式、切比雪夫不等式的证明与应用

【要点讲解】

目录§1 柯西不等式

§2 排序不等式

§3 切比雪夫不等式

★ ★ ★

§1。柯西不等式

定理1 对任意实数组恒有不等式“积和方不大于方和积”,即

等式当且仅当时成立。

本不等式称为柯西不等式。

思路一证不等式最基本的方法是作差比较法,柯西不等式的证明也可首选此法。

证明1

∴右-左=

当且仅当定值时,等式成立。

思路2 注意到时不等式显然成立,当时,不等式左、右皆正,因此可考虑作商比较法。

证明2

当时等式成立;当时,注意到

=1

当且仅当

(两次放缩等式成立条件要一致)

即同号且常数,

亦即

思路3 根据柯西不等式结构,也可利用构造二次函数来证明。

证明3 构造函数

由于恒非负,故其判别式

即有

等式当且仅当常数时成立。

若柯西不等式显然成立。

例1 证明均值不等式链:

调和平均数≤算术平均数≤均方平均数。

证设本题即是欲证:

本题证法很多,现在我们介绍一种主要利用柯西不等式平证明的方法

(1)先证①

注意到欲证①,即需证

此即

由柯西不等式,易知②成立,从而①真

(11)再证, ③

欲证③,只需证

而④即要证

(注意)

由柯西不等式,知⑤成立.

(Ⅰ)(Ⅱ)中等式成立的条件都是即各正数彼此相等.

说明:若再利用熟知的关系(★)

(其中,结合代换,

当且仅当时,等式成立,

说明★的证明参见下节排序不证式或数学归纳法,这样就得到一个更完美的均值不等式链

其中等式成产条件都是.

§2.排序不等式

定理2设有两组实数,满足

(例序积和)

(乱序积和)

(须序积和)

其中是实数组一个排列,等式当且仅当或

时成立。

说明本不等式称排序不等式,俗称

例序积和乱序积和须序积和。

证法一.逐步调整法

首先注意到数组也是有限个数的集合,从而

也只有有限个不同值,故其中必有最大值和最小值(极端性原理)。

设注意下面的两个和

注意

S(★)

可见和数S中最大的和,只能是对应数组由小到大的顺序排列,最小的和就对应

数组从大到小的依序排列,不符合如此须序的只要适当调整,如★所示就可越调越大(小),其中i=1,2……,n。

证法=设

由的一个k阶子集

则显见

等式当且仅当

即,时,成立

这就证明了乱序积和≤顺序积和

注意列,仿上面证明,得

这里含义同上,于是有

又证明了例序积和≤乱序积和

综上排序不等式成立.

例2 利用排序不等式证明柯西不等式:

其中等式当且仅当为常数时成立。

证不失一般性,设;,则由排序不等式可得

(例序积和≤乱序积和)

相加即得

又∵算术平均值不大于平方平均值,(★)故

代入①,即得

平方后,即得柯西不等式

说明“算术平均≤平方平均”可用数学归纳法直接证明如下:

证(i)设n=2,则显然成立

(ii)设n=k时,

成立,即有

欲证n=k+1时,有

成立,只需证

考虑到归纳假设,只需证

(★)

而(★)是显然成立的,故n=k+1时命题成立,于是对且n≥2时,命题成立, 正是因为存大着不依赖柯西不等式证明“算术平均≤平方平均”的证明方法,例2的证法就不存在循环论证之嫌,否则此证法是不宜的。

例3 利用排序不等式证明正数的算术平均数不小于几何平均数。

证设,易见

构造数列,使

则由★知于是由排序不等式,有

(乱序积和)

(例序积和)

从而

其中等式当且仅当时成立

说明这里构造了两个数列和为应用排序不等式创造了条件,得列一个证明均值不等式的简捷、漂亮解法。

§3契比雪夫不等式

设(i=1,2…,n)

(i)若则顺序积和的算术平均数不小于这两组数算术平均数之积:

(ⅱ)若,则倒序积和的算术平均数不大于这两组数算术平均数之积:

证明(i)由排序原理有

……

迭加可得

两边除以得

等式当且仅当;

类似可证(ⅱ)成立

例4 设,求证

证明不妨令,则

由切比雪夫不等式,有

从而得证

说明大家较熟悉的美国竞赛题

1979年青海赛题

1978年上海赛题

都是本例的特殊情况或变形。

本周强化练习:

★★★1.设

求的最小值

b、c是三角形三边长,s是半周长。求证:Vn∈N,下式成立

★★★2.若a、

解答或提示

1.不妨令

由切比雪夫不等式

当且仅当

2.设a≥b≥c,则a+b≥a+c≥b+c,

()

高中数学解不等式方法+练习题

不等式 要求层次 重难点 一元二次不等式 C 解一元二次不等式 (一) 知识容 1.含有一个未知数,且未知数的最高次数为2的整式不等式,叫做一元二次不等式. 一元二次不等式的解集,一元二次方程的根及二次函数图象之间的关系如下表(以0a >为例): 有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决.其方法大致有:①用一元二次方程根的判别式,②参数大于最大值或小于最小值,③变更主元利用函数与方程的思想求解. 判别式 24b ac ?=- 0?> 0?= 0?< 二次函数 2y ax bx c =++ (0)a >的图象 一元二次方程 2 0ax bx c ++= (0)a ≠的根 有两相异实根 12,x x = 242b b ac a -±- 12()x x < 有两相等实根 122b x x a ==- 没有实根 一元二次不等式的解集 2 0ax bx c ++> (0)a > {1 x x x < 或}2x x > {R x x ∈,且 2b x a ?≠- ?? 实数集R 20ax bx c ++< (0)a > {}1 2x x x x << ? ? 例题精讲 高考要求 板块一:解一元二次不等式 解不等式

(二)主要方法 1.解一元二次不等式通常先将不等式化为20ax bx c ++>或20 (0)ax bx c a ++<>的形式,然后求出对应方程的根(若有根的话),再写出不等式的解:大于0时两根之外,小于0时两根之间; 2.分式不等式主要是转化为等价的一元一次、一元二次或者高次不等式来处理; 3.高次不等式主要利用“序轴标根法”解. (三)典例分析: 1.二次不等式与分式不等式求解 【例1】 不等式 1 12 x x ->+的解集是 . 【变式】 不等式2230x x --+≤的解集为( ) A .{|31}x x x -或≥≤ B .{|13}x x -≤≤ C .{|31}x x -≤≤ D .{|31}x x x -或≤≥ 【变式】 不等式 25 2(1)x x +-≥的解集是( ) A .132? ?-??? ? , B .132??-????, C .(]11132??????U ,, D .(]11132?? -???? U ,, 2.含绝对值的不等式问题 【例2】 已知n *∈N ,则不等式 220.011 n n -<+的解集为( ) A .{}|199n n n *∈N ≥, B .{}|200n n n *∈N ≥, C .{}|201n n n *∈N ≥, D .{}|202n n n *∈N ≥, 【例3】 不等式 1 11 x x +<-的解集为( ) A .{}{}|01|1x x x x <<>U B .{}|01x x << C .{}|10x x -<< D .{}|0x x < 【变式】 关于x 的不等式2121x x a a -+-++≤的解集为空集,则实数a 的取值围是 _. 【例4】 若不等式1 21x a x + -+≥对一切非零实数x 均成立,则实数a 的最大值是_________. 【例5】 若不等式34x b -<的解集中的整数有且仅有123,,,则b 的取值围为 . 3.含参数不等式问题 【例6】 若关于x 的不等式22840x x a --->在14x <<有解,则实数a 的取值围是( ) A .4a <- B .4a >- C .12a >- D .12a <- 【变式】 ⑴已知0a <,则不等式22230x ax a -->的解集为 . ⑵若不等式897x +<和不等式220ax bx +->的解集相同,则a b -=______.

高中数学竞赛系列辅导材料 集合

集合(一) 内容综述: 本讲先介绍了以下一些重要的概念:集合、子集、两集合相等、真子集、并集、交集、相对补集,然后介绍了著名的容斥原理,接着介绍了以下几个定律:零律、分配律、排中律、吸收律、补交转换律、德·摩根律。 然后通过6道例题分析了一部分集合题目的解题方法与技巧,同学们应在熟悉以上定义、定理、定律的基础上仔细分析例题材解法,争取可以独立解决训练题。 要点讲解: §1.基本理论 除了课内知识外,我们补充以下知识 相对补集:称属于A而不属于B的全体元素,组成的集合为B对A的相对补集或差集,记作A-B。 容斥原理:以表示集合A中元素的数目,我们有 ,其中为n个集合称为A的阶。 n阶集合的全部子集数目为。 A,B,C为三个集合,就有下面的定律。 (1)分配律 (2)零律

(3)排中律 (4)吸收律 (5)补交转换律 (6)德·摩根律的相对形式 例题分析: 例1:对集合{1,2,…,n}及其每一个非空了集,定义一个唯一确定的“交替和”如下:按照递减的次序重新排列该子集,然后交替地减或加后继的数所得的结果,例 如,集合的“交替和”是9-6+4-2+1=6.的“交替和”是6-5=1,的交替和是2。那么,对于n=7。求所有子集的“交替和”的总和。 分析;n=7时,集合{7,6,5,4,3,2,1}的非空子集有个,虽然子集数 目有限,但是逐一计算各自的“交替和”再相加,计算量仍然巨大,但是,根据“交替和”的定义,容易看到集合{1,2,3,4,5,6,7}与{1,2,3,4,5,6}的“交替 和”是7;可以想到把一个不含7的集和A与的“交替和”之和应为7。那么,我们也就很容易解决这个问题了。 解:集合{1,2,3,4,5,6,7}的子集中,除去{7}外还有个非空子集合,把这个非空子集两两结组后分别计算每一组中“交替和”之和,结组原则是设 这是把结合为一组,显然,每组中,“交替和”之和应为7,共有组.所以,所有“交替和”之和应该为 。

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

高中数学不等式训练习题

不等式训练1 A 一、选择题(六个小题,每题5分,共30分) 1.若02522 >-+-x x ,则221442-++-x x x 等于( ) A .54-x B .3- C .3 D .x 45- 2.函数y =log 2 1(x +11+x +1) (x > 1)的最大值是 ( ) A .-2 B .2 C .-3 D .3 3.不等式x x --213≥1的解集是 ( ) A .{x| 43≤x ≤2} B .{x|4 3≤x <2} C .{x|x >2或x ≤43} D .{x|x <2} 4.设a >1>b >-1,则下列不等式中恒成立的是 ( ) A .b a 11< B . b a 11> C .a >b 2 D .a 2>2b 5.如果实数x,y 满足x 2+y 2=1,则(1-xy) (1+xy)有 ( ) A .最小值 21和最大值1 B .最大值1和最小值4 3 C .最小值43而无最大值 D .最大值1而无最小值 6.二次方程x 2+(a 2+1)x +a -2=0,有一个根比1大,另一个根比-1小, 则a 的取值范围是 ( ) A .-3<a <1 B .-2<a <0 C .-1<a <0 D .0<a <2 二、填空题(五个小题,每题6分,共30分) 1.不等式组? ??->-≥32x x 的负整数解是____________________。 2.一个两位数的个位数字比十位数字大2,若这个两位数小于30, 则这个两位数为____________________。 3.不等式0212<-+x x 的解集是__________________。 4.当=x ___________时,函数)2(22x x y -=有最_______值,其值是_________。 5.若f(n)=)(21)(,1)(,122N n n n n n n g n n ∈= --=-+?,用不等号 连结起来为____________.

高中数学奥赛的技巧(上篇)

奥林匹克数学的技巧(上篇) 有固定求解模式的问题不属于奥林匹克数学,通常的情况是,在一般思维规律的指导下,灵活运用数学基础知识去进行探索与尝试、选择与组合。这当中,经常使用一些方法和原理(如探索法,构造法,反证法,数学归纳法,以及抽屉原理,极端原理,容斥原理……),同时,也积累了一批生气勃勃、饶有趣味的奥林匹克技巧。在2-1曾经说过:“竞赛的技巧不是低层次的一招一式或妙手偶得的雕虫小技,它既是使用数学技巧的技巧,又是创造数学技巧的技巧,更确切点说,这是一种数学创造力,一种高思维层次,高智力水平的艺术,一种独立于史诗、音乐、绘画的数学美。” 奥林匹克技巧是竞赛数学中一个生动而又活跃的组成部分。 2-7-1 构造 它的基本形式是:以已知条件为原料、以所求结论为方向,构造出一种新的数学形式,使得问题在这种形式下简捷解决。常见的有构造图形,构造方程,构造恒等式,构造函数,构造反例,构造抽屉,构造算法等。 例2-127 一位棋手参加11周(77天)的集训,每天至少下一盘棋,每周至多下12盘棋,证明这棋手必在连续几天内恰好下了21盘棋。 证明:用n a 表示这位棋手在第1天至第n 天(包括第n 天在内)所下的总盘数(1,2,77n =…),依题意 127711211132a a a ≤<<≤?=… 考虑154个数: 12771277,,,21,21,21a a a a a a +++…,?, 又由772113221153154a +≤+=<,即154个数中,每一个取值是从1到153的自然数,因而必有两个数取值相等,由于i j ≠时,i i a a ≠ 2121i j a a +≠+ 故只能是,21(771)i j a a i j +≥>≥满足 21i j a a =+ 这表明,从1i +天到j 天共下了21盘棋。 这个题目构造了一个抽屉原理的解题程序,并具体构造了154个“苹果”与153个“抽屉”,其困难、同时也是精妙之处就在于想到用抽屉原理。 例 2-128 已知,,x y z 为正数且()1xyz x y z ++=求表达式()()x y y z ++的最最小值。 解:构造一个△ABC ,其中三边长分别为a x y b y z c z x =+??=+??=+? ,则其面积为 1?= 另方面2()()2sin x y y z ab C ?++==≥ 故知,当且仅当∠C=90°时,取值得最小值2,亦即222()()()x y y z x z +++=+

高中数学不等式练习题

1、设恒成立的c的取值范围是 A.B.C.D. 2、设,且(其中),则M的取值范围是A.B.C.D. 3、若实数、满足,则的取值范围是 A.B.C.D. 4、已知,,,则的最小值是() (A)(B)4(C)(D) 5、若不等式组所表示的平面区域被直线分为面积相等的两部分,则的值是 (A)(B)(C)(D) 6、已知,若在上恒成立,则实数的取值范围是()

A.B.C.D. 7、已知正实数满足,则的最小值为。 8、如图,目标函数可行域为四边形(含边界),若是该目标函数的最优解,则的取值范围是() (A)(B)(C)(D) 的最大值与最小值之和为 9、函数,当时,恒成立,则 D. 10、已知正数满足,则的最小值为 A.3B.C.4D. 11、二次函数轴两个交点的横坐标分别为。(1)证明:;(2)证明:; (3)若满足不等式的取值范围。 12、设满足约束条件,若目标函数的最大值为10,则的最小值为.

13、已知对任意实数x,二次函数f(x)=ax2+bx+c恒非负,且a

高中数学竞赛讲义

高中数学竞赛资料 一、高中数学竞赛大纲 全国高中数学联赛 全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。 全国高中数学联赛加试 全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是: 1.平面几何 几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。三角形中的几个特殊点:旁心、费马点,欧拉线。几何不等式。几何极值问题。几何中的变换:对称、平移、旋转。圆的幂和根轴。面积方法,复数方法,向量方法,解析几何方法。 2.代数 周期函数,带绝对值的函数。三角公式,三角恒等式,三角方程,三角不等式,反三角函数。递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。 第二数学归纳法。平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。 复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。 n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。 函数迭代,简单的函数方程* 3.初等数论 同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题 圆排列,有重复元素的排列与组合,组合恒等式。组合计数,组合几何。抽屉原理。容斥原理。极端原理。图论问题。集合的划分。覆盖。平面凸集、凸包及应用*。 注:有*号的内容加试中暂不考,但在冬令营中可能考。 二、初中数学竞赛大纲 1、数 整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。 2、代数式 综合除法、余式定理;因式分解;拆项、添项、配方、待定系数法;对称式和轮换对称式;整式、分工、根式的恒等变形;恒等式的证明。 3、方程和不等式 含字母系数的一元一次方程、一元二次方程的解法,一元二次方程根的分布;含绝对值的一元一次方程、一元二次方程的解法;含字母系数的一元一次不等式的解法,一元二次不等式的解法;含绝对值的一元一次不等式;简单的多元方程组;简单的不定方程(组)。 4、函数 二次函数在给定区间上的最值,简单分工函数的最值;含字母系数的二次函数。 5、几何 三角形中的边角之间的不等关系;面积及等积变换;三角形中的边角之间的不等关系;面积及等积变换;三角形的心(内心、外心、垂心、重心)及其性质;相似形的概念和性质;圆,四点共圆,圆幂定理;四种命题及其关系。 6、逻辑推理问题 抽屉原理及其简单应用;简单的组合问题简单的逻辑推理问题,反证法;

高中数学基本不等式题型总结

专题 基本不等式 【一】基础知识 基本不等式:)0,0a b a b +≥>> (1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>; 【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 . 【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 . 【变式2】(2013年天津)设2,0a b b +=>, 则 1||2||a a b +的最小值为 . 【例2】(2012河西)已知正实数,a b 满足 211a b +=,则2a b +的最小值为 . 【变式】已知正实数,a b 满足 211a b +=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 . 【例4】已知正数,x y 满足21x y +=,则 8x y xy +的最小值为 . 【例5】已知0,0a b >>,若不等式 212m a b a b +≥+总能成立,则实数m 的最大值为 . 【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则 2212a b +的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则 11a b +的最小值为 . 【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足 120PF PF ?=,则2 2214e e +的最小值为 【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y +的最小值是( ) A .6 B .5 C .3+ D . 【例10】已知函数()4141 x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .

高中数学奥林匹克竞赛

高中数学奥林匹克竞赛 奥数学林匹克竞竞~竞称奥数。年和年~竞竞竞始在列格勒宁和莫斯科竞竞中竞竞~学数学19341935 并冠以数学奥林匹克的名~称年在布加勒斯特竞竞第一届国数学奥竞竞竞竞林匹克。竞竞竞竞国数学奥1959 林匹克作竞一竞竞性竞事~由竞国国数学教育竞家命竞。 我的高中竞竞分三竞,每年国数学月中旬的全竞竞~次年一月的国;冬令竞,~次年三10CMO月竞始的家国集竞竞的竞竞竞拔。与 “全高中竞竞国数学”;竞竞于年,~承竞方式初中竞竞相同~每年与月竞行~分竞一竞和198110二竞~在竞竞竞竞中取得竞成竞的全竞异国名生有竞格加由中主竞的“学参国数学会中林国数学奥90 匹克;,竞全中生冬令竞”;每年元月,。国学数学CMO 全竞竞分竞一竞、加竞国数学(即称俗的“二竞”)。各省自己竞竞的“初竞”、个份“初竞”、“竞竞”等等~都不是正式的全竞竞名及程序。国称一竞 全高中竞竞的一竞竞竞大竞~完全按照全日制中《大竞》中所竞定的要求国数学学数学教学教学 和容~高考所竞定的知竞范竞和方法~在方法的要求上略有提高~其中率和内即概微竞分初步 不考。 二竞 平面何几 基本要求,掌握初中竞竞大竞所定的所有容。确内

竞充要求,面竞和周竞方法。 几个重要定理,梅涅竞斯定理、塞瓦定理、托勒密定理、西姆松定理。 几个重要的极竞,到三角形三竞点距之和最小的点离——竞竞点。到三角形三竞点距的离平方 和最小的点重心。三角形到三竞距之竞最大的点重心。——内离—— 几何不等式。 竞竞的等周竞竞。了解下述定理, 在周竞一定的竞形的集合中~正竞形的面竞最大。n n 在周竞一定的竞竞竞曲竞的集合中~竞的面竞最大。 在面竞一定的竞形的集合中~正竞形的周竞最小。nn 在面竞一定的竞竞竞曲竞的集合中~竞的周竞最小。 几运何中的竞,反射、平移、旋竞。 竞数方法、向量方法。* 平面凸集、凸包及竞用。 代数 在一竞大竞的基竞上外要求的容,另内 周期函数与周期~竞竞竞竞的函的竞像。数三倍角公式~三角形的一些竞竞的恒等式~三角不 等式。 第二竞竞法。竞竞~一竞、二竞竞竞~数学特征方程法。 函迭代~求数次迭代~竞竞的函方程数。n** 个竞元的平均不等式~柯西不等式~排序不等式及竞用。n 竞的指形式~数数欧拉公式~美弗定理棣~竞位根~竞位根的竞用。竞排列~有重竞的排列竞合。竞竞的与竞合恒等式。

高中数学基本不等式专题复习

第11课:基本不等式与双√函数 一、双√函数 形如.0,0,>>+=q p x q px y 图像如右图所示: (1)0>x 时,当p q x =时取到pq y 2min =; (2)值域: (3)当0,0<-+=x x x y 正确解法: 两者联系: (1)基本不等式去等号时的值即为双勾函数的拐点,

(2)凡是利用“积定和最小”求最值的函数均可换元为双勾函数! 三、利用基本不等式求最值 类型一:形如()()0,1≠++ +=c a d cx b ax y 采取配积为定! 1、求??? ??>-+ =455434x x x y 的最小值 2、求??? ??<-+=455433x x x y 的最大值 3、求()π,0,sin 2sin ∈+ =x x x y 的最小值的值域 4、求()的最小值01 1>-+=x e e y x x 的最小值 类型二:形如()0,2≠+++=c a d cx c bx ax y 采取配凑——分离术! 1、求0,92>++=x x x x y 的最小值 2、求0,192>+++=x x x x y 的最小值 3、求?? ????-∈+++=1,31,12122x x x x y 的值域 4、求4,1822-<+++=x x x x y 的最值

【高中教育】最新高中数学奥林匹克竞赛训练题(206)

——教学资料参考参考范本——【高中教育】最新高中数学奥林匹克竞赛训练题(206) ______年______月______日 ____________________部门

第一试 一、填空题(每小题8分,共64分) 1。已知正整数组成等比数列,且则的最大值为 。 ()a b c a b c <<、、201620162016log log log 3,a b c ++=a b c ++ 2。关于实数的方程的解集为 。x 2 12sin 2222log (1sin )x x -=+- 3。曲线围成的封闭图形的面积为 。 2224x y y +≤ 4。对于所有满足的复数均有,对所有正整数,有,若 。 z i ≠z ()z i F z z i -= +n 1()n n z F z -=020162016,z i z =+=则 5。已知P 为正方体棱AB 上的一点,满足直线A1B 与平面B1CP 所成角 为,则二面角的正切值为 。1111ABCD A B C D -0 6011A B P C -- 6。已知函数,集合则A= 。 22 ()224,()2f x x x g x x x =+-=-+()()f x A x Z g x +?? =∈?? ?? 7。在平面直角坐标系中,P 为椭圆在第三象限内的动点,过点P 引圆的两条切线PA 、PB ,切点分别为A 、B ,直线AB 与轴、轴分别交于点M 、 N ,则面积的最小值为 。 xOy 22 12516x y +=22 9x y +=x y OMN ? 8。有一枚质地均匀的硬币,现进行连续抛硬币游戏,规则如下:在抛掷的过程中,无论何时,连续出现奇数次正面后出现一次反面,则游戏停止;否则游戏继续进行,最多抛掷10次,则该游戏抛掷次数的数学期望为 。 二、解答题(共56分)

(推荐)高中数学竞赛基本知识集锦

高中数学竞赛基本知识集锦 一、三角函数 常用公式 由于是讲竞赛,这里就不再重复过于基础的东西,例如六种三角函数之间的转换,两角和与差的三角函数,二倍角公式等等。但是由于现在的教材中常用公式删得太多,有些还是不能不写。先从最基础的开始(这些必须熟练掌握): 半角公式 α αααααα cos 1sin sin cos 1cos 1cos 12tan +=-=+-±= 积化和差 ()()[]βαβαβα-++=sin sin 2 1cos sin ()()[]βαβαβα--+=sin sin 2 1sin cos ()()[]βαβαβα-++=cos cos 2 1cos cos ()()[]βαβαβα--+-=cos cos 2 1sin sin 和差化积 2 cos 2sin 2sin sin βαβ αβα-+=+ 2 sin 2cos 2sin sin βαβαβα-+=- 2 cos 2cos 2cos cos βαβαβα-+=+ 2 sin 2sin 2cos cos βαβαβα-+-=- 万能公式 α αα2tan 1tan 22sin += α αα22tan 1tan 12cos +-= α αα2tan 1tan 22tan -= 三倍角公式 ()()αααααα+-=-= 60sin sin 60sin 4sin 4sin 33sin 3 ()() αααααα+-=-= 60cos cos 60cos 4cos 3cos 43cos 3 二、某些特殊角的三角函数值

三、三角函数求值 给出一个复杂的式子,要求化简。这样的题目经常考,而且一般化出来都是一个具体值。要熟练应用上面的常用式子,个人认为和差化积、积化和差是竞赛中最常用的,如果看到一些不常用的角,应当考虑用和差化积、积化和差,一般情况下直接使用不了的时候,可以考虑先乘一个三角函数,然后利用积化和差化简,最后再把这个三角函数除下去 举个例子 求值:7 6cos 74cos 72cos πππ++ 提示:乘以72sin 2π,化简后再除下去。 求值:??-?+?80sin 40sin 50cos 10cos 22 来个复杂的 设n 为正整数,求证n n n i n i 21212sin 1+=+∏=π 另外这个题目也可以用复数的知识来解决,在复数的那一章节里再讲 四、三角不等式证明 最常用的公式一般就是:x 为锐角,则x x x tan sin <<;还有就是正余弦的有界性。 例 求证:x 为锐角,sinx+tanx<2x 设12π ≥≥≥z y x ,且2π =++z y x ,求乘积z y x cos sin cos 的最大值和最小值。 注:这个题目比较难

2019年度高一数学奥林匹克竞赛决赛试题及答案解析

2019年**一中高一数学竞赛奥赛班试题(决赛) 及答案 (时间:5月16日18:40~20:40) 满分:120分 一、 选择题(本大题共6小题,每小题5分,满分30分) 1.已知 M =},13|{},,13|{},,3|{Z n n x x P Z n n x x N Z n n x x ∈-==∈+==∈=,且 P c N b M a ∈∈∈,,,设c b a d +-=,则∈d ( ) A. M B. N C. P D.P M 2.函数()1 42-+ =x x x x f 是( ) A 是偶函数但不是奇函数 B 是奇函数但不是偶函数 C 既是奇函数又是偶函数 C 既不是奇函数也不是偶函数 3.已知不等式m 2 +(cos 2 θ-5)m +4sin 2 θ≥0恒成立,则实数m 的取值范围是( ) A . 0≤m ≤4 B . 1≤m ≤4 C . m ≥4或x ≤0 D . m ≥1或m ≤0 4.在△ABC 中,c b a ,,分别是角C B A ,,所对边的边长,若 0sin cos 2sin cos =+- +B B A A ,则 c b a +的值是( ) A.1 B.2 C.3 C.2 5. 设 0a b >>, 那么 2 1 () a b a b + - 的最小值是 A. 2 B. 3 C. 4 D. 5 6.设ABC ?的内角A B C ,,所对的边,,a b c 成等比数列,则B C B A C A cos tan sin cos tan sin ++的取值范围是 ( ) A. (0,)+∞ B. C. D. )+∞. 二、填空题(本大题共10小题,每小题5分,满分50分) 7.母线长为3的圆锥中,体积最大的那一个的底面圆的半径为 8.函数| cos sin |2sin )(x x e x x f ++=的最大值与最小值之差等于 。

高二数学不等式练习题及答案

不等式练习题 一、选择题 1、若a,b 是任意实数,且a >b,则 ( ) (A )a 2>b 2 (B ) a b <1 (C )lg(a-b)>0 (D )(21)a <(2 1)b 2、下列不等式中成立的是 ( ) (A )lgx+log x 10≥2(x >1) (B ) a 1 +a ≥2 (a ≠0) (C )a 1<b 1 (a >b) (D )a 21+t ≥a t (t >0,a >0,a ≠1) 3、已知a >0,b >0且a +b =1, 则()11 )(1122--b a 的最小值为 ( ) (A )6 (B ) 7 (C ) 8 (D ) 9 4、已给下列不等式(1)x 3+ 3 >2x (x ∈R ); (2) a 5+b 5> a 3b 2+a 2b 3(a ,b ∈R ); (3) a 2+b 2≥2(a -b -1), 其中正确的个数为 ( ) (A ) 0个 (B ) 1个 (C ) 2个 (D ) 3个 5、f (n ) = 12+n -n , ?(n )= n 21 , g (n ) = n 12--n , n ∈N ,则 ( ) (A ) f (n )

高中数学基本不等式练习题

一.选择题 1.已知直线ax+by=1经过点(1,2),则2a+4b的最小值为() A.B.2C.4 D.4 2.已知x,y都是正数,且xy=1,则的最小值为() A.6 B.5 C.4 D.3 3.若a,b都是正数,则的最小值为() A.7 B.8 C.9 D.10 4.下列关于不等式的结论中正确的是() A.若a>b,则ac2>bc2B.若a>b,则a2>b2 C.若a<b<0,则a2<ab<b2D.若a<b<0,则> 5.若m、n是任意实数,且m>n,则() A.m2>n2B.C.lg(m﹣n)>0 D. 6.若直线=1(a>0,b>0)过点(1,1),则a+b的最小值等于() A.2 B.3 C.4 D.5 7.若直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则+的最小值为()A.6 B.8 C.10 D.12 8.已知不等式的解集为{x|a<x<b},点A(a,b)在直线mx+ny+1=0上,其中mn>0,则的最小值为()A.B.8 C.9 D.12 9.若m+n=1(mn>0),则+的最小值为() A.1 B.2 C.3 D.4 10.已知x+3y=2,则3x+27y的最小值为() A. B.4 C. D.6 11.若x<0,则x+的最大值是() A.﹣1 B.﹣2 C.1 D.2 12.已知a,b,c,是正实数,且a+b+c=1,则的最小值为() A.3 B.6 C.9 D.12 二.填空题 1.已知正数x,y满足x+y=1,则的最小值为. 2.已知a>0,b>0,且a+b=2,则的最小值为. 3.已知x>1,则函数的最小值为. 4.设2<x<5,则函数的最大值是. 5.函数f(x)=1+log a x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny﹣2=0上,其中mn>0,则的最小值为. 6.已知x>1,则函数y=2x+的最小值为.

高中数学奥林匹克竞赛中的不变量技巧

数学奥林匹克竞赛中的不变量技巧 在一个变化的数学过程中常常有个别的不变元素或特殊的不变状态,表现出相对稳定的较好性质,选择这些不变性作为解题的突破口是一个好主意。 例1.从数集{}3,4,12开始,每一次从其中任选两个数,a b ,用345 5 a b -和435 5 a b +代替它们,能否通过有限多次代替得到数集{}4,6,12。 解:对于数集{},,a b c ,经过一次替代后,得出3 443,,5 5 5 5a b a b c ??-+???? , 有2222223443()()5555 a b a b c a b c -+++=++ 即每一次替代后,保持3个元素的平方和不变(不变量)。 由22222234124612++≠++知,不能由{}3,4,12替换为{}4,6,12。 例2.设21n +个整数1221,,,n a a a +…具有性质p ;从其中任意去掉一个,剩下的2n 个数可以分成个数相等的两组,其和相等。证明这2n+1个整数全相等。 证明:分三步进行,每一步都有“不变量”的想法: 第一步 先证明这2n+1个数的奇偶性是相同的 因为任意去掉一个数后,剩下的数可分成两组,其和相等,故剩下的2n 个数的和都是偶数,因此,任一个数都与这2n+1个数的总和具有相同的奇偶性; 第二步 如果1221,,,n a a a +…具有性质P ,则每个数都减去整数c 之后,仍具有性质P ,特别地取1c a =,得21312110,,,,n a a a a a a +---… 也具有性质P ,由第一步的结论知,2131211,,,n a a a a a a +---…都是偶数; 第三步 由21312110,,,,n a a a a a a +---…为偶数且具有性质P ,可得 31 211210, ,,,222 n a a a a a a +---… 都是整数,且仍具有性质P ,再由第一步知,这21n +个数的奇偶性相同,为偶数,所以都除以2后,仍是整数且具有性质P ,余此类推,对任意的正整数k ,均有 31 211210, ,,,222n k k k a a a a a a +---…为整数,且具有性质P ,因k 可以任意大,这就推得 21312110n a a a a a a +-=-==-=…即 1221n a a a +===…。

(完整版)高中数学不等式习题及详细答案

第三章 不等式 一、选择题 1.已知x ≥2 5 ,则f (x )=4-25+4-2x x x 有( ). A .最大值45 B .最小值4 5 C .最大值1 D .最小值1 2.若x >0,y >0,则221+)(y x +221 +)(x y 的最小值是( ). A .3 B . 2 7 C .4 D . 2 9 3.设a >0,b >0 则下列不等式中不成立的是( ). A .a +b + ab 1≥22 B .(a +b )( a 1+b 1 )≥4 C 22 ≥a +b D . b a ab +2≥ab 4.已知奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式x x f x f ) ()(--<0 的解集为( ). A .(-1,0)∪(1,+∞) B .(-∞,-1)∪(0,1) C .(-∞,-1)∪(1,+∞) D .(-1,0)∪(0,1) 5.当0<x <2 π时,函数f (x )=x x x 2sin sin 8+2cos +12的最小值为( ). A .2 B .32 C .4 D .34 6.若实数a ,b 满足a +b =2,则3a +3b 的最小值是( ). A .18 B .6 C .23 D .243 7.若不等式组?? ? ??4≤ 34 ≥ 30 ≥ y x y x x ++,所表示的平面区域被直线y =k x +34分为面积相等的两部分,则k 的值是( ). A . 7 3 B . 37 C . 43 D . 34 8.直线x +2y +3=0上的点P 在x -y =1的上方,且P 到直线2x +y -6=0的距离为

高中数学竞赛校本教材[全套](共30讲)

高中数学竞赛校本教材[全套](共30讲,含详细答案) 目录 §1数学方法选讲(1) (1) §2数学方法选讲(2) (11) §3集合 (22) §4函数的性质 (30) §5二次函数(1) (41) §6二次函数(2) (55) §7指、对数函数,幂函数 (63) §8函数方程 (73) §9三角恒等式与三角不等式 (76) §10向量与向量方法 (85) §11数列 (95) §12递推数列 (102) §13数学归纳法 (105) §14不等式的证明 (111) §15不等式的应用 (122) §16排列,组合 (130) §17二项式定理与多项式 (134) §18直线和圆,圆锥曲线 (143) §19立体图形,空间向量 (161) §20平面几何证明 (173)

§21平面几何名定理 (180) §22几何变换 (186) §23抽屉原理 (194) §24容斥原理 (205) §25奇数偶数 (214) §26整除 (222) §27同余 (230) §28高斯函数 (238) §29覆盖 (245) §29涂色问题 (256) §30组合数学选讲 (265) §1数学方法选讲(1) 同学们在阅读课外读物的时候,或在听老师讲课的时候,书上的例题或老师讲解的例题他都能听懂,但一遇到没有见过面的问题就不知从何处入手。看来,要提高解决问题的能力,要能在竞赛中有所作为,首先得提高分析问题的能力,这就需要学习一些重要的数学思想方法。 例题讲解 一、从简单情况考虑 华罗庚先生曾经指出:善于“退”,足够的“退”,退到最原始而又不失去重要性的地方,是学好数学的一个诀窍。从简单情况考虑,就是一种以退为进的一种解题策略。 1. 两人坐在一张长方形桌子旁,相继轮流在桌子上放入同样大小的硬币。条件是硬币一定要平放在桌子上,后放的硬币不能压在先放的硬币上,直到桌子上再也放不下一枚硬币为止。谁放入了最后一枚硬币谁获胜。问:先放的人有没有必定取胜的策略?

高中数学奥林匹克竞赛全真试题

1 2003年全国高中数学联合竞赛试题 一、选择题(本题满分36分,每小题6分) 1、删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个新数列的第2003项是( ) A .2046 B .2047 C .2048 D .2049 2、设a ,b ∈R ,ab ≠0,那么,直线ax -y +b =0和曲线bx 2+ay 2=ab 的图形是( ) 3、过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线.若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于P 点,则线段PF 的长等于( ) A . 163 B .8 3 C D . 4、若5[,]123 x ππ ∈--,则2tan()tan()cos()366y x x x πππ=+-+++的最大值是( ). A B C D 5、已知x 、y 都在区间(-2,2)内,且xy =-1,则函数2 2 4949u x y = + --的最小值是( ) A . 85 B .2411 C .127 D .125 6、在四面体ABCD 中,设AB =1,CD AB 与CD 的距离为2,夹角为3 π ,则四 面体ABCD 的体积等于( ) A B .12 C .1 3 D 二、填空题(本题满分54分,每小题9分) 7、不等式|x |3-2x 2-4|x |+3<0的解集是__________. 8、设F 1,F 2是椭圆22 194 x y +=的两个焦点,P 是椭圆上的点,且|PF 1|:|PF 2|=2:1,则△PF 1F 2的面积等于__________. 9、已知A ={x |x 2-4x +3<0,x ∈R },B ={ x |21- x +a ≤0,x 2-2(a +7)x +5≤0,x ∈R }.若A B ?,则实数a 的取值范围是__________. 10、已知a ,b ,c ,d 均为正整数,且35 log ,log 24 a c b d ==,若a - c =9,b - d =__________. 11、将八个半径都为1的球分两层放置在一个圆柱内,并使得每个球和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于__________. 12、设M n ={(十进制)n 位纯小数0.12 |n i a a a a 只取0或1(i =1,2,…,n -1) ,a n =1},

相关主题
文本预览
相关文档 最新文档