当前位置:文档之家› 电源仿真实验报告.

电源仿真实验报告.

电源仿真实验报告.
电源仿真实验报告.

电子技术软件仿真报告

组长:

组员:

电源(一)流稳压电源(Ⅰ)—串联型晶体管稳压电源

1.实验目的

(1)研究单相桥式整流、电容滤波电路的特性。

(2)掌握串联型晶体管稳压电源主要技术指标的测试方法。

2.实验原理

电子设备一般都需要直流电源供电。除少数直接利用干电池和直流发电机提供直流电外,大多数是采用把交流电(市电)转变为直流电的直流稳压电源。

直流稳压电源由电源变压器、整流、滤波和稳压电路四部分组成,其原理框图如图7.18.1所示。电网供给的交流电源Ui(220V,5OHz)经电源变压器降压后,得到符合电路需要的交流电压U2;然后由整流电路变换成方向不变、大小随时间变化的脉动电压U3;再用滤波器滤去其交流分量,就可得到比较平直的直流电压Ui。但这样的直流输出电压还会随交流电网电压的波动或负载的变动而变化。在对直流供电要求较高的场合,还需要用稳压电路,以保证输出直流电压更加稳定。

图7.18.2所示为分立元件组成的串联型稳压电源的电路图。其整流部分为单相桥式整流、电容滤波电路。稳压部分为串联型稳压电路它由调整元件(晶体管V1)、比较放大器(V2,R7)、取样电路(R1,R2,RP)、基准电压(V2,R3)和过流保护电路(V3及电阻R4,R5,R6)等组成。整个稳压电路是一个具有电压串联负反馈的闭环系统。其稳压过程为:当电网电压波动或负载变动引起输出直流电压发生变化时,取样电路取出输出电压的一部分送入比较放大器,并与基准电压进行比较,产生的误差信号经V2放大后送至调整管V1的基极,使调整管改变其管压降,以补偿输出电压的变化,从而达到稳定输出电压的目的。

由于在稳压电路中,调整管与负载串联,因此流过它的电流与负载电流一样大。当输出电流过大或发生短路时,调整管会因电流过大或电压过高而损坏坏,所以需要对调整管加以保护。在图7.18.2所示的电路中,晶体管V3,R4,R5及R6组成减流型保护电路,此电路设计成在Iop=1.2Io时开始起保护作用,此时输出电路减小,输出电压降低。故障排除后应能自动恢复正常工作。在调试时,若保护作用提前,应减小R6的值;若保护作用迟后,则应增大R6的值。

稳压电源的主要性能指标:

(1)输出电压Uo和输出电压调节范围

调节RP可以改变输出电压Uo。

(2)最大负载电流Iom

(3)输出电阻Ro

输出电阻Ro定义为:当输入电压Ui(指稳压电路输入电压)保持不变,由于负载变化而引起的输出电压变化量与输出电流变化量之比,即

(4)稳压系数S(电压调整率)

稳压系数定义为;当负载保持不变,输出电压相对变化量与输入电压相对变化量之比,即

由于工程上常把电网电压波动±10﹪作为极限条件,因此也有将此时输出电压的极限变化△Uo/Uo作为衡量指标,称为电压调整率。

(5)纹波电压

输出纹波电压是指在额定负载条件下,输出电压中所包含交流分量的有效值(或峰值)

3.实验设备与器件

(1)可调工频电源(2)双踪示波器

(3)交流毫伏表(4)直流电压表

(5)直流毫安表(6)滑线变阻器200欧/1A

(7)晶体二极管1N4007×4 (8)稳压管1N4735×1

(9)电阻器、电容器若干

(10)晶体三极管3DG6×2(9011×2),3DG12×1(9013×1)

4.实验内容

(1)整流滤波电路测试

按图7.18.3所示连接实验电路,取可调工频电源电压为16V,作为整流电路输入电压U2。

1) 取RL=240欧,不加滤波电容,测量直流输出电压UL及纹波电压ul,并用示波器观察U2和UL波形,记入表7.18.1中。

2)取RL=240欧,C=470微法,重复内容1)的要求,记入表7.18.1中。

3)取RL=120欧,C=470微法,重复内容1)的要求,记入表7.18.1中。(2)串联型稳压电源性能测试

切断工频电源,在图7.18.3基础上按图7.18.2连接实验电路。

注意:每次改变电路时,必须切断工频电源。

在观察输出电压UL波形的过程中,“Y轴灵敏度”旋钮位置调好后,不要再变动,否则将无法比较各波形的脉动情况。

1)初测

将稳压器输出端负载开路,断开保护电路,接通16V工频电源,测量整流电路输入电压U2,滤波电路输出电压Ui(稳压器输入电压)及输出电压uo。调节电位器RP,观察uo的大小和变化情况。如果uo能跟随RP 线性变化,说明稳压电路各反馈环路工作基本正常,否则,说明稳压电路

有故障。稳压器是一个深负反馈的闭环系统,只要环路中任一个环节出现故障(某管截止或饱和),稳压器稳压器就会失去自动调节作用。此时可分别检查基准电压Uz,输入电压ui,输出电压uo,以及比较放大器和调整管各电极的电位(主要是Ube,Uce),分析它们的工作状态是否都处在线性区,从而找出不能正常工作的原因。排除故障以后就可以进行下一步的测试。

2)测量输出电压可调范围

接入负载RL(滑动变阻器),并调节RL,使输出电流Io≈100mA.再调节电位器RP测量输出电压可调范围Uomin~Uomax,且使RP动点在中间位置附近时Uo=12V.若不满足要求,可适当调整R1,R2之值。

3)测量各级静态工作点

调节输出电压Uo=12V,输出电流Io=100mA,测量各级静态工作点,记入表7.18.2中。

4)测量稳压系数S

取Io=100mA,按表7.18.3改变整流电流输入电压u2(模拟电位电压波动),分别测出相应的稳压器输入电压ui及输出直流电压Uo,记入表7.18.3中。

5)测量输出电阻Ro

取U2=16V,改变滑动变阻器位置,使Io为空载、50mA和100mA,测量相应的值,记入表7.18.4中。

6)测量输出纹波电压

取U2=16V,Uo=12V,Io=100mA,测量输出纹波电压Uo,记录之。

7)调整过流保护电路

第一步断开工频电源,接上保护回路,再接上工频电源,调节RP及RL,使Uo=12V, Io=100Ma,此时保护电路不起作用。测出V3各级电位值。

第二步逐渐减小RL,使Io增加到120mA,观察Uo是否下降,并测出保护起作用时V3各级的电位值。若保护作用过早或滞后,可改变R6之值进行调整。

第三步用导线瞬时短接一下输出端,测量Uo值,然后去掉导线,检查电路是否能自动恢复正常工作。

5.仿真实验

(1)分别在Multisim平台上建立如图7.18.4所示的整理滤波电路。启动仿真开关进行仿真分析。

(2)根据本节实验内容的要求在Multisim平台上逐项完成余下的仿真实验,并分析仿真结果。

6.预习要求

(1)复习教材中有关分立元件稳压电源部分内容,并根据实验电路参数估算Uo的可调范围及Uo=12V时V1,V2的静态工作点(假设调整管的饱和压降Uces ≈1V)。

(2)说明图7.18.2中U2,Ui,Uo的物理意义,并从实验仪器中选择合适的测量仪表。

(3)在桥式整流电路实验中,能否用双踪示波器同时观察U2和UL的波形,为什么?

(4)在桥式整流电路中,如果某个二极管发生开路、短路或反接三种情况,将会出现什么问题?

(5)为了使稳压电源的输出电压Uo=12V,其输入电压的最小值Umin应等于多少?交流输入U2min该怎样确定?

(6)当稳压电源输出不正常,或输出电压Uo不随取样电位器RP而变化时,应如何进行检查并找出故障所在?

(7)分析保护电路的工作原理。

(8)怎样提高稳压电源的性能指标(减小S和Ro)?

(9)画原理图与印刷电路图。

7.实验总结

(1)对表7.18.1所测结果进行全面分析,总结桥式整流、电容滤波电路的特点。

(2)根据表7.18.3和7.18.4所测数据,计算稳压电路的稳压系数S和输出电阻Ro,并进行分析。

(3)分析讨论实验中出现的故障及排除方法。

电源(二)直流稳压电源(Ⅱ)—集成稳压器

1.实验目的

(1)研究集成稳压器的特点及性能指标的测试方法。

(2)了解集成稳压器扩展性能的方法。

2.实验原理

随着半导体工艺的发展,稳压电路也制成了集成器件。由于集成稳压器具有体积小外接线路简单、使用方便、工作可靠和通用性能强等优点,因此在各种电子设备中应用十分普遍,基本上取代了由分立元件构成的稳压电路。集成稳压器的种类很多,应根据设备对直流电源的要求来进行选择。对于大多数电子仪器、设备和电子电路来说,通常是选用串联线性集成稳压器。而在这种类型的器件中,又以三端式稳压器应用最为广泛。

W7800和W7900系列三端式集成稳压器的输出电压是固定的,在使用中不能进行调整。W7800系列三端式稳压器的输出正极性电压,一般有5V,6V,9V,12V,15V,18V和24V七个挡级,输出电流最大可达1.5A(加散热片)。同类型78M 系列稳压器的输出电流为0.5A,78L系列稳压器的输出电流为0.1A。若要求负极性输出电压,则可选用W79系列稳压器。

图7.19.1所示为W7800系列稳压器的外形和接线图。它有三个引出端:

·输入端(不稳定电压输入端):标以“1”

·输出端(稳定电压输出端):标以“3”

·公共端:标以“2”

除固定输出三端稳压器外,还有可调式三端稳压器,后者用外接元件对输出电压进行调整,以适应不同的需要。

本实验所用集成稳压器为三端固定正稳压器W7812,它的主要参数有:输出直流电压Uo=+12V,输出电流I:0.1A,M:0.5A,电压调整率10mV/V,输出电阻Ro=0.15欧,输入电压Ui的范围为15~17V。一般Ui要比Uo高3~5V才能保证集成稳压器工作在线性区。

图7.19.2所示为用三端式稳压器W7812构成的单电源电压输出串联型稳压电源的实验电路图。其中整流部分采用了四个二极管组成的桥式整流器成品(又称桥堆),型号为2W06(或KBP306),内部接线和外部引脚引线如图7.19.3所示。滤波电容C1,C2一般选取为几百微法至几千微法。当稳压器距离整流滤波电路比较远时,在输入端必须接入电容器C3(数值为0.33微法),以抵消线路的电感效应,防止产生自激振荡。输出端电容C4(0.1微法)用以滤除输出端的高

频信号,以改善电路的暂态响应。

图7.19.4为正、负双电压输出电路。例如,当需要Uo1=+15V,Uo2=—15V 时,可选用W7915和W7915三端稳压器,这时的Ui应为单电压输出时的两倍。

当集成稳压器本身的输出电压或输出电流不能满足要求时,可通过外接电路来进行性能扩展。图7.19.5所示为一种简单的输出电压扩展电路。如W7812稳压器的3、2端之间输出电压为12V,只要适当选择R的值,使稳压管Vz工作在稳压区,则输出电压Uo=12+Uz,可以高于稳压器本身的输出电压。

图7.19.6 是通过外接晶体管V及R1来进行电流扩展的电路。电阻R1的阻值由外接晶体管的发射结导通电压Ube、三端式稳压器的输入电流Ii(近视等于三端稳压器的输出电流Io1)和V的基极电流Ib来决定,即

式中,Ic为晶体管V的集电极电流,它应等于Ic=Io—Io1;b为V的电流放大系数;对于锗管Ube可按0.3V估算,对于硅管Ube按0.7V估算。

附:(1)图7.19.7所示为W7900系列稳压器(输出负电压)外形及接线图。

(2)图7.19.8所示为可调输出正三端稳压器W317外形及接线图。

输出电压计算公式

最大输入电压

输出电压范围

3.实验设备与器件

(1)可调工频电源(2)双踪示波器

(3)交流毫伏表(4)直流电压表

(5)直流毫安表(6)三端稳压器W7812,W7815,W7915 (7)桥堆2W06(或KBP306) (8)电阻器、电容器若干

4.实验内容

(1)整流滤波电路测试

按图7.19.9所示连接实验电路,取可调工频电源14V电压作为整流电路输入电压u2.接通电源,测量输出端直流电压UL及纹波电压UL~,用示波器观察u2及UL的波形,把数据及波形记入自拟表格中。

(2)集成稳压器性能测试

断开工频电源,按图7.19.2改接实验电路,取负载电阻RL=120欧。

1)初测

接通工频14V电源,测量u2的值;测量滤波电路输出电压Ui(稳压器输入电压),集成稳压器输出电压Uo,它们的数值应与理论值大致符合,否则说明电路出了故障。设法查找故障并加以排除。

电路经初测进入正常工作状态后,才能进行各项指标的测试。

2)各项性能指标测试

第一步输出电压Uo和最大输出电流Iomax的测量。

在输出端接负载电阻RL=120欧,由于W7812的输出电压Uo=12V,因此流过RL 的电流Iomax=12/120=100mA。这时Uo应保持不变,若变化较大则说明集成块性能不良。

第二步稳压系数S的测量

第三步输出电阻Ro的测量

第四步输出纹波电压的测量

第二步~第四步的测试方法同7.18节,把测量结果记入自拟表格中。

3)集成稳压器性能扩展

根据实验器材来选取图7.19.4图、图7.19.8中各元器件,自拟测试方法与表格,记录实验结果。

5.仿真实验

(1)分别在Multisim平台上建立如图7.19.10所示集成稳压器。启动仿真开关进行仿真分析。

(2)根据本节实验内容的要求在Multisim平台上逐项完成余下的仿真实验,并分析仿真结果。

(3)画原理图与印刷电路图。

单管共射极放大电路仿真实验报告

单管共射极分压式放大电路仿真实验报告 班级__________姓名___________学号_________ 一、实验目的:1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的 测量法。 3.熟悉简单放大电路的计算及电路调试。 4.能够设计较为简单的对温度稳定的具有一定放大倍数的放大电路。 二、实验要求:输入信号Ai=5 mv, 频率f=20KHz, 输出电阻R0=3kΩ, 放大倍数Au=60,直 流电源V cc=6v,负载R L=20 kΩ,Ri≥5k,Ro≤3k,电容C1=C2=C3=10uf。三、实验原理: (一)双极型三极管放大电路的三种基本组态。 1.单管共射极放大电路。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/R B (V CC为图中RC(1)) I=βI BQ

U CEQ=V CC-I CQ R C (3)动态分析。A U=-β(R C管共集电极放大电路(射极跟随器)。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/(R b +(1+β)R e)(V CC为图中Q1(C)) I CQ=βI BQ U CEQ=V CC-I EQ R e≈V CC-I CQ R e (3)动态分析。A U=(1+β)(R e管共基极放大电路。 (1)基本电路组成。如下图所示:

(2)静态分析。I EQ=(U BQ-U BEQ)/R e≈I CQ (V CC为图中RB2(2)) I BQ=I EQ/(1+β) U CEQ=V CC-I CQ R C-I EQ R e≈V CC-I QC(R C+R e) (3)动态分析。AU=β(R C极管将输入信号放大。 2.两电阻给三极管基极提供一个不受温度影响的偏置电流。 3.采用单管分压式共射极电流负反馈式工作点稳定电路。 四、实验步骤: 1.选用2N1711型三极管,测出其β值。 (1)接好如图所示测定电路。为使ib达到毫安级,设定滑动变阻器Rv1的最大阻值是 1000kΩ,又R1=3 kΩ。

直流稳压电源电路的设计实验报告

直流稳压电源电路的设计实验报告 一、实验目的 1、了解直流稳压电源的工作原理。 2、设计直流稳压电路,要求输入电压:220V市电,50Hz,用单变压器设计并制作能够输出一组固定+15V输出直流电压和一组+1.2V~+12V连续可调的直流稳压电源电路,两组输出电流分别I O≥500mA。 3、了解掌握Proteus软件的基本操作与应用。 二、实验线路及原理 1、实验原理 (1)直流稳压电源 直流稳压电源是一种将220V工频交流电转换成稳压输出的直流电的装置,它需要变压、整流、滤波、稳压四个环节才能完成。一般由电源变压器、整流滤波电路及稳压电路所组成,基本框图如下: 图2-1 直流稳压电源的原理框图和波形变换 其中: 1)电源变压器:是降压变压器,它将电网220V交流电压变换成符合需要的交流电压,并送给整流电路,变压器的变比由变压器的副边电压确定,变压器副边与原边的功率比为P2/P1=n,式中n是变压器的效率。 2)整流电路:利用单向导电元件,把50Hz的正弦交流电变换成脉动的直流电。 3)滤波电路:可以将整流电路输出电压中的交流成分大部分加以滤除,从而得到比较平滑的直流电压。滤波电路滤除较大的波纹成分,输出波纹较小的直流电压U1。 4)稳压电路:其工作原理是利用稳压管两端的电压稍有变化,会引起其电流有较大变化这一特点,通过调节与稳压管串联的限流电阻上的压降来达到稳定输出电压的目的。稳压电路的功能是使输出的直流电压稳定,不随交流电网电压和负载的变化而变化。 (2)整流电路 常采用二极管单相全波整流电路,电路如图2-2所示。在u2的正半周内,二极管D1、D2导通,D3、D4截止;u2的负半周内,D3、D4导通,D1、D2截止。正负半周内部都有电流流过的负载电阻RL,且方向是一致的。电路的输出波形如图2-3所示。 t

开关电源实验报告

开关电源实验报告 一开关电源原理 如下图30W开关电源电路图所示,市电先经过由电容CX1和滤波电感LF1A组成的滤波电路后,再经过型号为KBP210的整流桥BD1和C1组成的整流电路,输出直流电。直流电又经过由UC3842和2N60等元器件组成的高频逆变电路后,变成高频的交流电,经高频变压器输出为低电压的高频交流电。高频交流经肖基特二极管SR1060后变为脉动的直流电,最后经滤波电容和滤波电感变为我们想要的直流电输出。

MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。(2)输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 (3)整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。

1.2功率变换电路 (1)MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。(2)常见的原理图: (3)工作原理 R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。

数字电子技术实验报告

专业: 班级: 学号: 姓名: 指导教师: 电气学院

实验一集成门电路逻辑功能测试 一、实验目的 1. 验证常用集成门电路的逻辑功能; 2. 熟悉各种门电路的逻辑符号; 3. 熟悉TTL集成电路的特点,使用规则和使用方法。 二、实验设备及器件 1. 数字电路实验箱 2. 万用表 3. 74LS00四2输入与非门1片74LS86四2输入异或门1片 74LS11三3输入与门1片74LS32四2输入或门1片 74LS04反相器1片 三、实验原理 集成逻辑门电路是最简单,最基本的数字集成元件,目前已有种类齐全集成门电路。TTL集成电路由于工作速度高,输出幅度大,种类多,不宜损坏等特点而得到广泛使用,特别对学生进行实验论证,选用TTL电路较合适,因此这里使用了74LS系列的TTL成路,它的电源电压为5V+10%,逻辑高电平“1”时>2.4V,低电平“0”时<0.4V。实验使用的集成电路都采用的是双列直插式封装形式,其管脚的识别方法为:将集成块的正面(印有集成电路型号标记面)对着使用者,集成电路上的标识凹口左,左下角第一脚为1脚,按逆时针方向顺序排布其管脚。 四、实验内容 ㈠根据接线图连接,测试各门电路逻辑功能 1. 利用Multisim画出以74LS11为测试器件的与门逻辑功能仿真图如下

按表1—1要求用开关改变输入端A,B,C的状态,借助指示灯观测各相应输出端F的状态,当电平指示灯亮时记为1,灭时记为0,把测试结果填入表1—1中。 表1-1 74LS11逻辑功能表 输入状态输出状态 A B C Y 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 悬空 1 1 1 悬空0 0 0 2. 利用Multisim画出以74LS32为测试器件的或门逻辑功能仿真图如下

电力电子电路分析与仿真实验报告模板

电力电子电路分析与仿真 实验报告 学院:哈尔滨理工大学荣成学院 专业: 班级: 姓名: 学号:

年月日 实验1降压变换器 一、实验目的: 设计一个降压变换器,输入电压为220V,输出电压为50V,纹波电压为输出电压的0.2%,负载电阻为20欧,工作频率分别为220kHz。 二、实验内容: 1、设计参数。 2、建立仿真模型。 3、仿真结果与分析。 三、实验用设备仪器及材料: MATLAB仿真软件 四、实验原理图: 五、实验方法及步骤: 1.建立一个仿真模型的新文件。在MATLAB的菜单栏上点击File,选择New,再在弹出菜单中选择Model,这时出现一个空白的仿真平台,在这个

平台上可以绘制电路的仿真模型。 2.提取电路元器件模块。在仿真模型窗口的菜单上点击Simulink调出模型库浏览器,在模型库中提取所需的模块放到仿真窗口。 3.仿真模型如图所示。 六、参数设置 七、仿真结果分析

实验2升压变换器 一、实验目的: 将一个输入电压在3~6V的不稳定电源升压到稳定的15V,纹波电压低于0.2%,负载电阻10欧,开关管选择MOSFET,开关频率为40kHz,要求电感电流连续。 二、实验内容: 1、设计参数。 2、建立仿真模型。 3、仿真结果与分析。 三、实验用设备仪器及材料: MATLAB仿真软件 五、实验原理图:

五、实验方法及步骤: 1.建立一个仿真模型的新文件。在MATLAB的菜单栏上点击File,选择New,再在弹出菜单中选择Model,这时出现一个空白的仿真平台,在这个平台上可以绘制电路的仿真模型。 2.提取电路元器件模块。在仿真模型窗口的菜单上点击Simulink调出模型库浏览器,在模型库中提取所需的模块放到仿真窗口。 3.仿真模型如图所示。 六、参数设置 七、仿真结果分析

直流稳压电源实验报告

实验报告——直流稳压电源 班级:13专电子2班学号:2013253827 姓名:冯杰 指导老师:戴仁村

一、课程内容的概述 各种电子电路和电子设备都需要稳定的直流电源,但电网提供的是50HZ 的正弦交流电,这就需要将电网的交流电转换稳定的直流电,直流稳压电路就是实现这种转换的电子电路。当今社会人们极大的享受着电子设备带来的便利,但是任何电子设备都有一个共同的电路--电源电路。大到超级计算机、小到袖珍计算器,所有的电子设备都必须在电源电路的支持下才能正常工作。当然这些电源电路的样式、复杂程度千差万别。超级计算机的电源电路本身就是一套复杂的电源系统。通过这套电源系统,超级计算机各部分都能够得到持续稳定、符合各种复杂规范的电源供应。袖珍计算器则是简单多的电池电源电路。不过你可不要小看了这个电池电源电路,比较新型的电路完全具备电池能量提醒、掉电保护等高级功能。可以说电源电路是一切电子设备的基础,没有电源电路就不会有如此种类繁多的电子设备。 由于电子技术的特性,电子设备对电源电路的要求就是能够提供持续稳定、满足负载要求的电能,而且通常情况下都要求提供稳定的直流电能。提供这种稳定的直流电能的电源就是直流稳压电源。直流稳压电源在电源技术中占有十分重要的地位。 直流稳压电源的技术指标可以分为两大类:一类是特性指标,反映直流稳压电源的固有特性,如输入电压、输出电压、输出电流、输出电压调节范围;另一类是质量指标,反映直流稳压电源的优劣,包括稳定度、等效内阻(输出电阻)、纹波电压及温度系数等。 二、电路的设计框图及概述 1、直流稳压电源设计思路 ①电网供电电压交流220V (有效值)50Hz ,要获得低压直流输出,首先必须采用电源变压器将电网电压降低获得所需要交流电压。 ②降压后的交流电压,通过整流电路变成单向直流电,但其幅度变化大(即脉动大)。 ③脉动大的直流电压须经过滤波、稳压电路变成平滑,脉动小的直流电,即将交流成分滤掉,保留其直流成分。 ④滤波后的直流电压,再通过稳压电路稳压,便可得到基本不受外界影响的稳定直流电压输出,供给负载RL 。 2、直流稳压电源原理 直流稳压电源是一种将220V 工频交流电转换成稳压输出的直流电压的装置,它需要变压、整流、滤波、稳压四个环节才能完成,见图 3.1。理;在事器组在

开关电源设计报告

1开关电源主电路设计 1.1主电路拓扑结构选择 由于本设计的要求为输入电压176-264 V 交流电,输出为24V 直流电,因此中间需要将输入侧的交流电转换为直流电,考虑采用两级电路。前级电路可以选用含电容滤波的单相不可控整流电路对电能进行转换,后级由隔离型全桥Buck 电路构成。总体要求是先将AC176-264V 整流滤波,然后再经过BUCK 电路稳压到24V 。考虑到变换器最大负输出功率为1000W ,因此需采用功率级较高的Buck 电路类型,且必须保证工作在CCM 工作状态下,因此综合考虑,本文采用全桥隔离型Buck 变换器。其主电路拓扑结构如下图所示: 图1-1 主电路拓扑结构 1.2开关电源电路稳态分析 下面将对全桥隔离型BUCK 变换器进行稳态分析,主要是推导前级输出电压g V 与后级输出电压V 之间的关系,为主电路参数的设计提供参考。将前级输出电压g V 代替前级电路,作为后级电路的输入,且后级BUCK 变换器工作在CCM 模式,BUCK 电路中的变压器可以用等效电路代替。 由于全桥隔离型BUCK 变换器中变压器二次侧存在两个引出端,使得后级BUCK 电路的工作频率等同于前级二倍的工作频率,如图1-1所示。在S T 2的工作时间内,总共可分为四种开关阶段,其具体分析过程如下: 1) 当S DT t <<0时,此时1Q 、4Q 和5D 导通,其等效电路图如图1-2所示。

i () t R v i ‘ 图1-2 在S DT t <<0时等效电路 g nv v =s (1-1) v nv v g -L = (1-2) R v i i /-C = (1-3) 2) 当S S T t DT <<时,此时1Q ~4Q 全部关断,6D 和5D 导通,其等效电路图如图1-3 所示。此时前级输出g V 为0,假设磁化电流为0,则流过6D 和5D 电流相等,均为L i 2 1 。。 i () t R i ‘ 图1-3 在S S T t DT <<时等效电路 0=s v (1-4) v v -L = (1-5) R v i i /-C = (1-6) 3) 当S S T D t T )( +1<<时,此时2Q 、3Q 和6D 导通,其等效电路图如图1-2所示。

电源仿真实验报告.

电子技术软件仿真报告 组长: 组员: 电源(一)流稳压电源(Ⅰ)—串联型晶体管稳压电源 1.实验目的 (1)研究单相桥式整流、电容滤波电路的特性。 (2)掌握串联型晶体管稳压电源主要技术指标的测试方法。 2.实验原理 电子设备一般都需要直流电源供电。除少数直接利用干电池和直流发电机提供直流电外,大多数是采用把交流电(市电)转变为直流电的直流稳压电源。

直流稳压电源由电源变压器、整流、滤波和稳压电路四部分组成,其原理框图如图7.18.1所示。电网供给的交流电源Ui(220V,5OHz)经电源变压器降压后,得到符合电路需要的交流电压U2;然后由整流电路变换成方向不变、大小随时间变化的脉动电压U3;再用滤波器滤去其交流分量,就可得到比较平直的直流电压Ui。但这样的直流输出电压还会随交流电网电压的波动或负载的变动而变化。在对直流供电要求较高的场合,还需要用稳压电路,以保证输出直流电压更加稳定。 图7.18.2所示为分立元件组成的串联型稳压电源的电路图。其整流部分为单相桥式整流、电容滤波电路。稳压部分为串联型稳压电路它由调整元件(晶体管V1)、比较放大器(V2,R7)、取样电路(R1,R2,RP)、基准电压(V2,R3)和过流保护电路(V3及电阻R4,R5,R6)等组成。整个稳压电路是一个具有电压串联负反馈的闭环系统。其稳压过程为:当电网电压波动或负载变动引起输出直流电压发生变化时,取样电路取出输出电压的一部分送入比较放大器,并与基准电压进行比较,产生的误差信号经V2放大后送至调整管V1的基极,使调整管改变其管压降,以补偿输出电压的变化,从而达到稳定输出电压的目的。 由于在稳压电路中,调整管与负载串联,因此流过它的电流与负载电流一样大。当输出电流过大或发生短路时,调整管会因电流过大或电压过高而损坏坏,所以需要对调整管加以保护。在图7.18.2所示的电路中,晶体管V3,R4,R5及R6组成减流型保护电路,此电路设计成在Iop=1.2Io时开始起保护作用,此时输出电路减小,输出电压降低。故障排除后应能自动恢复正常工作。在调试时,若保护作用提前,应减小R6的值;若保护作用迟后,则应增大R6的值。 稳压电源的主要性能指标: (1)输出电压Uo和输出电压调节范围 调节RP可以改变输出电压Uo。 (2)最大负载电流Iom (3)输出电阻Ro 输出电阻Ro定义为:当输入电压Ui(指稳压电路输入电压)保持不变,由于负载变化而引起的输出电压变化量与输出电流变化量之比,即 (4)稳压系数S(电压调整率)

电路仿真实验报告

单片机原理及接口技术电路仿真实验报告 实验一:独立式键盘与LED显示示例 例4—17: 功能:数码管的数据端与P0口引脚采用正序,试编写程序,分别实现功能:上电后数码管显示“P”,按下任何键后,显示从“0”开始每隔1秒加1,加至“F”后,数码管显示“P”,进入等待按键状态。 Keil编程: 电路图: 初始状态时:

3 秒后:程序: TEMP EQU 30H ORG 0000H JMP START ORG 0100H START:MOV SP,#5FH MOV P0,#8CH MOV P3,#0FFH NOKEY:MOV A,P3 CPL A JZ NOKEY MOV TEMP,P3 CALL D10ms MOV A,P3 CJNE A,TEMP,NOKEY MOV R7,#16 MOV R2,#0 LOOP:MOV A,R2 MOV DPTR,#CODE_P0 MOVC A,@A+DPTR MOV P0,A INC R2 SETB RS0 CALL D_1S CLR RS0 DJNZ R7,LOOP JMP START D_1S:MOV R6,#100 D10:CALL D10ms DJNZ R6,D10 RET D10ms:MOV R5,#10 D1ms:MOV R4,#249 DL:NOP NOP DJNZ R4,DL DJNZ R5,D1ms RET CODE_P0:DB 0C0H,0F9H,0A4H,0B0H,99H, 92H,82H,0F8H DB 80H,90H,88H,83H,0C6H,0A1 H,86H,8EH END 例4—18: 功能:执行程序时,先显示“P” 1、按键K0按下后,数码管显示拨动开关S3~S0对应的十进制值; 2、按键K1按下后,P0口数码管显示拨动开关S3~S0对应的十六进制值; 3、按键K2按下后,P2口数码管显示拨动开关S3~S0对应的十六制值;

直流稳压电源设计实验报告(模电)

直流稳压电源的设计实验报告 一、实验目的 1.学会选择变压器、整流二极管、滤波电容及集成稳压器来设计直流稳压电源 2.掌握直流稳压电源的调试及主要技术指标的测量方法 二、实验任务 利用7812、7912设计一个输出±12V 、1A 的直流稳压电源; 三、实验要求 1)画出系统电路图,并画出变压器输出、滤波电路输出及稳压输出的电压波形; 2)输入工频220V 交流电的情况下,确定变压器变比; 3)在满载情况下选择滤波电容的大小(取5倍工频半周期); 4)求滤波电路的输出电压; 5)说明三端稳压器输入、输出端电容的作用及选取的容值。 四、实验原理 1.直流电源的基本组成 变压器:将220V 的电网电压转化成所需要的交流电压。 整流电路:利用二极管的单向导电性,将正负交替的交流电压变换成单一方向的直流脉动电压。 滤波电路:将脉动电压中的文波成分滤掉,使输出为比较平滑的直流电压。 稳压电路:使输出的电压保持稳定。 4.2 变压模块 变压器:将220V 的电网电压转化成所需要的交流电压。 4.2 整流桥模块 整流电路的任务是将交流电变换为直流电。完成这一任务主要是靠二极管的单向导电作用,因此二极管是构成整流电路的关键元件。管D 1~D 4接成电桥的形式,故有桥式整流电路之称。 由上面的电路图,可以得出输出电压平均值:2)(9.0U U AV o ≈ ,由此可以得V U 152=即可 即变压器副边电压的有效值为15V 计算匝数比为 220/15=15 2.器件选择的一般原则 选择整流器 流过二极管的的平均电流: I D =1/2 I L 在此实验设计中I L 的大小大约为1A 反向电压的最大值:Urm=2U 2 选择二极管时为了安全起见,选择二极管的最大整流电路I DF 应大于流过二极

开关电源课程设计报告

现代电源技术课程实践报告 院系:物理与电气工程学院 班级:电气自动化一班 姓名: 李向伟 学号: 111101007 指导老师:苗风东

一、设计要求 (1)输入电压:AC220±10%V (2)输出电压: 12V (3)输出功率:12W (4)开关频率: 80kHz 二、反激稳压电源的工作原理

图2-1 反激稳压电源的电路图 三、 反激电路主电路设计 (1)(1)Np Vdc Ton Vo Tr Nsm -=+ (3-1) 1. 反激变压器主电路工作原理 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM 模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM

模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计. 1)工作过程: S 开通后,VD 处于断态,W1绕组的电流线性增长,电感储能增加; S 关断后,W1绕组的电流被切断,变压器中的磁场能量通过W2绕组和VD 向输出端释放。 反激电路的工作模式: 反激电路的理想化波形 S u S i S i V D t o t o ff t t t t U i O O O O 反激电路原理图

现代电子实验报告 电子科技大学

基于FPGA的现代电子实验设计报告 ——数字式秒表设计(VHDL)学院:物理电子学院 专业: 学号: 学生姓名: 指导教师:刘曦 实验地点:科研楼303 实验时间:

摘要: 通过使用VHDL语言开发FPGA的一般流程,重点介绍了秒表的基本原理和相应的设计方案,最终采用了一种基于FPGA 的数字频率的实现方法。该设计采用硬件描述语言VHDL,在软件开发平台ISE上完成。该设计的秒表能准确地完成启动,停止,分段,复位功能。使用ModelSim 仿真软件对VHDL 程序做了仿真,并完成了综合布局布线,最终下载到EEC-FPGA实验板上取得良好测试效果。 关键词:FPGA,VHDL,ISE,ModelSim

目录 绪论 (4) 第一章实验任务 (5) 第二章系统需求和解决方案计划 (5) 第三章设计思路 (6) 第四章系统组成和解决方案 (6) 第五章各分模块原理 (8) 第六章仿真结果与分析 (11) 第七章分配引脚和下载实现 (13) 第八章实验结论 (14)

绪论: 1.1课程介绍: 《现代电子技术综合实验》课程通过引入模拟电子技术和数字逻辑设计的综合应用、基于MCU/FPGA/EDA技术的系统设计等综合型设计型实验,对学生进行电子系统综合设计与实践能力的训练与培养。 通过《现代电子技术综合实验》课程的学习,使学生对系统设计原理、主要性能参数的选择原则、单元电路和系统电路设计方法及仿真技术、测试方案拟定及调测技术有所了解;使学生初步掌握电子技术中应用开发的一般流程,初步建立起有关系统设计的基本概念,掌握其基本设计方法,为将来从事电子技术应用和研究工作打下基础。 本文介绍了基于FPGA的数字式秒表的设计方法,设计采用硬件描述语言VHDL ,在软件开发平台ISE上完成,可以在较高速时钟频率(48MHz)下正常工作。该数字频率计采用测频的方法,能准确的测量频率在10Hz到100MHz之间的信号。使用ModelSim仿真软件对VHDL程序做了仿真,并完成了综合布局布线,最终下载到芯片Spartan3A上取得良好测试效果。 1.2VHDL语言简介:

电路仿真实验报告

本科实验报告实验名称:电路仿真

实验1 叠加定理的验证 1.原理图编辑: 分别调出接地符、电阻R1、R2、R3、R4,直流电压源、直流电流源,电流表电压表(Group:Indicators, Family:VOLTMETER 或AMMETER)注意电流表和电压表的参考方向),并按上图连接; 2. 设置电路参数: 电阻R1=R2=R3=R4=1Ω,直流电压源V1为12V,直流电流源I1为10A。 3.实验步骤: 1)、点击运行按钮记录电压表电流表的值U1和I1; 2)、点击停止按钮记录,将直流电压源的电压值设置为0V,再次点击运行按钮记录电压表电流表的值U2和I2; 3)、点击停止按钮记录,将直流电压源的电压值设置为12V,

将直流电流源的电流值设置为0A,再次点击运行按钮记录电压表电流表的值U3和I3; 4.根据叠加电路分析原理,每一元件的电流或电压可以看成是每一个独立源单独作用于电路时,在该元件上产生的电流或电压的代数和。 所以,正常情况下应有U1=U2+U3,I1=I2+I3; 经实验仿真: 当电压源和电流源共同作用时,U1=-1.6V I1=6.8A. 当电压源短路即设为0V,电流源作用时,U2=-4V I2=2A 当电压源作用,电流源断路即设为0A时,U3=2.4V I3=4.8A

所以有U1=U2+U3=-4+2.4=-1.6V I1=I2+I3=2+4.8=6.8A 验证了原理 实验2 并联谐振电路仿真 2.原理图编辑: 分别调出接地符、电阻R1、R2,电容C1,电感L1,信号源V1,按上图连接并修改按照例如修改电路的网络标号; 3.设置电路参数: 电阻R1=10Ω,电阻R2=2KΩ,电感L1=2.5mH,电容C1=40uF。信号源V1设置为AC=5v,Voff=0,Freqence=500Hz。 4.分析参数设置: AC分析:频率范围1HZ—100MHZ,纵坐标为10倍频程,扫描

直流稳压电源设计实验报告

电气工程系电子信息工程技术专业 题目:直流稳压电源设计 学生姓名:刘现华班号:电信一班学号: 100222101013 指导教师:

一、设计题目 题目:直流稳压电源设计 二、设计任务: 设计并制作用晶体管、电阻器、电容组成的直流稳压电源。 指标:1、输入电压: 2、输出电压:3- 6V、6-9V、9-12V三档直流电压; 3、输出电流:最大电流为1A; 4、保护电路:过流保护、短路保护。 三、理电路和程序设计: 一电路原理方框图: 图1.1 四、原理说明: (1)选用集成稳压器构成的稳压电路, 选用可调三端稳压器LM317,其特性参数V o=(1.2V~37V),Iomax=1.5A,最大输入、输出电压差(Vi-V o)max=40V。符合本任务的基本要求。

(2)选电源变压器 集成稳压电源的输出电压V o即是此电路的输出电压。稳压器的最大允许电流ICM〈Iomax,输入电压根据公式 V omax+(Vi-V o)min≤Vi≤V omin+(Vi-V o)max可求出其范围为12V≤Vi ≤43V。故副边电压取V2=12V,副边电流取I2=1A变压器的副边输出功率为P2≥V2 I2 =12W,由下表可得变压器的效率为0.7。则原边输入功率P1>P2/η=17W。为留有余地,选取功率为20W的变压器。 图1.2 (3)选整流二极管及波电容 整流二极管D选IN4001,其极限参数为VRM≥50V,IF=1A,满足要求。滤波电容C可由纹波电压△V op-p和稳压系数来确定。由式Vi=△V op-pVi /V oSv得△Vi =2.2V,由式C=Ict/△Vi=Iomaxt/△Vi 得C=3636μF。电容C的耐压应大于17V,故取2只2200μF/25V的电容相并联。 (4)电阻RP1的取值 由式V o=(1+Rp1/R1)1.25,取R1=240Ω,则RP1=336Ω时输出电压为3V,RP1=1.49Ω时输出电压为9V ,故取4.7KΩ精密线绕可调电位器。当RP1阻值调至最小端时输出电压为1.25V,当阻值大于1.5KΩ后输出电压不会继续增大,使用Multisim9仿真时为13V,但实际测试时为10V

开关电源实验报告

开关电源实验报告 一、开关电源电路图及清单 1.1 60W-12V开关电源电路图 图1-1 开关电源电路原理1.2.60W-12V开关电源电清单

二、开关电源介绍 开关电源大致由主电路、控制电路、检测电路、辅助电源四大部份组成。开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,通讯设备,视听产品,安防监控,LED 灯袋,电脑机箱,数码产品和仪器类等领域。它是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源的发展方向是高频、高可靠、低耗、低噪声、抗干扰和模块化。由于开关电源轻、小、薄的关键技术是高频化,因此国外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是改善二次整流器件的损耗,并在功率铁氧体材料上加大科技创新,以提高在高频率和较大磁通密度(Bs)下获得高的磁性能,而电容器的小型化也是一项关键技术。SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。开关电源的高频化就必然对传统的PWM开关技术进行创新,实现ZVS、ZCS的软开关技术已成为开关电源的主流技术,并大幅提高了开关电源的工作效率。对于高可靠性指标,美国的开关电源生产商通过降低运行电流,降低结温等措施以减少器件的应力,使得产品的可靠性大大提高。 模块化是开关电源发展的总体趋势,可以采用模块化电源组成分布式电源系统,可以设计成N+1冗余电源系统,并实现并联方式的容量扩展。针对开关电源运行噪声大这一缺点,若单独追求高频化其噪声也必将随着增大,而采用部分谐振转换电路技术,在理论上即可实现高频化又可降低噪声,但部分谐振转换技术的实际应用仍存在着技术问题,故仍需在这一领域开展大量的工作,以使得该项技术得以实用化。电力电子技术的不断创新,使开关电源产业有着广阔的发展前景。要加快我国开关电源产业的发展速度,就必须走技术创新之路,走出有中国

单相半波整流电路仿真实验报告

单相半波整流电路仿真实验报告 一、实验目的和要求 1.掌握晶闸管触发电路的调试步骤与方法; 2.掌握单相半波可控整流电路在电阻负载和阻感负载时的工作; 3.掌握单相半波可控整流电路MATLAB的仿真方法,会设置各个模块的参数。 二、实验模型和参数设置 1. 总模型图: 有效值子系统模型图: 平均值子系统模型图:

2.参数设置 晶闸管:Ron=1e-3,Lon=1e-5,Vf=,Ic=0,Rs=500, Cs=250e-9.电源:Up=100*, f=50Hz. 脉冲发生器:Amplitude=5, period=, Pulse Width=2 情况一:R=1Ω,L=10mH; a=0°or a=60°; 情况二:L=10mH; a=0°or a=60°; 三、波形记录和实验结果分析 (1)R=1Ω,L=10mH; a=0°时的波形图: (2)R=1Ω,L=10mH; a=60°时的波形图:

(3)L=10mH; a=0°时的波形图: (4)L=10mH; a=60°时的波形图:

在波形图中,从上到下依次代表电源电压、脉冲发生器电压、晶闸管的电流,、晶闸管两端电压、负载电流和负载两端电压。 分析对比这四张图可以知道,由于负载中有电感,因此晶闸管截止的时刻并不在电压源为负值的时刻,而是在流过晶闸管的电流为零的时刻;同时,在对比中可以发现在电感相同的情况下,电阻负载的存在会使关断时间提前。 1.计算负载电流、负载电压的平均值: 以R=1Ω,L=10mH时 o α = 负载电压的平均值为如下: o α 60 = 负载电压的平均值为如下:

模拟电子技术实验报告

姓名:赵晓磊学号:1120130376 班级:02311301 科目:模拟电子技术实验B 实验二:EDA实验 一、实验目的 1.了解EDA技术的发展、应用概述。 2. 掌握Multisim 1 3.0 软件的使用,完成对电路图的仿真测试。 二、实验电路

三、试验软件与环境 Multisim 13.0 Windows 7 (x64) 四、实验内容与步骤 1.实验内容 了解元件工具箱中常用的器件的调用、参数选择。 调用各类仿真仪表,掌握各类仿真仪表控制面板的功能。 完成实验指导书中实验四两级放大电路实验(不带负反馈)。 2.实验步骤 测量两级放大电路静态工作点,要求调整后Uc1 = 10V。 测定空载和带载两种情况下的电压放大倍数,用示波器观察输入电压和输出电压的相位关系。 测输入电阻Ri,其中Rs = 2kΩ。 测输出电阻Ro。 测量两级放大电路的通频带。 五、实验结果 1. 两级放大电路静态工作点 断开us,Ui+端对地短路

2. 空载和带载两种情况下的电压放大倍数接入us,Rs = 0 带载: 负载: 经过比较,输入电压和输出电压同相。 3. 测输入电阻Ri Rs = 2kΩ,RL = ∞ Ui = 1.701mV

Ri = Ui/(Us-Ui)*Rs = 11.38kΩ 4. 测输出电阻Ro Rs = 0 RL = ∞,Uo’=979.3mV RL = 4.7kΩ,Uo = 716.7mV Ro = (Uo’/Uo - 1)*R = 1.72kΩ 5. 测量两级放大电路的通频带电路最大增益49.77dB 下限截止频率fL = 75.704Hz 上限截止频率fH = 54.483kHz 六、实验收获、体会与建议

电路仿真实验报告

本科实验报告 实验名称:电路仿真 实验1 叠加定理的验证 1.原理图编辑: 分别调出接地符、电阻R1、R2、R3、R4,直流电压源、直流电流源,电流表电压表(Group:Indicators, Family:VOLTMETER 或

AMMETER)注意电流表和电压表的参考方向),并按上图连接; 2. 设置电路参数: 电阻R1=R2=R3=R4=1Ω,直流电压源V1为12V,直流电流源 I1为10A。 3.实验步骤: 1)、点击运行按钮记录电压表电流表的值U1和I1; 2)、点击停止按钮记录,将直流电压源的电压值设置为0V,再次点击运行按钮记录电压表电流表的值U2和I2; 3)、点击停止按钮记录,将直流电压源的电压值设置为12V,将直流电流源的电流值设置为0A,再次点击运行按钮记录电压表电流表的值U3和I3; 4.根据叠加电路分析原理,每一元件的电流或电压可以看成是每一个独立源单独作用于电路时,在该元件上产生的电流或电压的代数和。 所以,正常情况下应有U1=U2+U3,I1=I2+I3; 经实验仿真: 当电压源和电流源共同作用时,U1=-1.6V I1=6.8A. 当电压源短路即设为0V,电流源作用时,U2=-4V I2=2A 当电压源作用,电流源断路即设为0A时,U3=2.4V I3=4.8A

所以有U1=U2+U3=-4+2.4=-1.6V I1=I2+I3=2+4.8=6.8A 验证了原理 实验2 并联谐振电路仿真 2.原理图编辑: 分别调出接地符、电阻R1、R2,电容C1,电感L1,信号源V1,按上图连接并修改按照例如修改电路的网络标号; 3.设置电路参数: 电阻R1=10Ω,电阻R2=2KΩ,电感L1=2.5mH,电容C1=40uF。信号源V1设置为AC=5v,Voff=0,Freqence=500Hz。 4.分析参数设置: AC分析:频率范围1HZ—100MHZ,纵坐标为10倍频程,扫描点数为10,观察输出节点为Vout响应。 TRAN分析:分析5个周期输出节点为Vout的时域响应。 实验结果: 要求将实验分析的数据保存 (包括图形和数据),并验证结果是否正确,最后提交实验报告时需要将实验结果附在实验报告后。 根据并联谐振电路原理,谐振时节点out电压最大且谐振频率为w0=1/LC=1000 10,f0=w0/2 =503.29Hz 谐振时节点out电压 * 理论值由分压公式得u=2000/(2000+10)*5=4.9751V.

简易开关电源设计报告

四川教育学院应用电子设计报告 课程名称:Protel99 电路设计系部:物理与电子技术系专业班级:应用电子技术0901 学生姓名:x x x 学号: 指导教师: 完成时间:

开关电源电路设计报告 一. 设计要求: 直流稳定电源主要包括线性稳定电源和开关型稳定电源,由于开关稳压电源的优点是体积小,重量轻,稳定可靠,适用性强,故选择设计可调开关稳压电源,其具体设计要求如下: (1).所选元器件和电路必须达到在一定范围内输出电压连续可调,输出电压U0=+6V —— +9V连续可调,输出额定电流为500mA; (2).输出电压应能够适应所带负载的启动性能,且输出电压短路时,对各元器件不会产生影响; (3).电路还必须简单可靠,有过流保护电路,能够输出足够大的电流。 二.方案选择及电路的工作原理 方案一: 首先用一个桥式整流电路将输入的交流电压变成直流电压,然后经过电容滤波,然后在经过一个NPN型三级管Q1调整管,最后整过电路形成一个通路,达到最终的效果。 方案二: 开关电源同其它电子装置一样,短路是最严重的故障,短路保护是否可靠,是影响开关电源可靠性的重要因素。IGBT(绝缘栅双极型晶体管)兼有场效

应晶体管输入阻抗高、驱动功率小和双极型晶体管电压、电流容量大及管压降低的特点,是目前中、大功率开关电源最普遍使用的电力电子开关器件[6]。IGBT能够承受的短路时间取决于它的饱和压降和短路电流的大小,一般仅为几μs至几十μs。短路电流过大不仅使短路承受时间缩短,而且使关断时电流下降率过大,由于漏感及引线电感的存在,导致IGBT集电极过电压,该过电压可使IGBT锁定失效,同时高的过电压会使IGBT击穿。因此,当出现短路过流时,必须采取有效的保护措施。 为了实现IGBT的短路保护,则必须进行过流检测。适用IGBT过流检测的方法,通常是采用霍尔电流传感器直接检测IGBT的电流Ic,然后与设定的阈值比较,用比较器的输出去控制驱动信号的关断;或者采用间接电压法,检测过流时IGBT的电压降Vce,因为管压降含有短路电流信息,过流时Vce增大,且基本上为线性关系,检测过流时的Vce并与设定的阈值进行比较,比较器的输出控制驱动电路的关断。 在短路电流出现时,为了避免关断电流的过大形成过电压,导致IGBT 锁定无效和损坏,以及为了降低电磁干扰,通常采用软降栅压和软关断综合保护技术。 在设计降栅压保护电路时,要正确选择降栅压幅度和速度,如果降栅压幅度大(比如7.5V),降栅压速度不要太快,一般可采用2μs下降时间的软降栅压,由于降栅压幅度大,集电极电流已经较小,在故障状态封锁栅极可快些,不必采用软关断;如果降栅压幅度较小(比如5V以下),降栅速度可快些,而封锁栅压的速度必须慢,即采用软关断,以避免过电压发生。 为了使电源在短路故障状态不中断工作,又能避免在原工作频率下连续进行短路保护产生热积累而造成IGBT损坏,采用降栅压保护即可不必在一次短路保护立即封锁电路,而使工作频率降低(比如1Hz左右),形成间歇“打嗝”的保护方法,故障消除后即恢复正常工作。下面是几种IGBT短路保护的实用电路及工作原理。 利用IGBT的Vce设计过流保护电路

单管放大电路仿真实验报告

? 单管放大电路仿真实验报告 一、实验目的 1、 掌握放大电路支流工作点的调整与测量方法。 2、掌握放大电流主要性能指标的测量方法。 3、了解支流工作点对放大电路动态特性的影响。 4、掌握发射极负反馈电阻对放大电路性能的影响。 5、了解信号源内阻Rs 对放大电路频带(上限截止频率f H )的影响。 二、实验电路与实验原理图

2、直流通路 VCC 12V 将基极偏置电路用戴维南定理等效成电压源,得到支流通路。开路电压:V BB = V CC*R B2/(R B1 + R B2) 电源内阻:R B = R B1 // R B2 三、实验内容 1、静态工作点的调整 ※预习计算

直流工作点的调整 I CQ =1.0mA 时 3.3c R C CQ V R I V ==, 1.95BQ E CQ BE V R I V V ≈+= 12 '11 75.4//55.4CC BQ B CQ BQ B W B B V V R K I V R R R R K β-= =Ω +=-=Ω -7.5C CEQ CC BQ R BE V V V V V V =-+= I CQ =2.0mA 时 6.6c R C CQ V R I V ==, 3.15BQ E CQ BE V R I V V ≈+= 12 ' 1140.8, //20.8CC BQ B CQ BQ B W B B V V R K I V R R R R K β-= =Ω+=-=Ω -3C CEQ CC BQ R BE V V V V V V =-+= 由此可以得到扫描参数时的大致范围 要求:调节RW ,在ICQ=1mA 和2mA 时,测量VCEQ 的值,并记录RB1的值。 操作:对R W 进行参数扫描,通过观察Rc 上的电压变化 可以得到 CQ I ( c CQ c U I R = ), Uc 可以通过V (Vcc )-V(4)得到,从而可以在扫描参数设备时通过跟踪Uc 得到CQ I 为一 定值时对应的V CEQ 以及相应的R W 。 仿真结果(设备参数扫描):

串联型直流稳压电源实验报告

模电课程设计实验报告 学校:XX 专业:XXXX 课题:串联型直流稳压电源 指导老师: XXX 设计学生: XXXXXXX XXX 学号:XXXX XXX XXXX 2011/7/4 惠州学院 HUIZHOU UNIVERSITY

目录 一、课题--------------------------------------------------3 二、课题技术指标--------------------------------------------------3 三、设计要求--------------------------------------------------3 四、元件器件清单--------------------------------------------------3 五、设计方案--------------------------------------------------3 六、直流稳压电源的元器件--------------------------------------------------4 七、设计计算--------------------------------------------------6 八、焊接实图--------------------------------------------------8 九、心得体会--------------------------------------------------9

一、课题:串联型直流稳压电源 二、课题技术指标 1、输出电压:8~15V可调 2、输出电流:I O=1A 3、输入电压:交流220V +/- 10% 4、保护电流:I Om =1.2A 5、稳压系数:S r = 0.05%/V 6、输出电阻:R O < 0.5 Ω 7、交流分量(波纹电压):<10mV 三、设计要求 1、分析电路组成及工作原理; 2、单元电路设计计算; 3、采用分立元件电路; 4、画出完整电路图; 5、调试方法; 6、小结与讨论。 四、元件器件清单 先对输入电压进行降压,然后用单相桥式二极管对其进行整流,整流后利用电容的充放电效应,用电解电容对其进行滤波,将脉动的直流电压变为更加平滑的直流电压,稳压部分的单元电路由稳压管和三极管组成(如图1),以稳压管D1电压作为三极管Q1的基准电压,电路引入电压负反馈,当电网电压波动引起R2两端电压的变化增大(减小)时,晶体管发射极电位将随着升高(降低),而稳压管端的电压基本不变,故基极电位不变,所以由可知将减小(升高)导致基极电流和发射极电流的减小(增大),使得R两端的电压降低(升高),从而达到稳压的效果。负电源部分与正电源相对称,原理一样。 直流稳压电源一般由电源变压器,整流滤波电路及稳压电路组成。变压器吧市电交流电压变所需要的低压交流电。整流器把交流电变为直流电。经滤波后,稳压器再把不稳定的直流电压变为稳定的直流电压输出。本次设计主要采用串联型直流稳压电路,通过220V 、50HZ交流电压经电源变压器降压后,通过桥式整

相关主题
文本预览
相关文档 最新文档