当前位置:文档之家› 601高等代数(A卷答案)

601高等代数(A卷答案)

601高等代数(A卷答案)
601高等代数(A卷答案)

二O 一四年招收硕士研究生入学考试答案

考试科目及代码: 高等代数 代码(601) 适用专业: 数学

答题内容写在答题纸上,写在试卷或草稿纸上一律无效考完后试题随答题纸交回。 考试时间3小时,总分值 150 分。

姓名: 报考学科、专业: 准考证号码:

密封线内不要写题

111r r s s a b b V αββ++=---∈110,0r r s s a b b αββ+=+

+=。

(s ββ,,1 是2V 中的线性无关向量组

1x ??

?

2的维数和一组基。

高等代数试卷及答案1

高等代数 一、填空题 (共10题,每题2分,共20 分) 1.只于自身合同的矩阵是 矩阵。 2.二次型()()11212237,116x f x x x x x ?? ??= ? ????? 的矩阵为__________________。 3.设A 是实对称矩阵,则当实数t _________________,tE A +是正定矩阵。 4.正交变换在标准正交基下的矩阵为_______________________________。 5.标准正交基下的度量矩阵为_________________________。 6.线性变换可对角化的充要条件为__________________________________。 7.在22P ?中定义线性变换σ为:()a b X X c d σ?? = ??? ,写出σ在基11122122,,,E E E E 下的矩阵_______________________________。 8.设1V 、2V 都是线性空间V 的子空间,且12V V ?,若12dim dim V V =,则_____________________。 9.叙述维数公式_________________________________________________________________________。 10.向量α在基12,,,n ααα???(1)与基12,,,n βββ???(2)下的坐标分别为x 、y ,且从基(1)到基(2)的过渡矩阵为A ,则x 与y 的关系为_____________________________。 二、判断题 (共10 题,每题1分,共10分) 1.线性变换在不同基下的矩阵是合同的。( ) 2.设σ为n 维线性空间V 上的线性变换,则()1 0V V σσ -+=。 ( ) 3.平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法,构成实 数域上的线性空间。( ) 4.设1V 与2V 分别是齐次线性方程组120n x x x ++???+=与12n x x x ==???=的解空间,则 12n V V P ⊕= ( ) 5.2 2 11n n i i i i n x x ==??- ??? ∑∑为正定二次型。( ) 6.数域上任意一个矩阵都合同于一对角矩阵。( ) 7.把复数域C 看作复数域上的线性空间,C ξ?∈,令σξξ=,则σ是线性变换。( ) 8.若σ是正交变换,那么σ的不变子空间的真正交补也是σ的不变子空间。( ) 9.欧氏空间中不同基的度量矩阵是相似的。( ) 10.若σ为[]n P x (1n >)中的微分变换,则σ不可对角化。( )

中国农业大学2021年601高等代数考试大纲

《高等代数》考试大纲 一、考试性质 《高等代数》课程是数学专业硕士研究生入学考试必考科目之一,有些对数学知识要求较高的理工类非数学专业也考此门课程,是由教育部授权各招生院校自行命题的选拔性考试。《高等代数》考试的目的是测试考生的高等代数相关基础知识和分析及运用能力。 二、评价目标 要求考生具有较全面的高等代数基础知识,并且具有应用高等代数知识解题、证明及分析问题的能力。 三、考试内容 (1)行列式的定义、性质及各种计算方法; (2)向量组的线性相关与无关、向量组的秩;线性方程组有解的充分必要条件及线性方程组求解的各种方法; (3)矩阵的各种运算(包括矩阵的逆运算);矩阵的分块,矩阵的初等变换,广义逆矩阵,矩阵的相抵(也叫等价)、相似和合同;矩阵的特征值与特征向量;矩阵可对角化的各种判别方法。 (4)二次型的标准型及其求法;正定二次型与正定矩阵及其判别。 (5)一元多项式的带余除法、最大公因式;不可约多项式与唯一因式分解定理; 重因式及其判定;有理数域上的不可约多项式及其判别方法; (6)线性空间的定义、线性空间的基和维数、线性空间的同构、商空间以及其子空间的交与直和;线性变换的核与象及矩阵表示;线性变换的特征值与特征向量,可对角化的条件,不变子空间;线性变换和矩阵的最小多项式; 线性变换和矩阵的约当标准形。-矩阵及其标准型和应用。 (7)欧几里得空间及性质,正交矩阵、正交变换与对称变换。 四、考试形式和试卷结构 (一)试卷满分及考试时间 本试卷满分为150分,考试时间为180分钟。 (二)答题方式

答题方式为闭卷、笔试。 试卷由试题和答题纸组成。答案必须写在答题纸相应的位置上。(三)试卷题型 本试卷以解答题为主,包括计算题和证明题两部分。同时,根据情况,也可能含有填空、选择题,但分值不超过总分的20%。

高等代数试题附答案

科目名称:《高等代数》 姓名: 班级: 考试时间:120分钟 考试形式:闭卷 ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌ ≌≌≌≌ 一、填空题(每小题5分,共25分) 1、在[]X P 中,向量21x x ++关于基23,1,12+--x x x 的坐标为 。 2、向 量 组 ()()()()()8,3,5,2,1,1,3,0,3,2,4,2,1,2,154321-=-==-=-=ααααα的秩 为 ,一个最大无关组为 .。 3、(维数公式)如果21,V V 是线性空间V 的两个子空间,那么 。 4、假设??? ? ? ??-----=175131023A 的特征根是 ,特征向量分别 为 。 5、实二次型()323121321224,,x x x x x x x x x f ++-= 的秩为 二、是非题(每小题2分,共20分) 1、如果r a a a ,,,21 线性无关,那么其中每一个向量都不是其余向量的线性组合。( ) 2、在][x P 中,定义变换)()(0x f x Af =,其中P x ∈0,是一固定的数,那么变换A 是线性变换。( ) 3、设21,W W 是向量空间V 的两个子空间,那么它们的并 21W W 也是V 的一个子空间。( ) 4、两个欧氏空间同构的充分且必要条件是它们有相同的维数。( )

5、令),,,(4321x x x x =ξ是4R 的任意向量,那么δ是4R 到自身的线性变 换。其中),,,()(24232221x x x x =ξδ。( ) 6、矩阵A 的特征向量的线性组合仍是A 的特征向量。( ) 7、若矩阵A 与B 相似,那么A 与B 等价。( ) 8、n 阶实对称矩阵A 有n 个线性无关的特征向量。( ) 9、在)(2R M 中,若W 由所有满足迹等于零的矩阵组成,那么W 是 )(2R M 的 子空间。( ) 10、齐次线性方程组0)(=-X A E λ的非零解向量是A 的属于λ的特征向量。( ) 三、明证题(每小题××分,共31分) 1、设n εεε,,,21 是线性空间V 的一组基,A 是V 上的线性变换,证明:A 可逆当且仅当n A A A εεε,,,21 线性无关。 (10) 2、设δ是n 维欧氏空间V 的一个线性变幻,证明:如果δ是对称变幻, 2δ=l 是单位变幻,那么δ是正交变换。(11) 3、设V 是一个n 维欧氏空间,证明:如果21,W W 都是V 得子空间,那么() ⊥⊥⊥ =+2121W W W W 。(10) 四、计算题(每小题8分,共24分) 1、求矩阵??? ? ? ??---=466353331A 的特征根与特征向量,并求满秩矩阵P 使 得AP P 1-为对角形矩阵。 2、求一个正交矩阵U ,使得AU U '使对角形式,其中

2014年浙江大学研究生入学考试高等代数试题

2014年浙江大学研究生入学考试高等代数试题 1. 00n n E A E ??= ???,{}2()n L B M R AB BA =∈=。证明L 为2()n M R 的子空间并计算其维数。 2. 00n n E A E ??= ???,请问A 是否可对角化并给出理由。若A 可对角化为C ,给出可逆矩阵P ,使得1P AP C -=. 3.方阵A 的特征多项式为32()(2)(3)f λλλ=-+,请给出A 所有可能的Jordan 标准型。 4. 1η,2η,3η为0AX =的基础解系,A 为3行5列实矩阵。求证:存在5R 的一组基, 其包含123ηηη++,123ηηη-+,12324ηηη++。 5.X ,Y 分别为m n ?和n m ?矩阵,n YX E =,m A E XY =+,证明A 相似于对角矩阵。 6. A 为n 阶线性空间V 的线性变换,1λ,2λ,…,m λ为A 的不同特征值,i V λ为其特征子空间。证明:对任意V 的子空间W ,有1()()m W W V W V λλ=?⊕???⊕?. 7.矩阵A ,B 均为m n ?矩阵,0AX =与0BX =同解,求证A 、B 等价。若A 、B 等价,是否有0AX =与0BX =同解?证明或举反例否定。 8.证明:A 正定的充分必要条件是存在方阵i B (1,2,,i n =???),i B 中至少有一个非退化,使得1n T i i i A B B ==∑。 9.定义ψ为[0,1]到n 阶方阵全体组成的欧式空间的连续映射,使得(0)ψ为第一类正交矩阵,(1)ψ为第二类正交矩阵。证明:存在0(0,1)T ∈,使得0()T ψ退化。 10.设g ,h 为复数域C 上n 维线性空间V 的线性变换,gh hg =。求证g ,h 有公共的特征向量。若不是在复数域C 上而是在实数域R 上,则结论是否成立?若成立,给出理由;不成立举出反例。

高等代数考试大纲

高等代数考试大纲 Ⅰ考查目标 高等代数课程是一门基础理论课.近年来,由于自然科学,社会科学和工程技术的迅速发展,特别是由于电子计算机的普遍应用,使得代数学得到日益广泛的应用.这就要求数学专业的本科学生不仅了解代数学的一些计算问题,还应具备代数学的基础理论知识,以便融会贯通的运用代数学的工具去解决理论上和实践上遇到的各种问题. 本课程包括一元多项式理论,线性代数,其中以线性代数为主,具有很强的抽象性与逻辑性.本课程的考查注重学生科学的思维方式,分析问题和解决问题的能力;同时渗透现代数学的观点和的思想.通过本课程的考查,能体现“学生掌握多项式理论的基本概念,线性方程组的基本理论,矩阵的基本运算和技巧,线性空间与欧几里得空间的基本性质,线性变换的基本概念和方法”的基本情况.考查学生的抽象思维能力,解决实际问题的方法,从而为学生的研究生阶段的学习打下必要的代数学基础. 难度以应届本科优秀学生能取得及格以上成绩为基准. Ⅱ考试形式和试卷结构 1填空题约占30% 2计算题约占40% 3证明题约占30%.可以根据需要将证明题分为基本证明题和综合证明题两大部分. 4、试卷总分150分. Ⅲ考查范围 第一部分多项式 一多项式代数与多项式函数 二最大公因式和互质(与数域扩充无关的性质) 三因式分解(与数域扩充有关的性质)及应用 第二部分行列式

一行列式的定义、性质及应用 二行列式的计算 第三部分矩阵初步 一矩阵代数 二矩阵的初等变换及应用 三方块矩阵的初等变换及应用 第四部分线性空间 一线性空间的定义 二向量的线性关系 三子空间与空间直和分解 第五部分线性变换 一线性映射 二线性变换 三同构对应及应用 第六部分线性方程组 一齐次线性方程组解的存在性、唯一性与表示 二非齐次线性方程组解的存在性、唯一性与表示三线性方程组的反问题和矩阵方程 第七部分矩阵的秩 一矩阵的秩的等价刻划 二关于矩阵秩的命题及应用 第八部分线性空间同构

高等代数试题及答案

中国海洋大学2007-2008学年第2学期期末考试试卷

授课教师命题教师或 命题负责人签字年月日院系负责人签 字年月日 共 2 页第 2 页

中国海洋大学 XXXX-XXXX 学年 第X 学期 期末考试试卷 五(10分)证明:设A 为n 级矩阵,()g x 是矩阵A 的最小多项式,则多项式()f x 以A 为根的充要条件是()g x |()f x . 六(10分)设V 是数域P 上的n 维线性空间,A B ,是V 上的线性变换,且=AB BA .证明:B 的值域与核都是A 的不变子空间. 七(10分)设2n 阶矩阵a b a b A b a b a ??????? ? =? ?? ??????? O N N O ,a b ≠,求A 的最小多项式. 八(10分)设f 是数域P 上线性空间V 上的线性变换,多项式()(),p x q x 互素,且满足 ()()0p f q f =(零变换) 求证:()()()(),ker ,ker V W S W p f S q f =⊕==

中国海洋大学 2007-2008学年 第2学期 期末考试 数学科学 学院 《高等代数》试题(A 卷)答案 一.判断题 1.× 2.× 3.× 4.√ 5.√ 二.解:A =???? ????????1111111111111111, 3|(4)E A λλλ-=-|,所以特征值为0,4(3重). 将特征值代入,求解线性方程组()0E A x λ-=,得4个线性无关的特征向量(答案可以不唯一),再正交单位化,得4个单位正交向量: 11111 ,,,)'2222α=( ,2α=, 3α= ,4'α=. 所以正交阵1 212 102610 2 T ?????? ?=??- ?? ???????? 而40'00T AT ??????=??????. 三.证:(1) ,.A B M ?∈ 验证,A B kA M +∈即可. (2) 令1101 010011 0n E D E -???? ? ??? ??== ????? ?????? O O O ,D 为循环阵, 00n k k k E D E -?? = ??? ,(k E 为k 阶单位阵) 则2 1 ,,,,n n D D D D E -=L 在P 上线性无关.

高等代数考研大纲

《高等代数》考试大纲 本《高等代数》考试大纲适用于宁波大学数学相关专业硕士研究生入学考试。 本课程考核内容包括多项式理论、行列式、线性方程组、矩阵理论、二次型、线性空间、线性变换、λ-矩阵、欧氏空间九个部分. 一、多项式理论:多项式的整除,最大公因式,多项式的互素,不可约多项式与因式分解,重因式重根的判别,多项式函数与多项式的根. 重点掌握:重要定理的证明,如多项式的整除性质,Eisenstein判别法,不可约多项式的性质, 整系数多项式的因式分解定理等. 运用多项式理论证明有关问题,如与多项式的互素和不可约多项式的性质有关问题的证明与应用以及用多项函数方法证明有关的问题. 二、行列式:行列式的定义、性质和常用计算方法(如:三角形法、加边法、降阶法、递推法、按一行一列展开法、Laplace展开法、范得蒙行列式法)。 重点掌握:n阶行列式的计算及应用. 三、线性方程组:向量组线性相(无)关的判别(相应齐次线性方程组有无非零解、性质判别法、行列式判别法、矩阵秩判别法)。向量组极大线性无关组的性质、向量组之间秩的大小关系(向量组(Ι)可由向量组(Π)线性表示,则(Ι)的秩小于等于(Π)的秩)定理2及三个推论、矩阵的秩(行秩和列秩、矩阵秩的行列式判别法、矩阵秩的计算)、Cramer法则,线性方程组有(无)解的判别定理、齐次线性方程组有非零解条件(用系数矩阵的秩进行判别、用行列式判别、用方程个数判别)、基础解系的计算及其性质、齐次线性方程组通解的求法,非齐次线性方程组的解法和解的结构. 重点掌握:向量组线性相(无)关的判别、向量组之间秩与矩阵的秩、齐次线性方程组有非零解条件及基础解系的性质、非齐次线性方程组解的结构与其导出组的基础解系的性质. 四、矩阵理论:矩阵的运算,矩阵的初等变换与初等矩阵的关系及其应用(求解线性方程组、求逆矩阵、求向量组的秩)、矩阵的等价标准形、矩阵可逆的条件(与行列式、矩阵的秩、初等矩阵的关系)、伴随矩阵及其性质、分块矩阵(包括矩阵乘法的常用分块方法并证明与矩阵相关的问题)、矩阵的常用分解(如:等价分解,满秩分解,实可逆阵的正交三角分解,Jordan分解),几种特殊矩阵的常用性质(如:准对角阵,对称矩阵与反对称矩阵,伴随矩阵、幂等矩阵,幂零矩阵,正交矩阵等)。 重点掌握:利用分块矩阵的初等变换证明有关矩阵秩的等式与不等式,矩阵的逆与伴随矩阵的性质与求法,应用矩阵理论解决一些相关问题. 1

高等代数考试科目大纲

高等代数考试科目大纲 一、考试性质 高等代数是硕士研究生入学考试科目之一,是硕士研究生招生院校自行命题的选拔性考试。本考试大纲的制定力求反映招生类型的特点,科学、公平、准确、规范地测评考生的相关基础知识掌握水平,考生分析问题和解决问题及综合知识运用能力。应考人员应根据本大纲的内容和要求自行组织学习内容和掌握有关知识。 二、评价目标 1、要求考生理解该课程的基本概念和基本理论,掌握该课程的基本方法。 2、要求考生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力。 3、要求考生具有综合运用所学的知识分析问题和解决问题的能力。 三、考试范围及其基本要求 1、行列式 考试范围:n阶行列式的定义,n阶行列式的性质与计算。 基本要求: (1)理解排列及其逆序数,理解n阶行列式的定义,能利用定义计算行列式的值。 (2)熟练掌握行列式的性质,能熟练计算低阶行列式的值,能计算较简单的n阶行列式的值。 2、矩阵 考试范围:矩阵及其运算,分块矩阵与矩阵的初等变换,矩阵的秩,可逆矩阵。 基本要求: (1)理解矩阵、单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵、方阵的幂及矩阵的转置等概念,熟练掌握矩阵的线性运算、乘法运算、转置及其运算规律。 (2)理解分块矩阵、准对角矩阵、初等变换和初等矩阵的概念,熟练掌握分块矩阵的运算。 (3)理解初等变换与初等矩阵的概念及基本作用,了解矩阵等价的概念及性质,能用矩阵的初等变换化矩阵为标准形。 (4)理解矩阵的子式、矩阵的秩的定义,熟练掌握矩阵的秩的性质,能求矩阵的秩。 (5)理解满秩矩阵的概念,掌握满秩矩阵的性质。 (6)掌握两个方阵与其乘积的秩的关系式,能熟练运用方阵乘积的行列式的公式。 (7)理解可逆矩阵的概念,掌握可逆矩阵的性质,掌握矩阵可逆的充分必要条件。 (8)理解伴随矩阵的概念,掌握伴随矩阵的性质,会用伴随矩阵法求可逆矩阵的逆矩阵,能熟练运用矩阵的初等变换求可逆矩阵的逆矩阵,能解矩阵方程。 3、线性方程组 考试范围:向量及其线性运算,向量组的线性相关性,向量组的秩,线性方程组解的判定定理,齐次线性方程组解的结构,非齐次线性方程组解的结构。 基本要求: (1)理解n维向量的概念,熟练掌握n维向量的线性运算及其运算规律。 (2)理解向量组的线性组合的概念,能将向量表示成向量组的线性组合。 (3)理解向量组的线性相关与线性无关的定义,熟练掌握向量组线性相关、线性无关的判别法,掌握向量组线性相关、线性无关的有关重要结论。 (4)理解向量组等价、向量组的极大线性无关组和向量组秩的概念,理解向量组的秩

高等代数试卷及答案--(二)

一、填空题 (共10题,每题2分,共20 分) 1.只于自身合同的矩阵是 矩阵。 2.二次型()()11212237,116x f x x x x x ?? ??= ? ????? 的矩阵为__________________。 3.设A 是实对称矩阵,则当实数t _________________,tE A +是正定矩阵。 4.正交变换在标准正交基下的矩阵为_______________________________。 5.标准正交基下的度量矩阵为_________________________。 6.线性变换可对角化的充要条件为__________________________________。 7.在22P ?中定义线性变换σ为:()a b X X c d σ?? = ??? ,写出σ在基11122122,,,E E E E 下的 矩阵_______________________________。 8.设1V 、2V 都是线性空间V 的子空间,且12V V ?,若12dim dim V V =,则_____________________。 9.叙述维数公式_________________________________________________________________________。 10.向量α在基12,,,n ααα???(1)与基12,,,n βββ???(2)下的坐标分别为x 、y ,且从基(1)到基(2)的过渡矩阵为A ,则x 与y 的关系为_____________________________。 二、判断题 (共10 题,每题1分,共10分) 1.线性变换在不同基下的矩阵是合同的。( ) 2.设σ为n 维线性空间V 上的线性变换,则()1 0V V σσ -+=。 ( ) 3.平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法,构成实数域上的线性空间。( ) 4.设1V 与2V 分别是齐次线性方程组120n x x x ++???+=与12n x x x ==???=的解空间,则 12n V V P ⊕= ( ) 5.2 2 11n n i i i i n x x ==??- ??? ∑∑为正定二次型。( ) 6.数域上任意一个矩阵都合同于一对角矩阵。( ) 7.把复数域C 看作复数域上的线性空间,C ξ?∈,令σξξ=,则σ是线性变换。( ) 8.若σ是正交变换,那么σ的不变子空间的真正交补也是σ的不变子空间。( ) 9.欧氏空间中不同基的度量矩阵是相似的。( ) 10.若σ为[]n P x (1n >)中的微分变换,则σ不可对角化。( ) 三、计算题 (共3题,每题10分,共30分)

609 数学专业基础课考试大纲(2015版)

609 数学专业基础课考试大纲 请考生注意: 1、数学专业基础课试题含数学分析、高等代数二门课程的内容。 2、每门课试题满分75分。 数学分析考试大纲 一、基本内容与要求 (一)极限论 1、透彻理解和掌握数列极限,函数极限的概念。掌握并能运用ε-N,ε-X,ε-δ语言处理极限问题。 2、掌握收敛数列的性质及运算。掌握数列极限的存在条件(单调有界准则,迫敛性法则,柯西准则);掌握函数极限的性质和归结原则;熟练掌握利用两个重要极限处理极限问题。 3、理解无穷小量和无穷大量的定义、性质和关系,掌握无穷小量阶的比较和方法。 4、理解与掌握一元函数连续性的定义(点,区间),间断点及其分类,连续函数的局部性质;理解单侧连续的概念。 5、掌握和应用闭区间上连续函数的性质(最大最小值性、有界性、介值性、一致连续性);掌握初等函数的连续性,理解复合函数的连续性,反函数的连续性。 6、掌握实数连续性定理:闭区间套定理、单调有界定理、柯西收敛准则、确界存在定理、聚点定理、有限覆盖定理。 7、理解平面点集的基本概念,二元函数的极限,累次极限,连续性概念;了解闭区间的套定理,有限覆盖定理,多元连续函数的性质。 (二) 微分学 1、理解和掌握导数与微分概念及其几何意义;能熟练地运用导数的运算性质和求导法则求函数的导数(特别是复合函数)。 2、理解单侧导数、可导性与连续性的关系;掌握高阶导数的求法,导数的几何应用,微分在近似计算中的应用。 3、熟练掌握中值定理的内容、证明及其应用;熟练掌握泰勒公式及在近似计算中的应用,能够把某些函数按泰勒公式展开。 4、能熟练地运用罗必达法则求不定式的极限;掌握函数的某些基本特性(单调性、极值与最值、凹凸性、拐点及渐近线),能较正确地作出某些函数的图象。 5、掌握偏导数、全微分、方向导数、高阶偏导数、极值等概念;搞清全微分、偏导数、连续之间的关系;掌握多元函数泰勒公式;会求多元函数的极值。 6、掌握隐函数的概念及隐函数的存在定理;会求隐函数的导数;会求曲线的切线方程,法平面方程,曲面的切平面方程和法线方程;掌握条件极值概念及求法。 (三)积分学 1、掌握原函数和不定积分概念;熟练掌握换元积分法、分部积分法、有理式积分法和三角有理式积分法,并能利用它们来求函数的积分;会计算简单的无理函数的积分。 2、掌握定积分概念及函数可积的条件;熟悉一些可积分函数类;掌握定积分与可变上限积分的性质;能熟练地运用牛顿-莱布尼兹公式,换元积分法,分部积分法计算一些定积分。

2019年浙江大学高等代数试题解答word资料4页

1。解:由题意可知 从而知()()()2123121231g g g λλλδδδ++=-++= 故()323p x x x x =--+ 2。证明:由分析知()()21112221n n n n f x nx nx nx x ---'=+=+。如果()f x 有重数大于2的非零根,在()f x '有重数大于1的非零根,根据()f x '的表达式可知()f x '没有非零重根,从而()f x 没有重数大于2的非零根 3。解:由于()111n n k j k k k j n D x x x =≤<≤=-∏∏,又可知 从而知()() () ()1 11 1 111n n i n i i i i i j k k j n D y x x y δ+-----≤<≤-=--∏即()1n i i j k k j n D x x δ≤<≤=-∏,从 而知 4。解;由于11T T A E XY Y X α=+=+=+从而 ()1当1α≠时,A 可逆 ()2由于当1α=时()()() 1 11n T T E E XY E XY λλλλ--+=--=-,从而A 的特 征 多 项 式 为 () 1 1n λλ--故 ()1 rank A n =-, 又 ()()()1T T rank A E rank X Y rank YX -=== 从而()()rank A rank A E n =-=,从而2A A =,故A 的最小多项式()m λ能整除()1λλ-,从而()m λ无重根,从而A 可对角化 5。证明:若1n =时,11A a =显然满足。若2n =时,由于2 112212A a a a =-,由于A 为正定矩阵,从而0A >,即2112212a a a >,从而1122A a a ≤等号成立时, 12210a a ==,即A 为对角矩阵时候成立显然为充要条件 若小于n 时成立,且等号成立时候充要条件A 为对角矩阵。令 11 nn A b A b a ??=???? ,则11A 为1n -阶正定矩阵,从而1 11A -存在且也为正定矩阵。又

高等代数真题答案

第六章习题册 1. 检验下述集合关于所规定的运算是否构成实数域R 上的线性空间? (a) 集合{()[]deg()}f x R x f n ∈|=关于多项式的加法和数乘. (b) 集合{()}T n A M R A A ∈|=关于矩阵的加法和数乘. (c) 集合0{{}}n n n x x R ∞=|∈关于数列的加法和数乘. 2. 设V 是数域F 上的线性空间, 证明(αβ)αβk k k ?=?, 这里αβV k F ,∈,∈.

3. 下述集合是否是()n M R 的子空间 (a) { ()}T n V A M R A A =∈|=? (b) {()()[]}V f A f x R x =|∈, 这里()n A M R ∈是一个固定方阵. 4. 叙述并证明线性空间V 的子空间1W 与2W 的并12W W ∪仍为V 的子空间的充分必要条件. 5. 设1S 与2S 是线性空间V 的两个非空子集, 证明: (a) 当12S S ?时, 12()()Span S Span S ?. (b) 1212()()()Span S S Span S Span S =+∪. (c) 1212()()()Span S S Span S Span S ?∩∩.

6. 如果123f f f ,,是实数域上一元多项式全体所成的线性空间[]R x 中三个互素的多项式, 但其中任意两个都不互素, 那么它们线性无关.试证之. 7. 设S 是数域F 上线性空间V 的一个线性无关子集, α是V 中一个向量, αS ?, 则{α}S ∪线性相关充分必要条件α()Span S ∈. 8. (a) 证明{|()}ij ji E E i j +≤是()n M F 中全体对称矩阵组成的子空间的一个基. (b). 求3()M F 的子空间{()()[]}f A f x F x |∈ 的一个基和维数, 这里010001000A ???? =?????? 9. 在4 R 中, 求向量ξ在基1234(εεεε),,,下的坐标, 其中 12341210111112εεεεξ0301311014??????????????????????????????=,=,=,=,=????????????????????????????????????????

最新浙江大学高等代数试题解答汇总

2008年浙江大学高等代数试题解答

1。解:由题意可知1123212233131231,1,1δλλλδλλλλλλδλλλ=++=-=++=== 从而知()()()2123121231g g g λλλδδδ++=-++= ()()()()()()2212233121312312122324231 g g g g g g λλλλλλδδδδδδδδδδ++=-+-+-+++=-()()()22123311223313212213g g g λλλδδδδδδδδδδδ=++++--++=- 故()323p x x x x =--+ 2。证明:由分析知()()21112221n n n n f x nx nx nx x ---'=+=+。如果()f x 有重数大于2的非零根,在()f x '有重数大于1的非零根,根据()f x '的表达式可知 ()f x '没有非零重根,从而()f x 没有重数大于2的非零根 3。解:由于()111n n k j k k k j n D x x x =≤<≤=-∏∏,又可知 ()()12 1 11111 121111********* 1 1211111 1n n i i i i i n n n n k j k i i i i i k k j n n n i i i i i n n n n n n n n n x x x x y x x x x y y x x x x x x x y x x x x y x x x x y -------=≤<≤-+++++--=--∏∏ 从而知()()() ()1 11 1 111n n i n i i i i i j k k j n D y x x y δ+-----≤<≤-=--∏即()1n i i j k k j n D x x δ≤<≤=-∏,从而 知 ()111n n n i i j k i i k j n D x x δ==≤<≤????=- ? ????? ∑∑∏ 4。解;由于11T T A E XY Y X α=+=+=+从而 ()1当1α≠时,A 可逆

2020中国农业大学考研大纲:601高等代数

2020中国农业大学考研大纲:601高等代数 出国留学考研网为大家提供2017中国农业大学考研大纲:601 高等代数,更多考研资讯请关注我们网站的更新! 2017中国农业大学考研大纲:601高等代数 《高等代数》考试大纲 一、考试性质 《高等代数》课程是数学专业硕士研究生入学考试必考科目之一,有些对数学知识要求较高的理工类非数学专业也考此门课程,是由 教育部授权各招生院校自行命题的选拔性考试。《高等代数》考试 的目的是测试考生的高等代数相关基础知识和分析及运用能力。 二、评价目标 要求考生具有较全面的高等代数基础知识,并且具有应用高等代数知识解题、证明及分析问题的能力。 三、考试内容 (1)行列式的定义、性质及各种计算方法; (2)向量组的线性相关与无关、向量组的秩;线性方程组有解的充分必要条件及线性方程组求解的各种方法; (3)矩阵的各种运算(包括矩阵的逆运算);矩阵的分块,矩阵的相抵(也叫等价)、相似和合同;矩阵的特征值与特征向量;矩阵可对角 化的各种判别方法;矩阵的约当标准形。 (4)二次型的标准型及其求法;正定二次型与正定矩阵及其判别。 (5)一元多项式的带余除法、最大公因式;不可约多项式与唯一因式分解定理;重因式及其判定;有理数域上的不可约多项式及其判别 方法;

(6)线性空间及其子空间的交与直和;线性变换的核与象及矩阵表示;线性变换的特征值与特征向量,不变子空间;线性变换的最小多项式。-矩阵及其标准型和应用。 (7)欧几里得空间及性质,正交矩阵、正交变换与对称变换。 四、考试形式和试卷结构 (一)试卷满分及考试时间 本试卷满分为150分,考试时间为180分钟。 (二)答题方式 答题方式为闭卷、笔试。 试卷由试题和答题纸组成。答案必须写在答题纸相应的位置上。 (三)试卷题型 本试卷以解答题为主,包括计算题和证明题两部分。同时,根据情况,也可能含有填空、选择题,但分值不超过总分的20%。

高等代数试卷及答案一

一、填空题(共 10题,每题2分,共20分)。 1.多项式可整除任意多项式。 2.艾森施坦因判别法是判断多项式在有理数域上不可约的一个条件。 3.在n 阶行列式D 中,0的个数多于个是0D =。 4.若A 是n 阶方阵,且秩1A n =-,则秩A * =。 5.实数域上不可约多项式的类型有种。 6.若不可约多项式()p x 是()f x 的k 重因式,则()p x 是(1) ()k f x -的重因式。 7.写出行列式展开定理及推论公式。 8.当排列12n i i i L 是奇排列时,则12n i i i L 可经过数次对换变成12n L 。 9.方程组12312322232 121x x x ax bx cx d a x b x c x d ++=?? ++=??++=?,当满足条件时,有唯一解,唯一解为。 10.若2 4 2 (1)1x ax bx -∣ ++,则a =,b =。 二、判断题(共10题,每题1分,共10分)。 1.任何两个多项式的最大公因式不因数域的扩大而改变。() 2.两个多项式互素当且仅当它们无公共根。() 3.设12n αααL 是n P 中n 个向量,若n P β?∈,有12,n αααβL 线性相关,则12n αααL 线性 相关。() 4.设α是某一方程组的解向量,k 为某一常数,则k α也为该方程组的解向量。()5.若一整系数多项式()f x 有有理根,则()f x 在有理数域上可约。() 6秩()A B +=秩 A ,当且仅当秩0 B =。() 7.向量α线性相关?它是任一向量组的线性组合。() 8.若(),()[]f x g x P x ∈,且((),())1f x g x =,则(()(),()())1f x g x f x g x +=。() 9.(),()[]f x g x Z x ∈,且()g x 为本原多项式,若()()()f x g x h x =则()[]h x Z x ∈。() 10.若,,,n n A B C D P ?∈,则 A B AD BC C D =-。() 三、选择题(共5题,每题2分,共10分)。 1.A 为方阵,则 3A =()

2019宁波大学871高等代数考试大纲

2019年宁波大学硕士研究生招生考试初试科目考试大纲 科目代码、名称: 871高等代数 一、考试形式与试卷结构 (一)试卷满分值及考试时间 本试卷满分为150分,考试时间为180分钟。 (二)答题方式 答题方式为闭卷、笔试。试卷由试题和答题纸组成;答案必须写在答题纸(由考点提供)相应的位置上。 (三)试卷内容结构 考试内容主要包括多项式理论、行列式、线性方程组、矩阵理论、二次型、线性空间、线性变换、λ-矩阵、欧氏空间九个部分。 二、考查范围或考试内容概要 (一)多项式理论:多项式的整除,最大公因式,多项式的互素,不可约多项式与因式分解,重因式重根的判别,多项式函数与多项式的根. 重点掌握:重要定理的证明,如多项式的整除性质,Eisenstein判别法,不可约多项式的性质, 整系数多项式的因式分解定理等. 运用多项式理论证明有关问题,如与多项式的互素和不可约多项式的性质有关问题的证明与应用以及用多项式函数方法证明有关的问题. (二)行列式:行列式的定义、性质和常用计算方法(如:三角形法、加边法、降阶法、递推法、按一行一列展开法、Laplace展开法、范得蒙行列式法). 重点掌握:n阶行列式的计算及应用. (三)线性方程组:向量组线性相(无)关的判别(相应齐次线性方程组有无非零解、性质判别法、行列式判别法、矩阵秩判别法).向量组极大线性无关组的性质、向量组之间秩的大小关系(向量组(Ι)可由向量组(Ⅱ)线性表示,则(Ι)的秩小于等于(Ⅱ)的秩)及三个推论、矩阵的秩(行秩和列秩、矩阵秩的行列式判别法、矩阵秩的计算)、Cramer法则,线性方程组有(无)解的判别定理、齐次线性方程组有非零解条件(用系数矩阵的秩进行判别、用行列式判别、用方程个数判别)、基础解系的计算及其性质、齐次线性方程组通解的求法,非齐次线性方程组的解法和解的结构. 重点掌握:向量组线性相(无)关的判别、向量组之间秩与矩阵的秩、齐次线性方程组有非零

高等代数 矩阵练习题参考答案

第四章 矩阵习题参考答案 一、 判断题 1. 对于任意n 阶矩阵A ,B ,有A B A B +=+. 错. 2. 如果20,A =则0A =. 错.如2 11,0,011A A A ??==≠ ?--?? 但. 3. 如果2A A E +=,则A 为可逆矩阵. 正确.2()A A E A E A E +=?+=,因此A 可逆,且1A A E -=+. 4. 设,A B 都是n 阶非零矩阵,且0AB =,则,A B 的秩一个等于n ,一个小于n . 错.由0AB =可得()()r A r B n +≤.若一个秩等于n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾.只可能两个秩都小于n . 5.C B A ,,为n 阶方阵,若,AC AB = 则.C B = 错.如112132,,112132A B C ?????? === ? ? ?------?????? ,有,AC AB =但B C ≠. 6.A 为n m ?矩阵,若,)(s A r =则存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使 .00 0??? ? ? ?=s I PAQ 正确.右边为矩阵A 的等价标准形,矩阵A 等价于其标准形. 7.n 阶矩阵A 可逆,则*A 也可逆. 正确.由A 可逆可得||0A ≠,又**||AA A A A E ==.因此*A 也可逆,且11 (*)|| A A A -=. 8.设 B A ,为n 阶可逆矩阵,则.**)*(A B AB = 正确.*()()||||||.AB AB AB E A B E ==又 ()(**)(*)*||*||*||||AB B A A BB A A B EA B AA A B E ====. 因此()()*()(**)AB AB AB B A =.由B A ,为n 阶可逆矩阵可得AB 可逆,两边同时左乘式AB 的逆

820高等代数考试大纲

黑龙江大学硕士研究生入学考试大纲 考试科目名称:高等代数考试科目代码:[820] 一、考试内容及要求 一、行列式 1.内容:行列式概念及性质,行列式按行(列)展开。 2.要求: ①理解数域的概念,掌握常见的数域和最小数域。 ②理解n阶行列式的定义,掌握行列式性质。 ③能用行列式定义、性质(包括按行(列)展开的性质)递推及归纳法等计算行列式。 二、矩阵 1.内容:矩阵的概念,矩阵运算,逆矩阵和克莱姆法则,分块矩阵,初等变换和初等阵,矩阵的等价分解,矩阵的秩,初等块矩阵及等价分解的应用。 2.要求: ①理解矩阵概念及相关运算法则,能熟练地进行矩阵的相关运算,掌握行列式乘法定理。 ②理解逆矩阵的概念,掌握伴随矩阵求逆方法,掌握矩阵可逆充要条件并用于判别,理解克莱姆法则并用于求解线性方程组。 ③了解分块矩阵的运算法则,准确用于计算。 ④理解三种初等变换及相应的初等阵,了解初等阵是可逆阵的乘法生成元。 ⑤理解矩阵的等价分解,理解矩阵秩的定义,能用初等变换求矩阵秩及逆矩阵。 ⑥能利用等价分解、分块矩阵、初等矩阵及归纳法等解决一些矩阵分解,求秩相关的计算和证明问题。 三、n维向量与线性方程组 1.内容:n维向量,向量的线性相关性,向量组的秩,消去法解线性方程组,线性方程组解的判定,线性方程组解的结构。 2.要求: ①掌握n维向量线性表出,线性相关,线性无关的概念,能进行判别及相关的证明。 ②理解向量组的秩,矩阵的三秩相等定理,掌握向量组的秩以及极大无关组的概念,会求极大无关组以及向量组的秩。 ③能用消去法解线性方程组,特别能对带参数的方程组进行解的情况的讨论。

④掌握齐次方程组基础解系定理,一般线性方程组解的结构定理,并能用于解决有关问题。 四、特征值与特征向量 1.内容:特征值与特征向量,相似矩阵,R n空间内积,正交阵,实对称阵的正交对角化。 2.要求: ①掌握特征值与特征向量的概念及求法。 ②理解矩阵相似的概念,理解矩阵相似于对角阵的充要条件及充分条件,会进行相关的计算和证明。 ③掌握施密特正交化方法并能用于将实对称阵正交对角化。 ④理解正交阵的概念及等价条件,利用实对称阵正交对角化定理解决一些论证问题。 五、二次型 1.内容:实二次型,正定二次型,半正定二次型,惯性定理,一般数域上的二次型。 2.要求: ①掌握一般二次型的概念,用矩阵和内积分别表示二次型的方法。 ②理解实二次型的惯性定理,掌握实数域及一般数域上二次型的标准形及其求法。 ③理解正定二次型,半正定二次型的概念及若干等价条件并能用于相关计算与证明。 六、多项式 1.内容:一元多项式,整除,最大公因式,因式分解定理,重因式,多项式函数,复系数及实系数多项式因式分解,有理系数多项式。 2.要求: ①掌握数域上一元多项式的概念及相关运算(包括带余除法)。 ②理解多项式整除及最大公因式等概念,会用辗转相除法求最大公因式。 ③理解因式分解定理及其唯一性的含义,掌握有重因式的充要条件,并能用于判别。 ④理解多项式恒等与多项式函数相等的关系,能利用恒等或判别恒等解决相关问题。 ⑤掌握整系数多项式的有理根判别法以及关于不可约的Eisenstein判别法解决某些问题。 ⑥了解复系数多项式的代数基本定理,理解实系数多项式的虚根成对定理,并能用于简单证明。 七、线性空间 1.内容:线性空间定义及简单性质,维数,基底与坐标,基变换与坐标变换,线性子

浙江大学2006年高等代数试题解答

浙江大学2006年攻读硕士研究生入学初试试题 考试科目:高等代数 科目代号:341 注意:所有解答必须写在答题纸上,写在试卷或草稿纸上一律无效! {} ,(,)0(,)0(,)0(,)0,0(,) i i i A B B A B A A B rankA rank A b xA x A b x A B x A b i xA rankA rank A B =?=?==?=??=?===:一、(15分)矩阵具有相同的行数,把的任意一列加到得到矩阵秩不变,证明:把的所有列同时加到上秩也不变.: 法一:取的列向量的极大线性无关组,那么知道的任何列都可以由这些向量线性表(行出,从而得结论。法二秩 列秩矩阵证的秩) 明而 11121212221211121212221..................... (2)..................n n n n nn n n n x a x a x a x a x a x a x D a x a x a x D a x a x a x a x a x a x D a ++++++= +++++++++=+二、(15分)(1)把下面的行列式表示成按的幂次排列的多项式 把行列式的所有元素都加上同一个数,则行列式所有元素代数余 子式之和不变.)证明: (1111212111 2212 212111212 111 1212111 2212 2121 11 2212 21111 212 1..................... .................................n n n n nn n n nn n n n n n n n n nn n a x a x a x a a a a a a x a x a x a a a a a a a a a x x x a a a a a a a a a a a a a a a a a a +++---= ++---------=+---111 212121112212211,111 212 1............ 11...1.................. (),n n nn n n n ij i j n n n nn n ij n n ij ij a a a a a a a a a a a a A x A x A a a a a a a A a A A a ≤≤?------=+=+---=∑ 为中的代数余子式。

相关主题
文本预览
相关文档 最新文档