当前位置:文档之家› 知识讲解对数函数及其性质提高

知识讲解对数函数及其性质提高

知识讲解对数函数及其性质提高
知识讲解对数函数及其性质提高

对数函数及其性质

【学习目标】

1.理解对数函数的概念,体会对数函数是一类很重要的函数模型;

2.探索对数函数的单调性与特殊点,掌握对数函数的性质,会进行同底对数和不同底对数大小的比较;

3.了解反函数的概念,知道指数函数x

y a =与对数函数log a y x =互为反函数()0,1a a >≠.

【要点梳理】

要点一、对数函数的概念

1.函数y=log a x(a>0,a≠1)叫做对数函数.其中x 是自变量,函数的定义域是()0,+∞,值域为R . 2.判断一个函数是对数函数是形如log (0,1)a y x a a =>≠且的形式,即必须满足以下条件: (1)系数为1;

(2)底数为大于0且不等于1的常数; (3)对数的真数仅有自变量x . 要点诠释:

(1)只有形如y=log a x(a>0,a≠1)的函数才叫做对数函数,像log (1),2log ,log 3a a a y x y x y x =+==+等函数,它们是由对数函数变化得到的,都不是对数函数.

(2)求对数函数的定义域时应注意:①对数函数的真数要求大于零,底数大于零且不等于1;②对含有字母的式子要注意分类讨论.

要点二、对数函数的图象与性质

a >1

0<a <1

图象

定义域:(0,+∞)

值域:R

过定点(1,0),即x=1时,y=0

在(0,+∞)上增函

在(0,+∞)上是减函数

当0<x<1时,y<0,

当x≥1时,y≥0

当0<x<1时,y>0,

当x≥1时,y≤0

要点诠释:

关于对数式log a N的符号问题,既受a的制约又受N的制约,两种因素交织在一起,应用时经常出错.下面介绍一种简单记忆方法,供同学们学习时参考.

以1为分界点,当a,N同侧时,log a N>0;当a,N异侧时,log a N<0.

要点三、底数对对数函数图象的影响

1.底数制约着图象的升降.

如图

要点诠释:

由于底数的取值范围制约着对数函数图象的升降(即函数的单调性),因此在解与对数函数单调性有关的问题时,必须考虑底数是大于1还是小于1,不要忽略.

2.底数变化与图象变化的规律

在同一坐标系内,当a>1时,随a 的增大,对数函数的图像愈靠近x 轴;当0

要点四、反函数 1.反函数的定义

设,A B 分别为函数()y f x =的定义域和值域,如果由函数()y f x =所解得的()x y ?=也是一个函数(即对任意的一个y B ∈,都有唯一的x A ∈与之对应),那么就称函数()x y ?=是函数()y f x =的反函数,记作1

()x f

y -=,在1()x f y -=中,y 是自变量,x 是y 的函数,习惯上改写成1

()y f x -=(,x B y A ∈∈)

的形式.函数1

()x f

y -=(,y B x A ∈∈)与函数1()y f x -=(,x B y A ∈∈)为同一函数,因为自变量的

取值范围即定义域都是B ,对应法则都为1

f

-.

由定义可以看出,函数()y f x =的定义域A 正好是它的反函数1

()y f x -=的值域;函数()y f x =的

值域B 正好是它的反函数1

()y f

x -=的定义域.

要点诠释:

并不是每个函数都有反函数,有些函数没有反函数,如2

y x =.一般说来,单调函数有反函数. 2.反函数的性质

(1)互为反函数的两个函数的图象关于直线y x =对称.

(2)若函数()y f x =图象上有一点(),a b ,则(),b a 必在其反函数图象上,反之,若(),b a 在反函数图象上,则(),a b 必在原函数图象上.

【典型例题】

类型一、函数的定义域

求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质(如定义域、值域及单调性)在解题中的重要作用.

例1. 求下列函数的定义域:

(1)2

log a y x =; (2)log (4-)(01)a y x a a =>≠且.

【答案】(1){|0}x x ≠;(2){|4}x x <.

【解析】由对数函数的定义知:2

0x >,40x ->,解出不等式就可求出定义域.

(1)因为2

0x >,即0x ≠,所以函数2log {|0}a y x x x =≠的定义域为;

(2)因为40x ->,即4x <,所以函数log (4-){|4}a y x x x =<的定义域为.

【总结升华】与对数函数有关的复合函数的定义域:求定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.一般地,判断类似于log ()a y f x =的定义域时,应首先保证()0f x >.

举一反三:

【变式1】求下列函数的定义域.

(1) y=

1

)1(log 1

2

13

3---x x (2) ln(2)x x

y a k =-(0a >且1,a k R ≠∈).

【答案】(1)(1,

23) (2

3

,2];(2)略 【解析】(1)因为121

2

10

log (1)0log (1)1x x x ??

->??

-≥???-≠??, 所以101132x x x ??>?<-≤???≠?,

所以函数的定义域为(1,

23) (2

3

,2].

(2)因为 20x

x

a k ->, 所以2x

a k ??

> ???

.

①当0k ≤时,定义域为R ; ②当0k >时,

(i)若2a >,则函数定义域为(2

log a k ,+∞);

(ii)若02a <<,且1a ≠,则函数定义域为(-∞,2

log a k );

(iii)若2a =,则当01k <<时,函数定义域为R ;当1k ≥时,此时不能构成函数,否则定义域为?. 【变式2】函数(2)x

y f =的定义域为[-1,2],求2(log )y f x =的定义域. 【答案】[2,16].

【解析】由12x -≤≤,可得()y f x =的定义域为[2

1

,4],再由21log 42x ≤≤得2(log )y f x =的定

义域为[2,16].

类型二、对数函数的单调性及其应用

利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值.要求同学们:一是牢固掌握对数函数的单调性;二是理解和掌握复合函数的单调性规律;三是树立定义域优先的观念.

例2. 比较下列各组数中的两个值大小: (1)33log 3.6,log 8.9; (2)0.20.2log 1.9,log 3.5; (3)2log 5与7log 5; (4) 3log 5与6log 4.

(5)log 4.2,log 4.8a a (01a a >≠且).

【思路点拨】利用函数的单调性比较函数值大小。 【答案】(1)< ;(2) <;(3) >;(4) >;(5) 略.

【解析】由数形结合的方法或利用函数的单调性来完成.

(1)解法1:画出对数函数3log y x =的图象,横坐标为3.6的点在横坐标为8.9的点的下方,所以,

33log 3.6log 8.9<;

解法2:由函数3log y x =在R +上是单调增函数,且3.6<8.9,所以33log 3.6log 8.9<;

(2)与第(1)小题类似,0.2log y x =在R +上是单调减函数,且1.9<3.5,所以0.20.2log 1.9log 3.5>; (3)函数2log y x =和7log y x =的图象如图所示.当1x >时,2log y x =的图象在7log y x =的图象上方,这里5x =,27log 5log 5∴>.

(4)

3366log 5log 31log 6log 4,>==>

36log 5log 4∴>

(5) 注:底数是常数,但要分类讨论a 的范围,再由函数单调性判断大小.

解法1:当1a >时,log a y x =在(0,+∞)上是增函数,且5.1<5.9,所以,log 4.2log 4.8a a < 当01a <<时,y=log a x 在(0,+∞)上是减函数,且4.2<4.8,所以,log 4.2log 4.8a a > 解法2:转化为指数函数,再由指数函数的单调性判断大小, 令1log 4.2a b =,则1b

a =4.2,令2log 4.8a

b =,则2

4.8b a =,

当1a >时,x

y a =在R 上是增函数,且4.2<4.8, 所以,b 1

当时01a <<,x y a =在R 上是减函数,且4.2<4.8 所以,b 1>b 2,即a a log 4.2>log 4.8.

【总结升华】比较两个对数值的大小的基本方法是:

(1)比较同底的两个对数值的大小,常利用对数函数的单调性.

(2)比较同真数的两个对数值的大小,常有两种方法:①先利用对数换底公式化为同底的对数,再利用对数函数的单调性和倒数关系比较大小;②利用对数函数图象的互相位置关系比较大小.

(3)若底数与真数都不同,则通过一个恰当的中间量来比较大小. 【高清课堂:对数函数 369070 例3】 例3.比较11

log ,log ,log ,log a b a b b a b a

其中01的大小. 【答案】11log log log log a b b

a b a a b

<<< 【解析】由01,得1a b >,1

b a

>

∴1log log 1a a a b >=,1

log log 1b b b a <=

11

log log b a a b

∴<

∴1

1log log b a a

b --<,即log log b a a b -<-

log log b a a b ∴> 11

log log log log a b b

a b a a b

∴<<< 【总结升华】若底数与真数都不同,则通过一个恰当的中间量来比较大小,中间变量常常用“0”和“1”.用“0”和“1”把所给的数先分两组,然后组内再比较大小.

举一反三:

【变式1】已知324log 0.3

log 3.4

log 3.6

15,5

,,5a b c ??

=== ?

??

则( )

A .a b c >>

B .b a c >>

C .a c b >>

D .c a b >>

【答案】C

【解析】另2log 3.4m =,4log 3.6n =,3

10

log 3

l =,在同一坐标系下作出三个函数图像,由图像可得m l n >>

又∵5x

y =为单调递增函数, ∴ a c b >> 故选C.

【高清课堂:对数函数369070 例2】

【变式2】比较323log ,log log a b c π=== 【答案】c b a <<

【解析】

33233log 2log log 1log 3log π<<<=<

c b a ∴<<

例(2014年安徽亳州月考)已知定义在R 上的函数()y f x =是偶函数,且x ≥0时,

2()ln(22)f x x x =-+),

(1)当x <0时,求f (x )解析式; (2)写出f (x )的单调递增区间.

【思路点拨】(1)x <0时,-x >0,代入已知x ≥0时,2

()ln(22)f x x x =-+,可得

2()ln(22)f x x x -=++,根据偶函数的性质可求得2()ln(22)f x x x =++

(2)根据复合函数的单调性及二次函数的单调性分别求解两段函数的单调增区间即可 【答案】(1);(2)单调增区间为:(-1,0),(1,+∞) 【解析】(1)x <0时,-x >0 ∵x ≥0时2

()ln(22)f x x x =-+ ∴2

()ln(22)f x x x -=++

∵y =f (x )是偶函数,∴f (-x )=f (x ) x <0时,2

()ln(22)f x x x =++

(2)由(1)知x <0时,2

()ln(22)f x x x =++,根据复合函数的单调性可得函数的单调增区间(-1,0)

x ≥0时2

()ln(22)f x x x =-+,根据复合函数的单调性可得函数的单调增区间(1,+∞) 所以函数的单调增区间为:(-1,0),(1,+∞)

【总结升华】本题主要考查了利用偶函数的对称性求解函数的解析式,复合函数的单调区间的求解,(2)中对每段函数求解单调区间时要注意函数的定义域.

研究(log )a y f x =型复合函数的单调性,一般用复合法来判定即可.复合函数的单调性就是内函数与外函数的单调性“同增异减”.

研究对数型复合函数的单调性,一定要注意先研究函数的定义域,也就是要坚持“定义域优先”的原则.

举一反三:

【变式1】求函数()

22log 4y x =+的值域和单调区间. 【答案】[)2,+∞;减区间为(),0-∞,增区间为()0,+∞.

【解析】设24t x =+,则2

44t x =+≥,∵ y=2log t 为增函数,2222log log (4)log 42t x ∴=+≥=

()22log 4y x ∴=+的值域为[)2,+∞.

再由:2

2log (4)y x =+的定义域为R

24t x ∴=+在()0,+∞上是递增而在(),0-∞上递减,而y=2log t 为增函数

∴ 函数y=2

2log (4)x +的减区间为(),0-∞,增区间为()0,+∞.

【变式2】求函数log ()x

a y a a =-的单调区间

【答案】减区间是:(),1-∞和()1,+∞

【解析】①若1,a >则log a y t =递增,且x t a a =-递减,而0x

a a ->,即,1x

a a x <∴<, log ()x

a y a a ∴=-在(),1-∞上递减.

② 若01a <<,则log a y t =递减,且x t a a =-递增,而0x

a a ->,即,1x

a a x <∴>,

log ()x a y a a ∴=-在()1,+∞上递减.

综上所述,函数log ()x

a y a a =-的单调递减区间是:(),1-∞和()1,+∞.

类型三、函数的奇偶性 例5. 判断下列函数的奇偶性.

(1)2-()ln

;2x

f x x

=+ (2)())f x x =. 【思路点拨】判断函数奇偶性的步骤是:(1)先求函数的定义域,如果定义域关于原点对称,则进行(2),如果定义域不关于原点对称,则函数为非奇非偶函数。(2)求()f x -,如果()()f x f x -=,则函数是偶函数,如果()()f x f x -=-,则函数是奇函数。

【答案】(1)奇函数;(2)奇函数.

【解析】首先要注意定义域的考查,然后严格按照证明奇偶性基本步骤进行. (1)由

2-0-222x

x x

><<+可得 所以函数的定义域为:(-2,2)关于原点对称

又1222()ln

ln()-ln (),()()222x x x

f x f x f x f x x x x

-+---====--=--++即 所以函数2-()ln 2x

f x x

=+是奇函数;

【总结升华】此题确定定义域即解简单分式不等式,函数解析式恒等变形需利用对数的运算性质.说明判断对数形式的复合函数的奇偶性,不能轻易直接下结论,而应注意对数式的恒等变形.

(2)0x x R >∈可得 所以函数的定义域为R 关于原点对称

(-)))-()f x x x f x =====

即f(-x)=-f(x);所以函数())f x x =是奇函数.

【总结升华】此题定义域的确定可能稍有困难,函数解析式的变形用到了分子有理化的技巧,要求掌

握.

类型四、反函数

例6.求出下列函数的反函数

(1)16log y x =;(2)1x

y e ??

= ???。

【答案】(1)16x

y ??

= ???;(2)1log e

y x =

【解析】(1)对数函数16

log y x =,它的底数为16,所以它的反函数是指数函数16x

y ??

= ???;

(2)指数函数1x

y e ??

= ???的反函数是对数函数1log e

y x =.

【总结升华】

反函数的定义域都由原函数的值域来确定的,特别是当反函数的定义域与由反函数解析式有意义所确定的自变量的取值范围不一致时,一定要注明反函数的定义域.

举一反三:

【高清课堂:对数函数369070 例5】

【变式1】 若函数()y f x =是函数(0,x y a a =>且a≠1)的反函数,且(2)1f =,则()f x =( ) (A)x 2log (B)

x 21 (C)x 2

1log (D)22-x 【答案】A 【解析】解法1:

函数()y f x =是函数(0,x y a a =>且a≠1)的反函数

()log a f x x ∴=,又(2)1f = log 21a ∴=,2a ∴=, 故选A . 解法2:

函数()y f x =是函数(0,x y a a =>且a≠1)的反函数,且(2)1f =

∴点(1,2)在函数x

y a =的图象上,∴2a = 故选A .

类型五、利用函数图象解题

例7.若不等式2log 0x

a x -<,当10,

2x ??

∈ ???

时恒成立,求实数a 的取值范围. 【思路点拨】画出函数2x

y =的图象与函数log a y x =的图象,然后借助图象去求借。

【答案】2112a ??≤<

???

【答案】要使不等式2log 0x

a x -<在10,

2x ??∈ ??

?时恒成立,即函数log a y x =的图在10,2??

???

内恒在函

数2x y =图象的上方,而2x

y =图象过点1,22??

???

.由右图可知,1log 22a ≥,显

然这里0<a <1,∴函数log a y x =递减.又21

log 2log 2

a

a a ≥=,∴2

12

a ≥

,即212a ??≥ ?

??

.∴所求的a 的取值范围为2112a ??≤<

???

【总结升华】“数”是数学的特征,它精确、量化,最有说服力;而“形”则形象、直观,能简化思维过程,降低题目的难度,简化解题过程,把它们的优点集中在一起就是最佳组合.本例中,利用图形的形象直观快速地得到答案,简化了解题过程.正因为如此,数形结合成为中学数学的四个最基本的数学思想方法之一,因此我们必须熟练地掌握这一思想方法,并能灵活地运用它来分析和解决问题.

在涉及方程与不等式的问题时,往往构造两个函数()f x 与()g x ,则()f x =()g x 的实数解等价于两个函数()y f x =与()y g x =的图象的交点的横坐标;而()f x <()g x 的的解等价于函数()y f x =的图象在

()y g x =的图象下方的点的横坐标的取值范围.利用图象的形象性、直观性,可使问题得到顺利地解决,

而且分散了问题解决的难度、简化了思维过程.因此,我们要善于用数形结合的方法来解决方程与不等式的问题.

举一反三:

【变式1】(2014 广西桂林期中)函数(0),()1log (0)

9c ax b x f x x x +≤??

=??

?+≥ ?????

的图象如右图所示. (1)求a b c ++的值;

(2)若()1f m =-,求m 的值.

【答案】(1)133

a b c ++=;(2)23-或926

【解析】(1)当0x ≤时,()f x ax b =+, 根据图像2)0(,0)1(==-f f ,所以2==b a . 当0x >时,1()log ()9

c f x x =+.

根据图像,2)0(=f ,即1log (0)29c += ,13

c = . ∴1132233

a b c ++=++

=. (2)由(1)知,1

3

2 2 (0),()1

log () (0).9x x f x x x +≤??

=?+>?? 当0≤m 时,由122-=+m 解得 2

3

-

=m . 当0m >时,由13

1log ()19

m +=-解得 269

m =

. 综上所述,m 的值为23-

或9

26 类型六、对数函数性质的综合应用

例8.(1)已知函数2

lg(2)y x x a =++的定义域为R ,求实数a 的取值范围; (2)已知函数2

lg(2)y x x a =++的值域为R ,求实数a 的取值范围;

(3)2

2()log (log )a a f x x x =-+的定义域为1(0,)2

,求实数a 的取值范围.

【思路点拨】与求函数定义域、值域的常规问题相比,本题属非常规问题,关键在于转化成常规问题.()f x 的定义域为R ,即关于x 的不等式2

20x x a ++>的解集为R ,这是不等式中的常规问题.

()f x 的值域为R 与22x x a ++恒为正值是不等价的,因为这里要求()f x 取遍一切实数,即要求

22u x x a =++取遍一切正数,考察此函数的图象的各种情况,如图,我们会发现,使u 能取遍一切正数

的条件是0?≥.

【答案】(1)1a >;(2)1a ≤;(3)11,322a ??

∈???

?. 【解析】 (1)

2lg(2)y x x a =++的定义域为R ,

∴220x x a ++>恒成立,∴440a ?=-<,∴1a >.

(2)

2lg(2)y x x a =++的值域为R ,

∴22x x a ++取遍一切正数,∴440a ?=-≥,∴1a ≤.

(3)由题意,问题可等价转化为不等式2

2log 0a x x -<的解集为10,2?? ???

,记

2122:,:log ,a C y x C y x ==作图形12C C 与,如图所示,只需2C 过点1124??

???,,

∴021a <<,即满足102a <<

,且2211log ()22a =即可,解得132

a =.所以由图象可以看出若12C C <,则211log 24a ≥,即()1

4122a ≥,得:132a ≥,所以11,322a ??

∈????

【总结升华】如果函数()f x 的定义域为某个区间D ,则函数()f x 在这个区间D 的任何子集内部都有意义;如果函数()f x 在区间E 上有意义,而()f x 的定义域为D ,则必有E D ?.

举一反三:

【变式1】 已知函数2

()lg(21)f x ax x =++.

(1)若函数()f x 的定义域为R ,求实数a 的取值范围;(2)若函数()f x 的值域为R ,求实数a 的取值范围.

【答案】(1)a>1;(2)0≤a≤1.

【解析】(1) ()f x 的定义域为R ,即:关于x 的不等式2

210ax x ++>的解集为R , 当a=0时,此不等式变为2x+1>0,其解集不是R ;

当a≠0时,有?

??<-=?>0440a a ? a>1.∴ a 的取值范围为a>1.

(2)f(x)的值域为R ,即u=ax 2+2x+1能取遍一切正数? a=0或???≥-=?>0

440

a a ?0≤a≤1,

∴ a 的取值范围为0≤a≤1.

例9.已知函数()

()lg x x f x a b =-(常数10a b >>>). (1)求()y f x =的定义域;

(2)在函数()y f x =的图象上是否存在不同的两点,使过此两点的直线平行于x 轴; (3)当a ,b 满足什么关系时,()f x 在()1,+∞上恒取正值.

【思路点拨】本题为对数指数问题的综合题,求定义域首先保证对数的真数为正,再利用指数运算性质求出定义域.(2)中证明是否存在要由单调性来确定,若单调递增或递减,就不存在两点两线平行于x 轴.

【答案】(1)()0,+∞(2)不存在(3)1a b ≥+ 【解析】

(1)由0x

x

a b ->,得1x

a b ??

> ???

,由10a b >>>,得1a b >,故0x >,即函数()f x 的定义域为

()0,+∞.

(2)设120,10x x a b >>>>>,

12

210,x

x x x a a

b b ∴>>>>

故1122

0,x

x x

x a b a b ∴->->

()()1122lg lg ,x x x x a b a b ∴->-

即12()()f x f x >,

∴()f x 在()0,+∞上为增函数.

假设函数()y f x =的图象上存在不同的两点()11,A x y ,()22,B x y ,使直线AB 平行于x 轴,即

1212,x x y y ≠=,这与()f x 是增函数矛盾.

故函数()y f x =的图象上不存在不同的两点,使过这两点的直线平行于x 轴. (3)由(2)知()f x 在()0,+∞上是增函数

∴()f x 在()1,+∞上也是增函数

∴当()1,x ∈+∞时,()(1)f x f >

∴只需(1)0f ≥,即lg()0,1a b a b -≥-≥ ∴当1a b ≥+时,()f x 在()1,+∞上恒取正值.

【总结升华】此题综合性较强,综合考查对数函数性质和指数函数性质的关系,提问方式灵活.灵活掌握转化的思想,基础知识扎实是解决此类问题的关键.

举一反三:

【变式1】已知()23

()log ,0,x ax b

f x x x

++=∈+∞,是否存在实数a 、b ,使()f x 同时满足下列两个条件:①在(]0,1上是减函数,[)1,+∞上是增函数;②()f x 的最小值是1.若存在,求出a 、b 的值,若不存在,说明理由.

【答案】1,1a b ==

【解析】设存在满足条件的a 、b

()f x 在(]0,1上是减函数,[)1,+∞上是增函数, ∴当1x =时,()f x 最小,从而3

1log 12,1

a b

a b ++=?+= 设1201x x <<≤,则12()()f x f x >,

22

112212

x ax b x ax b

x x ++++∴>

恒成立,

()()121212

0x x x x b x x -->恒成立,

又12120,0,x x x x -<>因此120x x b -<恒成立,从而1b ≥. 设341x x <<,则34()()f x f x <恒成立,化简得

()()343434

0x x x x b x x --<恒成立,

又34340,0,x x x x -<>所以34x x b >恒成立,故1b ≤. 综上,1,1a b ==.

知识讲解-函数的单调性-基础

函数的单调性 【学习目标】 1.理解函数的单调性定义; 2.会判断函数的单调区间、证明函数在给定区间上的单调性; 3.学会运用单调性的定义求函数的最大(小)值。 【要点梳理】 要点一、函数的单调性 1.增函数、减函数的概念 一般地,设函数f(x)的定义域为A ,区间D A ?: 如果对于D 内的任意两个自变量的值x 1、x 2,当x 1f(x 2),那么就说f(x)在区间D 上 是减函数. 要点诠释: (1)属于定义域A 内某个区间上; (2)任意两个自变量12,x x 且12x x <; (3)都有1212()()(()())f x f x f x f x <>或;

(4)图象特征:在单调区间上增函数的图象从左向右是上升的,减函数的图象从左向右是下降的. 2.单调性与单调区间 (1)单调区间的定义 如果函数f(x)在区间D 上是增函数或减函数,那么就说函数f(x)在区间D 上具有单调性,D 称为函 数f(x)的单调区间. 函数的单调性是函数在某个区间上的性质. 要点诠释: ①单调区间与定义域的关系----单调区间可以是整个定义域,也可以是定义域的真子集; ②单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的; ③不能随意合并两个单调区间; ④有的函数不具有单调性. (2)已知解析式,如何判断一个函数在所给区间上的单调性? 3.证明函数单调性的步骤 (1)取值.设12x x ,是()f x 定义域内一个区间上的任意两个量,且12x x ; (2)变形.作差变形(变形方法:因式分解、配方、有理化等)或作商变形; (3)定号.判断差的正负或商与1的大小关系; (4)得出结论. 4.函数单调性的判断方法

对数函数知识点总结(供参考)

对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○2 x N N a a x =?=log ; ○3 注意对数的书写格式. 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log = ; (2)a b b a log 1log =. (二)对数函数 1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函 数,其中x 是自变量,函数的定义域是(0,+∞). 注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:x y 2log 2=,5 log 5x y = 都不是对数函数,而只能称 其为对数型函数. ○ 2 对数函数对底数的限制:0(>a ,且)1≠a . 对数函数·例题解析 例1.求下列函数的定义域: (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2 x y a -=.

知识讲解_指数函数及其性质_基础

指数函数及其性质 编稿:丁会敏 审稿:王静伟 【学习目标】 1.掌握指数函数的概念,了解对底数的限制条件的合理性,明确指数函数的定义域; 2.掌握指数函数图象: (1)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质; (2)掌握底数对指数函数图象的影响; (3)从图象上体会指数增长与直线上升的区别. 3.学会利用指数函数单调性来比较大小,包括较为复杂的含字母讨论的类型; 4.通过对指数函数的概念、图象、性质的学习,培养观察、分析归纳的能力,进一步体会数形结合的思想方法; 5.通过对指数函数的研究,要认识到数学的应用价值,更善于从现实生活中发现问题,解决问题. 【要点梳理】 要点一、指数函数的概念: 函数y=a x (a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释: (1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23x y =?,12x y =, 31x y =+等函数都不是指数函数. (2)为什么规定底数a 大于零且不等于1: ①如果0a =,则000x x ?>??≤??x x 时,a 恒等于, 时,a 无意义. ②如果0a <,则对于一些函数,比如(4)x y =-,当11 ,,24 x x = =???时,在实数范围内函数值不存在. ③如果1a =,则11x y ==是个常量,就没研究的必要了. 要点诠释:

(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。 (2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。 当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。 当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。 (3)指数函数x y a =与1 x y a ?? = ??? 的图象关于y 轴对称。 要点三、指数函数底数变化与图像分布规律 (1) ① x y a = ②x y b = ③x y c = ④x y d = 则:0<b <a <1<d <c 又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数 11 2,3, (), ()23 x x x x y y y y ====的图像: 要点四、指数式大小比较方法 (1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法 比较法有作差比较与作商比较两种,其原理分别为: ①若0A B A B ->?>;0A B A B -,或1A B <即可. 【典型例题】 类型一、指数函数的概念 例1.函数2 (33)x y a a a =-+是指数函数,求a 的值. 【答案】2 【解析】由2 (33)x y a a a =-+是指数函数, 可得2331,0,1, a a a a ?-+=?>≠?且解得12, 01,a a a a ==??>≠?或且,所以2a =. 【总结升华】判断一个函数是否为指数函数: (1)切入点:利用指数函数的定义来判断;

高中数学对数函数及其性质(一)

课题:对数函数及其性质(一) 课 型:新授课 教学目标: 通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型.能够用描点法画出对数函数的图象.能根据对数函数的图象和性质进行值的大小比较.培养学生数形结合的意识.用联系的观点分析问题. 教学重点:对数函数的图象和性质 教学难点:对数函数的图象和性质及应用 教学过程: 一、复习准备: 1. 画出2x y =、1 ()2 x y =的图像,并以这两个函数为例,说说指数函数的性质. 2. 讨论:t 与P 的关系?(对每一个碳14的含量P 的取值,通过对应关系log P =, 生物死亡年数t 都有唯一的值与之对应,从而t 是P 的函数) 二、讲授新课: 1.教学对数函数的图象和性质: ① 定义:一般地,当a >0且a ≠1时,函数a y=log x 叫做对数函数(logarithmic function). 自变量是x ; 函数的定义域是(0,+∞) ② 辨析: 对数函数定义与指数函数类似,都是形式定义,注意辨别,如:22log y x =,5log (5)y x = 都不是对数函数, 而只能称其为对数型函数;对数函数对底数的限制 0(>a ,且)1≠a . ③ 探究:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗? 研究方法:画出函数的图象,结合图象研究函数的性质. 研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. ④ 练习:同一坐标系中画出下列对数函数的图象 x y 2log =;0.5log y x = ⑤ 讨论:根据图象,你能归纳出对数函数的哪些性质? 列表归纳:分类 → 图象 → 由图象观察(定义域、值域、单调性、定点) 引申:图象的分布规律? 2、总结出的表格

对数函数知识点及典型例题讲解

对数函数知识点及典型例题讲解 1.对数: (1) 定义:如果,那么称为,记作,其中称为对数的底,N称为真数. ①以10为底的对数称为常用对数,记作___________. ②以无理数为底的对数称为自然对数,记作_________. (2) 基本性质: ①真数N为 (负数和零无对数);②;③; ④对数恒等式:. (3) 运算性质: ① log a(MN)=___________________________; ② log a=____________________________; ③ log a M n= (n∈R). ④换底公式:log a N= (a>0,a≠1,m>0,m≠1,N>0) ⑤ . 2.对数函数: ①定义:函数称为对数函数,1) 函数的定义域为( ;2) 函数的值域为; 3) 当______时,函数为减函数,当______时为增函数; 4) 函数与函数互为反函数. ② 1) 图象经过点( ),图象在;2) 对数函数以为渐近线(当时,图象向上无限接近y轴;当时,图象向下无限接近y轴); 4) 函数y=log a x与的图象关于x轴对称. ③函数值的变化特征: ①②③①②③ 例1 计算:(1) (2)2(lg)2+lg·lg5+; (3)lg-lg+lg. 解:(1)方法一利用对数定义求值设=x,则(2+)x=2-==(2+)-1,∴x=-1.方法二利用对数的运算性质求解 = =(2+)-1=-1.

(2)原式=lg(2lg+lg5)+=lg(lg2+lg5)+|lg-1| =lg+(1-lg)=1. (3)原式=(lg32-lg49)-lg8+lg245 = (5lg2-2lg7)-×+ (2lg7+lg5) =lg2-lg7-2lg2+lg7+lg5=lg2+lg5 =lg(2×5)= lg10=. 变式训练1:化简求值. (1)log2+log212-log242-1; (2)(lg2)2+lg2·lg50+lg25; (3)(log32+log92)·(log43+log83). 解:(1)原式=log2+log212-log2-log22=log2 (2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2. (3)原式=( 例2 比较下列各组数的大小. (1)log3与log5;(2)log1.10.7与(3)已知logb<loga<logc,比较2b,2a,2c的大小关系.解:(1)∵log3<log31=0,而log5>log51=0,∴log3<log5. (2)方法一∵0<<1,<,∴0>, ∴, 即由换底公式可得log1.10.7<方法二作出y=与y=的图象. 如图所示两图象与x=相交可知log1.10.7<为减函数,且, ∴b>a>c,而y=2x是增函数,∴2b>2a>2c. 变式训练2:已知0<a<1,b>1,ab>1,则log a的大小关系是() B. C. D. 解: C 例3已知函数f(x)=log a x(a>0,a≠1),如果对于任意x∈[3,+∞)都有|f(x)|≥1成立,试求a的取值范围. 解:当a>1时,对于任意x∈[3,+∞),都有f(x)>0. 所以,|f(x)|=f(x),而f(x)=log a x在[3,+∞)上为增函数, ∴对于任意x∈[3,+∞),有f(x)≥log a3. 因此,要使|f(x)|≥1对于任意x∈[3,+∞)都成立. 只要log a3≥1=log a a即可,∴1<a≤3. 当0<a<1时,对于x∈[3,+∞),有f(x)<0, ∴|f(x)|=-f(x). ∵f(x)=log a x在[3,+∞)上为减函数, ∴-f(x)在[3,+∞)上为增函数. ∴对于任意x∈[3,+∞)都有

指数、对数函数基本知识点

基本初等函数知识点 知识点一:指数及指数幂的运算 1.根式的概念 的次方根的定义:一般地,如果,那么叫做的次方根,其中 当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为. 负数没有偶次方根,0的任何次方根都是0. 式子叫做根式,叫做根指数,叫做被开方数. 次方根的性质: (1)当为奇数时,;当为偶数时, (2) 3.分数指数幂的意义: ; 注意:0的正分数指数幂等与0,负分数指数幂没有意义. 4.有理数指数幂的运算性质: (1)(2)(3) 知识点二:指数函数及其性质1.指数函数概念 一般地,函数叫做指数函数,其中是自变量,函数的定义域为. 2.指数函数函数性质: 函数名称指数函数 定义函数且叫做指数函数 图象 定义域 值域 过定点图象过定点,即当时,. 奇偶性非奇非偶 单调性在上是增函数在上是减函数

函数值的变化情况 变化对图象的影响在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小. 知识点三:对数与对数运算 1.对数的定义 (1)若,则叫做以为底的对数,记作,其中叫做底数,叫做真数. (2)负数和零没有对数. (3)对数式与指数式的互化:. 2.几个重要的对数恒等式 ,,. 3.常用对数与自然对数 常用对数:,即;自然对数:,即(其中…). 4.对数的运算性质 如果,那么①加法:②减法:③数乘: ④⑤ ⑥换底公式: 知识点四:对数函数及其性质 1.对数函数定义 一般地,函数叫做对数函数,其中是自变量,函数的定义域. 2.对数函数性质: 函数名称对数函数 定义函数且叫做对数函数图象

16.变量与函数知识讲解

变量与函数 责编:赵炜 【学习目标】 1.知道现实生活中存在变量和常量,变量在变化的过程中有其固有的范围(即变量的取值范围); 2.能初步理解函数的概念;能初步掌握确定常见简单函数的自变量取值范围的基本方法;给出自变量的一个值,会求出相应的函数值. 3.对函数关系的表示法(如解析法、列表法、图象法)有初步认识. 4. 理解函数图象上的点的坐标与其解析式之间的关系,会判断一个点是否在函数的图象上,明确交点坐标反映到函数上的含义. 5. 初步理解函数的图象的概念,掌握用“描点法”画一个函数的图象的一般步骤,对已知图象能读图、识图,从图象解释函数变化的关系. 【要点梳理】 【高清课堂:389341 变量与函数,知识要点】 要点一、变量、常量的概念 在一个变化过程中,我们称数值发生变化的量为变量.数值保持不变的量叫做常量. 要点诠释:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,60s t =,速度60千米/时是常量,时间t 和里程s 为变量. 要点二、函数的定义 一般地,在一个变化过程中. 如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是x 的函数. 要点诠释:对于函数的定义,应从以下几个方面去理解: (1)函数的实质,揭示了两个变量之间的对应关系; (2)对于自变量x 的取值,必须要使代数式有实际意义; (3)判断两个变量之间是否有函数关系,要看对于x 允许取的每一个值,y 是否 都有唯一确定的值与它相对应. (4)两个函数是同一函数至少具备两个条件: ①函数关系式相同(或变形后相同); ②自变量x 的取值范围相同. 否则,就不是相同的函数.而其中函数关系式相同与否比较容易注意到,自变 量x 的取值范围有时容易忽视,这点应注意. 要点三、函数值 y 是x 的函数,如果当x =a 时y =b ,那么b 叫做当自变量为a 时的函数值. 要点诠释:对于每个确定的自变量值,函数值是唯一的,但反过来,可以不唯一,即一个函数值对应的自变量可以是多个.比如:2 y x =中,当函数值为4时,自变量x 的值为±2. 要点四、自变量取值范围的确定 使函数有意义的自变量的取值的全体实数叫自变量的取值范围. 要点诠释:自变量的取值范围的确定方法: 首先,要考虑自变量的取值必须使解析式有意义: (1)当解析式是整式时,自变量的取值范围是全体实数; (2)当解析式是分式时,自变量的取值范围是使分母不为零的实数;

对数函数及其性质经典练习题

对数函数及其性质(一) 班级_____________姓名_______________座号___________ 1.函数f (x )=lg(x -1)+4-x 的定义域为( ) A .(1,4] B .(1,4) C .[1,4] D .[1,4) 2.函数y =x |x | log 2|x |的大致图象是( ) 3.若log a 2<1,则实数a 的取值范围是( ) A .(1,2) B .(0,1)∪(2,+∞) C .(0,1)∪(1,2) D .(0,12 ) 4.设a =2log 3,b =2 1log 6,c =6log 5,则( ) A .a <c <b B .b <c <a C .a <b <c D .b <a <c 5.已知a >0且a ≠1,则函数y =a x 与y =log a (-x )的图象可能是( ) 6.函数y =log 2x 在[1,2]上的值域是( ) A .R B .[0,+∞) C .(-∞,1] D .[0,1] 7.函数y =log 12(x -1)的定义域是________. 8.若函数f (x )=log a x (0≤???x x x x 则g [g (1 3)]=________. 10.f (x )=log 21+x a -x 的图象关于原点对称,则实数a 的值为________. 11.函数f (x )=log 12 (3x 2-ax +5)在[-1,+∞)上是减函数,求实数a 的取值范围.

对数函数知识点

对数函数知识点 1 ?对数函数的概念 形如y =log a x(a . 0且a = 1)的函数叫做对数函数. 说明:(1) 一个函数为对数函数的条件是: ①系数为1 ; ②底数为大于0且不等于1的正常数; ③自变量为真数? 对数型函数的定义域: 特别应注意的是:真数大于零、底数大于零且不等于1。 2、由对数的定义容易知道对数函数y二log a x(a ? 0,a = 1)是指数函数y=a x(a .0,a=1)的反函数。 反函数及其性质 ①互为反函数的两个函数的图象关于直线y=x对称。 ②若函数y = f(x)上有一点(a,b),则(b,a)必在其反函数图象上,反之若(b, a)在反函数图象上,则(a,b)必在原函数图象上。 ③利用反函数的性质,由指数函数y二a x(a .0,a")的定义域x R,值域y?0, 容易得到对数函数y"og a x(a .0,a=1)的定义域为x 0,值域为R,利用上节学过的 对数概念,也可得出这一点。 3 4

要牢记y = 2X, y =(1)x, y = 10x, y = (£)x的反函数 y =log2X, y =log! x, y =lg x, y =log ! x的图象,并由此归纳出表中结论。 2 10 5、比较大小 比较对数的大小,一般遵循以下几条原则: ①如果两对数的底数相同,则由对数函数的单调性(底数a -1为增;0 :::a :::1为减)比较。 ②如果两对数的底数和真数均不相同,通常引入中间变量进行比较。 ③如果两对数的底数不同而真数相同,女口y = log ai x与y = log a2x的比较(a 0,印=1, a2 0,a2 = 1). 当a, a2 ? 1时,曲线y1比y的图象(在第一象限内)上升得慢,即当x 1时,m;当0:::x”:1时,y1 y2.而在第一象限内,图象越靠近x轴对数函数的底数越大(同[考题2]的含义)当0 ::: a? ::? <1时,曲线y比月2的图象(在第四象限内)下降得快,即当x 1时, y ■■■ y ;当0 ”:x ::: 1时,y1 y即在第四象限内,图象越靠近x轴的对数函数的底数越小。 6、求参数范围 凡是涉及对数的底含参数的问题,要注意对对数的底数的分析,需要分类讨论时,一定 要分类讨论。

初中函数知识点专题讲解

知识点1函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。 一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。 2、函数解析式 用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 3、函数的三种表示法及其优缺点 (1)解析法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。 (2)列表法 把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图像法 用图像表示函数关系的方法叫做图像法。 4、由函数解析式画其图像的一般步骤 (1)列表:列表给出自变量与函数的一些对应值 (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点 (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 知识点四,正比例函数和一次函数 1、正比例函数和一次函数的概念 一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。 特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)。这时,y 叫做x 的正比例函数。 2、一次函数的图像 所有一次函数的图像都是一条直线 3、一次函数、正比例函数图像的主要特征: 一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。

对数函数及其性质(一)[

2.2.2 对数函数及其性质(1) 教学目标: 1、理解对数函数的概念; 2、掌握对数函数的性质,了解对数学函数初步应用; 3、通过师生间,学生与学生之间互相交流,使学生逐步学会共同学习; 4、通过探究、思考、培养学生思维迁移能力和主动参予能力。 教学重点: 1、对数函数的定义、图象和性质; 2、对数函数性质的初步应用。 教学难点: 底数a 对对数函数性质的影响 教具准备:多媒体课件、投影仪 教学过程: 一、创设情景,引入新课 古谚云:一尺之木,日截其半,万世不竭……若设木长为x ,则其与经过的天数y 存在着一种关系,这个关系应如何表示呢? (师):则x 与y 的关系式为x=(2 1)y …… 那能否根据(*)式把经过天数y 表示出来?(学生讨论并回答) (师):经过的天数y 可以表示为y=2 1log x 研究发现:在关系式y=2 1log x 中,把木长x 看作自变量,则每一个确定x 值,都有唯一一个经过的天数y 的值与之对应,由函数的定义,经过的天数y 就可以看作木长x 的函数,这样的函数称作为对数函数,即为本节课所要研究的内容。 (引入新课,书写课题:对数函数) 二、讲解新课 (一)对数函数的概念 问题1.1:由实例一我们是不否能得到对数函数的一般式吗? 问题1.2 :y=x a log 式中的底数a 有什么具体限制条件吗?请给合指数式给以解释。

问题1.3:你能否根据指数函数的定义给出对数函数的定义吗? (生交流,师结合学生回答总结、归纳并多媒体显示对数函数定义) 定义:一般地,函数y=x a log (a>0,且a ≠1)叫做对数函数,由对数概念可知,对数函数y=x a log 的定义域是(0,+∞),值域为R 。 问题1.4:为什么对数函数的定义域是(0,+∞)? 问题1.5:函数y=x a log 和函数y=x a log (a>0,a ≠1)的定义域,值域之间有什么关系? (二)对数函数的图象和性质 (1)讨论对数函数的图象 1、利用“几何画板4.03”软件在同一坐标系中画出下列两组函灵敏图象并观察图象,探究它们之间关系。 (1)y=2x (2)y=x a log (3)y=(21)x y=x 21log 2、当a>0、a ≠1时,函数y=a x 、y=x a log 的图象之间有何种关系? (多媒体函数图像,提示(1)(2)两组图象之间的关系,由老师引导,学生讨论总结。) Ⅱ对数函数的性质 分析两组函数的图象,对照指数函数的性质,总结归纳对数函数性质。 (老师引导,学生相互讨论交流总结、归纳)

对数函数知识点

对数函数知识点 1.对数函数的概念 形如 y log a x( a 0且 a 1) 的函数叫做对数函数 . 说明:( 1)一个函数为对数函数的条件是: ①系数为 1; ②底数为大于 0 且不等于 1 的正常数; ③自变量为真数 . 对数型函数的定义域: 特别应注意的是:真数大于零、底数大于零且不等于 1。 2 、 由 对 数 的 定 义 容 易 知 道 对 数 函 数 y log a x (a 0, a 1) 是指数函数 y a x (a 0, a 1) 的反函数。 反函数及其性质 ①互为反函数的两个函数的图象关于直线 y x 对称。 ②若函数 y f ( x) 上有一点 (a, b ) ,则 (b, a) 必在其反函数图象上, 反之若 (b, a) 在反函 数图象上,则 ( a, b) 必在原函数图象上。 ③利用反函数的性质,由指数函数 y a x (a 0, a 1) 的定义域 x R ,值域 y 0 , 容易得到对数函数 y log a x(a 0, a 1) 的定义域为 x 0 ,值域为 R ,利用上节学过的 对数概念,也可得出这一点。 3、.对数函数的图象和性质 定义 y log a x (a 0且 a 1) 底数 a 1 0 a 1 图象 定义域 (0, ) 值域 R 单调性 增函数 减函数 共点性 图象过点 (1,0) ,即 log a 1 函数值x (0,1) y ( ,0); x [1, ) x (0,1) y (0, ); x [1, ) 特征 y [0, ) y ( ,0] 对称性 函数 y log a x 与 y log 1 x 的图象关于 x 轴对称 a 4.对数函数与指数函数的比较 名称 指数函数 对数函数 一般形式 y a x (a 0, a 1) y log a x (a 0, a 1)

基本初等函数I知识点总结

第二章 基本初等函数 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . ◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m , )1,,,0(1 1* >∈>= = - n N n m a a a a n m n m n m ◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)(),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2 注意:利用函数的单调性,结合图象还可以看出:(1)在[a ,b]上, )1a 0 a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [; (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为.底.N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log —对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○ 2 x N N a a x =?=log ; ○ 3 注意对数的书写格式. 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数Λ71828.2=e 为底的对数的对数N ln . ◆ 指数式与对数式的互化 幂值 真数 = b

变量与函数 知识讲解

变量与函数 【学习目标】 1.知道现实生活中存在变量和常量,变量在变化的过程中有其固有的范围(即变量的取值范围); 2.能初步理解函数的概念;能初步掌握确定常见简单函数的自变量取值范围的基本方法;给出自变量的一个值,会求出相应的函数值. 3. 理解函数图象上的点的坐标与其解析式之间的关系,会判断一个点是否在函数的图象上,明确交点坐标反映到函数上的含义. 4. 初步理解函数的图象的概念,掌握用“描点法”画一个函数的图象的一般步骤,对已知图象能读图、识图,从图象解释函数变化的关系. 【要点梳理】 要点一、变量、常量的概念 在一个变化过程中,我们称数值发生变化的量为变量.数值保持不变的量叫做常量. 要点诠释:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,60s t =,速度60千米/时是常量,时间t 和里程s 为变量. 要点二、函数的定义 一般地,在一个变化过程中. 如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是x 的函数. 要点诠释:对于函数的定义,应从以下几个方面去理解: (1)函数的实质,揭示了两个变量之间的对应关系; (2)对于自变量x 的取值,必须要使代数式有实际意义; (3)判断两个变量之间是否有函数关系,要看对于x 允许取的每一个值,y 是否 都有唯一确定的值与它相对应. (4)两个函数是同一函数至少具备两个条件: ①函数关系式相同(或变形后相同); ②自变量x 的取值范围相同. 否则,就不是相同的函数.而其中函数关系式相同与否比较容易注意到,自变 量x 的取值范围有时容易忽视,这点应注意. 要点三、函数的定义域与函数值 函数的自变量允许取值的范围,叫做这个函数的定义域. 要点诠释:考虑自变量的取值必须使解析式有意义。 (1)当解析式是整式时,自变量的取值范围是全体实数; (2)当解析式是分式时,自变量的取值范围是使分母不为零的实数; (3)当解析式是二次根式时,自变量的取值范围是使被开方数不小于零的实数; (4)当解析式中含有零指数幂或负整数指数幂时,自变量的取值应使相应的底数 不为零; (5)当解析式表示实际问题时,自变量的取值必须使实际问题有意义. y 是x 的函数,如果当x =a 时y =b ,那么b 叫做当自变量为a 时的函数值.在函数用记号()y f x =表示时,()f a 表示当x a =时的函数值. 要点诠释: 对于每个确定的自变量值,函数值是唯一的,但反过来,可以不唯一,即一个函数值对

专题:对数函数知识点总结及类型题归纳

专题:对数函数知识点总结 1.对数函数的定义: 一般地,函数 x y a log =( )叫做对数函数 .定义域是 2. 对数函数的性质为 思考:函数log a y x =与函数x y a =)10(≠>a a 且的定义域、值域之间有什么关系? ___________________________________________________________________________ 对数函数的图象与指数函数的图象关于_______________对称。 一般的,函数y=a x 与y=log a x (a>0且a ≠1)互称相对应的反函数,它们的图象关于直线y=x 对称 y=f(x)存在反函数,一般将反函数记作y=f -1 (x) 如:f(x)=2x ,则f -1 (x)=log 2x,二者的定义域与值域对调,且图象关 于直线y=x 对称 函数与其反函数的定义域与值域对调,且它们的图象关于直线y=x 对称 专题应用练习 一、求下列函数的定义域

(1)0.2log (4);y x =-; (2)log 1a y x =- (0,1).a a >≠; (3)2(21)log (23)x y x x -=-++ (4)2log (43)y x =- (5) y=lg 1 1 -x (6) y=x 3log =log(5x-1)(7x-2)的定义域是________________ = )8lg(2x - 的定义域是_______________ 3.求函数2log (21)y x =+的定义域___________ 4.函数y=13 log (21)x -的定义域是 5.函数y =log 2(32-4x )的定义域是 ,值域是 . 6.函数5log (23)x y x -=-的定义域____________ 7.求函数2 log ()(0,1)a y x x a a =->≠的定义域和值域。 8.求下列函数的定义域、值域: (1)2log (3)y x =+; (2)2 2log (3)y x =-; (3)2log (47)a y x x =-+(0a >且1a ≠). 9.函数f (x )=x 1 ln (432322+--++-x x x x )定义域 10.设f(x)=lg x x -+22,则f )2 ()2(x f x +的定义域为 11.函数f(x)=)1(lo g 1 |2|2---x x 的定义域为 12.函数f(x)= 2 29)2(1x x x g --的定义域为 ; 13.函数f (x )= x 1 ln (432322+--++-x x x x )的定义域为 14 2 2 2 log log log y x =的定义域是 1. 设f (x )=lg(ax 2 -2x +a ), (1) 如果f (x )的定义域是(-∞, +∞),求a 的取值围; (2) 如果f (x )的值域是(-∞, +∞),求a 的取值围. 15.已知函数)32(log )(22 1+-=ax x x f (1)若函数的定义域为R ,数a 的取值围 (2)若函数的值域为R ,数a 的取值围

对数函数的图像与性质知识点与习题

对数函数的图像与性质知识点与习题 一、知识回顾: 1、指数函数)1,0(≠>=a a a y x 与对数函数)1,0(log ≠>=a a x y a 的图象与性质 2、指数函数)1,0(≠>=a a a y x 与对数函数)1,0(log ≠>=a a x y a 互为反函数,其 图象关于直线x y =对称 二、例题与习题 1.)35lg(lg x x y -+=的定义域为___ __; 2. 已知函数=-=+-=)(,2 1 )(,11lg )(a f a f x x x f 则若 3.04 1 log 2 12≤-x ,则________∈x 4.函数)2(log )(π≤≤=x x x f a 的最大值比最小值大1,则__________∈a

5.若函数m y x +=+-1 2 的图象不经过第一象限,则m 的取值范围是 ( ) (A )2-≤m (B )2-≥m (C )1-≤m (D )1-≥m 6.函数x x f a )1(2log )(-=是减函数,则实数a 的取值范围是 . 7.若13 2 log >a ,则a 的取值范围是 8.已知函数)(x f y =是奇函数,则当0≥x 时,13)(-=x x f ,设)(x f 的反函数是)(x g y =,则=-)8(g 9.方程lgx -x +1=0的实数解有______个. 10.)2lg(2 x x y +-=的递增区间为___________ ,值域为 . 11.求)1,0() (log ≠>-=a a a a y x a 的定义域。 12.已知3log 1)(x x f +=,2log 2)(x x g =,试比较)(x f 与)(x g 的大小关系。 13.已知函数)10)(1(log )1(log )(≠>--+=a a x x x f a a 且, (1)讨论)(x f 的奇偶性与单调性; (2)若不等式2|)(|

知识讲解_《函数》全章复习与巩固_ 基础

《函数》全章复习与巩固 编稿:丁会敏审稿:王静伟 【学习目标】 1.会用集合与对应的语言刻画函数;会求一些简单函数的定义域和值域,初步掌握换元法的简单运用. 2.能正确认识和使用函数的三种表示法:解析法,列表法和图象法.了解每种方法的优点.在实际情境中,会根据不同的需要选择恰当的方法表示函数; 3.求简单分段函数的解析式;了解分段函数及其简单应用; 4.理解函数的单调性、最大(小)值及其几何意义;结合具体函数了解奇偶性的含义; 5.理解函数零点的意义,能判断二次函数零点的存在性,会求简单函数的零点,了解函数的零点与方程根的关系; 6.能运用函数的图象理解和研究函数的性质. 【知识网络】 【要点梳理】 要点一:关于函数的概念 1.两个函数相等的条件 用集合与对应的语言刻画函数,与初中的“用变量的观点描述函数”实质上是一致的.函数有三要素——定义域、值域、对应关系,它们是不可分割的一个整体.当且仅当两个函数的三要素完全相同时,这两个函数相等. 2.函数的常用表示方法 函数的常用表示方法有:图象法、列表法、解析法.注意领会在实际情境中根据不同的需要选择恰当的方法表示函数. 3.映射 设A、B是两个非空集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x(原 f x(象)与之对应,那么就称对应f:A→B为从集合A到集象),在集合B中都有唯一确定的元素() 合B的一个映射.由映射定义知,函数是一种特殊的映射,即函数是两个非空的数集间的映射.4.函数的定义域 函数的定义域是自变量x的取值范围,但要注意,在实际问题中,定义域要受到实际意义的制约.其

题型主要有以下几种类型: (1)已知()f x 得函数表达式,求定义域; (2)已知()f x 的定义域,求[]()f x ?的定义域,其实质是由()x ?的取值范围,求出x 的取值范 围; (3)已知[]()f x ?的定义域,求()f x 的定义域,其实质是由x 的取值范围,求()x ?的取值范围. 5.函数的值域 由函数的定义知,自变量x 在对应法则f 下取值的集合叫做函数的值域. 函数值域的求法: (1)与二次函数有关的函数,可用配方法(注意定义域); (2)形如y ax b =+t =,转化成二次函数再求值 域(注意0t ≥); (3)形如(0)ax b y c cx d += ≠+的函数可借助反比例函数求其值域,若用变量分离法求值域,这种函数的值域为|a y y c ??≠ ??? ? ; (4)形如22 ax bx c y mx nx p ++=++(,a m 中至少有一个不为零)的函数求值域,可用判别式求值域. 6.函数的解析式 函数的解析式是函数的一种表示方法,求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是求出函数的定义域. 求函数解析式的主要方法:已知函数解析式的类型时,可用待定系数法;已知复合函数[]()f g x 的表达式时,可用换元法,此时要注意“元”的取值范围;若已知抽象函数表达式,则常用解方程组、消参的方法求出()f x . 要点二:函数的单调性 (1)如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,当x 1<x 2时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数. (2)如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,当x 1<x 2时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数. (3)若函数()f x 在某个区间上总是递增(或递减)的,则该区间是函数的一个单调增(或减)区间.若函数()f x 在整个定义域上总是递增(或递减)的,则称该函数为单调增(或减)函数.

对数函数及其性质(1)

对数函数及其性质(1) (万宁中学吴刚) 一、教材分析 本小节选自《普通高中课程标准数学教科书-数学必修(一)》(人教A版)第二章基本初等函数(1)2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。 二、学生学习情况分析 刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。教师必须认识到这一点,教学中要控制要求的拔高,关注学习过程。 三、设计理念 本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对学生的学习背景,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。 四、教学目标 1.知识目标:使学生理解对数函数的定义并了解其图象的特征及对应函数性质; 2.能力目标:培养学生动手操作的能力以及自主探究数学问题的素养; 3.情感目标:构造和谐的教学氛围,增加互动,促进师生情感交流。 五、教学重点与难点 教学重点:掌握对数函数的图象和性质; 教学难点:是底数对对数函数值变化的影响。 六、教学准备 教师:将整个教学内容用几何画板制成课件。 学生:2~4人分成一组;科学计算器。 七、教学过程设计 教学流程:背景材料→引出课题→函数图象→函数性质→问题解决→归纳小结

相关主题
文本预览
相关文档 最新文档