当前位置:文档之家› 电致发光高分子材料综述

电致发光高分子材料综述

电致发光高分子材料综述
电致发光高分子材料综述

电致发光高分子材料综述

作者:张祺夏沣任彤尧汤伟

摘要:高分子发光二极管(PLED)是由英国剑桥大学的杰里米伯勒德及其同事首先发现的。聚合物大多由小的有机分子以链状方式结合在一起,以旋涂法形成高分子有机发光二极管,因其巨大的科学和商业价值而得到了广泛的关注,是近来国际上的研究热点。对于各种新材料的不断开发和深入研究,PLED器件日益实用化。本文主要综述了近几年国内外关于高分子聚合物在电致发光材料领域的研究进展,介绍了有机高分子发光材料的发展现状,概述了其市场前景及相关的应用,并展望了高分子电致发光材料的发展趋势。

关键词:高分子;电致发光;研究现状

Abstract:Polymer light-emitting diode (PLED) first discovered by Jerry Mibo Lede of the University of Cambridge and his colleagues. Most organic polymer molecules from the small ones to chain together by a spin-coating to form polymer organic light-emitting diodes, because of its great scientific and commercial value ,it has been widespread concerned, and becomes the recent international researchs’ focus. For the continuous development of new materials and in-depth researchs, PLED devices become increasingly practical. This paper mainly overviews the recent years’domestic and foreign polymer progress of research in electroluminescent materials, describes the recent status of the development of organic polymer light-emitting materials, overviews the market prospects and related applications, and prospects of polymer electroluminescent material trends.

Keywords:Polymer; EL; Research status

1.绪论

信息技术,纳米技术,生物技术被誉为21世纪的最具前景的三大技术,它们将会给人们的生活方式带来彻底的改变。作为技术的载体,材料科学的发展通常会伴随技术的突破,而信息技术的持续快速发展对信息显示系统的性能,如亮度、对比度、色彩变化、分辨率、成本、能量消耗、质量和厚度等均提出了高的要求。在已有的成熟显示技术中,电致发光显示设备能够满足上述性能要求,另外它还具有宽视角、较宽的工作温度范围和固有的强度等优点。电致发光显示设备一般包括发光二极管(LED)、粉末磷设备、薄膜电致发光设备( TFEL)和厚介质电致发光设备等。

1.1 定义

电致发光 (英文electroluminescent),又可称电场发光,简称EL,是通过加在两电极的电压产生电场,被电场激发的电子碰击发光中心,而引致电子解级的跃进、变化、复合导致发光的一种物理现象。电致发光物料的例子包括掺杂了铜和银的硫化锌和蓝色钻石。

PLED(polymer light-emitting diode的缩写),即第二种有机发光材料为高分子聚合物,也称为高分子发光二极管(PLED),由英国剑桥大学的杰里米伯勒德及其同事首先发现。聚合物大多由小的有机分子以链状方式结合在一起,以旋涂法形成高分子有机发光二极管。

1.2 发光机理[1]

电致发光是通过正负电极向发光层的最高占有轨道(HOMO)和最低空轨道(LUMO)分别注入空穴和电子,这些在电极附近生成的空间电荷相对迁移,在发光层内,电子和空穴相遇复合,形成激子,激子经过辐射衰变而发射可见光,或者激发活性层中其他发射体分子而发光。

2.国内外研究现状

2.1 新型甲壳型液晶高分子的电致发光性能研究

杨倩,徐一丁,沈志豪等[4]人对新型甲壳型液晶高分子的电致发光性能进行了研究,他们将优良的电子传输基团噁二唑引入甲壳型液晶高分子的分子结构中,可以使聚合物电致发光器件的电子传输性得到改善,最亮度可达290.8cd/m2,最大外量子效率可达0.24%[1]。电致发光性能的优良可能与该聚合物在一定温度下可以进入近晶A相的液晶相态相关[2]。为了进一步改善器件的发光性能,他们考虑将空穴传输基团引入分子结构中,期待能够实现空穴与电子传输平衡的目的。也考虑进一步增大侧基的刚性,有利于使聚合物在进入液晶相以后可以发育出近晶相态[3],利用甲壳型液晶高分子的大侧基使分子间聚集减少的特点,使聚合物制得的电致发光器件可以达到更好的性能。他们设计合成了一种新型的侧链含七个芳杂环的,尾链为辛氧基和癸氧基的甲壳型液晶高分子(如图7),研究了单体和相应聚合物的光物理性质,电致发光性质,液晶性以及偏振发光性质。

图7 甲壳型液晶高分子结构

这种侧基尾链长度不同的,噁二唑和噻吩基团在侧链对称直接相连的甲壳型液晶高分子在膜中聚集较少,用该系列聚合物做成的电致发光器件的最大亮度可达541cd/m2,最大电流效率可达0.10cd/A。同时聚合物的液晶性研究发现聚合物进入液晶态以后可形成近晶A相,偏振荧光测试发现偏振光沿不同方向入射时,取向的聚合物膜的荧光强度有较大差别。可见,甲壳型结构的运用可以很大地提高侧链共轭聚合物的电致发光性能。

2.2 含磷高分子有机电致发光材料

张胜兰,陈润锋,姜鸿基等[4]人对含磷有机电致发光材料进行了相关研究。他们根据引入磷原子的不同方式,对磷杂环戊二烯、二噻吩并磷杂环戊二烯、磷芴以及磷杂聚苯撑乙烯等材料的结构特点和在有机电致发光材料方面的现状进行了研究。

从而得出相关结论:在有机π共轭材料中引入磷原子是一种有效改善材料光电性能的方法,因为磷原子一方面可以通过其d 轨道与π共轭体系间的σ-π相互作用来改变材料的电子结构;另一方面可以通过氧化、硫化或与金属配位等手段进行修饰,从而能在较大范围内调控材料的光电性能。含磷的有机π共轭材料由于其独特的结构特点和多样化的性能,在有机电致发光材料中显示出了巨大的应用潜力。磷杂环戊二烯、二噻吩并磷杂环戊二烯、磷芴和磷杂聚苯撑乙烯等材料可为π共轭体系提供新的共轭骨架;亚氨基膦类材料可作为空穴传输料;DOPO 作为侧基引入共轭体系可以调节材料的溶解性和热稳定性;富磷烯类材料可以作为电子供体。目前研究较多的磷杂环戊二烯和二噻吩并磷杂环戊二烯等材料已经实现了三基色发射;磷芴等其他含磷光电功能材料则研究较少,但其独特的分子结构和光电特性显示出重要的研究价值。综上所述,磷原子的引入为有机光电功能材料的分子结构设计和光电性能改善等方面的研究提供了广阔的空间,有望成为有机电致发光材料研究开发的一个新的发展方向。

2.3 蓝色荧光材料[9]

由于蓝色发光材料一般具有较宽的能隙,很难同时满足蓝光对效率和色纯度的要求[5]。虽然蓝色磷光材料在色纯度以及稳定性方面离实用化还有一定距离[6], 但是蓝色荧光方面已经有较多十分接近目标的工作发表。

二苯乙烯基上接入二苯胺结构会产生近平面的几何结构,减少分子的扭曲,

引起吸收和荧光光谱红移, 为了解决这个问题, Li等[7] 在中间的芳基上引入氟

原子以调节发光颜色。以TFVBi为发光层做成器件, 电流效率可达5.91 cd/A,CIE 色度坐标为( 0.14, 0.14),外量子效率达4.87%。Wei 等[ 8] 设计了一类新的蓝光材料,由二苯乙烯基的两个苯环与芴的C-9位置连接起来形成一个7元环。这个结构可以避免分子间的π-π堆积而引起的发光淬灭或红移。器件最大外量子效率达到了惊人的7.87%。Lee 等[ 9]研究发现, 非对称结构的芳胺取代的二苯乙烯基衍生物共轭长度变短,发光波长蓝移,于是合成了一系列二苯乙烯基衍生物, 其

中以BD为掺杂发光层的器件,发射波长为438nm,外量子效率达5.1%。

在已报道的蓝色荧光材料中, 三环芳香烃蒽类和螺芴类材料的性能较为突出。它们的分子内都具有刚性的共轭环,热稳定性较高,同时大的取代基以及螺芴本身的扭曲结构,降低了分子的共平面性,共轭程度减小,发光波长蓝移,从而得到深蓝发射的器件。不过三环芳香烃类蓝光材料在器件效率方面并不是很突出。含氮蓝光材料最重要的一个特点是分子内具有电子推拉结构,有效地提高了材料的荧光量子效率,目前报道的含氮蓝光材料最大外量子效率达到7.87%。但是含氮蓝光材料稳定性较差,分子内偶极矩较大,导致发光波长红移。到目前为止,蓝光材料在效率和色纯度统一的问题上依然存在着困难。为了得到性能更加优良的蓝光材料,人们开始尝试将含氮基团和具有扭曲刚性结构的三环芳香烃连接在一起,构建新型高效深蓝光材料,这种设计思路同时兼顾了材料的效率和色纯度。随着研究的进一步进展,相信更加高效色纯度更好的深蓝色荧光材料将会更多。

2.4 高分子发光材料的颜色及调节[10]

近些年来,在聚合物电致发光材料的制备,发光器件的效率,亮度和使用寿命等方面取得很大的突破,甚至已经有实用化的产品出现,特别是红,绿,蓝三色聚合物发光材料的研究取得了相当诱人的进展。聚芴是最为典型的蓝馆聚合物,但其聚合物链段上接上不同的基团,可以得到从红光和绿光。但目前的研究,红绿光聚合物较多,蓝光聚合物较少。

在这方面,邹应萍,霍利军,李永舫等[11]人,及张诚,王纳川,徐意等[12]

人对发光材料及其颜色的调节做了详细的介绍。

另外,就目前的研究来说,纯的可以发白光的材料还不多,主要是通过共聚物在高分子主链上接枝上不同发光单元得到[13]。

3.市场与应用

开发公司

成果技术特点时间、地点或

会展

2英寸的绿色PLED 180000像素,2mm厚1998年2月CDT和Seiko-Ep

son

1999,SID 同上

全彩PLED面板喷墨打印技术,主动式TFT

驱动,16灰阶4096色,约3

000像素,120ppi

17.1英寸全彩PLED

——2002,SID Toshiba

面板

13英寸全彩PLED面

1000小时寿命2004,SID Philips

40英寸全彩PLED面板喷墨打印技术,世界上首个

大尺寸原型机,厚度2.1mm

2004,SID Philips

14英寸PLED全彩面板非晶硅主动矩阵底板驱动,

喷墨打印技术,分辨率1280

×768

2006,SID CDT

21英寸PLED全彩面

低温p-Si TFT驱动,72ppi 2007,SID Toshiba

年LED市场总额将达到90亿美元。而其中PLED市场份额将可能达到在40%以上。正是因为LED前景是如此的诱人,引得众多大公司竞折腰。另外,2013年全球OLED电视机出货量将从2007年的3,000台增长到280万台,年复合增长率(CAGR)为212.3%。从全球销售收入看,2013年全球OLED电视机的销售收入将从2007年的200万美元增长到14 亿美元,年复合增长率为206.8%,预期2015年能达到78亿美元。但对于大型面板而言,还是存有市场的竞争,特别是液晶面板性能的迅速提高,大尺寸的OLED有待开发。根据DisplaySearch2009年9月29日发表的季度OLED 显示器出货报告指出,2009年第二季全球OLED出货金额创新高,达1亿9千2百万美元,较上一季增长32%,与去年同期相比增长22%。DisplaySearch 预测全球OLED产值将从2008年的6亿美元,按每年33%的复合增长率增长,估计到2016年整体产值将达到62亿美元(如图8)。其中手机主屏仍是最主要的应用,2016年出货金额估计为30 亿美元,同时OLED TV产值将达20亿美元,成为OLED第二大应用产品。

DisplaySearch[16]预测,到2015年,OLED显示屏的营收将从2008年的5.91亿美元增长到60亿美元,年复合增长率将达到40%。资料显示,OLED平板显示器市场在2009~2014年间,营收的CAGR将达35%,规模约47亿美元,其成长动力初期是AMOLED显示器在可携式产品上的应用,未来是AMOLED电视机;在OLED照明方面,自2010年从小市场规模开始,以112%的CAGR速度成长,市场预计将在2011年起飞,至2014 年达19.85亿美元的规模。整体OLED照明市场营收可望在2013到2014 年之际,超越无源矩阵OLED显示器领域,并将在2018年达到60亿美元的规模。业界针对OLED照明领域至今已累积数百万美元的投资,特别是在欧洲、美国与日本。

图8 2006-2016 OLED面板出货金额预测(来源:DisplaySearch Q3’2009)

4.研究发展趋势与展望

高分子电致发光材料经过近几十年的研究已经取得了很大的进展, 它具有工作电压低、可以用电池驱动、功耗低等优异的性能, 特别适合于小型移动通讯设备. 目前, 许多国外的大公司将研究与开发重点都放在了高分子平板显示技术的开发上, 在未来发光与显示产业中, 高分子平板显示材料与技术将是平板显示领域发展的主要方向. 尽管世界上众多国家或地区的研究机构和公司投入巨资致力于高分子平板显示器件的研究与开发, 但其产业化的进程远远低于人们的期望. 其主要原因在于这些发光材料的寿命短、效率低等问题没有真正得到解决. 无论在高效稳定的电致发光材料制备、效率, 还是在彩色化实现方案、驱动技术、电路、大面积成膜技术等方面都仍然存在较多的问题. 解决器件效率低、稳定性差、性能衰减、寿命短的问题是目前高分子电致发光材料能否大规模走向产业化的关键.

参考文献

[1]P.Wang,C.P.Chuai,F.Z.Wang,X.F.Chen,X.H.Fan,Y.D.Xu,D.C.Zou,Q.F.Zhou,Polym -er,2007 ,48:5889

[2]C.P.Chai,X.Q.Zhu,Wang,M.Q.Ren,X.F.Chen,Y.D.Xu,X.H.Fan,C.Ye,E.Q.Chen,Q.F. Zhou,Macromolecules,2007,40:9361

[3]陈小芳,范星河,宛新华,等.高等学校化学学报,2008,29:1

[4]张胜兰,陈润锋,姜鸿基,等.含磷有机电致发光材料.化学进展,2010,22(5):899-903

[5] 张春玉,肖力光,秦丽,等.蓝色微腔有机发光器件[J].光学学报,2009,

29( 7) : 1967-1972

[6] 孙晓晨,朱拓,陈国庆,等.一种新型金属铱(Ⅲ)有机配合物的光谱特性研究

[J].光学学报,2009,29(5):1420-1423

[7] 肖立新,胡双元,孔胜,等.蓝色荧光小分子电致发光材料.光学学报,2010,30

(7):1895-1909

[8] H. C. Li, Y. P. Lin, P. T. Chou et al . . Color or tuning and highly efficient blue

emitters of finite diphenylam ino containing oligo( arylen evinylene) derivatives using fluoro substituents [ J ] .Adv . Func t . Mater , 2007, 17( 4) : 520~ 530 [9] Y. Wei, C. T. Chen. Doubly ortho-linked cis-4, 4 – bis ( diaryl amino ) stilbene/

fluorine hybrids as efficient nondoped, sky-blue fluorescent materials f or optoelectronic applications[ J] .J . Am . Chem. Soc . , 2007, 129( 24) : 7478~ 7479

[10] M. T . Lee, C. H . Liao, C. H . Tsai et al . . Highly efficient, deep blue doped

organic light emitting devices [ J] . Adv . Mate r . ,2005, 17( 20) : 2493~ 2497 [11]严兵,胡茂明,何珉,等.高分子发光材料器件的研究进展.化工中间

体,2011,2:6-10

[12]邹应萍,霍利军,永舫.共轭聚合物发光和光伏材料研究进展[J].高分子通

报,008,7:146-173

[13]张诚,王纳川,徐意,等.聚合物电致发光材料及其发光颜色调节的研究进展

[J].高峰女子通报,2009,5:54-62

[14]张安琪,应磊,吴宏滨,等.白光聚合物和聚合物白光器件[J],高分子通报,

2009,6:1-12]

[15]阎韬,孙渝威,关丽哲,等.浅析有机电致发光显示技术及市场前景.现代显

示,2010,(115):19-23

[16]iSuppli 最新研究报告

[17] DisplaySearch公司预测报告.

电致发光高分子功能材料的应用..

电致发光高分子材料及其应用进展 孙东亚*,1,何丽雯2 (1 厦门理工学院材料科学与工程学院福建厦门361024) (2华侨大学材料科学与工程学院福建厦门361021) 摘要:主要介绍了导电高分子的一个重要门类-电致发光(有机EL,也称作OLED)聚合物材料的发光机理、制备工艺及应用现状。结合有机OLED相比于传统显示材料及器件具有发光效率高、波长易调节、寿命长、机械加工性能好等优势,综述了OLED材料及器件在环保照明及平板显示领域取得进展和未来的发展方向。 关键词:电致发光;高分子材料;平板显示; Abstract:An important category of conductive polymer-electroluminescent (organic EL, also known as OLED) luminescence mechanism, preparation process and application status of polymer materials has been introduced. Compared to traditional display materials and devices, the organic combination of OLED has high luminous efficiency, long life, easy to adjust the wavelength, good machining performance and other advantages. At the same time, we summarized the progresses and future development of OLED materials and devices in the green lighting and panel display. 0 前言 有机高分子光电材料由于其诱人的应用前景而得到了人们的广泛关注和研究[1-10]。近年来,导电高分子的研究取得了较大的进展,科学家对其合成、结构、导电机理、性能、应用等方面经过多年的研究,已使其成为一门相对独立的学科。目前,有机电致发光平面显示器(OLED)在一些领域里已经取代了液晶显示器占有平面显示器的主要市场。与液晶平面显示器相比, 有机电致发光平面显示器以及高效率的节能照明设备具有主动发光、轻薄、色彩绚丽、全角度可视、能耗低等显著特点,吸引很多国内外研究机构和国际知名大电子、化学公司都投入了巨大的人力财力研究这一领域[11-15]。虽然在应用研究领域已经取得了巨大的成功,但是无论从综合发光效率、发光波长的调整、稳定性和寿命等方面还有待更进一步的发展。本文综述了近年来OLED材料与器件在制备工艺及品质质量方面所取得的进展及需要解决的主要问题。 1 有机电致发光器件及原理 由电能直接激发产生的发光现象称为电致发光。如图1所示,电致发光材料是通过电极向材料注入空穴和电子,两者通过在材料内部的相对迁移在材料内部发生复合形成激子(激发态分子),然后激子导带中的电子跃迁到价带的空穴中,多余的能量以光的形式放出,产生发光现象。 福建省中青年教师教育科研项目(JB14077) Education Scientific Project of Young Teacher of Fujian Province(JB14077) 作者简介:孙东亚(1982-),男,硕士,工程师,从事光电功能材料制备与表征,E-Mail:

(发展战略)光功能高分子材料的研究发展及应用

论光功能高分子材料的研究发展及应用综述 吴俊杰 化工081班 前言:光功能高分子材料研究是光化学和光物理科学的重要组成部分,近年来随着现代科学技术的发展,光功能高分子材料研究在功能材料领域占有越来越重要的地位,光功能高分子材料日益受到重视。光功能高分子材料的应用领域已从电子、印刷、精细化工等领域扩大到塑料、纤维、医疗、生化和农业等方面,正在快速发展之中,光功能高分子材料研究与应用也将越来越广。 1光功能高分子材料及分类 光功能高分子材料是指能够对光进行传输、吸收、储存、转换的一类高分子材料。 表1 光功能高分子材料的分类 剂等构成。 光致抗蚀剂:主要包括正性光致抗蚀剂和负性光致抗蚀剂等。 高分子光稳定剂:主要包括光屏蔽剂、激发态狙灭剂抗氧剂和聚合型光稳定剂等。 光致变色高分子材料:主要包括含硫卡巴腙络合物的光致变色聚合物、含偶氮苯的光致变色高分子和含螺苯并吡喃结构的光致变色高分子等。 光导电高分子材料:由光导电聚合物材料构成。

2光功能高分子材料的类别和应用 表2 光功能高分子材料的类别和应用 3光功能高分子材料的发展概况 1954年,美国柯达公司的Minsk等人开发出光功能高分子聚乙烯醇肉桂酸酯,并成功应用于印刷制版。而现在光功能高分子材料应用领域已从电子、印刷、精细化工等领域扩大到塑料、纤维、医疗、生化和农业等方面,发展之势方兴未艾。 光功能高分子材料能够对光能进行传输、吸收、储存、转换.塑料光导纤维是利用高分子的光曲线传播性而制成的非线性光学元件。塑料光纤一般以有机玻璃为芯材,以含氟透明树脂为皮层,用柔软的有机硅树脂进行一次包覆,然后用硬质高分子材料进行二次包覆。有机玻璃、含氟透明树脂、有机硅树脂都是高分子材料,芯材有高折光率,皮层为低折光率材料。光纤的直径范围为几十到约1000微米,光纤在光纤芯内通过反复反射而向前传输,由于塑料光纤在目前传输损耗仍较高,主要应用于飞机、舰船和汽车内部的短距离光通信系统。此外,还应用于光纤显示器、图像的缩小和放大、火焰及高温监视器、光开关、巨点折象器、阅读穿孔卡片、道路标志和装饰照明等。近来,对有机玻璃采用重氢化技术,已使塑料光纤的传输损耗有所降低,为较长距离应用创造了条件。 以高性能有机玻璃或聚碳酸酯透明塑料的高分子材料为基材制成的光盘,是80年代新开发成功的先进信息、记录、储存元件,适应了激光技术的发展和对大容量、高信息密

电致发光及原理

电致发光及原理 电致发光ElectroluminescenceEL是物质在一定的电场作用下被相应的电能所激发而产生的发光现象。电致发光EL是一种直接将电能转化为光能的现象。早在20世纪初虞瑟福就发现了SiC晶体在电场作用下的发光。电致发光作为一种平面光源引起了人们的极大爱好。人们企图实现照明光源从点光源、线光源到面光源的革命。自从无机发光板硫化锌和磷砷化镓化合物发明以来电致发光已被广泛应用在很多领域取得了令人瞩目的成就。尽管粉末电致发光现象早在1937年就被发现但直到50年代将硫化锌和有机介质涂敷在透明导电玻璃上再做上第二电极加上交流电压才实现稳定的电致发光。人们逐渐把目光投向了性能更为优良的新一代平板显示器件工艺更简单的新型有机电致发光器件OLED。 1.电致发光材料从发光材料角度可将电致发光分为无机电致发光和有机电致发光。无机电致发光材料一般为等半导体材料。有机电致发光材料依占有机发光材料的分子量的不同可以区分为小分子和高分子两大类。小分子OLED材料以有机染料或颜料为发光材料高分子OLED材料以共轭或者非共轭高分子聚合物为发光材料典型的高分子发光材料为PPV及其衍生物。有机电致发光材料依据在OLED器件中的功能及器件结构的不同又可以区分为空穴注进层HIL、空穴传输层HTL、发光层EML、电子传输层ETL、电子注进层EIL等材料。其中有些发光材料本身具有空穴传输层或者电子传输层的功能这样的发光材料也通常被称为主发光体发光材料层中少量掺杂的有机荧光或者磷光染料可以接受来自主发光体的能量转移和经过载流子捕捉carriertrap的机制而发出不同颜色的光这样的掺杂发光材料通常也称为客发光体或者掺杂发光体英文用Dopant表示。从发光原理角度电致发光可以分为高场电致发光和低场电致发光。 2.电致发光的原理和器件结构从发光原理电致发光可以分为高场电致发光和低场电致发光。高场电致发光是一种体内发光效应。发光材料是一种半导体化合物掺杂适当的杂质引进发光中心或形成某种介电状

蒽类电致发光材料研究进展

文章编号:1006-6268(2008)04-0029-07 蒽类电致发光材料研究进展 摘 要:有机电致发光二极管显示技术与液晶、等离子等平板显示技术相比具有很多优势及市场 竞争力,被称为第三代显示技术。在这一研究领域,发光材料一直是关注的焦点。由于蒽类化合物具有刚性结构、宽能隙和高荧光量子效率的优点,到目前为止,研究者已开发了大量的蒽类发光材料。本文主要按照材料结构与性能特点分类对其研究进展进行了综述。并提出了进一步开发蒽类新发光材料的思路。 关键词:蒽衍生物;有机电致发光;材料研究进展中图分类号:O625.1;TN383.1文献标识码:A ProgressinAnthracene-basedElectroluminescentMaterials XUEYun-na,CHAISheng-yong,BIEGuo-jun,LIUBo,GANNing (DepartmentofOptoelectronicMaterials,Xi'anModernChemistryResearchInstitute, 710065,Xi'an,China) Abstract:OrganicLight-emittingDiode(OLED),possessingmanykindofadvantages,andmarketcompetitivepotentialsoverLCDandPDPetal,iscalledthethirdgenerationdisplaytechnology.IntheOLEDresearchfiled,thelight-emittingmaterialsarealwaysbeingfocusedon.Sinceanthracenederivativeshaverigidstructure,wideenergygapsandhighfluorescentquantumefficiency,agreatdealofanthracene-basedelectroluminescentmate-rialshavebeendevelopedtillnow.Theprogressofanthracene-basedelectroluminescentmaterialsisreviewedaccordingtothemolecularstructuresandlight-emittingproperties.Theresearchideasonnewanthracene-basedelectroluminescentmaterialsarealsosuggested. Keywords:anthracenederivatives;organicelectroluminescence;materialsdevelopingprogress 薛云娜,柴生勇,别国军,刘 波,甘 宁 (西安近代化学研究所光电材料事业部西安710065) 技术交流

现代高分子材料综述(非常好!!)

现代高分子材料综述 材料学王晓梅学号:112408 摘要 高分子材料作为新时期的全新全能型材料,是现代人类发展的重要支柱,是发展高新科技的基础与先导,高分子材料的应用将会使人类支配改造自然的能力和社会生产力的发展带到一个新的水平,对人类的发展将会出现前所未有的促进。本文将从高分子材料的定义、主要种类、应用和以塑料为例介绍与人类生活息息相关的高分子材料的相关常识。本文综述了各类高分子材料的研究及发展,主要论述了导电高分子材料、功能高分子材料、工程高分子材料、复合高分子材料以及生物高分子材料等应用领域。 前言 高分子材料是由相对分子质量比一般有机化合物高得多的高分子化合物为主要成分制成的物质。一般有机化合物的相对分子质量只有几十到几百,高分子化合物是通过小分子单体聚合而成的相对分子质量高达上万甚至上百万的聚合物。巨大的分子质量赋予这类有机高分子以崭新的物理、化学性质:可以压延成膜;可以纺制成纤维;可以挤铸或模压成各种形状的构件;可以产生强大的粘结能力;可以产生巨大的弹性形变;并具有质轻、绝缘、高强、耐热、耐腐蚀、自润滑等许多独特的性能。于是人们将它制成塑料、橡胶、纤维、复合材料、胶粘剂、涂料等一系列性能优异、丰富多彩的制品,使其成为当今工农业生产各部门、科学研究各领域、人类衣食住行各个环节不可缺少、无法替代的材料[1]。 由于高分子化学反应和合成方法对高分子化学学科发展的推动,促进了高分子合成材料的广泛应用。同时,随着高分子材料的发展,纳米技术与生物技术之间的界限变得越来越小,并与更多的传统分子科学与技术相结合。因此,我们相信,高分子技术的发展促使使各类高分子材料得到更加迅速的发展,推广和应用。 1

最新功能高分子材料综述

功能高分子材料综述

功能高分子材料综述 【文摘】功能高分子材料是高分子学科中的一个重要分支,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术,它的重要性在于所包含的每一类高分子都具有特殊的功能。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。本文主要论述了在工程上应用较广和具有重要应用价值的一些功能高分子材料,如吸附分离功能高分子、反应型功能高分子、光功能高分子、电功能高分子、医用功能高分子、液晶高分子、高分子功能膜材料等。 【关键词】材料;高分子;高分子材料;功能材料; 功能高分子材料的定义为:与常规聚合物相比具有明显不同的物理化学性质,并具有某些特殊功能的聚合物大分子(主要指全人工和半人工合成的聚合物)都应归属于功能高分子材料范畴。而以这些材料为研究对象,研究它们的结构组成、构效关系、制备方法,以及开发应用的科学,应称为功能高分子材料科学。 功能高分子材料科学是研究功能高分子材料规律的科学,是高分子材料科学领域发展最为迅速,与其他科学领域交叉度最高的一个研究领域。它是建立在高分子化学、高分子物理等相关学科的基础之上,并与物理学、医学甚至生物学密切联系的一门学科。功能高分子材料是对物质、能量、信息具有传输、

转换或贮存作用的高分子及其复合材料的一类高分子材料,有时也被称为精细高分子或者特种高分子(包括高性能高分子) 。其于20 世纪60年代末迅速发展起来的新型高分子材料,内容丰富、品种繁多、发展迅速,已成为新技术革命必不可少的关键材料。 功能高分子是指具有某些特定功能的高分子材料。它们之所以具有特定的功能,是由于在其大分子链中结合了特定的功能基团,或大分子与具有特定功能的其他材料进行了复合,或者二者兼而有之。例如吸水树脂,它是由水溶性高分子通过适度交联而制得,遇水时将水封闭在高分子的网络内,吸水后呈透明凝胶,因而产生吸水和保水的功能。 在合成或天然高分子原有力学性能的基础上,再赋予传统使用性能以外的各种特定功能(如化学活性、光敏性、导电性、催化活性、生物相容性、药理性能、选择分类性能等)而制得的一类高分子。一般在功能高分子的主链或侧链上具有显示某种功能的基团,其功能性的显示往往十分复杂,不仅决定于高分子链的化学结构、结构单元的序列分布、分子量及其分布、支化、立体结构等一级结构,还决定于高分子链的构象、高分子链在聚集时的高级结构等,后者对生物活性功能的显示更为重要。 1 功能高分子材料研究 1.1 导电高分子材料 近几年来,导电性高分子的研究取得了长足的发展,形成了一个十分活跃的边缘学科领域,它对电子工业、信息工业及新技术的发展具有重大的意义。现有的研究成果表明,发展导电高分子不仅可以满足人们对导电材料的需要,而且由于它兼具有机高分子材料的性能及半导体和金属的电性能,具有重量

有机电致发光显示器件基本原理与进展

有机电致发光显示器件基本原理与进展 副标题:有机电致发光显示器件基本原理与进展 发表日期: 2006-2-14 21:33:35 作者:佚名点击数5224 摘要: 本文对有机电致发光显示器件的发展历史,器件结构、工作特征、获得彩色显示的方法以及所具有的优缺点、发展现状和趋势等都做了简要的概括。详细比较了小分子OLED与聚合物PLED、OLED与LCD性质上的比较,对OLED显示的发光机理进行了详细的综述。此外,对获得彩色显示的无源驱动电路和有源驱动电路的结构进行了总结,认为有源驱动将是最终发展趋势。最后总结了国内外OLED技术的发展状况。 关键词:小分子有机电致发光有机聚合物电致发光无源驱动有源驱动 (作者:姚华文,上海华嘉光电技术有限公司,上海市嘉定区招贤路928号,201821) 有机电致发光显示(organic electroluminesence Display)技术被誉为具有梦幻般显示特征的平面显示技术,因其发光机理与发光二极管(LED)相似,所以又称之为OLED(organic light emitting diode)。2000年以来,OLED受到了业界的极大关注,开始步入产业化阶段。 1.发展历史 1936年,Destriau将有机荧光化合物分散在聚合物中制成薄膜,得到最早的电致发光器件。20 世纪50年代人们就开始用有机材料制作电致发光器件的探索,A. Bernanose等人在蒽单晶片的两侧加上400V的直流电压观测到发光现象,单晶厚10mm~20mm,所以驱动电压较高。1963年M. Pope等人也获得了蒽单晶的电致发光。70年代宾夕法尼亚大学的He eger探索了合成金属[1]。1987年Kodak公司的邓青云首次研制出具有实用价值的低驱动电压(<10V,>1000cd/m2)OL ED器件(Alq作为发光层)[2]。1990年,Burroughes及其合作者研究成功第一个高分子EL(PLED)(PPV作为发光层),更为有机电致发光显示器件实用化进一步奠定了基础。1997年单色有机电致发光显示器件首先在日本产品化,1999年月,日本先锋公司率先推出了为汽车音视通信设备而设计的多彩有机电致发光显示器面板,并开始量产,同年9月,使用了先锋公司多色有机电致发光显示器件的摩托罗拉手机大批量上市[3]。这一切都表明,OLED技术正在逐步实用化,显示

高分子发光材料

高分子发光材料 有机发光材料与无机发光材料相比,以其易合成、易加工、成本低、质轻、发光颜色全等特点越来越受到关注。近几年以有机发光材料制备的发光器件已临近应用阶段,成为当前流行的液晶显示器件的强力竞争对手。目前研究比较活跃的有聚噻吩、聚苯胺、聚吡咯、聚芴【7】等。 2.1高分子光致发光材料 2.1.1简介 高分子光致发光材料是将荧光物质(芳香稠环、电荷转移络合物或金属)引入高分子骨架的功能高分子材料。高分子光致发材料均为含有共轭结构的高聚物材料。 2.1.2发光机理 高分子在受到可见光、紫外光、X一射线等照射后吸收光能,高分子电子壳层内的电子向较高能级跃迁或电子基体完全脱离,形成空穴和电子.空穴可能沿高分子移动,并被束缚在各个发光中心上,辐射是由于电子返回较低能量级或电子和空穴在结合所致。高分子把吸收的大部分能量以辐射的形式耗散,从而可以产生发光现象[8]。 2.1.3分类 按照引入荧光物质而分为三类 2.1.3.1高分子骨架上连接了芳香稠环结构的荧光材料,应稠环芳烃具有较大的共轭体系和平面刚性结构,从而具有较高的荧光量子效率。其中广泛应用的是芘的衍生物,如图1。 图1 芘的衍生物 2.1.3.2共轭结构的分子内电荷转移化合物有以下几类 2.1. 3.2.1两个苯环之间以一C=C一相连的共轭结构的衍生物[9]如图2。吸收光能激发至激发态时,分子内原有的电荷密度分布发生了变化。这类化合物是荧光增白剂中用量最大的荧光材料,常被用于太阳能收集和染料着色。 图2 共轭结构的衍生物 2 .1.3.2 .2香豆素衍生物[10-12]如图3。在香豆素母体上引入胺基类取代基

可调节荧光的颜色,它们可发射出蓝绿岛红色的荧光,已用作有机电致发光材料。但是,香豆索类衍 生物往往只在溶液中有高的量子效率,而在固态容易发生荧光猝灭,故常以混合掺杂形式使用。 图3 香豆素衍生物 2.1.3.3高分子金属配合物发光材料,许多配体分子在自由状态下并不发光,但与金属离子形成配合物后却能转变成强的发光物质。8一羟基喹啉与Al、Be、Ga、In、Sc、Yb、Zn、Zr等金属离子形成发光配合物[13]。 2.1.3.3.1掺杂 目前,掺杂小分子的高分光致发光材料被广泛应用于PELD中。常见用于掺杂的小分子有:发蓝光的吡唑磷衍生物、发黄光的萘酰亚胺衍生物以及发红光的DCM 等。把有机小分子稀土络合物通过溶剂溶解或熔融共混的方式掺杂到高分子体系中,一方面可以提高络合物稳定性.另一方面可以改善稀土的荧光性能。 2.1.3.3.2化学键合法 汪联辉等人先后研究了烷氧基钕,烷氧基钐单体与甲基丙烯酸甲酯、苯乙烯等共聚及其荧光性质。发现在共聚物中三价钕离子的荧光特性受其基质影响很小,且其荧光强度随钕含量增加而线性增大,在钕含量高达8%时仍未出现荧光浓度淬灭现象。 2.2电致发光高分子材料 2.2.1简介 有机半导体的电致发光现象早就被人们所熟知。电致发光高分子材料是指电流通过材料时能导致发光现象的一类功能材料。目前,有机高分子电致发光器件(PLED)材料以其独特的光电性能和易加工性吸引了众多学者的研究兴趣。 2.2.2发光机理 与光致发光的电子跃迁机理不同,电致发光是通过正负电极向发光层的最高占有轨道(HOMO)和最低空轨道(LUMO)分别注入空穴和电子,这些在电极附近生成的空

完整word版,功能高分子材料综述

功能高分子材料综述 【文摘】功能高分子材料是高分子学科中的一个重要分支,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术,它的重要性在于所包含的每一类高分子都具有特殊的功能。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。本文主要论述了在工程上应用较广和具有重要应用价值的一些功能高分子材料,如吸附分离功能高分子、反应型功能高分子、光功能高分子、电功能高分子、医用功能高分子、液晶高分子、高分子功能膜材料等。 【关键词】材料;高分子;高分子材料;功能材料; 功能高分子材料的定义为:与常规聚合物相比具有明显不同的物理化学性质,并具有某些特殊功能的聚合物大分子(主要指全人工和半人工合成的聚合物)都应归属于功能高分子材料范畴。而以这些材料为研究对象,研究它们的结构组成、构效关系、制备方法,以及开发应用的科学,应称为功能高分子材料科学。 功能高分子材料科学是研究功能高分子材料规律的科学,是高分子材料科学领域发展最为迅速,与其他科学领域交叉度最高的一个研究领域。它是建立在高分子化学、高分子物理等相关学科的基础之上,并与物理学、医学甚至生物学密切联系的一门学科。功能高分子材料是对物质、能量、信息具有传输、转换或贮存作用的高分子及其复合材料的一类高分子材料,有时也被称为精细高分子或者特种高分子(包括高性能高分子) 。其于20 世纪60年代末迅速发展起来的新型高分子材料,内容丰富、品种繁多、发展迅速,已成为新技术革命必不可少的关键材料。 功能高分子是指具有某些特定功能的高分子材料。它们之所以具有特定的功能,是由于在其大分子链中结合了特定的功能基团,或大分子与具有特定功能的其他材料进行了复合,或者二者兼而有之。例如吸水树脂,它是由水溶性高分子通过适度交联而制得,遇水时将水封闭在高分子的网络内,吸水后呈透明凝胶,因而产生吸水和保水的功能。 在合成或天然高分子原有力学性能的基础上,再赋予传统使用性能以外的各种特定功能(如化学活性、光敏性、导电性、催化活性、生物相容性、药理性能、选择分类性能等)而制得的一类高分子。一般在功能高分子的主链或侧链上具有显示某种功能的基团,其功能性的显示往往十分复杂,不仅决定于高分子链的化学结构、结构单元的序列分布、分子量及其分布、支化、立体结构等一级结构,还决定于高分子链的构象、高分子链在聚集时的高级结构等,后者对生物活性功能的显示更为重要。 1 功能高分子材料研究 1.1 导电高分子材料 近几年来,导电性高分子的研究取得了长足的发展,形成了一个十分活跃的边缘学科领域,它对电子工业、信息工业及新技术的发展具有重大的意义。现有的研究成果表明,发展导电高分子不仅可以满足人们对导电材料的需要,而且由于它兼具有机高分子材料的性能及半导体和金属的电性能,具有重量轻,易加工成各种复杂的形状,化学稳定性好及电阻率可在较大范围内调节等特点。此外在电子工业中的应用日趋广泛,促进了现代科学技术的发展。因此,自然引起了学术界和工业界的广泛兴趣。 导电高分子材料根据材料的组成可以分成复合型导电高分子材料(composite conductive polymers)和本征型导电高分子材料(intrinsic conductive polymers)两大类。复合型导电高分子材料是由普通高分子结构材料与金属或碳等导电材料,通过分散、层合、梯

高分子电致发光材料研究近况--以共轭结构的高聚物材料为例

信息记录材料2019年5月第20卷第5期陋至?诊若 高分子电致发光材料研究近况 — —以共辄结构的高聚物材料为例 高远 (南昌大学材料科学与工程学院江西南昌330000) 【摘要】高分子发光材料的研究有很重要的理论和现实意义,本文则通过对一系列共觇结构的高聚物材料的原理和特点来了解电致发光高分子发光材料的应用和发展现状,并展望其发展前景. 【关键词】高分子;发光材料;应用;发展趋势 【中图分类号】TN6【文献标识码】A【文章编号】1009-5624(2019)05-0001-02 Recent Development of high polymer Electroluminescent Materials Gao Yuan. School of M aterials Science and Engineering,Nanchang University,Nanchang,Jiangxi330000,China [Abstract]The study of polymer luminescent materials is of great theoretical and practical significance.Based on the principle and characteristics of a series of conjugated polymer materials,the application and development of electroluminescent polymer materials are analyzed in this paper,and the development prospect of electroluminescent polymers is prospected. 【Key words]Luminescent material;Application;Development trend 1引言(3)聚嗟吩及其衍生物类电致发光材料。这类材料 随着信息时代的飞速发展,各种发光材料被广泛应用于通讯、卫星等高科技领域。而为了使各种新媒体满足显示的功能,使得各种发光材料被研究并开发应用而来。而有机发光材料与无机发光材料相比,以其易合成、易加工、成本低、质轻、发光颜色全等特点越来越受到人们的关注和重视。尤其是近几年以有机发光材料制备的发光器件已临近应用阶段,成为当前流行的液晶显示器件的强力竞争对手。目前研究比较活跃的有聚嗟吩、聚苯胺、聚毗咯、聚茹等。 而有机薄膜电致发光的发展较为迅速,但现在它却被新兴的有机电致发光材料所改变。比如聚对苯乙块(PPV),它本身是一种导电高分子材料,另外它的电致发光性能也同样良好。这样有机薄膜电致发光材料就从有机小分子拓展到了聚合物。而这一变化发展,这就意味着电致发光高分子材料不仅扩大了发光材料的选择范围,而且由于聚合物本身良好的易加工性、易成膜性、高稳定性等优势,使得其被更多的开发应用到发光器件的制备及应用当中。也正因如此,现已有各种体系的聚合物相继被人们研究用来制备发光材料C1]o 2共辘结构的高聚物发光材料简介 共轨结构的高聚物发光材料主要有以下几种类型: (1)聚对苯撑乙烯类电致发光材料。这种材料可以在苯环上改变取代基或在乙烯基上取代而设计合成岀结构、性能各异的衍生物,其还可通过共聚的方式来合成出各种不同的分子材料。 (2)聚对苯乙烘(PPE)-曝吩共轨结构的高聚物电致发光材料。这种材料的结构类似于PPV,其主链引入嗟吩基团,聚对苯乙块在溶液中显示很高的荧光效率,有望作为发光材料进行研究应用。这种高分子电致发光材料不仅改善了传统材料的溶解性,而且其分子量得以提升。具有良好的导电性能,并通过佟拉嘎[2]等在用其成功试 制发光元件后,证明其良好的稳定性。 (4)聚噁二哇[3]类电致发光材料,这类材料是具有性能良好的电子传输能力。其耐热性和较高的玻璃化温度被得到广泛认可。 3共辄结构的高聚物发光材料的优缺点及解决方案共轨结构的高聚物发光材料有自己独特的光电、化学性质,共辄的骨架和侧链结构决定了它们的电子结构、光电学性质,因此它们可以通过化学方法进行调控和修饰。 共轨结构的高聚物发光材料的优点是①具有良好的热稳定性和粘附性;②优异的成膜性,可大面积成膜;③具有优良的机械强度;④此类材料分子结构、发光颜色易于改变和修饰且合成路线多,发光效率高; 但是早期合成的共轨结构的高聚物会给器件的制备带来不便,因为材料合成较为复杂,提纯过程较困难,因此难以制成多层发光器件。而针对这些不足,也有很多的方法可以进行弥补和调整。 一种方法是使用单体直接聚合成型; 也可通过可溶性前聚物加工成型,然后加热转化为共轨聚合物[如Wessling⑷用前聚物法制备的PPV]; 更好的方法是引入可溶解的支链或链段。如MEH-PPV[5]{聚[2-甲氧基-5(2'-乙基己氧基)对苯乙烘]}, CN-PPV冏等。 在PPV主链的亚甲基上引入吸电子基团氧基,得到的CN-PPV聚合物不仅成膜性好,而且还可以改善高聚物和电子的亲和能力。 4高分子电致发光材料的应用 当前这些主流的电致发光材料被广泛用于激光染料、荧光集光器、有机太阳能电池、有机场效应晶体管、有机激光和化学与生物传感等领域的研究、开发和生产中,也 1

形状记忆高分子材料研究进展(综述)

形状记忆的高分子材料的研究进展 Research Progress of Shape Memory Polymer Material 1 综述 摘要:形状记忆高分子(SMP)是一类新型的功能高分子材料,是高分子材料研究、开发、应用的一个新的分支点,它同时兼具有塑料和橡胶的特性。形状记忆高分子材料是一种可以响应外界刺激,并调整自身状态参数,从而回复到预先设定状态的一种智能高分子材料。本文简单介绍了形状记忆高分子材料的性能、种类和应用。 关键词:形状记忆;高分子材料;聚合物;研究进展 1形状记忆高分子材料简介. 形状记忆的高分子材料是一种能够感知外部环境如光、热、、电、磁等,并且能够根据外部环境的变化而自发的对自身的参数进行调整还原到预先设定状态的一种智能高分子材料。形状记忆高分子( Shape Memory Polymer,简称 SMP) 材料具有可恢复形变量大、质轻价廉、易成型加工、电绝缘效果好等优点,从20世纪80年代以来赢得广泛关注和研究,并得到了快速发展,因其独特的性能和特点,使其这些年来在材料领域中扮演着重要的角色。近40年来,科研工作者们相继开发出了多种形状记忆高分子材料,如聚乙烯、聚异戊二烯、聚酯、共聚酯、聚酰胺、共聚酰胺、聚氨酯等,它们被广泛应用于航空航天、生物医用、智能纺织、信息载体、自我修复等多个材料领域。显示出了形状记忆高分子材料广泛的应用前景的地位。 2.形状记忆高分子材料的分类及应用 根据响应方式的不同可以将形状记忆高分子分材料大致分为热致型、光致型、化学感应型、电致型等类型。其中,热致感应型和光致感应型应用最为广泛。 2.1热致感应型 热致SMP是一种通过施加电场或红外光照射等刺激促使其在室温以上变形,并能在室温固定形变且可长期存放,当再次升温至某一固定温度时,材料能够恢复到初始形状。热致型SMP被广泛用于医疗卫生、体育运动、建筑、包装、汽车及科学实验等领域,如医用器械、泡沫塑料、坐垫、光信息记录介质及报警器等。 2.2光致感应型 光致SMP可以将光能转化为机械能,根据记忆机理的不同,可分为光化学反应型和光热效应型两种。光化学反应型是经光照后发生化学反应,它是将具有光

高分子材料综述

不饱和聚酯合成及加工工艺进展 摘要:本文介绍了不饱和聚酯合成与加工工艺,不饱和聚酯的由来以及一些不饱和聚酯的最新科研成果,包括不饱和聚酯的合成原料、加工助剂、不饱和聚酯的改性以及新型的加工工艺等方面内容。 关键词:不饱和聚酯(UP);合成;加工工艺;改性;进展 0前言 不饱和聚酯树脂是热固性树脂中用量最大的树脂品种,也是FRP制品生产中用得最多的基体树脂。UPR生产工艺简便,原料易得,耐化学腐蚀,力学性能、电性能优良,可常温常压固化,具有良好的工艺性能,广泛应用于建筑、防腐、汽车、电子电器等多种复合材料。近年来,由于苯乙烯等主要原材料价格的大幅上涨,对低端产品的冲击很大,不饱和聚酯树脂行业的效益下滑。面对严峻的形势,各国纷纷加大研究开发的力度,研究出多种低成本、环境友好的复合材料,并将其应用领域不断拓宽。 1不饱和聚酯的概述 1.1不饱和聚酯的定义 人类最早发现的树脂是从树上分泌物中提炼出来的脂状物,如松香等,这是“脂”前有“树”的原因。直到1906年第一次用人工合成了酚醛树脂,才开辟了人工合成树脂的新纪元。1942年美国橡胶公司首先投产不饱和聚酯树脂,后来把未经加工的任何高聚物都称作树脂。但是早就与“树”无关了。树脂又分为热塑性树脂和热固性树脂两大类。对于加热熔化冷却变固,而且可以反复进行的可熔的树脂叫做热塑性树脂,如聚氯乙烯树脂(PVC)、聚乙烯树脂(PE)等;对于加热固化以后不再可逆,成为既不溶解,又不熔化的固体,叫做热固性树脂,如酚醛树脂、环氧树脂、不饱和聚酯树脂等。“聚酯”是相对于“酚醛”“环氧”等树脂而区分的含有酯键的一类高分子化合物。这种高分子化合物是由二元酸和二元醇经缩聚反应而生成的,而这种高分子化合物中含有不饱和双键时,就称为不饱和聚酯(英文名Unsaturated Polyester简称UP)。因此,不饱和聚酯可以定义为由饱和的和不饱和的二元酸(或酸酐)与多元醇缩聚而成的线型高分子化合物。不饱和聚酯是一种线性不饱和聚脂,当其在热、光照、高能辐射以及引发剂的作用下与交联剂反应,固化成为一种不溶不融的高分子网状的不饱和聚酯树脂(英文名Unsaturated Polyester Resin 简称UPR)。但这种聚合物机械强度很低,不能满足大部分使用的要求,当用玻璃纤维增强时可成为一种复合材料,俗称“玻璃钢”(英文名Fiber Reinforced Plastics 简称FRP)。"玻璃钢"的机械强度等各方面性能与树脂浇铸体相比有了很大的提高。 1.2不饱和聚酯的发展历史 不饱和聚酯树脂产品发展至今大约有70多年的历史,在这么短的时期内,不饱和聚酯产品无论从产量还是从技术水平方面均得到了飞速的发展。而在上世纪80年代后期,我国先后引进了美国、日本、意大利和德国的制造技术,使我

导电高分子材料及其应用综述

导电高分子材料及其应用 姓名:刘振杰 (常州轻工职业技术学院常州213164) 摘要:主要论述了导电高分子材料的种类、发展概况及其应用,对新近开发的复合型导电高分子材料产品进行了介绍,并对导电高分子材料的发展进行了展望。[1]导电高分子材料具有高电导率、半导体特性、电容性、电化学活性,同时还具有一系列光学性能等,具有与一般聚合物不同的特性。因此,它们在导电材料、电极材料、电显示材料、电子器件、电磁波屏蔽以及化学催化等方面具有很大的潜在应用。根据导电高分子材料的研究和应用现状分析了其今后的研究趋势,并展望了其应用前景。[2] 关键词:导电高分子应用导电高分子材料复合型导电高分子结构型导电高分子分类 1导电高分子材料的种类[3~6] 按照材料的结构与组成,可将导电高分子材料分为两大类。一类是复合型导电高分子材料,另一类是结构型(或本征型)导电高分子材料。 1.1复合型导电高分子材料 复合型导电高分子材料是将各种导电性物质以不同的方式和加工工艺(如分散聚合、层积复合、形成表面电膜等)填充到聚合物基体中而构成的材料。几乎所有的聚合物都可制成复合型导电高分子材料。其一般的制备方法是填充高效导电粒子或导电纤维,如填充各类金属粉末、金属化玻璃纤维、碳纤维、铝纤维、不锈钢纤维及锰、镍、铬、镁等金属纤维,填充纤维的最佳直径为7!m。复合型导电高分子材料在技术上比结构型导电高分子材料具有更加成熟的优势,用量最大最为普及的是炭黑填充型和金属填充型。 1.2结构型导电高分子材料 结构型(又称作本征型)导电高分子是指那些高分子材料本身或经过掺杂后具有导电功能的聚合物。这种高分子材料本身具有“固有”的导电性,由其结构提供导电载流子,一旦经掺杂后,电导率可大幅度提高,甚至可达到金属的导电水平。从导电时载流子的种类来看,结构型导电高分子材料又被分为离子型和电子型两类。离子型导电高分子通常又称为高分子固体电解质,它们导电时的载流子主要是离子。电子型导电高分子指的是以共轭高分子为主体的导电高分子材料。导电时的载流子是电子(或空穴),这类材料是目前世界导电高分子中研究开发的重点。 2导电高分子材料的发展概况[3~6] 复合型导电高分子材料在工业上的应用始于20世纪60年代。它是将导电的炭黑、金属粉末、金属丝或碳纤维混到高分子基质中而形成的导电材料。进入80年代,美、德、日等国先后制定了有关限制电磁干扰/射频干扰(EMI/RFI)公害的规定,规定生产的各种电子电气设备必须有电磁屏蔽设施,使得导电高分子材料的研究开发空前活跃,市场需求量增大。从1982~1987年,美国对导电高分子材料的需求量增长了3.3倍,日本从1980~1987年需求量增长了4.4倍。90年代随着微电子工业的发展,导电高分子材料的市场越来越大。据预测,到21世纪初,导电塑料总消费量将从上世纪90年代初的5.45万I增至20. 9万I,保持年增长率15%的势头。 结构型导电高分子材料是1971年由日本白川研究用齐格勒-纳塔催化剂合成聚乙炔时发现的。80年代以来,发现聚对苯硫醚、聚吡咯、聚噻吩、聚喹啉等共轭型聚合物均可通过掺杂形成高导电塑料。90年代,结构型导电高分子材料已部分进入实用化阶段,如德国Zippering Kessler公司制成了用于生产高剪切的结构型导电高分子材料模塑部件的专用小型设备。BASF公司研制的聚乙炔,在导电率与质量比上已经达到许多金属相同的量级。

光致发光高分子材料

光致发光高分子材料 摘要:稀土高分子发光材料由于兼具稀土离子发光强度高、色纯度高和高分子材料优良的加工成型性能等优点而倍受瞩目。本文就稀土光致发光材料进行了分类,对其发光特性作了简要介绍,综述了其开发与应用的历史与现状,并介绍了其目前在各个领域的应用产品。 关键词:稀土;高分子;光致发光材料;长余辉材料 1前言 光致发光材料又称超余辉的蓄光材料。长余辉光致发光材料是吸收光能后进行蓄光而后发光的物质。它是一种性能优良,无需任何电源就能自行发光的材料。可利用其制成各种危险标识、警告牌;做成各种安全、逃生标志;在应付突发事件、事故中可发挥巨大的作用。在发生突发事故时,电源往往被切断,这使得许多依靠电源发光照明的安全标志失去了作用,而采用长余辉发光材料的安全标志此时将发挥其特殊的作用。因此长余辉光致发光材料的研究,具有重要的科学意义和实用性[1]。现在我们已开发出很多实用的发光材料。在这些发光材料中,稀土元素起的作用非常大[2,3]根据激发源的不同,稀土发光材料可分为光致发光材料、阴极射线(CRT)发光材料、X射线发光材料以及电致发光材料[4]。本文主要介绍光致发光材料. 2光致发光材料的发光原理[5] 发光材料被外加能量(光能)照射激发后,能量可以直接被发光中心吸收(激活剂或杂质),也可被发光材料的基质吸收。在第一种情况下,吸收或伴有激活剂电子壳层内的电子向较高能级的跃迁或电子与激活剂完全脱离及激活剂跃迁到离化态(形成“空穴”)。在第二种情况下,基质吸收能量时,在基质中形成空穴和电子,空穴可能沿晶体移动,并被束缚在各个发光中心上,辐射是由于电子返回到较低(初始)能量级或电子和离子中心(空穴)再结合(复合)所致。即当外加能量(光能)的粒子与发光基质的原子发生碰撞而引起它们激发电离。电离出来的自由电子具有一定的能量,又可引起其他原子的激发电离,当激发态或电离态的原子重新回到稳定态时,就引起发光[6]。发光基质将所吸收的能量转换为光辐射,这

功能高分子材料的应用综述

功能高分子材料的应用 *** 广西科技大学生化学院,广西柳州545006 【摘要】新型功能高分子材料已广泛应用于许多领域,本文介绍了功能高分子材料在化学、光、电、生物医用等方面的应用;介绍了几种新型功能高分子材料的研究进展,并论述了发展功能高分子材料对促进现代化发展的重要意义,对初步了解认识功能高分子材料的应用具有一定的指导意义。 【关键词】功能材料;高分子;应用 材料是人类赖以生存和发展的物质基础,是人类文明的重要里程碑,如今有人将能源、信息和材料并列为新科技革命的三大支柱。进入本世纪8O年代以来。一场与之相适应的“新材料革命”蓬勃兴起。功能材料是新材料发展的方向。而功能高分子材料占有举足轻重的地位,由于其原料丰富、种类繁多,发展十分迅速,已成为新技术革命必不可少的关键材料[1]。 1 功能高分子材料 功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料[2]。功能高分子材料的研究现状在原来高分子材料的基础上,可将功能高分子材料分为两类:一类是以改进其性能为目的的高功能高分子材料;另一类是为赋予其某种新功能的新型功能高分子材料。 2 高功能高分子材料 2.1 化学功能高分子材料 通常具有某种化学反应功能。它将具有化学活性的基团连接到以原有主链为骨架的高分子上。离子交换树脂是材料一种带有可交换离子的活性基团、具有三维网状结构、不溶的交联聚合物。在水中具有足够大的凝胶孔或大孔结构。由于它具有高效快速分析和分离功能,目前已广泛用于硬水软化、废水净化、高纯水制备、海水淡化、溶液浓缩和净化、海水提铀,特别是在食品工业、制药行业、治理污染和催化剂中应用的更为广泛。 2.2 光功能高分子材料 在光的作用下,实现对光的传输、吸收、贮存、转换的高分子材料即为光功能高分子材

光功能高分子材料

光功能高分子材料 指在光的作用下能够产生物理(如光导电、光致变色)或化学变化(如光交联、光分解)的高分子材料,或者在物理或化学作用下表现出光特性(化学荧光)的高分子材料。常见的光功能高分子材料主要有:光导电高分子材料、光致变色高分子材料、高分子光致刻蚀剂、高分子荧光和磷光材料、高分子光稳定剂、高分子光能转化材料和高分子非线性光学材料等。光功能高分子材料在电子工业和太阳能利用等方面具有广泛应用前景。 1光功能高分子材料及分类 光功能高分子材料是指能够对光进行传输、吸收、储存、转换的一类高分子材料。 表1 光功能高分子材料的分类 剂等构成。 光致抗蚀剂:主要包括正性光致抗蚀剂和负性光致抗蚀剂等。 高分子光稳定剂:主要包括光屏蔽剂、激发态狙灭剂抗氧剂和聚合型光稳定剂等。光致变色高分子材料:主要包括含硫卡巴腙络合物的光致变色聚合物、含偶氮苯的光致变色高分子和含螺苯并吡喃结构的光致变色高分子等。 光导电高分子材料:由光导电聚合物材料构成。 2光功能高分子材料的类别和应用 表2 光功能高分子材料的类别和应用

3光功能高分子材料的发展概况 1954年,美国柯达公司的Minsk等人开发出光功能高分子聚乙烯醇肉桂酸酯,并成功应用于印刷制版。而现在光功能高分子材料应用领域已从电子、印刷、精细化工等领域扩大到塑料、纤维、医疗、生化和农业等方面,发展之势方兴未艾。光功能高分子材料能够对光能进行传输、吸收、储存、转换.塑料光导纤维是利用高分子的光曲线传播性而制成的非线性光学元件。塑料光纤一般以有机玻璃为芯材,以含氟透明树脂为皮层,用柔软的有机硅树脂进行一次包覆,然后用硬质高分子材料进行二次包覆。有机玻璃、含氟透明树脂、有机硅树脂都是高分子材料,芯材有高折光率,皮层为低折光率材料。光纤的直径范围为几十到约1000微米,光纤在光纤芯内通过反复反射而向前传输,由于塑料光纤在目前传输损耗仍较高,主要应用于飞机、舰船和汽车内部的短距离光通信系统。此外,还应用于光纤显示器、图像的缩小和放大、火焰及高温监视器、光开关、巨点折象器、阅读穿孔卡片、道路标志和装饰照明等。近来,对有机玻璃采用重氢化技术,已使塑料光纤的传输损耗有所降低,为较长距离应用创造了条件。 以高性能有机玻璃或聚碳酸酯透明塑料的高分子材料为基材制成的光盘,是80年代新开发成功的先进信息、记录、储存元件,适应了激光技术的发展和对大容量、高信息密度记录储存材料的需求既可记录文字数据.又可记录声音和图象。光盘是利用激光的单色性、相干性进行记录再现的。光盘的信息储存密度大,是磁带的4000倍、磁盘的250倍、盒式录像带的55倍。 现在光导电光导电高分子材料的应用越来越广泛,用光导电材料制作的静电复印设备越来越受到人们的欢迎,人们使用的也越来越多。而现在防止工业烟尘污染是环保的重要任务之一.为了消除工业烟尘污染,首先要知道烟尘排放量,因此必须对烟尘源进行监测,自动显示和超标报警.烟道里的烟尘浊度是用通过光在烟道里传输过程中的变化大小来检测的.如果烟道浊度增加,光源发出的光被烟尘颗粒的吸收和折射增加,到达光检测器的光减少,因而光检测器输出信号的强弱便可反映烟道浊度的变化.把光敏电阻连接到外电路中,在外加电压的作用下,用光照射就能改变电路中电流的大小.灵敏度高,光谱特性好,光谱响应可从紫外区到红外区范围内,体积小,重量轻,性能稳定,价格便宜,因此应用比较广泛.。

相关主题
文本预览
相关文档 最新文档