当前位置:文档之家› 高中数学函数与方程知识点总结例题及解析高考真题及答案

高中数学函数与方程知识点总结例题及解析高考真题及答案

高中数学函数与方程知识点总结例题及解析高考真题及答案
高中数学函数与方程知识点总结例题及解析高考真题及答案

函数与方程

【知识梳理】

1、函数零点的定义

(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。

(2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点

①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。

③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(

2、函数零点的判定

(1)零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的曲线,并且有()()0f a f b ?<,那么,函数)(x f y =在区间(),a b 内有零点,即存在),(0b a x ∈,使得0)(0=x f ,这个0x 也就是方程0)(=x f 的根。

(2)函数)(x f y =零点个数(或方程0)(=x f 实数根的个数)确定方法

① 代数法:函数)(x f y =的零点?0)(=x f 的根;

②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点。

(3)零点个数确定

0?>?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根;

0?

1、 二分法

(1)二分法的定义:对于在区间[,]a b 上连续不断且()()0f a f b ?<的函数()y f x =,通过不断地把函数()y f x =的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; (2)用二分法求方程的近似解的步骤:

① 确定区间[,]a b ,验证()()0f a f b ?<,给定精确度ε; ②求区间(,)a b 的中点c ;

③计算()f c ;

(ⅰ)若()0f c =,则c 就是函数的零点;

(ⅱ) 若()()0f a f c ?<,则令b c =(此时零点0(,)x a c ∈); (ⅲ) 若()()0f c f b ?<,则令a c =(此时零点0(,)x c b ∈);

④判断是否达到精确度ε,即a b ε-<,则得到零点近似值为a (或b );否则重复②至④步.

【经典例题】

1.函数3

()=2+2x

f x x -在区间(0,1)内的零点个数是 ( )

A 、0

B 、1

C 、2

D 、3 2.函数 f (x )=2x +3x 的零点所在的一个区间是 ( )

A 、(-2,-1)

B 、(-1,0)

C 、(0,1)

D 、(1,2) 3.若函数=)(x f x a x a -- (0a >且1a ≠)有两个零点,则实数a 的取值范围是 .

4.设函数f (x )()x R ∈满足f (x -)=f (x ),f (x )=f (2-x ),且当[0,1]x ∈时,f (x )=x 3.又函数g (x )= |x cos ()x π|,则函数h (x )=g (x )-f (x )在13[,]22

-上的零点个数为 ( ) A 、5 B 、6 C 、7 D 、8 5.函数2

()cos f x x x =在区间[0,4]上的零点个数为 ( )

A 、4

B 、5

C 、6

D 、7

6.函数()cos f x x x =

-在[0,)+∞内 ( )

A 、没有零点

B 、有且仅有一个零点

C 、有且仅有两个零点

D 、有无穷多个零点

7.对实数a 和b ,定义运算“?”:a ?b =?????

a ,a -

b ≤1,

b ,a -b >1.

设函数f (x )=(x 2-2)?(x -x 2),x ∈R ,若函数y =f (x )

-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是 ( )

A 、(-∞,-2]∪????-1,32

B 、(-∞,-2]∪????-1,-34

C 、????-1,14∪????14,+∞

D 、????-1,-34∪???

?1

4,+∞ 8.已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点

*0(,1),,n=x n n n N ∈+∈则 .

9.求下列函数的零点:

(1)3

2

()22f x x x x =--+; (2)4

()f x x x

=-

. 10.判断函数y =x 3-x -1在区间[1,1.5]内有无零点,如果有,求出一个近似零点(精确度0.1).

【课堂练习】

1、在下列区间中,函数()43x

f x e x =+-的零点所在的区间为 ( )

A 、1(,0)4-

B 、1(0,)4

C 、11(,)42

D 、13(,)24

2、若0x 是方程lg 2x x +=的解,则0x 属于区间 ( ) A 、(0,1) B 、(1,1.25) C 、(1.25,1.75) D 、(1.75,2)

3、下列函数中能用二分法求零点的是 ( )

4、函数f ()x =2x +3x 的零点所在的一个区间是 ( ) A .(-2,-1) B 、(-1,0) C 、(0,1) D 、(1,2)

5、设函数f ()x =4sin (2x+1)-x ,则在下列区间中函数f ()x 不存在零点的是 ( ) A 、[-4,-2] B 、[-2,0] C 、[0,2] D 、[2,4]

6、函数()x f =x -cos x 在[0,∞+﹚内 ( )

A 、没有零点

B 、有且仅有一个零点

C 、有且仅有两个零点

D 、有无穷多个零点 7、若函数()f x 的零点与()422x

g x x =+-的零点之差的绝对值不超过0.25,则()f x 可以是( ) A 、()41f x x =- B 、2()(1)f x x =- C 、()1x

f x e =- D 、1()ln()2

f x x =- 8、下列函数零点不宜用二分法的是 ( )

A 、3()8f x x =-

B 、()ln 3f x x =+

C 、2()2f x x =++

D 、2

()41f x x x =-++

9、函数f(x)=log 2x+2x-1的零点必落在区间 ( )

A 、??

? ??41,81

B 、??

?

??21,41

C 、??

?

??1,21

D 、(1,2)

10、01

lg =-

x

x 有解的区域是 ( ) A 、(0,1] B 、(1,10]

C 、(10,100]

D 、(100,)+∞

11、在下列区间中,函数()e 43x f x x =+-的零点所在的区间为 ( )

A 、1(,0)4-

B 、 1(0,)4

C 、11(,)42

D 、13(,)24

12、函数2()log f x x x π=+的零点所在区间为( )

A 、1[0,]8

B 、11[,]84

C 、11[,]42

D 、1[,1]2

13、设()833-+=x x f x

,用二分法求方程()2,10833∈=-+x x x

在内近似解的过程中得

()()(),025.1,05.1,01<>

A 、(1,1.25)

B 、(1.25,1.5)

C 、(1.5,2)

D 、不能确定 14、设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.

存在零点的是( )

A 、[]4,2--

B 、 []2,0-

C 、[]0,2

D 、[]2,4

15、函数223,0

()2ln ,0

x x x f x x x ?+-≤=?-+>?, 零点个数为( )A 、3 B 、2 C 、1 D 、0

16、若函数32()22f x x x x =+--的一个正数零点附近的函数值用二分法计算,其参考数据如下:

那么方程32220x x x +--=的一个近似根(精确到0.1)为 ( ) A 、1.2 B 、1.3 C 、1.4 D 、1.5 17、方程22

3x

x -+=的实数解的个数为 .

18、已知函数2

2

()(1)2f x x a x a =+-+-的一个零点比1大,一个零点比1小,求实数a 的取值范围。

19、判断函数2

3

2()43

f x x x x =+-

在区间[1,1]-上零点的个数,并说明理由。 20 、求函数32

()236f x x x x =+--的一个正数零点(精确度0.1).

【课后作业】

1、下列函数图象与x 轴均有交点,但不宜用二分法求交点横坐标的是 ( )

2、设2

()3x

f x x =-,则在下列区间中,使函数)(x f 有零点的区间是 ( )

A 、[0,1]

B 、[1,2]

C 、[-2,-1]

D 、[-1,0] 3、已知)(x f 唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下面命题错误的 ( ) A 、函数)(x f 在(1,2)或[)2,3内有零点 B 、函数)(x f 在(3,5)内无零点 C 、函数)(x f 在(2,5)内有零点 D 、函数)(x f 在(2,4)内不一定有零点 4、若函数3

()3f x x x a =-+有3个不同的零点,则实数a 的取值范围是 ( )

A 、()2,2-

B 、[]2,2-

C 、(),1-∞-

D 、()

1,+∞

5、函数x x x f ln )(+=的零点所在的区间为 ( )

A 、(-1,0)

B 、(0,1)

C 、(1,2)

D 、(1,e ) 6、求函数132)(3

+-=x x x f 零点的个数为 ( )

A 、1

B 、2

C 、3

D 、4

7、如果二次函数2

3y x x m =+++有两个不同的零点,则m 的取值范围是

( ) A 、11(

,)4+∞ B 、11(,)2-∞ C 、11(,)4-∞ D 、11

(,)2

+∞

8、方程0lg =-x x 根的个数为 ( ) A 、无穷多 B 、3 C 、1 D 、0

9、用二分法求方程()0f x =在(1,2)内近似解的过程中得(1)0,(1.5)0,(1.25)0f f f <>

A 、(1.25,1.5)

B 、(1,1.25)

C 、(1.5,2)

D 、不能确定

10、设函数f(x)=1

3x -lnx(x >0),则y =f(x) ( )

A 、在区间????1e ,1,(1,e)内均有零点

B 、在区间????1

e ,1,(1,e)内均无零点 C 、在区间????1e ,1内有零点,在区间(1,e)内无零点 D 、在区间????1

e ,1内无零点,在区间(1,e)内有零点 11、设函数2

1()ln 1(0)2

f x x x x =-

+>,则函数()y f x = ( ) A 、在区间(0,1),(1,2)内均有零点 B 、在区间(0,1)内有零点,在区间(1,2)内无零点 C 、在区间(0,1),(1,2)内均无零点 D 、在区间(0,1)内无零点,在区间(1,2)内有零点

12、用二分法研究函数13)(3

-+=x x x f 的零点时,第一次经计算0)5.0(0)0(>

∈0x , 第二次应计算 . 以上横线上应填的内容为 ( )

A 、(0,0.5),)25.0(f

B 、(0,1),)25.0(f

C 、(0.5,1),)75.0(f

D 、(0,0.5),)125.0(f 13、函数22)(3

-+=x x f x

在区间(0,1)内的零点个数是 ( )

A 、0

B 、1

C 、2

D 、3

14、(已知函数()log (0,1).a f x x x b a a =+->≠且当234a <<<是,函数()f x 的零点

*0(,1),,x n n n N ∈+∈则n= .

15、用二分法求函数()y f x =在区间(2,4)上的近似解,验证f(2)·f(4)<0,给定精确度ε=0.01,取区间(2,4)

的中点x 1=2+42

=3,计算得f(2)·f(x 1)<0,则此时零点x 0∈________.

16、已知函数 f (x )={ 2x -1,x >0,-x 2-2x ,x ≤0,若函数 g (x )= f (x )-m 有3个零点,则实数m 的

取值范围是________. 17、函数65)(2

+-=x x x f 的零点组成的集合是 .

18、用“二分法”求方程0523

=--x x 在区间[2,3]内的实根,取区间中点为5.20=x ,那么下一个有根的

区间是

19、函数()ln 2f x x x =-+的零点个数为 .

20、证明方程6-3x =2x 在区间[1,2]内有唯一一个实数解,并求出这个实数解(精确度0.1).

函数与方程

【考纲说明】

2、 了解函数的零点与方程根的联系,能判断一元二次方程根的存在性及根的个数。

3、 能够根据具体函数的图像,用二分法求出相应方程的近似解。

【知识梳理】

1、函数零点的定义

(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。

(2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点

①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。

③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(

2、函数零点的判定

(1)零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的曲线,并且有()()0f a f b ?<,那么,函数)(x f y =在区间(),a b 内有零点,即存在),(0b a x ∈,使得0)(0=x f ,这个0x 也就是方程0)(=x f 的根。

(2)函数)(x f y =零点个数(或方程0)(=x f 实数根的个数)确定方法

① 代数法:函数)(x f y =的零点?0)(=x f 的根;

②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点。

(3)零点个数确定

0?>?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根;

0?

4、 二分法

(1)二分法的定义:对于在区间[,]a b 上连续不断且()()0f a f b ?<的函数()y f x =,通过不断地把函数()y f x =的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; (2)用二分法求方程的近似解的步骤:

① 确定区间[,]a b ,验证()()0f a f b ?<,给定精确度ε; ②求区间(,)a b 的中点c ; ③计算()f c ;

(ⅰ)若()0f c =,则c 就是函数的零点;

(ⅱ) 若()()0f a f c ?<,则令b c =(此时零点0(,)x a c ∈); (ⅲ) 若()()0f c f b ?<,则令a c =(此时零点0(,)x c b ∈);

④判断是否达到精确度ε,即a b ε-<,则得到零点近似值为a (或b );否则重复②至④步.

【经典例题】

【例1】 函数3

()=2+2x f x x -在区间(0,1)内的零点个数是 ( ) A 、0 B 、1 C 、2 D 、3 【答案】B

【解析】解法1:因为(0)=1+02=1f --,3

(1)=2+22=8f -,即(0)(1)<0f f ?且函数()f x 在(0,1)内连续不断,故()f x 在(0,1)内的零点个数是1.

解法2:设1=2x

y ,3

2=2y x -,在同一坐标系中作出两函数的图像如图所示:可知B 正确.

【例2】 函数 f (x )=2x +3x 的零点所在的一个区间是 ( )

A 、(-2,-1)

B 、(-1,0)

C 、(0,1)

D 、(1,2) 【答案】B

【解析】∵ f (-1)=2-

1+3×(-1)=-52

<0,

f (0)=20+0=1>0, ∴ f (-1) f (0)<0.

∴ f (x )=2x +3x 的零点所在的一个区间为(-1,0). 【例3】若函数=)(x f x a x a -- (0a >且1a ≠)有两个零点,则实数a 的取值范围是 . 【答案】)

,(∞+1 【解析】

Θ函数)(x f =x a x a -- (0a >且1a ≠)有两个零点,Θ方程0=--a x a x 有两个不相等的实数根,即两个函数x

a y =与a x y +=的图像有两个不同的交点,当10<

一个交点,不合题意;当1>a 时,两个函数的图像有两个交点,满足题意.

【例4】设函数f (x )()x R ∈满足f (x -)=f (x ),f (x )=f (2-x ),且当[0,1]x ∈时,f (x )=x 3.又函数g (x )= |x cos ()x π|,则函数h (x )=g (x )-f (x )在13[,]22

-上的零点个数为 ( ) A 、5 B 、6 C 、7 D 、8 【答案】B

【解析】因为当[0,1]x ∈时,f (x )=x 3. 所以当[1,2]x ∈时,(2)[0,1]x -∈,3

()(2)(2)f x f x x =-=-, 当1[0,]2x ∈时,()cos()g x x x π=;当13[,]22

x ∈时,()cos()g x x x π=-,注意到函数f (x )、 g (x )都是

偶函数,且f (0)= g (0), f (1)= g (1),13()()02

2

g g ==,作出函数f (x )、 g (x )的大致图象,函数h (x )除了0、

1这两个零点之外,分别在区间1113

[,0][][][1]2222

-、0,、,1、,上各有一个零点,共有6个零点,故选B

【例5】函数2

()cos f x x x =在区间[0,4]上的零点个数为 ( ) A 、4 B 、5

C 、6

D 、7

【答案】C

【解析】:f(x)=0,则x=0或cosx 2=0,x 2=kπ+ π

2 ,k ∈Z ,又x ∈[0,4],k=0,1,2,3,4,所以共有6个解.选C .

【例6】函数()cos f x x =

在[0,)+∞内 ( )

A 、没有零点

B 、有且仅有一个零点

C 、有且仅有两个零点

D 、有无穷多个零点 【答案】B

【解析】解法一:数形结合法,令()cos f x x =

0=cos x =,设函数y =cos y x =,

它们在[0,)+∞的图像如图所示,显然两函数的图像的交点有且只有一个,所以函数()cos f x x =

[0,)+∞内有且仅有一个零点;

解法二:在[,)2

x π

∈+∞1>,cos 1x ≤,所以()cos f x x =0>;

在(0,

]

2

x π

∈,()sin 0f x x '=

>,所以函数()cos f x x =是增函数,又因为(0)1f =-,

()02

f π=>,所以()cos f x x =在[0,]2

x π

∈上有且只有一个零点. 【例7】对实数a 和b ,定义运算“?”:a ?b =?

????

a ,a -

b ≤1,

b ,a -b >1.设函数f (x )=(x 2-2)?(x -x 2),x ∈R ,若函数y

=f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是 ( )

A 、(-∞,-2]∪????-1,32

B 、(-∞,-2]∪????-1,-34

C 、????-1,14∪????14,+∞

D 、????-1,-34∪???

?1

4,+∞ 【答案】B

【解析】f (x )=???

x 2-2,x 2-2-

()x -x 2

≤1,x -x 2,x 2-2-()x -x 2>1 =?

??

x 2-2,-1≤x ≤3

2

x -x 2,x <-1,或x >32

则f ()x 的图象如图

∵ y =f (x )-c 的图象与x 轴恰有两个公共点, ∴ y =f (x )与y =c 的图象恰有两个公共点,

由图象知c ≤-2,或-1

4

.

【例8】已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点

*0(,1),,n=x n n n N ∈+∈则 .

【答案】5

【解析】方程log (0a 1)a x x b a +-≠>,且=0的根为0x ,即函数log (23)a y x a =<<的图象与函数

(34)y x b b =-<<的交点横坐标为0x ,且*0(,1),x n n n N ∈+∈,结合图象,因为当(23)

x a a =<<时,1y =,此时对应直线上1y =的点的横坐标1(4,5)x b =+∈;当2y =时, 对数函数log (23)a y x a =<<的图象上点的横坐标(4,9)x ∈,直线(34)y x b b =-<<的图象上点的横坐标(5,6)x ∈,故所求的5n =. 【例9】求下列函数的零点:

(1)3

2

()22f x x x x =--+; (2)4

()f x x x

=-

. 【答案】(1)2,1,-1.(2)2,-2. 【解析】(1)由3

2

220,x x x --+=

故函数的零点是2,1,-1.

(2)244

0,0,x x x x

--==由得

故函数的零点是2,-2.

【例10】判断函数y =x 3-x -1在区间[1,1.5]内有无零点,如果有,求出一个近似零点(精确度0.1). 【答案】1.312 5 【解析】 因为f (1)=-1<0,f (1.5)=0.875>0,且函数y =x 3-x -1的图象是连续的曲线,所以它在区间[1,1.5]内有零点,用二分法逐次计算,列表如下:

区间 中点值 中点函数近似值

(1,1.5) 1.25 -0.3 (1.25,1.5) 1.375 0.22 (1.25,1.375) 1.312 5 -0.05 (1.312 5,1.375)

1.343 75

0.08

由于|1.375-1.312 5|=0.062 5<0.1, 所以函数的一个近似零点为1.312 5.

【课堂练习】

1、在下列区间中,函数()43x

f x e x =+-的零点所在的区间为 ( )

A 、1(,0)4-

B 、1(0,)4

C 、11(,)42

D 、13(,)24

2、若0x 是方程lg 2x x +=的解,则0x 属于区间 ( ) A 、(0,1) B 、(1,1.25) C 、(1.25,1.75) D 、(1.75,2)

3、下列函数中能用二分法求零点的是 ( )

4、函数f ()x =2x

+3x 的零点所在的一个区间是 ( )

A .(-2,-1)

B 、(-1,0)

C 、(0,1)

D 、(1,2)

5、设函数f ()x =4sin (2x+1)-x ,则在下列区间中函数f ()x 不存在零点的是 ( ) A 、[-4,-2] B 、[-2,0] C 、[0,2] D 、[2,4]

6、函数()x f =x -cos x 在[0,∞+﹚内 ( )

A 、没有零点

B 、有且仅有一个零点

C 、有且仅有两个零点

D 、有无穷多个零点 7、若函数()f x 的零点与()422x

g x x =+-的零点之差的绝对值不超过0.25,则()f x 可以是( ) A 、()41f x x =- B 、2()(1)f x x =- C 、()1x

f x e =- D 、1()ln()2

f x x =- 8、下列函数零点不宜用二分法的是 ( )

A 、3()8f x x =-

B 、()ln 3f x x =+

C 、2()2f x x =++

D 、2

()41f x x x =-++

9、函数f(x)=log 2x+2x-1的零点必落在区间 ( )

A 、??

? ??41,81

B 、??

?

??21,41

C 、??

?

??1,21

D 、(1,2)

10、01

lg =-

x

x 有解的区域是 ( ) A 、(0,1] B 、(1,10]

C 、(10,100]

D 、(100,)+∞

11、在下列区间中,函数()e 43x f x x =+-的零点所在的区间为 ( )

A 、1(,0)4-

B 、 1(0,)4

C 、11(,)42

D 、13(,)24

12、函数2()log f x x x π=+的零点所在区间为( )

A 、1[0,]8

B 、11[,]84

C 、11[,]42

D 、1[,1]2

13、设()833-+=x x f x

,用二分法求方程()2,10833∈=-+x x x

在内近似解的过程中得

()()(),025.1,05.1,01<>

A 、(1,1.25)

B 、(1.25,1.5)

C 、(1.5,2)

D 、不能确定 14、设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是( ) A 、[]4,2-- B 、 []2,0- C 、[]0,2 D 、[]2,4

15、函数223,0()2ln ,0

x x x f x x x ?+-≤=?-+>?, 零点个数为( )A 、3 B 、2 C 、1 D 、0

16、若函数32()22f x x x x =+--的一个正数零点附近的函数值用二分法计算,其参考数据如下:

那么方程32220x x x +--=的一个近似根(精确到0.1)为 ( ) A 、1.2 B 、1.3 C 、1.4 D 、1.5 17、方程22

3x

x -+=的实数解的个数为 .

18、已知函数2

2

()(1)2f x x a x a =+-+-的一个零点比1大,一个零点比1小,求实数a 的取值范围。

19、判断函数2

3

2()43

f x x x x =+-

在区间[1,1]-上零点的个数,并说明理由。 20 、求函数32

()236f x x x x =+--的一个正数零点(精确度0.1).

【课后作业】

1、下列函数图象与x 轴均有交点,但不宜用二分法求交点横坐标的是 ( )

2、设2

()3x

f x x =-,则在下列区间中,使函数)(x f 有零点的区间是 ( )

A 、[0,1]

B 、[1,2]

C 、[-2,-1]

D 、[-1,0] 3、已知)(x f 唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下面命题错误的 ( ) A 、函数)(x f 在(1,2)或[)2,3内有零点 B 、函数)(x f 在(3,5)内无零点 C 、函数)(x f 在(2,5)内有零点 D 、函数)(x f 在(2,4)内不一定有零点 4、若函数3

()3f x x x a =-+有3个不同的零点,则实数a 的取值范围是 ( )

A 、()2,2-

B 、[]2,2-

C 、(),1-∞-

D 、()

1,+∞

5、函数x x x f ln )(+=的零点所在的区间为 ( )

A 、(-1,0)

B 、(0,1)

C 、(1,2)

D 、(1,e ) 6、求函数132)(3

+-=x x x f 零点的个数为 ( )

A 、1

B 、2

C 、3

D 、4

7、如果二次函数2

3y x x m =+++有两个不同的零点,则m 的取值范围是

( ) A 、11(

,)4+∞ B 、11(,)2-∞ C 、11(,)4-∞ D 、11

(,)2

+∞ 8、方程0lg =-x x 根的个数为 ( ) A 、无穷多 B 、3 C 、1 D 、0

9、用二分法求方程()0f x =在(1,2)内近似解的过程中得(1)0,(1.5)0,(1.25)0f f f <>

A 、(1.25,1.5)

B 、(1,1.25)

C 、(1.5,2)

D 、不能确定

10、设函数f(x)=1

3x -lnx(x >0),则y =f(x) ( )

A 、在区间????1e ,1,(1,e)内均有零点

B 、在区间????1

e ,1,(1,e)内均无零点 C 、在区间????1e ,1内有零点,在区间(1,e)内无零点 D 、在区间???

?1

e ,1内无零点,在区间(1,e)内有零点

11、设函数2

1()ln 1(0)2

f x x x x =-

+>,则函数()y f x = ( ) A 、在区间(0,1),(1,2)内均有零点 B 、在区间(0,1)内有零点,在区间(1,2)内无零点 C 、在区间(0,1),(1,2)内均无零点 D 、在区间(0,1)内无零点,在区间(1,2)内有零点

12、用二分法研究函数13)(3

-+=x x x f 的零点时,第一次经计算0)5.0(0)0(>

∈0x , 第二次应计算 . 以上横线上应填的内容为 ( )

A 、(0,0.5),)25.0(f

B 、(0,1),)25.0(f

C 、(0.5,1),)75.0(f

D 、(0,0.5),)125.0(f 13、函数22)(3

-+=x x f x

在区间(0,1)内的零点个数是 ( )

A 、0

B 、1

C 、2

D 、3

14、(已知函数()log (0,1).a f x x x b a a =+->≠且当234a <<<是,函数()f x 的零点

*0(,1),,x n n n N ∈+∈则n= .

15、用二分法求函数()y f x =在区间(2,4)上的近似解,验证f(2)·f(4)<0,给定精确度ε=0.01,取区间(2,4)

的中点x 1=2+42

=3,计算得f(2)·f(x 1)<0,则此时零点x 0∈________.

16、已知函数 f (x )={ 2x -1,x >0,-x 2-2x ,x ≤0,若函数 g (x )= f (x )-m 有3个零点,则实数m 的

取值范围是________. 17、函数65)(2

+-=x x x f 的零点组成的集合是 .

18、用“二分法”求方程0523

=--x x 在区间[2,3]内的实根,取区间中点为5.20=x ,那么下一个有根的

区间是

19、函数()ln 2f x x x =-+的零点个数为 .

20、证明方程6-3x =2x 在区间[1,2]内有唯一一个实数解,并求出这个实数解(精确度0.1).

函数与方程【参考答案】

【课堂练习】

1-16、CDCBA BACCB CCBABC 17、2

18、解:设方程22

(1)20x a x a +-+-=的两根分别为1212,()x x x x <,

则12(1)(1)0x x --<,所以1212()10x x x x ?-++< 由韦达定理得2

2(1)10a a -+-+<, 即2

20a a +-<,所以21a -<< 19、解:因为()27141033f -=-++

=-<,()213141033

f =+-=> 所以()f x 在区间[1,1]-上有零点

又()2

'

2

91422222f x x x x ?

?=+-=-- ??

?

当11x -≤≤时,()'

9

02

f

x ≤≤

所以在[1,1]-上单调递增函数,所以()f x 在[1,1]-上有且只有一个零点。

20、解 由于(1)60,(2)40f f =-<=>,可取区间(1,2)作为计算的初始区间,用二分法逐次计算,列表如下:

由于|1.75-1.687 5|=0.062 5<0.1,

所以可将1.687 5作为函数零点的近似值. 【课后作业】

1-13、BDCAB CCDAD AAB 14、2 15、(2,3) 16、 (0,1) 17、{2,3} 18、[2,2.5)

19、2

20、证明 设函数f (x )=2x +3x -6,

∵f (1)=-1<0,f (2)=4>0,

又∵f (x )是增函数,所以函数f (x )=2x +3x -6在区间[1,2]内有唯一的零点, 则方程6-3x =2x 在区间[1,2]内有唯一一个实数解. 设该解为x 0,则x 0∈[1,2],

取x 1=1.5,f (1.5)=1.33>0,f (1)·f (1.5)<0, ∴x 0∈(1,1.5),

取x 2=1.25,f (1.25)=0.128>0, f (1)·f (1.25)<0,∴x 0∈(1,1.25),

取x 3=1.125,f (1.125)=-0.445<0, f (1.125)·f (1.25)<0,∴x 0∈(1.125,1.25), 取x 4=1.187 5,f (1.187 5)=-0.16<0, f (1.187 5)·f (1.25)<0, ∴x 0∈(1.187 5,1.25).

∵|1.25-1.187 5|=0.062 5<0.1,

∴1.187 5可以作为这个方程的实数解.

高中数学函数知识点总结

高中数学函数知识点总结 (1)高中函数公式的变量:因变量,自变量。 在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。 (2)一次函数:①若两个变量 ,间的关系式可以表示成(为常数,不等于0)的形式,则称是的一次函数。②当 =0时,称是的正比例函数。(3)高中函数的一次函数的图象及性质 ①把一个函数的自变量与对应的因变量的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。 ②正比例函数 =的图象是经过原点的一条直线。 ③在一次函数中,当 0, O,则经2、3、4象限;当 0, 0时,则经1、 2、4象限;当 0, 0时,则经1、 3、4象限;当 0, 0时,则经1、2、3象限。 ④当 0时,的值随值的增大而增大,当 0时,的值随值的增大而减少。(4)高中函数的二次函数: ①一般式: ( ),对称轴是 顶点是; ②顶点式: ( ),对称轴是顶点是; ③交点式: ( ),其中(),()是抛物线与x轴的交点 (5)高中函数的二次函数的性质 ①函数的图象关于直线对称。 ②时,在对称轴()左侧,值随值的增大而减少;在对称轴()右侧;的值随值的增大而增大。当时,取得最小值

③时,在对称轴()左侧,值随值的增大而增大;在对称轴()右侧;的值随值的增大而减少。当时,取得最大值 9 高中函数的图形的对称 (1)轴对称图形:①如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。②轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。 (2)中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

正比例函数与一次函数知识点归纳

正比例函数与一次函数 知识点归纳 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

《正比例函数与一次函数》知识点归纳 《正比例函数》知识点 一、表达式:y=kx (k≠0的常数) 二、图像:正比例函数y=kx的图像是:一条经过(0,0)和(1,k)的 直线; 说明:正比例函数y=kx的图像也叫做“直线y=kx”; 三、性质特征: 1、图像经过的象限: k>0时,直线过原点,在一、三象限; k<0时,直线过原点,在二、四象限; 2、增减性及图像走向: k>0时,y随x增大而增大,直线从左往右由高降低; k<0时,y随x增大而减小,直线从左往右由低升高; 四、成正比例关系的几种表达形式: 1、y与x成正比例:y=kx (k≠0); 2、y与x+a成正比例:y=k(x+a) (k≠0); 3、y+a与x成正比例:y+a=kx (k≠0);

4、y+a与x+b成正比例:y+a= k(x+b) (k≠0); 《一次函数》知识点 一、表达式:y=kx+b (k≠0, k, b为常数) 注意:(1)k≠0,自变量x的最高次项的系数为1; (2)当b=0时,y=kx,y叫x的正比例函数。 二、图像: 一次函数y=kx+b (k≠0, b≠0)的图像是:一条经过(-,0)和(0,b)的直线。 说明:(1)一次函数y=kx+b (k≠0, b≠0)的图像也叫做“直线y=kx+b”; (2)直线y=kx+b与x轴的交点坐标是:(-,0); 直线y=kx+b与y轴的交点坐标是:(0,b). 三、性质特征: 1、图像经过的象限: (1)、k>0,b>0时,直线经过一、二、三象限; (2)、k>0,b﹤0时,直线经过一、三、四象限; (3)、k﹤0,b>0时,直线经过一、二、四象限; (4)、k﹤0, b﹤0时,直线经过二、三、四象限;

常微分方程知识点总结

常微分方程知识点总结 常微分方程知识点你学得怎么样呢?下面是的常微分方程知识 点总结,欢迎大家阅读! 微分方程的概念 方程对于学过中学数学的人来说是比较熟悉的;在初等数学中 就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和数之间的关系找出来,列出包含一个数或几个数的一个或者多个方程式,然后取求方程的解。 但是在实际工作中,常常出现一些特点和以上方程完全不同的 问题。比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。 物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个函数。也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个的函数。 解这类问题的基本思想和初等数学解方程的基本思想很相似, 也是要把研究的问题中已知函数和函数之间的关系找出来,从列出的包含函数的一个或几个方程中去求得函数的表达式。但是无论在方程

的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。 在数学上,解这类方程,要用到微分和导数的知识。因此,凡是表示函数的导数以及自变量之间的关系的方程,就叫做微分方程。 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。 常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常 有力的工具。 牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星 的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。 微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。微分方程也就成了最有生命力的数学分支。

高中数学函数知识点总结(经典收藏)

高中数学函数知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 {}{}{}C B A x y y x C x y y B x y x A 、、,,,如:集合lg |),(lg |lg |====== 中元素各表示什么? A 表示函数y=lgx 的定义域, B 表示的是值域,而 C 表示的却是函数上的点的轨迹 2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 {} {}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为 B A a ? (答:,,)-? ?? ???1013 显然,这里很容易解出A={-1,3}.而B 最多只有一个元素。故B 只能是-1或者3。根据条件,可以得到a=-1,a=1/3. 但是,这里千万小心,还有一个B 为空集的情况,也就是a=0,不要把它搞忘记了。 3. 注意下列性质: {}()集合,,……,的所有子集的个数是;1212a a a n n 要知道它的来历:若B 为A 的子集,则对于元素a 1来说,有2种选择(在或者不在)。同样,对于元素a 2, a 3,……a n ,都有2种选择,所以,总共有 2n 种选择,即集合A 有2n 个子集。 当然,我们也要注意到,这2n 种情况之中,包含了这n 个元素全部在何全部不在的情况,故真子集个数为21n -,非空真子集个数为22n - ()若,;2A B A B A A B B ??== (3)德摩根定律: ()()()()()()C C C C C C U U U U U U A B A B A B A B ==, 有些版本可能是这种写法,遇到后要能够看懂

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

《正比例函数与一次函数》知识点归纳知识讲解

《正比例函数与一次函数》知识点归纳 《正比例函数》知识点 一、表达式:y=kx (k≠0的常数) 二、图像:正比例函数y=kx的图像是:一条经过(0,0)和(1,k)的直线; 说明:正比例函数y=kx的图像也叫做“直线y=kx”; 三、性质特征: 1、图像经过的象限: k>0时,直线过原点,在一、三象限; k<0时,直线过原点,在二、四象限; 2、增减性及图像走向: k>0时,y随x增大而增大,直线从左往右由高降低; k<0时,y随x增大而减小,直线从左往右由低升高; 四、成正比例关系的几种表达形式: 1、y与x成正比例:y=kx (k≠0); 2、y与x+a成正比例:y=k(x+a) (k≠0); 3、y+a与x成正比例:y+a=kx (k≠0); 4、y+a与x+b成正比例:y+a= k(x+b) (k≠0); 《一次函数》知识点 一、表达式:y=kx+b(k≠0, k, b为常数) 注意:(1)k≠0,自变量x的最高次项的系数为1; (2)当b=0时,y=kx,y叫x的正比例函数。

二、图像: 一次函数y=kx+b (k≠0, b≠0)的图像是:一条经过(-,0)和(0,b)的直线。 说明:(1)一次函数y=kx+b (k≠0, b≠0)的图像也叫做“直线y=kx+b”; (2)直线y=kx+b与x轴的交点坐标是:(-,0); 直线y=kx+b与y轴的交点坐标是:(0,b). 三、性质特征: 1、图像经过的象限: (1)、k>0,b>0时,直线经过一、二、三象限; (2)、k>0,b﹤0时,直线经过一、三、四象限; (3)、k﹤0,b>0时,直线经过一、二、四象限; (4)、k﹤0, b﹤0时,直线经过二、三、四象限; 2、增减性及图像走向: k>0时,y随x增大而增大,直线从左往右由高降低; k<0时,y随x增大而减小,直线从左往右由低升高; 3、一次函数y=kx+b (k≠0, b≠0)中“k和b的作用”: (1) k的作用:k决定函数的增减性和图像的走向 k>0时,y随x增大而增大,直线从左往右由高降低; k<0时,y随x增大而减小,直线从左往右由低升高; (2)∣k∣的作用:∣k∣决定直线的倾斜程度 ∣k∣越大,直线越陡,直线越靠近y轴,与x轴的夹角越大;

高一数学函数与方程知识点整理

高一数学函数与方程知识点整理在中国古代把数学叫算术,又称算学,最后才改为数学。数学分为两部分,一部分是几何,另一部分是代数。精品小编准备了高一语文函数与方程知识点,希望你喜欢。 1.设f(x)=x3+bx+c是[-1,1]上的增函数,且f(-12)f(12)0,则方程f(x)=0在[-1,1]内() A.可能有3个实数根 B.可能有2个实数根 C.有唯一的实数根 D.没有实数根 解析:由f -12f 120得f(x)在-12,12内有零点,又f(x)在[-1,1]上为增函数, f(x)在[-1,1]上只有一个零点,即方程f(x)=0在[-1,1]上有唯一的实根. 答案:C 2.(2019长沙模拟)已知函数f(x)的图象是连续不断的,x、f(x)的对应关系如下表: x123456 f(x)136.1315.552-3.9210.88-52.488-232.064 则函数f(x)存在零点的区间有 A.区间[1,2]和[2,3] B.区间[2,3]和[3,4] C.区间[2,3]、[3,4]和[4,5] D.区间[3,4]、[4,5]和[5,6]

解析:∵f(2)与f(3),f(3)与f(4),f(4)与f(5)异号, f(x)在区间[2,3],[3,4],[4,5]上都存在零点. 答案:C 3.若a1,设函数f(x)=ax+x-4的零点为m,g(x)=logax+x-4的零点为n,则1m+1n的取值范围是 A.(3.5,+) B.(1,+) C.(4,+) D.(4.5,+) 解析:令ax+x-4=0得ax=-x+4,令logax+x-4=0得logax=-x+4,在同一坐标系中画出函数y=ax,y=logax,y=-x+4的图象,结合图形可知,n+m为直线y=x与y=-x+4的交点的横坐标的2倍,由y=xy=-x+4,解得x=2,所以n+m=4,因为 (n+m)1n+1m=1+1+mn+nm4,又nm,故(n+m)1n+1m4,则 1n+1m1. 答案:B 4.(2019昌平模拟)已知函数f(x)=ln x,则函数g(x)=f(x)-f(x) 的零点所在的区间是 A.(0,1) B.(1,2) C.(2,3) D.(3,4) 解析:函数f(x)的导数为f(x)=1x,所以g(x)=f(x)-f(x)=ln x-1x.因为g(1)=ln 1-1=-10,g(2)=ln 2-120,所以函数g(x)=f(x)-f(x)的零点所在的区间为(1,2).故选B. 答案:B

高中数学函数知识点(详细)

第二章 函数 一.函数 1、函数的概念: (1)定义:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中 的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:y =)(x f ,x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{)(x f | x ∈A }叫做函数的值域. (2)函数的三要素:定义域、值域、对应法则 (3)相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义 域一致 (两点必须同时具备) 2、定义域: (1)定义域定义:函数)(x f 的自变量x 的取值范围。 (2)确定函数定义域的原则:使这个函数有意义的实数的全体构成的集合。 (3)确定函数定义域的常见方法: ①若)(x f 是整式,则定义域为全体实数 ②若)(x f 是分式,则定义域为使分母不为零的全体实数 例:求函数x y 111+ = 的定义域。 ③若)(x f 是偶次根式,则定义域为使被开方数不小于零的全体实数 例1. 求函数 () 2 14 34 3 2 -+--=x x x y 的定义域。 例2. 求函数()0 2112++-= x x y 的定义域。 ④对数函数的真数必须大于零 ⑤指数、对数式的底必须大于零且不等于1 ⑥若)(x f 为复合函数,则定义域由其中各基本函数的定义域组成的不等式组来确定⑦指数为零底不可以等于零,如)0(10 ≠=x x ⑧实际问题中的函数的定义域还要保证实际问题有意义. (4)求抽象函数(复合函数)的定义域 已知函数)(x f 的定义域为[0,1]求)(2 x f 的定义域 已知函数)12(-x f 的定义域为[0,1)求)31(x f -的定义域 3、值域 : (1)值域的定义:与x 相对应的y 值叫做函数值,函数值的集合叫做函数的值域。 (2)确定值域的原则:先求定义域 (3)常见基本初等函数值域: 一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数(正余弦、正切)

指数函数知识点总结

指数函数知识总结 (一)指数与指数幂的运算 1.根式的概念: 一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . ①负数没有偶次方根;②0的任何次方根都是0,记作00=n 。 ③当n 是奇数时,a a n n =, 当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0()1(*>∈>=n N n m a a a n m n m )1,,,0(1 1)2(*>∈>= = - n N n m a a a a n m n m n m (3)0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. 题型一、计算 1.44 等于( ) A 、16a B 、8a C 、4a D 、2 a 2.⑴ 33 )2(-= ⑵ 44 )2(-= ⑶ 66)3(π-= ⑷ 2 22y xy x ++= 3.① 625625++- ② 335252-++ 4.计算(1 + 2048 21)(1 + 1024 21)…(1 + 421)(1 + 2 21)(1 + 21 ). 5. 计算(0.0081)4 1-- [3×(87)0]1-·[8125 .0-+(38 3)31-]21 -.

题型二、化简 1. 3 2 13 2b a b a ?- ÷3 2 11- --??? ? ? ?a b b a 2. 322a a a ?(a >0). 3.化简: 3 32 b a a b b a (a >0,b >0). 题型三、带附加条件的求值问题 1. 已知a 2 1+ a 2 1-= 3,求下列各式的值: ⑴ a + a 1 - ⑵ a 2+ a 2 - ⑶ 2 12 1232 3- - --a a a a 2. 已知2a x x =+-2(常数),求8x x -+8的值。 3. 已知x + y = 12, xy = 9,且x <y ,求 2 12 1 212 1y x y x +-的值。 4.已知a 、b 是方程x 2 - 6x + 4 = 0的两根,且a >b >0,求b a b a +-的值。

参数方程和极坐标方程知识点归纳

专题九:坐标系与参数方程 1、平面直角坐标系中的伸缩变换 设点),(y x P 是平面直角坐标系中的任意一点,在变换?? ?>?='>?='). 0(,y y 0), (x,x :μμλλ?的作用 下,点),(y x P 对应到点),(y x P ''',称?为平面直角坐标系中的坐标伸缩变换,简称伸缩 变换。 2、极坐标系的概念 在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。 点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ。有序数对),(θρ叫做点M 的极坐标,记为),(θρM . 注: 极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。极点O 的坐标为)R )(,0(∈θθ. 若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与 ),(θπρ+表示同一点。 如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示(即一一对应的关系);同时,极坐标),(θρ表示的点也是唯一确定的。 极坐标与直角坐标都是一对有序实数确定平面上一个点,在极坐标系下,一对有序实数ρ、θ对应惟一点P (ρ,θ),但平面内任一个点P 的极坐标不惟一.一个点可以有无数个坐标,这些坐标又有规律可循的,P (ρ,θ)(极点除外)的全部坐标为(ρ,θ+πk 2)或(ρ-,θ+π)12(+k ),(∈k Z ).极点的极径为0,而极角任意取.若对ρ、θ的取值范围加以限制.则除极点外,平面上点的极坐标就惟一了,如限定ρ>0,0≤θ<π2或ρ<0,π-<θ≤π等. 极坐标与直角坐标的不同是,直角坐标系中,点与坐标是一一对应的,而极坐标系中,点与坐标是一多对应的.即一个点的极坐标是不惟一的. 3、极坐标与直角坐标的互化 设是平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ,从图中可以得出: ) 0(ta ≠= x x y θ? ?? 图1

指数函数及对数函数复习(有详细知识点及习题详细讲解)

指数函数与对数函数总结与练习 一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)() (),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=; ⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则???<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)( )33 8- (2)() 2 10- (3)()44 3π- (4) 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. (二)分数指数幂

高中数学函数与方程知识点总结例题及解析高考真题及答案

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根; 0?

高考数学:极坐标与参数方程知识点总结

高考数学:极坐标与参数方程知识点总结 极坐标与参数方程这部分题目比较简单,考法固定,同学们一定要掌握住,高考不失分啊! 第一讲 一平面直角坐标系 1.平面直角坐标系 (1)数轴:规定了原点,正方向和单位长度的直线叫数轴.数轴上的点与实数之间可以建立一一对应关系.

(2)平面直角坐标系: ①定义:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系; ②数轴的正方向:两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向; ③坐标轴水平的数轴叫做x轴或横坐标轴,竖直的数轴叫做y轴或纵坐标轴,x轴或y轴统称为坐标轴; ④坐标原点:它们的公共原点称为直角坐标系的原点; ⑤对应关系:平面直角坐标系上的点与有序实数对(x,y)之间可以建立一一对应关系. (3)距离公式与中点坐标公式:设平面直角坐标系中,点P1(x1,y1),P2(x2,y2),线段P1P2的中点为P,填表:

二极坐标系 (1)定义:在平面内取一个定点O,叫做极点;自极点O 引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标系的四个要素:①极点;②极轴;③长度单位;④角度单位及它的方向. (3)图示

2.极坐标 (1)极坐标的定义:设M是平面内一点,极点O与点M 的距离|OM|叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为θ.有序数对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ). (2)极坐标系中的点与它的极坐标的对应关系:在极坐标系中,极点O的极坐标是(0,θ),(θ∈R),若点M的极坐标是M(ρ,θ),则点M的极坐标也可写成M(ρ,θ+2kπ),(k∈Z). 若规定ρ>0,0≤θ<2π,则除极点外极坐标系内的点与有序数对(ρ,θ)之间才是一一对应关系. 3.极坐标与直角坐标的互化公式 如图所示,把直角坐标系的原点作为极点,x轴的正半轴作为极轴,且长度单位相同,设任意一点M的直角坐标与极坐标分别为(x,y),(ρ,θ).

高中数学函数知识点归纳及常考题型

《函数》知识要点和基本方法 1.映射定义:设非空集合A,B ,若对集合A 中任一元素a ,在集合B 中有唯一元素b 与之对应,则称从A 到B 的对应为映射。若集合A 中有m 个元素,集合B 中有n 个元素,则从A 到B 可建立n m 个映射。 2.函数定义:函数就是定义在非空数集A,B 上的映射f 。此时称数集A 为函数f(x)的定义域,集合C={f(x)|x ∈A}为值域,且C ?B 。 3.定义域、对应法则和值域构成了函数的三要素。 相同函数的判断方法:①定义域、值域;②对应法则。(两点必须同时具备) 4.求函数的定义域常涉及到的依据为:①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义;⑥正切函数角的终边不在y 轴上。 5.函数解析式的求法:①配凑法; ②换元法: ③待定系数法; ④赋值法;⑤消元法等。 6.函数值域的求法:①配方法;②分离常数法;③逆求法;④换元法;⑤判别式法;⑥单调性法等。 7.函数单调性及证明方法: 如果对于定义域内某个区间上的任意..两个自变量的值x 1,x 2,当x 1f(x 2)),那么就说f(x)在这个区间上是增函数(或减函数)。 第一步:设x 1、x 2是给定区间内的两个任意的值,且x 1

指数函数知识点汇总

指数函数知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时, a a n n =,当n 是偶数时, ? ? ?<≥-==)0()0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m ) 1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数 )1,0(≠>=a a a y x 且叫做指数函数,其中x 是自 变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 a >1 0

初二数学一次函数知识点总结

一次函数知识点总结 基本概念 1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。 例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______。在圆的周长公式C=2πr 中,变量是________,常量是_________. 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定 的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 例题:下列函数(1)y=πx (2)y=2x-1 (3)y=1x (4)y=2-1-3x (5)y=x 2-1中,是一次函数的有( ) (A )4个 (B )3个 (C )2个 (D 3、定义域: 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数;(2 (3)关系式含有二次根式时,被开放方数大于等于零;(4 (5例题:下列函数中,自变量x 的取值范围是x ≥2的是( ) A .. . D . 函数y = x 的取值范围是___________. 已知函数22 1+-=x y ,当11≤<-x 时,y 的取值范围是 ( ) A.2325≤<-y B.2523<0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,?直线y=kx 经过 二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y=kx (k 是常数,k ≠0)

高三总复习直线与圆的方程知识点总结

直线与圆的方程 一、直线的方程 1、倾斜角: ,围0≤α<π, x l //轴或与x 轴重合时,α=00 。 2、斜率: k=tan α α与κ的关系:α=0?κ=0 已知L 上两点P 1(x 1,y 1) 0<α< 02 >?k π P 2(x 2,y 2) α= κπ ?2 不存在 ?k= 1 212x x y y -- 022

二、两直线的位置关系 (说明:当直线平行于坐标轴时,要单独考虑) 2、L 1 到L 2的角为0,则1 21 21tan k k k k ?+-= θ(121-≠k k ) 3、夹角:1 21 21tan k k k k +-= θ 4、点到直线距离:2 2 00B A c By Ax d +++= (已知点(p 0(x 0,y 0),L :AX+BY+C=0) ①两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0?2 221B A c c d +-= ②与AX+BY+C=0平行且距离为d 的直线方程为Ax+By+C ±022 =+B A d ③与AX+BY+C 1=0和AX+BY+C 2=0平行且距离相等的直线方程是 02 2 1=++ +C C BY AX 5、对称:(1)点关于点对称:p(x 1,y 1)关于M (x 0,y 0)的对称)2,2(1010Y Y X X P --'

指数函数知识点总结

指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m ? 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 《 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2 注意:利用函数的单调性,结合图象还可以看出:

(1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [ (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; ' 指数函数·例题解析 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---21 3321x x 、 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 ? 练习:(1)4 12-=x y ; (2)|| 2()3 x y =; (3)12 41 ++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d | B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),

一次函数知识点总结与常见题型

一次函数知识点总结与常见题型 基本概念 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______。在圆的周长公式C =2πr 中,变量是________,常量是_________. 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其 对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 例题:下列函数(1)y =πx (2)y =2x -1 (3)y =1 x (4)y =21-3x (5)y =x 2-1中,是一次函数的有( ) (A )4个 (B )3个 (C )2个 (D )1个 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 例题:下列函数中,自变量x 的取值范围是x ≥2的是( ) A .y B .y C .y D .y 函数y = x 的取值范围是___________. 已知函数22 1 +-=x y ,当11≤<-x 时,y 的取值范围是 ( ) A .2325≤<-y B .2523<0时,直线y =kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k <0时,?直线y =kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y =kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k ) (3) 走向:k >0时,图像经过一、三象限;k <0时,?图像经过二、四象限 (4) 增减性:k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小 (5) 倾斜度:|k |越大,越接近y 轴;|k |越小,越接近x 轴 例题:(1).正比例函数(35)y m x =+,当m 时,y 随x 的增大而增大. (2)若23y x b =+-是正比例函数,则b 的值是 ( ) A .0 B . 23 C .23- D .32 - .(3)函数y =(k -1)x ,y 随x 增大而减小,则k 的范围是 ( ) A .0k C .1≤k D .1

相关主题
文本预览
相关文档 最新文档