当前位置:文档之家› 全球卫星导航定位技术的原理及应用论文

全球卫星导航定位技术的原理及应用论文

全球卫星导航定位技术的原理及应用论文
全球卫星导航定位技术的原理及应用论文

浅析全球卫星导航定位技术原理及应用

一、前言

导航定位的需求,可以说不是历来就有的,在人类早期物质生产活动中以牧猎为主,日出而作,日落而息。当时人们离不开森林和水草,或是随着水草的兴衰而漂泊不定,根本不需要什么明确的定位。但是,随设社会的发展,到了农业时代,在人们开发农田,兴修水利等相应活动中就逐渐产生了测绘定位的需求,可以说在这时,导航定位就在慢慢酝酿之中。等到了工业时代,人类的活动遍及全球,而一些工程比如航海、航空、洲际交通工程,通信工程,矿产资源勘探工程,地球生态及环境变迁的研究,就需要精确地定位。这些需求促使导航定位技术的发展,并把这项技术带到一个前所未有的发展时期,它的手段也从光学机械过渡到光电子精密机械仪器的时代。社会是不断发展的,科技是不断进步的,20世纪末,出现了电子计算器技术、半导体技术、激光技术、航天科学技术,它们的出现,把人类带到了电子信息时代和航天探索时代。当1957年前苏联发射了人类第一颗人造地球卫星,人类跟踪无线电信号中发现了卫星无线电信号的多普勒频移现象,这预示着一种全新的天空定位技术的可行性,由此,人类进入了卫星定位和导航的时代。

二、简介

1:全球卫星导航定位系统(global navigation and positioning satellite system)采用极轨道星座和无源定位方式为美国提供全球覆盖的导航及定位系统。简称GPS。其轨道高度约为2×104 km,在6条轨道上运行有24颗卫星,每12 h绕地球一周,能保证地球上任何地点的用户都能至少同时看到4颗卫星。它属于非静止卫星定位系统。移动用户利用导航定位接收机来接收4颗(或4颗以上)卫星的导航定位信号,并测量不同信号的到达时间,求出移动用户的三维空间坐标,自动给出经度和纬度显示,从而实现用户的自主定位。也可通过无线传输手段将用户定位信息传送到调度中心,实现对移动用户的调度控制。

GPS向用户广播的导航信号为双频,分别为1 575.42MHz 和1 226.60MHz。采用多种直接序列扩频码的码分多址和伪码测距技术。直接序列扩频码主要有P码和C/A码。P码的定位精度高,三维精度可达5 m之内;C/A码定位精度较低,三维精度在50m内。目前C/A 码是对民用免费开放的。因为它是无源定位系统,移动用户的数量没有限制。

2:全球定位系统(Global Positioning System)

简单地说,这是一个由覆盖全球的24颗卫星组成的卫星系统。这个系统可以保证在任意时刻,地球上任意一点都可以同时观测到4颗卫星,以保证卫星可以采集到该观测点的经纬度和高度,以便实现导航、定位、授时等功能。这项技术可以用来引导飞机、船舶、车辆以及个人,安全、准确地沿着选定的路线,准时到达目的地。

全球定位系统(GPS)是20世纪70年代由美国陆海空三军联合研制的新一代空间卫星导航定位系统。其主要目的是为陆、海、空三大领域提供实时、全天候和全球性的导航服务,并用于情报收集、核爆监测和应急通讯等一些军事目的,是美国独霸全球战略的重要组成。经过20余年的研究实验,耗资300亿美元,到1994年3月,全球覆盖率高达98%的24颗GPS卫星星座己布设完成。

3:卫星导航系统

顾名思义,就是“全球卫星导航系统”。主要采用最新GPS技术在导航通讯领域的最新应用系统。卫星导航全球性大众化民用,刚刚开始,有百种应用类型。卫星导航的生命期至

少还有50年,GPS概念的提出已有三十年,真正应用只有十来年,现在GPS现代化,GPS III新阶段,延续到2020年。GPS国际协会已统计出GPS的117种不同类型的应用。蜂窝通信的集成和汽车应用还是当前最大的两个市场。卫星导航系统已经在大量应用中广泛使用,而且总的发展趋势是为实时应用提供高精度服务。

三、原理

1:全球定位系统(Global Positioning System)

GPS导航系统的基本原理是测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。要达到这一目的,卫星的位置可以根据星载时钟所记录的时间在卫星星历中查出。而用户到卫星的距离则通过纪录卫星信号传播到用户所经历的时间,再将其乘以光速得到(由于大气层电离层的干扰,这一距离并不是用户与卫星之间的真实距离,而是伪距(PR):当GPS卫星正常工作时,会不断地用1和0二进制码元组成的伪随机码(简称伪码)发射导航电文。GPS系统使用的伪码一共有两种,分别是民用的C/A码和军用的P(Y)码。C/A码频率1.023MHz,重复周期一毫秒,码间距1微秒,相当于300m;P码频率10.23MHz,重复周期266.4天,码间距0.1微秒,相当于30m。而Y码是在P码的基础上形成的,保密性能更佳。导航电文包括卫星星历、工作状况、时钟改正、电离层时延修正、大气折射修正等信息。它是从卫星信号中解调制出来,以50b/s调制在载频上发射的。导航电文每个主帧中包含5个子帧每帧长6s。前三帧各10个字码;每三十秒重复一次,每小时更新一次。后两帧共15000b。导航电文中的内容主要有遥测码、转换码、第1、2、3数据块,其中最重要的则为星历数据。当用户接受到导航电文时,提取出卫星时间并将其与自己的时钟做对比便可得知卫星与用户的距离,再利用导航电文中的卫星星历数据推算出卫星发射电文时所处位置,用户在WGS-84大地坐标系中的位置速度等信息便可得知。

2:卫星导航系统

24颗GPS卫星在离地面1万2千公里的高空上,以12小时的周期环绕地球运行,使得在任意时刻,在地面上的任意一点都可以同时观测到4颗以上的卫星。

由于卫星的位置精确可知,在GPS观测中,我们可得到卫星到接收机的距离,利用三维坐标中的距离公式,利用3颗卫星,就可以组成3个方程式,解出观测点的位置(X,Y,Z)。考虑到卫星的时钟与接收机时钟之间的误差,实际上有4个未知数,X、Y、Z和钟差,因而需要引入第4颗卫星,形成4个方程式进行求解,从而得到观测点的经纬度和高程。

事实上,接收机往往可以锁住4颗以上的卫星,这时,接收机可按卫星的星座分布分成若干组,每组4颗,然后通过算法挑选出误差最小的一组用作定位,从而提高精度。

四、应用

1:在大地测量、工程测量中的应用:

由于GPS系统具有精度高、速度快、费用省、操作简便,现今建立大地及工程控制网基本上是采取GPS定位技术,取代了常规手段。国家A级和B级GPS大地控制网分别于1996年和1997年建成并交付使用,A级网,30个点组成,其水平方向的重复精度达2×10-8,,垂直方向不低于7×10-8。B级网由800个点组成,其精度也分别好于4×10-7和8×10-7。国家A、B级网以其特有的高精度把我国传统大地网进行了全面改善和加强,从而克服了传统大地网的精度不均匀,系统误差较大等传统测量手段不可避免缺点,这一高精度三维空间大地坐标系的建成将为我国21世纪前10年的经济和社会持续发展提供基础测绘保障。据报道在三峡二期工程施工中采用GPS定位技术建立施工控制网,取得很好的效果,可以满足其相应的精度要求;在青藏铁路的建设中,从勘测到施工均采用了GPS定位技术,

都取得了很好的效果。为了在测绘领域充分利用这一新技术,国家测绘局专门颁布了《全球定位系统(GPS)测量规范》。

2:在地籍和房产测绘中的应用:

地籍及房地产测量是精确测定土地权属界址点位置,同时测绘大比例尺地籍平面图和房产图并量算土地和房屋面积,供土地和房产管理部门使用。常规方法通常是先布设或加密控制点,然后依据这些点,测定地物点和地形点在图上的位置并按照一定的规律和符号绘制成平面图。而利用GPS定位技术,特别是采用RTK技术替代常规方法测绘地籍及房产成为可能。由于它不需要逐级布网加密,在测区只需少量的控制点即可。因此,它具有速度快,精度高且分布均匀等特点。

3:在工程变形监测中的应用:

我国正处在全面基础建设中,尤其是西部大开发,大型、特大型工程不断涌现,为了这些工程的正常、安全地运行,必须对它进行变形监测和安全预报,工程变形监测通常要达到毫米或亚毫米级的精度,武汉测绘科技大学做了这方面的试验,试验结果证明GPS定位技术用于各种工程变形监测是可行的。隔河岩水电站大坝外观变形GPS自动化监测系统,整个系统全自动,应用广播星历1~2小时GPS观测资料解算的监测点位,水平精度优于1.5mm,垂直精度优于1.5mm,6小时的GPS观测资料解算,水平精度、垂直精度均优于1mm。4:在资源勘察方面的应用:

矿产资源勘查、矿区范围的划定、矿体规模的测定等都需要进行定点测量。以往的地质测量工作主利用传统手段如经纬仪、全站仪等测量仪器进行人工测量,然后在室内整理计算得到最终结果。这样做不但工作量大,浪费大量的人力、物力,且测量结果精度还较低。时间周期也长,不能及时反映矿产资源的实际现状。黑龙江省国土资源厅在哈尔滨市、大庆市、佳木斯市进行了试验性工作,建立和使用GPS2000系统,开展各市的矿产资源勘察动态管理工作,减少矿区范围界限定位误差,提高对地矿资源的有效管理,取得了较好的成果。5:航海、航空方面

欧洲的Galileo便是新建的全球导航星座,它与GPS配合起来,可以大大提高导航卫星的可用性,使单一的GPS市区可用性从55%提高到GPS/Galileo共用时的95%。GPS技术建立广域增强系统(W AAS)逐步代替原先的微波着陆/仪表着陆系统,美国的W AAS系统计划在2003年下半年运营,地面改正数据可以通过静地卫星转发给飞机。卫星导航接收机广泛地用于海上行驶的各类船只,DGPS则广泛地用于沿岸与进港,以及内河行驶的船只,精度可达到2-3m。在卫星导航接收机与无线通信手段集成后,该系统便成为一个位置报告系统和紧急救援系统。许多渔船将GPS与雷达和鱼探器结合在一起,产生明显的经济效益。6:其他方面

卫星导航接收机可与无线电通信机结合,这种融合产生的意义是非常深远的。实际上,这是移动计算机(PDA)、蜂窝电话和GPS接收机的系统集成和完美整合。消费娱乐徒步旅行者、猎人、越野滑雪者,野外工作人员和户外活动者现在常应用袋式GPS定位器,配上电子地图,可以在草原、大漠、乡间、山野或无人区内找到自己的目的地。还有在车辆监控管理、汽车导航与信息服务等也有广泛的应用。

五、发展

1:卫星系统的更新与多个卫星定位系统共存,将明显改善卫星导航定位的精度和可靠性。2:双频高精度测地型接收机将继续高度垄断在几个技术领先的GPS厂家手中,美国将继续保持其绝对优势。

3:单频测地型接收机和导航接收机OEM板产业将扩散到世界各地,虽是低档次的GPS产品,但用途广、用户多、市场大。美国把GPS单频OEM板的生产技术转让出口,因而推

动了世界各地企业投资GPS OEM的生产。

4:陆地导航定位产品将成为发展最快的GPS产业。

附录:

星基导航定位系统

①、苏联的第一颗人造地球卫星

原苏联于1957年10月4日成功发射了世界上第一颗人造地球卫星,这颗卫星的发射在证明人类在空间技术领域又取得重大突破的同时,它主要是用于科学研究和空间考察,包括空间各类信息的采集,跟踪、定轨、通讯、卫星性能考查等实验。当该卫星发播信号时,它作为一个已知的空间信号源,为人类获取相关的信息资源,开展测距、定位、导航研究搭建了一个世界共享的技术平台。可以说,它是星基导航技术的启明星。

②、美国的GPS

尽管TRANSIT在导航技术的发展中具有划时代的意义,但它存在观测时间长、定位速度慢(2个小时才有一次卫星通过,一个点的定位需要观测2天),不能满足连续实时三维导航的要求,尤其不能满足飞机、导弹等高速动态目标的精密导航要求。于是在六十年代中期,美国海军提出了“Timation”计划,美国空军提出了621B计划,并付之实施。但在发射了数颗实验卫星和进行了大量实验后发现各自都还存在一些大的缺陷。所以在此背景下,1973年美国国防部决定发展各军种都能使用的全球定位系统(GPS Global Positioning System),并指定由空军牵头研制。在项目的实施中,参加的单位有美国空军、陆军、海军、海军陆战队、海岸警卫队、运输部、国防地图测绘局、国防预研计划局,以及一些北大西洋公约组织和澳大利亚。历时20多年,耗资数百亿美元,于1994年3月10日,24颗工作卫星全部进入预定轨道,GPS系统全面投入正常运行,技术性能达到了预期目的,其中粗码(C/A码)的定位精度高达20m,远远超过设计指标。GPS是现代科学的结晶,它的推广应用有力地促进了人类社会进步。

③、苏联的GLONASS

1982年10月12日发射第一颗GLONASS卫星,1996年1月18日完成24颗卫星在轨。GLONASS的单点定位精度水平方向为16m,垂直方向为25m.。GLONASS与GPS类似,也由星座、地面控制和用户设备三部分组成。空间星座由24颗GLONASS卫星组成,其中21颗工作卫星,3颗在轨备用卫星,分布在3个近似为园的轨道面上,每个轨道上均匀分布8颗卫星,卫星运行周期11小时15分,轨道面互成120度夹角,轨道偏心率为0.01,轨道离地高度约19390km,每颗卫星质量为1400kg,这样的分布可以保证地球上任何地方任一时刻都能收到至少4颗卫星的导航信息;GLONASS卫星上装备有高稳定度的铯原子钟,星载设备接收地面站的导航信息和指令,对其进行处理,生成导航电文向用户广播和控制卫星在轨的运行。地面监控部分包括位于莫斯科的控制中心和分散在俄罗斯整个领土上的跟踪控制站网,负责搜集、处理GLONASS卫星的轨道和信号信息,向每颗卫星发射控制指令和导航信息,实现对GLONASS卫星的整体维护和控制。用户设备通过接收GLONASS卫星信号,测量其伪距或载波相位,结合卫星星历进行必要的处理,便可得到用户的3维坐标、速度和时间。

④、我国的北斗卫星导航系统

GPS是美国军方控制的军民共用系统,目前对世界开放,我们中国也可以免费接收GPS信号,但美国人并不承诺保证你的使用,他可以随时收费和对你关闭系统,尤其是在战时。因此,“中国也必须要有自己的卫星定位系统”。所以我国于“九五”立项,其工程代号为“北斗一号”。2003年5月25日,我国在西昌将第三颗“北斗一号”送入太空,与2000年发射的前两颗一起构成了我国完备的卫星导航定位系统,即北斗卫星导航系统,简称

CNSS,这是我国自行研制的区域性卫星定位与通信系统,它标志着我国成为继美国GPS和俄罗斯GLONASS后,在世界上第三个建立了完备的卫星导航系统的国家,该系统的建立将对我国国防和国民经济建设发挥重要作用。

⑤、欧盟体的伽利略系统(Galileo)

海湾战争和科索沃战争期间,美国限制GPS的使用给欧洲人敲响了警钟,增强了欧盟建立自己的、不受美国控制的卫星导航定位系统的决心。同时,随着GPS逐步向民间开放,它已逐渐成为一个年产值达千亿美元的大产业。欧洲发展卫星导航系统,涉及到重大的政治与经济利益,一方面是不“受制于人”,另一方面可为欧盟各国带来巨大的商机,大大提高欧盟的经济竞争力。所以,从20世纪90年代起,欧盟就开始酝酿建立自己的全球卫星导航系统,1998年欧盟15国决定制定一个卫星导航系统的建设计划,1999年初名为Galileo (伽利略)的卫星导航系统计划出台。该系统的星座由均匀分布在3个轨道中的30颗卫星组成,每个轨道上9颗工作卫星和1颗备用卫星,轨道离地高约24000公里,计划总投资35亿欧元,所需资金中近三分之二是来自私营公司及投资者。Galileo系统是欧洲计划建设的新一代民用全球卫星导航系统,多用于民用,但也用于防务,它可提供3种服务信号:对普通用户的免费基本服务,加密且需注册付费的服务,供友好国家的防务等需要的高精度加密服务,其精度依次提高,用户可根据需要进行选择。

《GPS原理与应用》复习资料整理

第一章绪论 1.GPS:是接收人造卫星电波,准确求顶接收机自身位置的系统。 目前世界上有那些全球性的卫星导航系统?(俄罗斯GLONASS、欧洲Galileo、中国北斗、美国GPS) 欧空局的全球卫星定位系统的名称是什么? 2. GPS系统组成: (1)空间星座部分:24颗卫星提供星历和时间信息,发射伪距和载波信号,提供其他辅助信息。 (2)用户部分:接收并观测卫星信号,记录和处理数据,提供导航定位信息。 (3)地面控制部分:中心控制系统,实现时间同步,跟踪卫星进行定轨。【5个监测站、1个主控站、3个注入站】 3. GPS按接收机用途分为三类:导航型、测量型、授时型; 接收机由天线单元、机主机单元和电源组成。 4、精密工程测量采用那种类型的GPS接收机? 5、GPS接收机中采用的是铷钟、铯钟还是石英钟? 6.与传统测量方法相比,GPS系统特点: 1)全球性---全球范围连续覆盖;(4~12颗);2)全能性-—三维位置、时间、速度;3)全天侯 4)实时性----定位速度快;;5)连续性;6)高精度;7)抗干扰性能好,保密性好; 8)控制性强;9)观测站之间无需通视;10)提供三维坐标;11)操作简便。 7、gps有哪些新的应用领域 8、GPS在测量上的用途有那些? 9.常见GPS卫星信号接收机(例举几个著名的中外GPS生产厂商):Ashtech系列GPS接收机、Trimble(天宝)系列GPS接收机、 Leica(莱卡) 系列GPS接收机、中纬系列GPS接收机、南方系列GPS接收机、中海达系列GPS接收机 第二章 GPS定位的坐标系统与时间系统 1.天球:是指以地球质心M为中心,半径r为任意长的一个假想的球体。 黄道:即当地球绕太阳公转时,地球上观测者所见到太阳在天球上运动的轨迹称为黄道 黄赤交角:黄道平面与赤道平面的夹角ε称为黄赤交角,约为23.5° 春分点:当太阳在黄道上从天球南半球向北半球运行时,黄道与天球赤道的交点γ称为春分点。

全球四大卫星定位系统

全球四大卫星定位系统 一.GPS系统(美国) 二.北斗系统(中国) 三.GLONASS系统(俄罗斯) 四.伽利略卫星导航系统(欧盟) GPS系统(美国) GPS系统是美国从上世纪70年代开始研制,历时20年,耗资近200亿美元,于1994年全面建成的新一代卫星导航与定位系统。GPS利用导航卫星进行测时和测距,具有在海、陆、空全方位实时三维导航与定位能力。它是继阿波罗登月计划、航天飞机后的美国第三大航天工程。如今,GPS已经成为当今世界上最实用,也是应用最广泛的全球精密导航、指挥和调度系统。 GPS系统概述GPS系统由空间部分、地面测控部分和用户设备三部分组成。 (1)空间部分GPS系统的空间部分由空间GPS卫星星座组成。 (2)控制部分控制部分包括地球上所有监测与控制卫星的设施。 (3)用户部分GPS用户部分包括GPS接收机和用户团体。 主要功能: 导航 测量 授时

标准:全球定位系统(GPS)测量规范GB/T 18314-2001 Specifications for global positioning system (GPS) surveys 种类: GPS卫星接收机种类很多,根据型号分为测地型、全站型、定时型、手持型、集成型;根据用途分为车载式、船载式、机载式、星载式、弹载式。 北斗卫星导航系统 中国北斗卫星导航系统(BeiDou Navigation Satellite System, 统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统。 段和用户段三部分组成,可在全球范围内全天候、全天时为各类用户 度0.2米/秒,授时精度10纳秒。 系统构成 北斗卫星导航系统空间段由5颗静止轨道卫星和30颗非静止轨 道卫星组成,中国计划2012年左右,“北斗”系统将覆盖亚太地区,

北斗卫星导航系统定位原理及应用

xxxx导航系统定位原理及其应用 北斗卫星定位系统是由中国建立的区域导航定位系统。该系统由四颗(两颗工作卫星、2颗备用卫星)北斗定位卫星(北斗一号)、地面控制中心为主的地面部份、北斗用户终端三部分组成。北斗定位系统可向用户提供全天候、二十四小时的即时定位服务,授时精度可达数十纳秒(ns)的同步精度,北斗导航系统三维定位精度约几十米,授时精度约100ns。美国的GPS三维定位精度P码目前己由16m提高到6m,C/A码目前己由25-100m提高到12m,授时精度日前约20ns。。 北斗一号导航定位卫星由中国空间技术研究院研究制造。四颗导航定位卫星的发射时间分别为: 2000年10月31日; 2000年12月21日; 2003年5月25日, 2007年4月14日,第三、四颗是备用卫星。2008年北京奥运会期间,它将在交通、场馆安全的定位监控方面,和已有的GPS卫星定位系统一起,发挥?双保险?作用。北斗一号卫星定位系统的英文简称为BD,在ITU(国际电信联合会)登记的无线电频段为L波段(发射)和S波段(接收)。北斗二代卫星定位系统的英文为Compass(即指南针),在ITU登记的无线电频段为L波段。北斗一号系统的基本功能包括: 定位、通信(短消息)和授时。北斗二代系统的功能与GPS相同,即定位与授时。 其工作原理如下: ?北斗一号?卫星定位系出用户到第一颗卫星的距离,以及用户到两颗卫星距离之和,从而知道用户处于一个以第一颗卫星为球心的一个球面,和以两颗卫星为焦点的椭球面之间的交线上。另外中心控制系统从存储在计算机内的数字化地形图查寻到用户高程值,又可知道用户出于某一与地球基准椭球面平行的椭球面上。从而中心控制系统可最终计算出用户所在点的三维坐标,这个坐标

全球卫星导航定位技术的原理及应用论文概要.doc

浅析全球卫星导航定位技术原理及应用 一、前言 导航定位的需求,可以说不是历来就有的,在人类早期物质生产活动中以牧猎为主,日出而作,日落而息。当时人们离不开森林和水草,或是随着水草的兴衰而漂泊不定,根本不需要什么明确的定位。但是,随设社会的发展,到了农业时代,在人们开发农田,兴修水利等相应活动中就逐渐产生了测绘定位的需求,可以说在这时,导航定位就在慢慢酝酿之中。等到了工业时代,人类的活动遍及全球,而一些工程比如航海、航空、洲际交通工程,通信工程,矿产资源勘探工程,地球生态及环境变迁的研究,就需要精确地定位。这些需求促使导航定位技术的发展,并把这项技术带到一个前所未有的发展时期,它的手段也从光学机械过渡到光电子精密机械仪器的时代。社会是不断发展的,科技是不断进步的,20世纪末,出现了电子计算器技术、半导体技术、激光技术、航天科学技术,它们的出现,把人类带到了电子信息时代和航天探索时代。当1957年前苏联发射了人类第一颗人造地球卫星,人类跟踪无线电信号中发现了卫星无线电信号的多普勒频移现象,这预示着一种全新的天空定位技术的可行性,由此,人类进入了卫星定位和导航的时代。 二、简介 1:全球卫星导航定位系统(global navigation and positioning satellite system采用极轨道星座和无源定位方式为美国提供全球覆盖的导航及定位系统。简称GPS。其轨道高度约为2×104 km,在6条轨道上运行有24颗卫星,每12 h绕地球一周,能保证地球上任何地点的用户都能至少同时看到4颗卫星。它属于非静止卫星定位系统。移动用户利用导航定位接收机来接收4颗(或4颗以上卫星的导航定位信号,并测量不同信号的到达时间,求出移动用户的三维空间坐标,自动给出经度和纬度显示,从而实现用户的自主定位。也可通过无线传输手段将用户定位信息传送到调度中心,实现对移动用户的调度控制。 GPS向用户广播的导航信号为双频,分别为1 575.42MHz 和1 226.60MHz。采用多种直接序列扩频码的码分多址和伪码测距技术。直接序列扩频码主要有P码

GPS原理与应用 考试重点总结

名词解释: 天球:是以地球质心M为中心,半径r为任意长的一个假象的球体。 春分点:当太阳在黄道上从天球南半球向北半球运行时,黄道与天球赤道的交点γ。 大地经纬度:表示地面点在参考椭球面上的位置,用大地经度λ、大地纬度和大地高h表示。 天文经纬度:表示地面点在大地水准面上的位置,用天文经度和天文纬度表示。 黄道:地球公转的轨道面与天球相交的大圆,即当地球绕太阳公转时,地球上的观测者所见到的太阳在天球上的运动轨迹。黄道面与赤道面的夹角称为黄赤交角,约23.5°。 赤经:为过春分点的天球子午面与过天体的天球子午面之间的夹角。 赤纬:为原点至天体的连线与天球赤道面之间的夹角。 岁差:实际上地球接近于一个赤道隆起的椭球体,在日月和其它天体引力对地球隆起部分的作用下,地球在绕太阳运行时,自转轴方向不再保持不变,从而使春分点在黄道上产生缓慢西移,此现象在天文学上称为岁差。 章动:在太阳和其它行星引力的影响下,月球的运行轨道以及月地之间的距离在不断变化,北天极在天球上绕北黄极顺时针旋转的轨迹十分复杂。如果观测时的北天极称为瞬时北天极(或真北天极),相应的天球赤道和春分点称为瞬时天球赤道和瞬时春分点(或真天球赤道和真春分点)。则在日月引力等因素的影响下,瞬时北天极将绕瞬时平北天极产生旋转,轨迹大致为椭圆。这种现象称为章动。 极移:地球自转轴相对于地球体的位置不是固定的,地极点在地球表面上的位置随时间而变化的现象称为极移。 世界时:以平子夜为零时起算的格林尼治平太阳时称为世界时。 力学时:天文学中,天体的星历是根据天体动力学理论建立的运动方程而编算的,其中所采用的独立变量是时间参数T,这个数学变量T定义为力学时。 原子时:以物质内部原子运动的特征为基础的原子时系统。 协调时:以原子时秒长为基础,在时刻上尽量接近于世界时的一种折衷时间系统,称为世界协调时或协调时。 GPS时间系统:属于原子时系统,秒长与原子时相同,但与国际原子时的原点不同,即GPST 与IAT在任一瞬间均有一常量偏差。 GPS定位:GPS定位系统靠车载终端内置手机卡通过手机信号传输到后台来实现定位。指利用人造地球卫星确定测站点位置的技术。 GPS导航:利用GPS定位卫星,在全球范围内实时进行定位、导航的系统。 绝对定位:在地球协议坐标系中,确定观测站相对地球质心的位置。 相对定位:在地球协议坐标系中,确定观测站与地面某一参考点之间的相对位置。 动态定位:在定位过程中,接收机天线处于运动状态。 静态绝对定位:接收机安置在基线端点的接收机固定不动,通过观测,确定观测站相对地球质心的位置。 静态相对定位:接收机安置在基线端点的接收机固定不动,通过连续观测,取得充分的多余观测数据,确定观测站与地面某一参考点之间的相对位置。 优点:定位精度高;缺点:定位时间长。 差分动态定位:在已知坐标的点上安置一台GPS接收机(称为基准站),利用已知坐标和卫星星历计算出观测值的校正值,并通过无线电设备(称数据链)将校正值发送给运动中的GPS接收机(称为流动站),流动站应用接收到的校正值对自己的GPS观测值进行改正,以消除卫星钟差钟差、接收机钟差、大气电离层和对流层折射误差的影响。 整周未知数:是在全球定位系统技术的载波相位测量时,载波相位与基准相位之间相位差的

全球卫星导航定位行业分析报告

全球卫星导航定位行业分析报告 一、全球卫星进展概况 卫星导航定位技术指利用全球卫星导航定位系统所提供的位置、速度及时刻信息对各种目标进行定位、导航及监管的一项新兴技术。与传统的导航定位技术相比,由于卫星导航定位技术具有全时空、全天候、连续实时地提供导航、定位和定时的特点,已成为人类活动中普遍采纳的导航定位技术。因此,全球卫星导航定位系统一经问世,在市场需求的牵动下专门快就深入到各国军事、安全、经济领域的方方面面,使航空、航海、测绘、机械操纵等传统产业的工作方式发生了全然的改变,开拓了移动位置服务等全新的信息服务领域,并迅速进展成为一个新兴的产业——卫星导航定位产业。 以美国GPS为代表的卫星导航定位产业差不多成为当今国际公认的八大无线电产业之一。在人类信息社会中,有80%以上的信息与“位置”和“时刻”有关,在卫星导航定位技术出现以后,它能够迅速将位置、时刻信息数字化,进入互联网和各行各业的信息应用系统,被人们所使用。 目前世界上投入正式运行的卫星导航定位系统有美国的GPS 系统、俄罗斯的Glonass系统和我国的北斗卫星导航定位系统。

其中GPS的应用最为广泛,占到全球应用的95%以上。鉴于民用需求的巨大与旺盛,为了摆脱对美国GPS系统的依靠,打破美国对全球卫星导航产业的垄断,欧盟在2002年提出建设Galileo 系统,俄罗斯则打算在2010年全面恢复Glonass系统,我国在2006年对外公布建设我国新一代北斗卫星导航定位系统,卫星导航定位产业步入了一个多系统并存、多技术融合的进展新时期。 我国的卫星导航定位应用是在全球卫星导航定位系统逐步开放、透明的大环境下,通过学习、引进、消化、汲取再创新的方式进展起来的。美国的GPS系统在20世纪80年代建设初期是一个严加保密的纯军事系统。随着全球政治格局和经济一体化的进展,其已从最初的“军用为主、民用为辅”进展到“强军护民、以民养军”的新时期。美国GPS政策的每一次开放调整,都有力地推动了本国及全球卫星导航定位产业的市场进展。随着卫星导航定位在我国应用领域的不断拓展和深入以及自主的北斗卫星导航定位系统的建设,使我国在卫星导航定位系统技术和导航信号处理技术、卫星导航定位芯片技术和板卡、高精度接收机产品等方面取得重大突破,积存了应用经验,卫星导航定位技术与产品已呈现自主创新,集成创新,引进、消化、汲取再创新的多元

最新GPS原理与应用复习题及参考答案资料

GPS原理与应用复习参考 一、判断题(本大题共5小题,每小题1分,共5分)(请在答题纸上判断题答题区域作答) 1. ( V)对于GPS网的精度要求,主要取决于网的用途和定位技术所能达到的精度。精度指标通常是以相临点间弦长的标准差来表示。 2. ( X)GPS的测距码(C/A码和P码)是伪随机噪声码。 3. ( X )电离层延迟的大小与载波频率无关。 4. ( X)GPS定位直接获得的高程是似大地水准面上的正常高。 5. ( X )图形强度因子是一个直接影响定位精度、但又独立于观测值和其它误差之外的 一个量。其值恒大于1,最大值可达100,其大小随时间和测站位置而变化。在GPS测量中, 希望DOF越小越好。 二、判断题(本大题共5小题,每小题1分,共5分)(请在答题纸上判断题答题区域作答) 1. (X)GPS测得的站星之间的伪距就是指GPS卫星到地面测站之间的几何距离。 2. ( V ) C/A码的码长较短,易于捕获,但码元宽度较大,测距精度较低,所以C/A码又称为捕获码或粗码。 3. ( V) GPS的空间部分(卫星星座部分)由21颗工作卫星、3颗备用卫星组成,均匀分布在6个轨道上。 4. ( X ) GPS定位直接获得的高程是似大地水准面上的正常高。 5. ( X ) GPS静态定位之所以需要观测较长时间,其主要目的是为了削弱卫星星历误差的 影响。 三、填空题(本题共15空,每空1分,共15分)(请在答题纸上填空题答题区域作答) 1. 按照《规范》规定,我国GPS测量按其精度依次划分为AA A、B、CD E六级,其中 C级网的相邻点之间的平均距离为15?10km最大距离为40 km 。 2. GPS定位系统包括空间部分、地面控制部分和用户设备部分。 3. 从误差来源分析,GPS测量误差大体上可分为以下三类:与卫星有关的误差,与信号传播有关的误差和与接收设备有关的误差。 4. 美国国防部制图局(DMA于1984年发展了一种新的世界大地坐标系,称之为美国国防 部1984年世界大地坐标系,简称WGS-84 。 5. 三台或三台以上接收机同步观测所获得的基线向量构成的闭合环称为同步环。 6. 在定位工作中,可能由于卫星信号被暂时阻挡,或受到外界干扰影响,引起卫星跟踪的 暂时中断,使计数器无法累积计数,这种现象叫周跳。 7. 在接收机和卫星间求二次差,可消去两测站接收机的相对钟差改正。 8. 利用GPS进行定位有多种方式,如果就用户接收机天线所处的状态而言,定位方式分为 . 静态定位禾口动态定位;若按参考点的不同位置,又可分为单点定位和相对 定位。 9. GPS卫星信号是由载波、导航电文、和测距码三部分组成的。 10. 对流层延迟改正模型中的大气折射指数N与温度、气压、湿度等 因素有关。 11. 差分GPS按观测值的类型可分为伪距差分和相位差分。 12. 目前正在运行的全球卫星导航定位系统有GPS 和GLONASS 。我国组建的第一代卫星导航定位系统称为北斗卫星导航系统,欧盟计划组建的卫星导航定位系统称 为Galileo 系统。 13. 在接收机间求一次差后可消除卫星钟差参数,继续在卫星间求二次差后可消除接_

全球四大卫星导航系统对比

简单对比全球四大卫星导航系统 2011年12月27日,对于中国的高精度测绘定位领域来说是一个不平凡的日子,中国北斗卫星导航系统(CNSS)正式向中国及周边地区提供连续的导航定位和授时服务,这是世界上第三个投入运行的卫星导航系统。 在此之前,美国的全球定位系统(GPS)和俄罗斯的格洛纳斯卫星导航系统(GLONASS)早在上世纪90年代就已经建成并投入运行。与此同时,欧盟也在打造自己的卫星导航系统——“伽利略”计划。 那么,这四大卫星导航系统之间到底有着怎么样的区别和联系呢?下面,就让我们来逐个分析一下,通过四大卫星导航系统的优劣分析,给大家一个较为明显的概念。 四大卫星导航系统各有优势,详情如下: GPS:成熟 GPS,作为大家最为熟悉的定位导航系统,她最大的特点就是技术方面最为成熟。 美国“全球定位系统”(GPS),是目前世界上应用最广泛、也是技术最成熟的导航定位系统。GPS空间部分目前共有30颗、4种型号的导航卫星。1994年3月,由24颗卫

星组成的导航“星座”部署完毕,标志着GPS正式建成。 中国北斗:互动开放 北斗卫星导航系统是中国正在实施的自主发展、独立运行的全球卫星导航系统。系统建设目标是:建成独立自主、开放兼容、技术先进、稳定可靠的覆盖全球的北斗卫星导航系统。北斗卫星导航系统由空间段、地面段和用户段三部分组成。目前市面上定位导航仪器公司如国外的天宝、拓普康,国内的华测导航等都已支持北斗卫星导航定位系统。 欧盟伽利略:精准 伽利略定位系统是欧盟一个正在建造中的卫星定位系统,有“欧洲版GPS”之称。伽利略定位系统总共发射30颗卫星,其中27颗卫星为工作卫星,3颗为候补卫星。该系统除了30颗中高度圆轨道卫星外,还有2个地面控制中心。 俄罗斯格洛纳斯:抗干扰能力强 早在美苏冷战时期,美国和苏联就各项技术特别是空间技术方面争锋相对,在美国GPS技术遍布全国的同时,苏联也没闲着,一直忙于研发自己的全球导航定位系统。俄罗斯的这套格洛纳斯系统便是其不断努力的结果。格洛纳斯由24颗卫星组成,也是由军方负责研制和控制的军民两用导航定

卫星定位原理与应用试卷

卫星定位原理与应用2014—2015学年 山东科技大学测绘学院遥感12级 一填空题(每空一分,30分) 1 GPS是的英文简写;IGS是的英文简写。 2 L1载波的波长是,频率是;L2载波的波长是,频率是;L5载波的波长是,频率是。L1载波上调制的是,,。 3 GPS三大功能是,,。 4 GPS软件写出两个,。 5 卫星定位在建的和已经建成的四大系统,美国的,俄罗斯的,欧洲的,以及中国的。 6 协议天球坐标系转换到协议地球坐标系, , , 。 7 站间求差消去,星间求差消去,历元求差。 二判断题(20分) 1 测相应用于单点动态定位,精度10m。 2 3颗卫星即可求解接收机坐标。 3 GPST和UTC一样,都是原子时。 4 数据删除率是同一时段删除数据和剩余数据个数的比值。 5 RINEX是通用格式,常应用于多类型接收机联合作业。 6 卫星钟差Sti=a0+a1(t0-t)+a2(t0-t2) 。 7 同步环闭合差时独立基线组成的闭合环的误差。 8 站间求差可以消除卫星钟差和接收机钟差。 9 GPS解算的到是正常高 10 GPS高精度定位使用测距码。 三问答题(50分) 1 GPS相对于常规测量优越性。(5分) 2 电离层误差减小方法,推导双频改正公式。(10分) 3 测相观测方程。叙述GPS数据处理过程,以及使用某一GPS软件处理过程。(10分) 4 8个控制点分布如图,3台接收机,请做出接收机调度表。(10分) 5 40个点,2次,4台接收机,计算总观测时段,基线总数,独立基线数,必要基线数,多余基线数。(10分) 6 谈谈你对GPS与遥感专业的关系的看法,以及未来十年你可能应用到GPS的地方。 (5分)

GPS原理与应用复习总结

《GPS定位原理及应用》 第一章绪论 1.1 GPS卫星定位技术的发展 1.1.1 早期的卫星定位技术 1、无线电导航系统 罗兰--C:工作在100KHZ,由三个地面导航台组成,导航工作区域2000KM,一般精度200-300M。 Omega(奥米茄):工作在十几千赫。由八个地面导航台组成,可覆盖全球。精度几英里。 多卜勒系统:利用多卜勒频移原理,通过测量其频移得到运动物参数(地速和偏流角),推算出飞行器位置,属自备式航位推算系统。误差随航程增加而累加。 缺点:覆盖的工作区域小;电波传播受大气影响;定位精度不高 2、早期的卫星定位技术 卫星三角网: 以人造地球卫星作为空间观测目标,由地面观测站对其进行摄影测量,测定测站至卫星的方向,来确定地面点的位置的三角网。 卫星测距网: 用激光技术测定测站至卫星的距离作为观测值的网则称为卫星测距网。 20世纪60~70年代,美国国家大地测量局在英国和德国测绘部门协助下,建立了一个共45个点的全球卫星三角网,点位精度5米。 卫星三角网的缺点: 易受卫星可见条件和天气条件影响,费时费力,定位精度低。 1.1.2 子午卫星导航(多普勒定位)系统及其缺陷 多普勒频移: 多普勒效应是为纪念Christian Doppler而命名的,他于1842年首先提出了这一理论。 他认为电磁波频率在电磁源移向观察者时变高,而在波源远离观察者时变低。因此可利用频率的变化多少来确定距离的变化量。 多普勒效应的一个常被使用的例子是火车,当火车接近观察者时,其汽鸣声会比平常更刺耳。你可以在火车经过时听出刺耳声的变化。同样的情况还有:警车的警报声和赛车的发动机声。 子午卫星导航系统(NNSS): 将卫星作为空间动态已知点,通过在测站上接受子午卫星发射的无线电信号,利用多普勒定位技术,进行测速、定位的卫星导航系统。 子午卫星导航系统的优点: 经济快速、精度均匀、不受天气和时间的限制,且可获得测站的三维地心坐标。 子午卫星导航系统的缺点: 由于卫星数量少,故不能实时定位、定位时间长、定位精度也低。 1958年,美国为解决北极星核潜艇在深海航行和执行军事任务而需要精确定位的问题,开始研制军用导航卫星,命名为“子午仪计划”。1960年4月,美国发射了世界第一颗子午导航卫星,传统的无线电导航系统从此被这种新的导航方式取代。美国1964年建成子午导航卫星系统,主要由美国海军使用,到1967年开始正式向民用开放。由于该系统卫星数目较小(5-6颗),运行高度较低(平均1000KM),从地面站观测到卫星的时间隔较长(平均1.5h),因而它无法提供连续的实时三维导航,而且精度较低。单点定位精度约为30—40米,每次定位约需8—10分钟。而各测站观测了公共的17次合格的卫星通过时,联测定位的精度才能达到0.5米左右。子午导航卫星系统是低轨道导航卫星,它集中了远程无线电导航台全球覆盖和近程无线电导航台定位精度高的优点,仅用4颗卫星组成的太空导航星座就能提供全天候全球导航覆盖和周期性二维(经纬度)定位能力,使全球用户统一于地心坐标系进行高精度定位,使导航技术产生了革命性突破。 70年代中期,我国利用引进的多普勒接收机进行了西沙群岛的大地测量基准联测,国家测绘总局和总参测绘局联合测设了全国卫星多普勒大地网,石油和地质勘探部门也在西北地区测设了卫星多普勒定位网。

浅谈GPS原理及其应用

浅谈GPS原理及其应用 随着科技和制造业的进步,众多科技含量较高的产品被越来越广泛地应用在生活中,卫星导航定位系统就是一个很好的应用实例,其中以美国的GPS系统应用最为普遍,常见的如:车载GPS导航仪、智能手机中的电子地图导航功能等。在本人的教学工作中,多次遇到学生询问于此相关的问题,本文就GPS的原理及应用进行简述。 1.卫星导航定位系统含义及概况 定位,顾名思义就是确定某一个目标的位置,就是要搞明白“我在哪里”的问题。导航,就是对某一目标(汽车或者飞机等)运动时的连续定位,就是搞明白“我走了哪些路”,或者“我将要走哪条路”。随着航天、通讯等科技的发展,人造卫星也被用来定位和导航,其能够提供全球性的,全天候的,高精度、实时的导航定位服务,以及授时服务。 全球卫星导航系统有好几种,美国的GPS 、俄罗斯的GLONASS、我国的Compass(北斗)、欧洲的伽利略(Galileo)系统,可用卫星数目达到100颗以上[1]。其中在全球范围内应用最成熟、最广泛的就是美国的GPS系统。GPS系统始于1973年的美国国防部批准的“导航卫星定时和测距/全球定位系统”,简称GPS(即Global Positioning System,全球定位系统),被誉为人类在20世纪仅次于计算机之后的最为重大的发明。 2.GPS系统的基本定位原理 GPS系统的基本配置是24颗卫星构成,卫星位于6个地心轨道上,每个轨道有4颗卫星,每个轨道接近于圆形,与赤道面的倾斜夹角为55°,沿赤道以60°间隔均匀分布[2],形成了对地球的网络包围,图1表述了GPS卫星的星座分布。轨道的半径约为26600km,也就是高度大约离地面20200km,轨道的周期是半个恒星日,约11.976个小时。理论上,在地球表面的绝大多数地点都能观测到的有效卫星颗数≥4颗。而4颗或者更多的GPS卫星就能够确定每天24小时内地球表面上任何地点观测者(观测设备)的位置了。如图2所示。 图2 GPS定位示意图 每一颗GPS卫星都携带有铯原子钟和(或)铷原子钟,为发射信号提供高精度时间信息的,GPS卫星在工作时,以一定的频率(两个频率,1575.42MHz 和1227.6MHz)向地球发射无线电波信号,其报文的主要信息是该电波信号发出时刻的时间信息,用户接收机无源工作(即只接收信号),接收能观测到GPS卫星的电波信号,并标记出收到该电波信号的接收时刻,算出该电波从发射到被接收的传播时间,已知电波是以光速传播的,就可以用传播时间来计算出到接收机到GPS卫星的距离。 在以地心为坐标原点的WGS-84地心坐标系三维空间中,如果能够知道到达不在同一条直线上的3颗卫星的距离,那么就可以确定该接收机在地球附近所在的位置。在一段时间内连续观测,就可以得出接收机的经纬度和高度变化情况,于是就得出了接收机移动的方向和速度了。由于GPS定位是依靠时间差来实现距离计算的,所以必须需要第4颗卫星给接收装置提供时钟修正信息,使接收机时钟与卫星时钟同步。 实现定位之后,就可以在应用设备上记录目标移动时所经过的路径,并且可以经过估计和计算,对某预定地点提供导航服务。

全球卫星导航定位技术

全球卫星导航定位技术 摘要:卫星导航定位系统在国民经济建设中占有重要的位置,是国民经济信息化建设的重要组成部分和推进力量,是建设国家信息体系的重要基础设施,是直接关系到国家安全、经济发展的关键性系统技术平台。以GPS为代表的卫星导航定位(GNSS)应用产业已逐步成为一个全球性的高新技术产业。国家对卫星导航定位产业的发展高度重视,“十五”计划发展纲要确定卫星导航定位为国家高技术工程的12个专项之一,国家发改委在2002年实施了卫星导航产业化专项,以北斗卫星导航试验系统和其他卫星定位导航系统的广泛应用为推动力的我国卫星导航定位产业,正进入高速发展的关键时期。本文介绍了全球卫星导航系统的现状以及分析其原理,并分析了全球卫星导航的发展应用。 关键词:卫星导航定位系统;高新技术 Abstract: the satellite navigation and positioning system in the development of national economy, holds the important position, the informationization of the national economy is the important part of the construction and promote the strength, the construction of national information system is the important infrastructure, is directly related to national security, economic development and the key system technology platform. As a representative of the with GPS satellite navigation and positioning (GNSS) application industry has gradually become a global new high technology industry. National satellite navigation and positioning of the development of the industry, more attention of the tenth five-year plan to determine the program for the development of satellite navigation and positioning for the national high technology project of one of the 12 special, the national development and reform commission in 2002, the industrialization of the satellite navigation special to beidou satellite navigation test system and other positioning satellite navigation system for the wide application of driving force of China’s satellite navigation and positioning industry, entering the critical period of development. This paper introduces the present situation of the global satellite navigation system and analyzes the principle, and analyzed the development and the application of the global satellite navigation. Keywords: satellite navigation and positioning system; High and new technology 按照定位导航的方式可分成:卫星定位导航、自主式导航、组合导航以及无源导航。 1、全球卫星导航系统介绍 世界上现有卫星导航系统有美国的GPS、俄罗斯的GLONASS以及欧洲

全球四大卫星导航系统

全球四大卫星导航系统 美国GPS系统 目前世界使用最多的全球卫星导航定位系统是美国的GPS系统。它是世界上第一个成熟、可供全民使用的全球卫星定位导航系统。该系统由28颗中高轨道卫星组成,其中4颗为备用星,均匀分布在距离地面约20000千米的6个倾斜轨道上。 俄罗斯格洛纳斯系统 格洛纳斯是前苏联国防部于20世纪80年代初开始建设的全球卫星导航系统,从某种意义上来说是冷战的产物。该系统耗资30多亿美元,于1995年投入使用,现在由俄罗斯联邦航天局管理。格洛纳斯是继GPS之后第2个军民两用的全球卫星导航系统。 欧洲伽利略系统 伽利略系统是欧空局与欧盟在1999年合作启动的,该系统民用信号精度最高可达1米。 计划中的伽利略系统由30颗卫星组成。2005年12月28日,首颗实验卫星Glove-A发射成功,第2颗实验卫星Glove-B在2007年4月27日由俄罗斯联盟号运载火箭于哈萨克斯坦的拜科努尔基地发射升空。 中国北斗系统 北斗全球卫星定位导航系统由5颗静止轨道卫星和30颗非静止轨道卫星组成,提供开放服务和授权服务两种模式。根据系统建设总体规划,2020年左右,建成覆盖全球的北斗卫星导航系统。 2011年4月10日,我国成功发射第八颗北斗导航卫星,标志着北斗区域卫星导航系统的基本系统建设完成,我国自主卫星导航系统建设进入新的发展阶段。从当初的“最高机密”,到今日向民用市场推广,北斗计划已经走过了20多年。曾经的主力科学家已经成了白发苍苍的院士,北斗系统的理论创始人也已经故去。4月10日4时47分,我国在西昌卫星发射中心用“长征三号甲”运载火箭,成功将第八颗北斗导航卫星送入太空预定转移轨道。这是一颗倾斜地球同步轨道卫星。这颗卫星将与2010年发射的5颗导航卫星共同组成“3+3”基本系统(即3颗GEO卫星加上3颗IGSO卫星),经一段时间在轨验证和系统联调后,将具备向我国大部分地区提供初始服务条件。今明两年,我国还将陆续发射多颗组网导航卫星,完成北斗区域卫星导航系统建设,满足测绘、渔业、交通运输、气象、电信、水利等行业,以及大众用户的应用需求。 中国卫星导航系统管理办公室负责人冉承其介绍,目前,北斗卫星导航系统正按照“三步走”发展战略稳步推进第一步,2003年建成北斗导航试验系统。系统由三颗地球同步静止轨道卫星和地面系统组成,可为我国及周边地区的中、低动态用户提供定位、短报文通信和授时服务,已应用于水利、渔业、交通、救援等国民经济领域,经济和社会效益显著。第二步,2012年左右,将建成由10余颗卫星组成的北斗区域卫星导航系统,具备覆盖亚太地区的服务能力,采用无源定位体制,具有定位、导航、授时以及短报文通信功能。第三步,2020年左右,建成由30余颗卫星组成,覆盖全球的北斗全球卫星导航系统,系统性能达到同期国际先进水平。 北斗卫星导航系统除了能够提供高精度、高可靠的定位、导航和授时服务,还保留了北斗卫星导航试验系统的短报文通信、差分服务和完好性服务特色,是我国经济社会发展不可或缺的重大空间信息基础设施。

《GPS定位原理与应用》习题集答案

第一篇《GPS定位原理与应用》习题集 一、名词解释 一、名词解释 I、卫星星历:是描述卫星运行轨道的信息。 2、天线高:指天线的相位中心至观测点标志中心顶面的垂直距离。 3,春分点:当太阳在黄道上从天球南半球向北半球运行时,黄道与地球赤道的交点。 4、开普勒第一定律:卫星运行的轨道是一个椭圆,而该椭圆的一个焦点与地球的月心相重合。这一定律表明,在中心引力场中,卫星绕地球运行的轨道面,是一个通过划球质心的静止平面。 5、同步环:由多台接收机同步观测的结果所构成的闭合环称为同步环。 6、多路朽效应:在GPS测量中,如果测站周围的反射物所反射的卫星信号(反射波)进入接收衫 天线,这就将和直接来自卫星的信号(直接波)产生干涉,从而使观测值偏离真值产且 所谓的多路径误差。这种山于多路径的信号传播所引起的干涉时延效应称为多路径效应。 7、周跳:在接收机跟踪GPS卫星进行观测的过程中,常常山于多种原因(例如接 收机天线被阻挡、外界噪声信号的千扰等),可能使载波相位观测值中的9周数不正确但其不足1整周的小数部分仍然是正确的,这种现象成为整周变跳,简称周跳。 8、绝对定位:利用GPS卫星和用户接收机间的距离观测值直接确定用户接收机天 线在在WGS-84坐标系中相对地球质心的绝对位置。 9,恒星时:以春分点为参考点,由春分点的周日视运动所确定的时间,称为恒星 时。恒星时是地方时。 10、卫星的无摄运动:卫星在轨运动受到中心力和摄动力的影响。假设地球为匀质球体,其对卫星的引力称为中心力(质量集中于球体的中心)。中心力决定着卫星运动的4本规律和特征,此时卫星的运动称为无摄运动,山此所决定的卫星轨道可视为理想的轨道,又称卫星的无摄运动轨道。 11,精密星历:是一些国家的某些部门,根据各自建立的跟踪站所获得的精密观测 资料,应用与确定预报星历相似的方法,而计算的卫星星历。它可以向用户提供在用户观测时间的卫星星历,避免了预报星历外推的误差。 12、相对定位:用两台或多台接收机分别安置在基线的两端,并同步观测相同的GPS 卫星,以确定4线端点在协议地球坐标系中的相对位置或4线向量的定位方法。 13、星历误差:卫星的在轨位置由广播星历或精密星历提供,山星历计算的卫星位置与其实际位置之差,称为卫星星历误差。 14,重复观测边:同一系线边,若观测了多个时段(>-2),则可得到多个从线边长。这种具有多个独立观测结果的幕线边,称为重复边。 15,异步环:在构成多边形环路的所有基线向量中,只要有非同步观测琴线向量, 则该多边形环路叫异步观测环,简称异步环。 16、定位星座:在用GPS卫星进行导航定位时,为了求得测站的三维位置,必须观测4颗GPS卫星,称之为定位星座。 17、间隙段: GPS卫星的星座,在个别地区仍可能在其一短时间内(例如数分钟)只

GPS原理及应用题目及答案

GPS原理及应用复习题目 一.名词解释 1二体问题:2真近点角、平近点角、偏近点角:3多路径效应:4无约束平差和约束平差5.章动6.异步观测7.接收机钟差8.周跳9.三维平差10.岁差11.同步观测12.卫星钟差13.整周未知数14.二维平差 二.填空题 1.GPS工作卫星的地面监控系统包括__________ 、__________ 、__________ 。 2.GPS系统由__________ 、__________ 、__________ 三大部分组成。 3.按照接收的载波频率,接收机可分为__________ 和__________接收机。 4.GPS卫星信号由、、三部分组成。 5.接收机由、、三部分组成。 6.GPS卫星信号中的测距码和数据码是通过技术调制到载波上的。 7. 1973年12月,GPS系统经美国国防部批准由陆海空三军联合研制。自1974年以来其经历了、、三个阶段。 8.GPS 卫星星座基本参数为:卫星数目为、卫星轨道面个数为、卫星平均地面高度约20200公里、轨道倾角为度。 9.GPS定位成果属于坐标系,而实用的测量成果往往属于某国的国家或地方坐标系,为了实现两坐标系之间的转换,如果采用七参数模型,则该七个参数分别为,如果要进行不同大地坐标系之间的换算,除了上述七个参数之外还应增加反映两个关于地球椭球形状与大小的参数,它们是和。 10.真春分点随地球自转轴的变化而不断运动,其运动轨迹十分复杂,为了便于研究,一般将其运动分解为长周期变化的和短周期变化的。 11.GPS广播星历参数共有16个,其中包括1个,6个对应参考时刻的参数和9个反映参数。 12.GNSS的英文全称是。 13.载体的三个姿态角是、、。 14、GPS星座由颗卫星组成,分布在个不同的轨道上,轨道之间相距°,轨道的倾角是°,在地球表面的任何地方都可以看见至少颗卫星,卫星距地面的高度是km。 15、GPS使用L1和L2两个载波发射信号,L1载波的频率是MHZ,波长 是cm,L2 载波的频率是MHZ,波长是cm。 16、GPS卫星除了受到引力之外,还受到地球引力场摄动力、光压摄动力、大气阻力、摄动力等的摄动力的影响,因此卫星的运动实际上是。

全球四大导航系统

全球四大卫星定位系统 目前,世界上只有少数几个国家能够自主研制生产卫星导航系统。当前全球有四大卫星定位系统,分别是美国的全球卫星导航定位系统GPS、俄罗斯的格罗纳斯GLONASS系统、欧洲在建的"伽利略"系统、和中国的北斗卫星导航系统。 一、美国GPS长期垄断 美国国防部从1973年开始实施的GPS系统,这是世界上第一个全球卫星导航系统,在相当长的一段时间内垄断了全球军用和民用卫星导航市场。GPS全球定位系统计划自1973年至今,先后共发射了41颗卫星,总共耗资190亿美元。GPS原来是专门用于为洲际导弹导航的秘密军事系统,在1991年的海湾战争中首次得到实战应用。随后,在科索沃战争、阿富汗战争和伊拉克战争中大显身手。从克林顿时代起,该系统开始应用在了民用方面。现运行的GPS系统由24颗工作卫星和4颗备用卫星组成。美国利用GPS获得了巨大的经济利益,多年来在出售信号接收设备方面赚取了巨额利润。以1986年为例,当时一台一般精度的GPS定位仪价格5万美元,高精度的则达到10万美元。现在价格虽然有所下降,但也可推算出20年来GPS"收获颇丰"。以GPS为代表的卫星导航定位应用产业,已成为八大无线产业之一。据美国国家公共管理研究院进行的调查评估表明,GPS的全球销售额将以每年38%的速度增长,2005年全球GPS市场已达到310亿美元。长期以来,美国对本国军方提供的是精确定位信号,对其他用户提供的则是加了干扰的低精度信号--也就是说,地球上任何一个目标的准确位置,只有美国人掌握,其他国家只知道个"大概"。在海湾战争时,美国还曾置欧盟各国利益不顾,一度关闭对欧洲GPS服务。 2003年3月20日,伊拉克战争爆发。大批轰炸机、战斗机猛扑向伊拉克首都巴格达,用炸弹准确地将一座建筑彻底摧毁,行动代号:"斩首行动";4月,一架B-1B"枪骑兵"轰炸机临时接到任务,用炸弹摧毁了另一座建筑。他们的目标都是一个人:萨达姆侯赛因,他们所使用的炸弹都是一种:联合攻击炸弹(JDAM),这些炸弹之所以都能够精确的打击目标,是因为他们都是通过卫星定位来实现定位,提供这种定位服务的正是由24颗美国卫星组成的全球定位系统--GPS。 由于GPS技术所具有的全天候、高精度和自动测量的特点,作为先进的测量手段和新的生产力,已经融入了国民经济建设、国防建设和社会发展的各个应用领域。 随着冷战结束和全球经济的蓬勃发展,美国政府宣布,在保证美国国家安全不受威胁的前提下,取消SA政策,GPS民用信号精度在全球范围内得到改善,利用C/A码进行单点定位的精度由100米提高到10米,这将进一步推动GPS技术的应用,提高生产力、作业效率、科学水平以及人们的生活质量,刺激GPS市场的增长。 二、俄罗斯GLONASS(格洛纳斯)系统 "格洛纳斯GLONASS"是俄语中"全球卫星导航系统GLOBAL NAVIGATION SATELLITE SYSTE"的缩写。作用类似于美国的GPS、欧洲的伽利略卫星定位系统。最早开发于苏联时期,后由俄罗斯继续该计划。俄罗斯1993年开始独自建立本国的全球卫星导航系统。1995年俄罗斯耗资30多亿美元,完成了GLONASS导航卫星星座的组网工作。它也由24颗卫星组成,原理和方案都与GPS类似,不过,其24颗卫星分布在3个轨道平面上,这3个轨道平面两两相隔120°,同平面内的卫星之间相隔45°。每颗卫星都在19100千米高、64.8°倾角的轨道上运行,轨道周期为11小时15分钟。地面控制部分全部都在俄罗斯领土境内。俄罗斯自称,多功能的GLONASS系统定位精度可达1米,速度误差仅为15厘米/秒。如果必要,该

相关主题
文本预览
相关文档 最新文档