当前位置:文档之家› 神经网络辨识与控制

神经网络辨识与控制

神经网络辨识与控制

1.神经网络系统辨识

实质上是选择一个适当的神经网络模型来逼近实际系统的数学模型。在神经网络系统辨识中,神经网络用作辨识模型,将对象的输入输出状态u,y看作神经网络的训练样本数据,以J=1/2e2作为网络训练的目标,则通过用一定的训练算法来训练网络,使J足够小,就可以达到辨识对象模型的目的。

2.递归神经网络系统辨识

递归神经网络本身具有动态反馈环,可以记录以前的状态,因此用递归神经网络来对非线性对象进行辨识时只需以对象当前的输入状态u(t)和前一时刻的输出状态y(t-1)作为网络的输入即可,与前向多层神经网络相比,网络的结构较为简单。

3.神经网络在控制中主要起以下作用:

(1)基于精确模型的各种控制结构中充当对象的模型;

(2)在反馈控制系统中直接充当控制器的作用;

(3) 在传统控制系统中起优化计算作用;

(4)在与其它智能控制方法和优化算法相融合中, 为其提供对象模型、优化参数、推理模型及故障诊断等。

神经网络控制分类:神经网络直接反馈控制系统;神经网络逆控制;神经网络内模控制;神经网络自适应控制;神经网络学习控制。。。

人工智能与神经网络课程论文

1. 引言 (2) 2. 在农业生产管理与决策中的应用 (2) 2.1. 在农业机械化中的应用 (2) 2.2. 在智能农业专家系统中的应用 (3) 3. 在预测和估产中的应用 (3) 3.1. 在农作物虫情预测中的应用 (3) 3.2. 在作物水分和营养胁迫诊断及产量估测中的应用 (4) 4. 在分类鉴别与图像处理中的应用 (5) 5. 结束语 (5)

BP 神经网络的研究与应用 摘要: 本文概述了BP 神经网络在农机总动力预测、农业专家系统信息决策、虫情测报、农作物水分和养分胁迫、土壤墒情、变量施肥、分类鉴别和图像处理等领域的应用情况,总结了人工神经网络模型的优点,指出其在精准农业和智能农业中的重要理论技术支撑作用。 关键词: BP神经网络; 农业工程; 农业专家系统; 变量施肥; 土壤墒情 Research and Application of BP Neural Network Abstract: Application of BP neural network in prediction of total power in agriculture machinery,information decision-making by agricultural experts system,pest forecast,crops to water stress and nutrient stress,soil moisture condition,variable rate fertilization,identification and image processing were overviewed.Characteristics of artificial neural network model were summed.Supporting role for important theory and technology in precision agriculture and intelligent agriculture were pointed. Key words: BP neural network,Agricultural engineering,Agricultural experts system,Variable rate fertilization,Soil moisture condition

基于BP神经网络的PID控制器的设计

基于BP神经网络的PID控制器的研究与 实现 课程名称:人工神经网络

目录 前言 (3) 一、BP神经网络 (4) 二、模拟PID控制系统 (5) 三、基于BP神经网络的PID控制器 (6) 四、仿真程序 (10) 五、运行结果 (17) 六、总结 (18) 参考文献 (19)

前言 人工神经网络是以一种简单神经元为节点,采用某种网络拓扑结构构成的活性网络,可以用来描述几乎任意的非线性系统。不仅如此,人工神经网络还具有学习能力、记忆能力、计算能力以及各种智能处理能力,在不同程度和层次上模仿人脑神经系统的信息处理、存储和检索的功能。不同领域的科学家,对人工神经网络有着不同的理解、不同的研究内容,并且采用不同的研究方法。对于控制领域的研究工作者来说,人工神经网络的魅力在于:①能够充分逼近任意复杂的非线性关系,从而形成非线性动力学系统,以表示某种被控对象的模型或控制器模型;②能够学习和适应不确定性系统的动态特性;③所有定量或定性的信息都分布储存于网络内的各神经单元,从而具有很强的容错性和鲁棒性;④采用信息的分布式并行处理,可以进行快速大量运算。对于长期困扰控制界的非线性系统和不确定性系统来说,人工神经网络无疑是一种解决问题的有效途径。正因为如此,把人工神经网络引入传统的PID 控制,将这两者结合,则可以在一定程度上解决传统PID 调节器不易在线实时整定参数、难于对一些复杂过程和参数慢时变系统进行有效控制的不足。

一、BP神经网络 BP神经网络是一种有隐含层的多层前馈网络,其结构如图1-1所示。如果把具有M个输入节点和L个输出节点的BP神经网络看成是从M维欧氏空间到L维欧氏空间的非线性映射,则对于具有一定非线性因数的工业过程被控对象,采用BP网络来描述,不失为一种好的选择。在BP神经网络中的神经元多采用S型函数作为活化函数,利用其连续可导性,便于引入最小二乘学习算法,即在网络学习过程中,使网络的输出与期望输出的误差边向后传播边修正加权系数,以期使误差均方值最小。BP神经网络的学习过程可分为前向网络计算和反向误差传播——连接加权系数修正两个部分,这两个部分是相继连续反复进行的,直至误差满足要求。不论学习过程是否已经结束,只要在网络的输入节点加入输入信号,则这些信号将一层一层向前传播;通过每一层时要根据当时的连接加权系数和节点的活化函数与阈值进行相应计算,所得的输出再继续向下一层传输。这个前向网络计算过程,既是网络学习过程的一部分,也是将来网络的工作模式。在学习过程结束之前,如果前向网络计算的输出和期望输出之间存在误差,则转入反向传播,将误差沿着原来的连接通路回送,作为修改加权系数的依据,目标是使误差减小。

智能控制(神经网络)-作业

智能控制作业 学生: 学 号: 专业班级: 7-2 采用BP 网路、RBF 网路、DRNN 网路逼近线性对象 2) 1(1)1(9.0)1()(-+-?--=k y k y k u k y ,分别进行matlab 仿真。 (一)采用BP 网络仿真 网络结构为2-6-1。采样时间1ms ,输入信号)6sin(5.0)(t k u ?=π,权值21,W W 的初值随机取值,05.0,05.0==αη。 仿真m 文件程序为: %BP simulation clear all; clear all; xite=0.5; alfa=0.5; w1=rands(2,6); % value of w1,initially by random w1_1=w1;w1_2=w1; w2=rands(6,1); % value of w2,initially by random w2_1=w2;w2_2=w2_1; dw1=0*w1; x=[0,0]'; u_1=0; y_1=0; I=[0,0,0,0,0,0]'; % input of yinhanceng cell Iout=[0,0,0,0,0,0]'; % output of yinhanceng cell FI=[0,0,0,0,0,0]'; ts=0.001; for k=1:1:1000 time(k)=k*ts;

u(k)=0.5*sin(3*2*pi*k*ts); y(k)=(u_1-0.9*y_1)/(1+y_1^2); for j=1:1:6 I(j)=x'*w1(:,j); Iout(j)=1/(1+exp(-I(j))); end yn(k)=w2'*Iout; %output of network e(k)=y(k)-yn(k); % error calculation w2=w2_1+(xite*e(k))*Iout+alfa*(w2_1-w2_2); % rectify of w2 for j=1:1:6 FI(j)=exp(-I(j))/(1+exp(-I(j))^2); end for i=1:1:2 for j=1:1:6 dw1(i,j)=e(k)*xite*FI(j)*w2(j)*x(i); % dw1 calculation end end w1=w1_1+dw1+alfa*(w1_1-w1_2); % rectify of w1 % jacobian information yu=0; for j=1:1:6 yu=yu+w2(j)*w1(1,j)*FI(j); end dyu(k)=yu; x(1)=u(k); x(2)=y(k); w1_2=w1_1;w1_1=w1; w2_2=w2_1;w2_1=w2; u_1=u(k); y_1=y(k); end figure(1); plot(time,y,'r',time,yn,'b'); xlabel('times');ylabel('y and yn');

神经网络控制大作业_南航_智能控制

南京航空航天大学研究生实验报告 实验名称:神经网络控制器设计 姓名: 学号: 专业: 201 年月日

一、题目要求 考虑如下某水下航行器的水下直航运动非线性模型: ()||a m m v k v v u y v ++== 其中v R ∈为水下航行器的前进速度, u R ∈为水下航行器的推进器推力,y R ∈为水下航行器的输出,航行器本体质量、附加质量以及非线性运动阻尼系数分别为 100,15,10a m m k ===。 作业具体要求: 1、设计神经网络控制器,对期望角度进行跟踪。 2、分析神经网络层数和神经元个数对控制性能的影响。 3、分析系统在神经网络控制和PID 控制作用下的抗干扰能力(加噪声干扰、加参数不确定)、抗非线性能力(加死区和饱和特性)、抗时滞的能力(对时滞大小加以改变)。 二、神经网络控制器的设计 1.构建系统的PID 控制模型 在Simulink 环境下搭建水下航行器的PID 仿真模型,如下图1所示: 图1 水下航行器的PID 控制系统 其中,PID 控制器的参数设置为:K p =800,K i =100,K d =10。 需要注意的一点是,经过signal to workspace 模块提取出的数据的Save format 为Array 格式。

2.BP神经网络控制器的训练 首先将提取出的训练数据变为标准的训练数据形式,标准的训练数据分为输入和目标输出两部分。经过signal to workspace模块提取出的数据为一个训练数据个数乘以输入(或输出)个数的矩阵,因此分别将x、u转置后就得到标准训练数据x’,u’。 然后,新建m文件,编写神经网络控制器设计程序: %---------------------------------------------------------------- p=x'; %input t=u'; %input net=newff(p,t,3,{'tansig','purelin'},'trainlm'); net.trainparam.epochs=2500; net.trainparam.goal=0.00001; net=train(net,x',u'); %train network gensim(net,-1); %generate simulink block %---------------------------------------------------------------- 上述m文件建立了如下图所示的神经网络,包含输入层、1个隐含层和输出层,各层神经元节点分别为1、 3 和1。 图2 神经网络控制器结构及训练方法

pid神经网络控制器的设计

第三章 PID 神经网络结构及控制器的设计 在控制系统中,PID 控制是历史最悠久,生命力最强的控制方式,具有直观、实现简单和鲁棒性能好等一系列优点。但近年来随着计算机的广泛应用,智能控制被越来越广泛的应用到各种控制系统中。智能控制方法以神经元网络为代表,由于神经网络可实现以任意精度逼近任意函数,并具有自学习功能,因此适用于时变、非线性等特性未知的对象,容易弥补常规PID 控制的不足。将常规PID 控制同神经网络相结合是现代控制理论的一个发展趋势。 3.1 常规PID 控制算法和理论基础 3.1.1 模拟PID 控制系统 PID(Proportional 、Integral and Differential)控制是最早发展起来的控制策略之一,它以算法简单、鲁捧性好、可靠性高等优点而梭广泛应用于工业过程控制中。 PID 控制系统结构如图3.1所示: 图3.1 模拟PID 控制系统结构图 它主要由PID 控制器和被控对象所组成。而PID 控制器则由比例、积分、微分三个环节组成。它的数学描述为: 1() ()[()()]t p D i de t u t K e t e d T T dt ττ=+ +? (3.1) 式中,p K 为比例系数; i K 为积分时间常数: d K 为微分时间常数。 简单说来,PID 控制器各校正环节的主要控制作用如下: 1.比例环节即时成比例地反映控制系统的偏差信号()e t ,偏差一旦产生,控制器立即产生控制作用,以减少偏差。

2.积分环节主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分时间常数i T ,i T 越大,积分作用越弱,反之则越强。 3.微分环节能反映偏差信号的变化趋势(变化速率),并能在偏差信号值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调节时间。 具体说来,PID 控制器有如下特点: (1)原理简单,实现方便,是一种能够满足大多数实际需要的基本控制器; (2)控制器能适用于多种截然不同的对象,算法在结构上具有较强的鲁棒性,在很多情况下,其控制品质对被控对象的结构和参数摄动不敏感。 3.1.2 数字PID 控制算法 在计算机控制系统中,使用的是数字PID 控制器,数字PID 控制算法通常又分为位置式PID 控制算法和增量式PID 控制算法。 1.位置式PID 控制算法 由于计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量,故对式(3.1)中的积分和微分项不能直接使用,需要进行离散化处理。按模拟PID 控制算法的算式(3.1),现以一系列的采样时刻点kT 代表连续时间t ,以和式代替积分,以增量代替微分,则可以作如下的近似变换: t kT = (0,1,2,3...)k = ()()()k k t j j e t dt T e jT T e j ==≈=∑∑? ()()[(1)]()(1) de t e kT e k T e k e k dt T T ----≈= (3.2) 式中,T 表示采样周期。 显然,上述离散化过程中,采样周期T 必须足够短,才能保证有足够的精度。为了书写方便,将()e kT 简化表示()e k 成等,即省去T 。将式(3.2)代入到(3.1)中可以得到离散的PID 表达式为: 0(){()()[()(1)]}k D p j I T T u k K e k e j e k e k T T ==+ + --∑ (3.3) 或 0 ()()()[()(1)]}k p I D j u k K e k K e j K e k e k ==++--∑ (3.4) 式中,k ——采样序号,0,1,2...k =; ()u k ——第k 次采样时刻的计算机输出值;

智能控制大作业-神经网络

智能控制与应用实验报告神经网络控制器设计

一、 实验内容 考虑一个单连杆机器人控制系统,其可以描述为: 0.5sin()Mq mgl q y q τ+== 其中20.5M kgm =为杆的转动惯量,1m kg =为杆的质量,1l m =为杆长, 29.8/g m s =,q 为杆的角位置,q 为杆的角速度,q 为杆的角加速度, τ为系统的控制输入。具体要求: 1、设计神经网络控制器,对期望角度进行跟踪。 2、分析神经网络层数和神经元个数对控制性能的影响。 3、分析系统在神经网络控制和PID 控制作用下的抗干扰能力(加噪声干扰、加参数不确定)、抗非线性能力(加死区和饱和特性)、抗时滞的能力(对时滞大小加以改变)。 4、为系统设计神经网络PID 控制器(选作)。 二、 对象模型建立 根据公式(1),令状态量121=,x q x x = 得到系统状态方程为: 12121 0.5**sin() x x mgl x x M y x τ=-= = (1) 由此建立单连杆机器人的模型如图1所示。

图1 单连杆机器人模型 三、系统结构搭建及神经网络训练 1.系统PID结构如图2所示: 图2 系统PID结构图 PID参数设置为Kp=16,Ki=10,Kd=8得到响应曲线如图3所示:

01234 5678910 0.2 0.4 0.6 0.8 1 1.2 1.4 t/s a n g l e /r a d 图3 PID 控制响应曲线 采样PID 控制器的输入和输出进行神经网络训练 p=[a1';a2';a3']; t=b'; net=newff([-1 1;-1 1;-1 1],[3 8 16 8 1],{'tansig' 'tansig' 'tansig' 'logsig' 'purelin'}); net.trainparam.epochs=2500; net.trainparam.goal=0.00001; net=train(net,p,t); gensim(net,-1) 产生的神经网络控制器如图4所示:

神经网络在人工智能中的应用

神经网络在人工智能中的应用 摘要:人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。关键词:人工智能,神经网络 一、人工智能 “人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的,现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确,因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”, 可见复杂工作的定义是随着时代的发展和技术的进步而变化的, 人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展,一方面又转向更有意义、更加困难的目标。 二、神经网络

神经网络是:思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。 逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。 人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。 人工神经网络是由大量的简单基本元件——神经元相互联接而成的自适应非线性动态系统。每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂。 人工神经网络反映了人脑功能的若干基本特性,但并非生物系统的逼真描述,只是某种模仿、简化和抽象。 与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制。三.神经网络在人工智能中的应用专家系统

智能控制(神经网络)作业

智能控制作业 学生姓名: 学 号: 专业班级: 7-2 采用BP 网路、RBF 网路、DRNN 网路逼近线性对象 2 )1(1)1(9.0)1()(-+-?--=k y k y k u k y ,分别进行matlab 仿真。 (一)采用BP 网络仿真 网络结构为2-6-1。采样时间1ms ,输入信号)6sin(5.0)(t k u ?=π,权值21,W W 的初值随机取值,05.0,05.0==αη。 仿真m 文件程序为: %BP simulation clear all; clear all; xite=0.5; alfa=0.5; w1=rands(2,6); % value of w1,initially by random w1_1=w1;w1_2=w1; w2=rands(6,1); % value of w2,initially by random w2_1=w2;w2_2=w2_1; dw1=0*w1; x=[0,0]'; u_1=0; y_1=0; I=[0,0,0,0,0,0]'; % input of yinhanceng cell Iout=[0,0,0,0,0,0]'; % output of yinhanceng cell FI=[0,0,0,0,0,0]'; ts=0.001; for k=1:1:1000 time(k)=k*ts; u(k)=0.5*sin(3*2*pi*k*ts); y(k)=(u_1-0.9*y_1)/(1+y_1^2); for j=1:1:6 I(j)=x'*w1(:,j); Iout(j)=1/(1+exp(-I(j))); end yn(k)=w2'*Iout; %output of network e(k)=y(k)-yn(k); % error calculation w2=w2_1+(xite*e(k))*Iout+alfa*(w2_1-w2_2); % rectify of w2 for j=1:1:6

人工智能之人工神经网络(PDF 23页)

1 第八章人工神经网络吉林大学地面机械仿生技术教育部重点实验室 张锐

2 8.1 神经网络的基本概念及组成特性 8.1.1 生物神经元的结构与功能特性 从广义上讲,神经网络通常包括生物神经网络与人工神经网络两个方面。生物神经网络是指由动物的中枢神经系统及周围神经系统所构成的错综复杂的神经网络,它负责对动物肌体各种活动的管理,其中最重要的是脑神经系统。 人工神经网络是指模拟人脑神经系统的结构和功能,运用大量的软、硬件处理单元,经广泛并行互连,由人工方式建立起来的网络系统。 生物神经元就通常说的神经细胞,是构成生 物神经系统的最基本单元,简称神经元。 神经元主要由三个部分构成,包括细胞体、 轴突和树突,其基本结构如图所示。 1. 生物神经元的结构 生物神经元结构 吉林大学地面机械仿生技术教育部重点实验室 张锐

3 从生物控制论的观点来看,作为控制和信息处理基本单元的神经元,具有下列一些功能与特性。 2. 神经元的功能特性 (1)时空整合功能 神经元对于不同时间通过同一突触传入的信息,具有时间整合功能;对于同一时间通过不同突触传入的信息,具有空间整合功能。两种功能相互结合,使生物神经元具有时空整合的输入信息处理功能。 (2)神经元的动态极化性 尽管不同的神经元在形状及功能上都有明显的不同,但大多数神经元都是以预知的确定方向进行信息流动的。 (3)兴奋与抑制状态 神经元具有两种常规工作状态,即兴奋状态与抑制状态。 (4)结构的可塑性 突触传递信息的特性是可变的,随着神经冲动传递方式的变化,其传递作用可强可弱,所以神经元之间的连接是柔性的,这称为结构的可塑性。 吉林大学地面机械仿生技术教育部重点实验室 张锐

人工智能神经网络

基于神经网络的人机对抗人工智能系统(理论) -------------------------------------------------------------------------------- 基于神经网络的人机对抗人工智能系统 Harreke 摘要: 人工智能是一门科学名称。自电子计算机发明后不久,人工智能学科即宣布创立,其目的就是要模拟人类的智力活动机制来改进计算机的软件硬件构成,使他们掌握一种或多种人的智能,以便在各种领域内有效替代人的脑力劳动,特别是解决用传统软硬件方法难以解决的问题,如模式识别,复杂的控制行为或对海量的数据进行实时评估等。 所谓人工智能,就是由人工建立的硬件或软件系统的智能,是无生命系统的智能。智能是人类智力活动的能力,是一个抽象的概念。一个软件或硬件系统是否有智能,只能根据它所表现出来的行为是否和人类某些行为相类似来做判断。 人工智能在计算机上的实现,有两种不同的方式。一种是采用传统的编程技术,使系统呈现智能的效果,而不考虑所用方法是否与人或生物机体所用的方法相同。这种方法称为工程学方法,它的编程方式虽然简单,智能效果显著,可是算法和程序一旦固定下来,智能就很难再进一步提高。另一种是模拟法,它不仅要看智能效果,还要求实现方法和人类或生物机体所用的方法相同或类似。人工神经网络是模拟人类或生物大脑中神经元的活动方式,属于模拟法。 人工神经网络入门难度大,编程者需要为每一个对象设置一个智能系统来进行控制,新设置好的智能系统,虽然一开始什么都不懂,但它拥有学习的能力,可以通过学习,不断提升智能,不断适应环境、应付各种情况。通常来讲,使用人工神经网络虽然编程复杂,但编写完成后的维护工作,将比使用其他方式编程后的维护更加省力。 本文采用人工神经网络构建一个完整的人工智能系统,并将该人工神经网络理论应用于电脑领域的项目DOTA。 关键词:人机对抗,神经网络,人工智能,DOTA 目录 第一章神经网络系统概述 1.1生物学神经网络 1.2人工神经网络

2019人工智能与健康试题及答案

2019人工智能与健康试题及答案 一、单项选择题 1.()是集机械、电子、控制、计算机、传感器、人工智能等多学科先进技术于一体的现代制造业重要的自动化装备。 D.工业机器人 2.()是利用计算机将一种自然语言(源语言)转换为另一种自然语言(目标语言)的过程。 B.机器翻译 3.()是人工智能的核心,是使计算机具有智能的主要方法,其应用遍及人工智能的各个领域。 B.机器学习 4.()是人以自然语言同计算机进行交互的综合性技术,结合了语言学、心理学、工程、计算机技术等领域的知识。 A.语音交互 5.()是通过建立人工神经网络,用层次化机制来表示客观世界,并解释所获取的知识,例如图像、声音和文本。 A.深度学习 6.()是研究用计算机系统解释图,像实现类似人类视觉系统理解外部世界的一种技术,所讨论的问题是为了完成某一任务需要从图像中获取哪些信息,以及如何利用这些信息获得必要的解释。 B.图像理解 7.()是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题。 A.专家系统 8.()是一种处理时序数据的神经网络,常用于语音识别、机器翻译等领域。 C.循环神经网络 9.()是一种基于树结构进行决策的算法。 B.决策树 10.()是用电脑对文本集按照一定的标准进行自动分类标记。

C.文本分类 11.()是指能够按照人的要求,在某一个领域完成一项工作或者一类工作的人工智能。 C.弱人工智能 12.()是指能够自己找出问题、思考问题、解决问题的人工智能。 B.强人工智能 13.()是指在各个领域都比人类要强的人工智能。 A.超人工智能 14.()是指直接通过肢体动作与周边数字设备和环境进行交互。 A.体感交互 15.()是自然语言处理的重要应用,也可以说是最基础的应用。 C.文本分类 16.()宣布启动了“先进制造伙伴计划”“人类连接组计划”“创新神经技术脑研究计划”。 C.美国 17.()中共中央政治局就人工智能发展现状和趋势举行第九次集体学习。 B.2018年10月31日 18.《“健康中国2030”规划纲要》中提到,健康是经济社会发展的() B.基础条件 19.《“健康中国2030”规划纲要》中提到,全民健康是建设健康中国的() D.根本目的 20.1997年,Hochreiter&Schmidhuber提出()。 D.长短期记忆模型 21.2005年,美国一份癌症统计报告表明:在所有死亡原因中,癌症占() A.1/4 22.2012年,Hinton教授小组在ImageNet竞赛中夺冠,降低了几乎()的错误率。 B.50% 23.2017年,卡内基梅隆大学开发的一个人工智能程序在()大赛上战胜了四位人类玩家,这在人工智能发展史上具有里程碑式的意义。 C.德州扑克 24.50年前,人工智能之父们说服了每一个人:“()是智能的钥匙。” B.逻辑 25.癌症的治疗分为手术、放疗、化疗。据WTO统计,有()的肿瘤患者需要接受放疗。

人工智能-BP神经网络算法的简单实现

人工神经网络是一种模仿人脑结构及其功能的信息处理系统,能提高人们对信息处理的智能化水平。它是一门新兴的边缘和交叉学科,它在理论、模型、算法等方面比起以前有了较大的发展,但至今无根本性的突破,还有很多空白点需要努力探索和研究。 1 人工神经网络研究背景 神经网络的研究包括神经网络基本理论、网络学习算法、网络模型以及网络应用等方面。其中比较热门的一个课题就是神经网络学习算法的研究。 近年来己研究出许多与神经网络模型相对应的神经网络学习算法,这些算法大致可以分为三类:有监督学习、无监督学习和增强学习。在理论上和实际应用中都比较成熟的算法有以下三种: (1) 误差反向传播算法(Back Propagation,简称BP 算法); (2) 模拟退火算法; (3) 竞争学习算法。 目前为止,在训练多层前向神经网络的算法中,BP 算法是最有影响的算法之一。但这种算法存在不少缺点,诸如收敛速度比较慢,或者只求得了局部极小点等等。因此,近年来,国外许多专家对网络算法进行深入研究,提出了许多改进的方法。 主要有: (1) 增加动量法:在网络权值的调整公式中增加一动量项,该动量项对某一时刻的调整起阻尼作用。它可以在误差曲面出现骤然起伏时,减小振荡的趋势,提高网络训练速度; (2) 自适应调节学习率:在训练中自适应地改变学习率,使其该大时增大,该小时减小。使用动态学习率,从而加快算法的收敛速度; (3) 引入陡度因子:为了提高BP 算法的收敛速度,在权值调整进入误差曲面的平坦区时,引入陡度因子,设法压缩神经元的净输入,使权值调整脱离平坦区。 此外,很多国内的学者也做了不少有关网络算法改进方面的研究,并把改进的算法运用到实际中,取得了一定的成果: (1) 王晓敏等提出了一种基于改进的差分进化算法,利用差分进化算法的全局寻优能力,能够快速地得到BP 神经网络的权值,提高算法的速度; (2) 董国君等提出了一种基于随机退火机制的竞争层神经网络学习算法,该算法将竞争层神经网络的串行迭代模式改为随机优化模式,通过采用退火技术避免网络收敛到能量函数的局部极小点,从而得到全局最优值; (3) 赵青提出一种分层遗传算法与BP 算法相结合的前馈神经网络学习算法。将分层遗传算法引入到前馈神经网络权值和阈值的早期训练中,再用BP 算法对前期训练所得性能较优的网络权值、阈值进行二次训练得到最终结果,该混合学习算法能够较快地收敛到全局最优解;

人工智能神经网络例题

神经网络学习 假设w1(0)=0.2, w2(0)=0.4, θ(0)=0.3, η=0.4,请用单层感知器完成逻辑或运算的学习过程。 解:根据“或”运算的逻辑关系,可将问题转换为: 输入向量:X1=[0, 0, 1, 1] X2=[0, 1, 0, 1] 输出向量:Y=[0, 1, 1, 1] 由题意可知,初始连接权值、阈值,以及增益因子的取值分别为: w1(0)=0.2, w2(0)=0.4, θ(0)=0.3,η=0.4 即其输入向量X(0)和连接权值向量W(0)可分别表示为: X(0)=(-1, x1 (0), x2 (0)) W(0)=(θ(0), w1(0), w2 (0)) 根据单层感知起学习算法,其学习过程如下: 设感知器的两个输入为x1(0)=0和x2(0)=0,其期望输出为d(0)=0,实际输出为:y(0)=f(w1(0) x1(0)+ w2(0) x2(0)-θ(0)) =f(0.2*0+0.4*0-0.3)=f(-0.3)=0 实际输出与期望输出相同,不需要调节权值。 再取下一组输入:x1(0)=0和x2(0)=1,其期望输出为d(0)=1,实际输出为: y(0)=f(w1(0) x1(0)+ w2(0) x2(0)-θ(0)) =f(0.2*0+0.4*1-0.3)=f(0.1)=1 实际输出与期望输出相同,不需要调节权值。 再取下一组输入:x1(0)=1和x2(0)=0,其期望输出为d(0)=1,实际输出为: y(0)=f(w1(0) x1(0)+ w2(0) x2(0)-θ(0)) =f(0.2*1+0.4*0-0.3) =f(-0.1)=0 实际输出与期望输出不同,需要调节权值,其调整如下: θ(1)=θ(0)+η(d(0)- y(0))*(-1)=0.3+0.4*(1-0)*(-1)= -0.1 w1(1)=w1(0)+η(d(0)- y(0))x1(0)=0.2+0.4*(1-0)*1=0.6 w2(1)=w2(0)+η(d(0)- y(0))x2(0)=0.4+0.4*(1-0)*0=0.4 再取下一组输入:x1(1)=1和x2(1)=1,其期望输出为d(1)=1,实际输出为: y(1)=f(w1(1) x1(1)+ w2(1) x2(1)-θ(1)) =f(0.6*1+0.4*1+0.1) =f(1.1)=1 实际输出与期望输出相同,不需要调节权值。 再取下一组输入:x1(1)=0和x2(1)=0,其期望输出为d(0)=0,实际输出为: y(1)=f(w1(1) x1(1)+ w2(1) x2(1)-θ(1)) =f(0.6*0+0.4*0 + 0.1)=f(0.1)=1

神经网络控制完整版

神经网络控制 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与 102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉

基于神经网络模型的自适应控制系统设计及仿真

第一章前言 1.1 课题的意义: 本毕业设计旨在学习并比较各种自适应控制算法,掌握matlab语言,利用simulink对自适应控制系统模型进行仿真分析。 自适应控制是人们要求越来越高的控制性能和针对被控系统的高度复杂化,高度不确定性的情况下产生的,是人工智能渗入到应用科技领域的必然结果。并在常规控制理论的基础上得到进一步的发展和提高。进入21世纪以来,智能控制技术和远程监测技术继续飞速发展,逐渐被应用到电力、交通和物流等领域。从卫星智能控制,到智能家居机器人;从公共场所的无线报警系统,到家用煤气、自来水等数据的采集。可以说,智能控制技术和远程监测技术己经渗透到了人们日常生活之中,节约了大量的人力和物力,给人们的日常生活带来了极大的便利。目前,自适应控制的研究以认知科学、心理学、社会学、系统学、语言学和哲学为基础,有效的把数字技术、远程通信、计算机网络、数据库、计算机图形学、语音与听觉、机器人学、过程控制等技术有机的结合,提供了解决复杂问题的有效手段。 自适应控制是在人们在追求高控制性能、高度复杂化和高度不确定性的被控系统情况下产生的,是人工智能渗入到应用科技领域的必然结果,并在常规控制理论的基础上得到进一步的发展和提高。主要研究对象从单输入、单输出的常系数线性系统,发展为多输入、多输出的复杂控制系统。自适应控制理论的产生为解决复杂系统控制问题开辟了新的途径,成为当下控制领域的研究和发展热点。 1.2 国内外研究概况及发展趋势: 1943年,心理学家W·Mcculloch和数理逻辑学家W·Pitts在分析、总结神经元基本特性的基础上首先提出神经元的数学模型。此模型沿用至今,并且直接影响着这一领域研究的进展。因而,他们两人可称为人工神经网络研究的先驱。1945年冯·诺依曼领导的设计小组试制成功存储程序式电子计算机,标志着电子计算机时代的开始。1948年,他在研究工作中比较了人脑结构与存储程序式计算机的根本区别,提出了以简单神经元构成的再生自动机网络结构。但是,由于指令存储式计算机技术的发展非常迅速,迫使他放弃了神经网络研究的新途径,继续投身于指令存储式计算机技术的研究,并在此领域作出了巨大贡献。虽然,冯·诺依曼的名字是与普通计算机

人工智能论文

湖南理工学院 人工智能课程论文 题目:模式识别及人工神经网络 课程名称:人工智能 院系:计算机学院 专业班级: 姓名: 学号: 课程论文成绩: 指导教师: 2016年 6 月 26 日 模式识别及人工神经网络 摘要:人工神经网络是指模拟人脑神经系统的结构和功能,运用大量的处理部件,由人工方式建立起来的网络系统。该文首先介绍了神经网络研究动向,然后介绍了近年来几种新型神经网络的基本模型及典型应用,包括模糊神经网络、神经网络与遗传算法的结合、进化神经网络、混沌神经网络和神经网络与小波分析的结合。最后,根据这几种新型神经网络的特点, 展望了它们今后的发展前景。[2] 关键词:模糊神经网络;神经网络与遗传算法的结合;进化神经网络;混沌神经网络;神经网络与小波分析。 Pattern recognition and artificial neural network

Abstract: Artificial neural network is the system that simulates the human brain’s structure and function, and uses a large number of processing elements, and is manually established by the network system. This paper firstly introduces the research trends of the neural network, and then introduces several new basic models of neural networks and typical applications in recent years, including of fuzzy neural network, the combine of neural network and genetic algorithm, evolutionary neural networks, chaotic neural networks and the combine of neural networks and wavelet analysis. Finally, their future prospects are predicted based on the characteristics of these new neural networks in the paper. Key words: Fuzzy neural network; Neural network and genetic algorithm; Evolutionary neural networks; Chaotic neural networks; Neural networks and wavelet analysis 1 什么是人工神经网络? 所谓人工神经网络就是模仿生物大脑的结构和功能而构成的一种信息系统计算机,人士地球上具有最高智慧的动物,而人的指均来自大脑,人类靠大脑进行思考,联想,记忆和推理判断等,这些功能是任何被称为“电脑”的一般计算机所无法取代的,长期以来,许多科学家一直致力于人脑内部结构和功能的探讨和研究,并试图建立模拟人脑的计算机,虽然到目前对大脑的内部工作机理还不是完全清楚,但对其结构有所了解。粗略地讲,大脑是由大量神经细胞或者神经元组成的,每个神经元可看作是一个小的处理单元,这些神经元按某种方式连接起来,形成大脑内部的生理神经元网络。这种神经元网络中各神经元之间联结的强弱,按外部的激励信号做自适应变化,而每个神经元又随着所接收到的多个信号的综合大小而呈现兴奋或抑制状态。 1.1 人工智能网络的发展 (1)初期(萌发)期---MP模型的提出和人工升级网络的兴起 --1943年,美国神经生理学家Warren Mcculloch和数学家Walter Pitts 合写了一篇关于神经元如何工作的开拓性文章:“A Logical Calculus of Ideas Immanent in Nervous Activity”。该文指出,脑细胞的活动就像各种逻辑运算。

智能控制之神经网络系统辨识的设计

四、神经网络系统辨识分析(25分) 用BP 神经网络进行系统在线逼近的原理框图如图3所示 ) (k y n (k u (k y 图3 图4 假设某控制对象的模型为2 3 )1(1) 1()()(-+-+ =k y k y k u k y ,采样时间取t=1ms ,输入信号 t)sin(650.)u(π=k 。采用的BP 神经网络结构如图4所示,权值ij w 和2j w 的初值取 [-1,+1] 之间的随机值,权值采用δ学习算法,学习速率η取0.50,动量因子α取0.05。试分析神经网络在线逼近的运行过程,并作Matlab 仿真。 题目四、需要阐述清楚BP 网络逼近控制对象的工作原理和学习过程 BP 算法的基本思想是:对于一个输入样本,经过权值、阈值和激励函数运算后,得到一个输出y n (k),然后让它与期望的样本y(k)进行比较,若有偏差,则从输出开始反向传播该偏差,进行权值、阈值调整,使网络输出逐渐与希望输出一致。 BP 算法由四个过程组成:输入模式由输入层经过中间层向输出层的“模式顺传播”过程,网络的希望输出与网络的实际输出之间的误差信号由输出层经过中间层向输入层逐层修正连接权的“误差逆传播”过程,由“模式顺传播”与“误差逆传播”的反复交替进行的网络“记忆训练”过程,网络趋向于收敛即网络的全局误差趋向极小值的 “学习收敛”过程。 BP 网络(Back Propagation ),该网络是一种单向传播的多层前向网络。误差 反向传播的BP 算法简称BP 算法,其基本思想是梯度下降法。它采用梯度搜索技术,以期使网络的实际输出值与期望输出值的误差均方值为最小。 BP 网络特点: (1)是一种多层网络,包括输入层、隐含层和输出层; (2)层与层之间采用全互连方式,同一层神经元之间不连接; (3)权值通过δ学习算法进行调节;

相关主题
文本预览
相关文档 最新文档