当前位置:文档之家› 数值计算方法课程报告

数值计算方法课程报告

数值计算方法课程报告
数值计算方法课程报告

课程报告

课程名称______《数值计算》 __ 学生学院_____机电工程学院___ 专业班级_____微电子(1)班____ 学号________

学生姓名_______________

指导教师_____ ________

XXXX年XX月XX日

名:

线

装专

业:学院:

广东工业大学考试试卷( A )

课程名称: 数值计算试卷满分100 分考试时间: 2015 年 12 月 26 日(第 17 周星期六) 题号一二三四五六七八九十总分

评卷得分

评卷签名

复核得分

复核签名

“数值计算”考试要求

“数值计算”考试以开卷形式进行。在“数值计算”课程考试日(2015 年12 月 19 日,第 12 周星期五)考试时间,在考试教室领取试题,在 2015 年12 月 26 日(第 17 周星期六)进行答辩。不参加答辩者将取消考试成绩。

“数值计算”考试结果要求独立在计算机上完成,可使用Matlab或 C 程序编程实现。考试结果将以报告书形式提交,内容包括对问题描述、计算程序以及算例、计算结果、分析组成。计算程序要求具有通用性,能够处理异常情况,可以输入问题、算法参数、算例及初始值,在计算过程中显示当前计算状态、计算完成后显示计算结果。上述内容将作为试卷成绩的主要评定依据。特别提醒,不得使用教师在讲课和实验时的范例作为考试结果。报告书具体格式参考毕业设计手册。

以考生学号命名的文件夹存放程序及报告书电子版,以班级为单位刻录在一张光盘中,与打印版报告书一起由班长和学习委员一起上交任课教师。

数值计算课程总成绩将由试卷成绩(70%)、平时成绩(30%)组成。

一编写 Gauss 列主元消元法求解线性方程组的程序,要求附有算例。(本题 20 分)二编写多项式插值的程序,要求附有算例。(本题 20 分)

三编写Gauss积分方法的程序,要求附有算例。(本题 20 分)

四编写Euler方法求常微分方程初值问题的程序,要求附有算例。(本题 20 分)五编写Newton迭代法求非线性方程的程序,要求附有算例。(本题 20 分)

广东工业大学试卷用纸,共2页,第2页

一编写 Gauss 列主元消元法求解线性方程组的程序,要求附有算例。(本题 20 分)

问题描述:编写一C语言程序,算法为列主元消元法,功能为求解线性方程组。解:

# include

# include

#define N 200

void main()

{

int i,j,k,m,n;

float s,e,q;

double x;

float X[N];

float array[N][N+1];

printf("请输入方程的阶数\n");

scanf("%d",&n);

printf("输入的原方程系数,中间用空格隔开\n");

for(i=0;i

for(j=0;j

scanf("%f",&array[i][j]);

printf("方程系数为\n");

for(i=0;i

{

for(k=0;k<=n-1;k++) //在相应的列中选主元// {

m = k;

for(i=k+1;i<=n-1;i++)

{

x = fabs(array[m][k]);

if(fabs(array[i][k] > x))

m = i;

}

printf("最大元在第%d行\n\n\n\n",m);

if(array[m][k]==0)

{

printf("ERROR");

return;

}

else //两行进行比较交换两行//

{

for(j=k;j<=n;j++)

{

q = array[k][j];

array[k][j] = array[m][j];

array[m][j] = q;

}//换行结束//

for(i=0;i

{

for(j=0;j

{

printf("%8.4f ",array[i][j]);

}

printf("\n"); //输出换行后的矩阵// }

printf("\n\n\n\n\n\n");

for(i=k+1;i<=n-1;i++)

{

s = array[i][k]/array[k][k]; //消元过程//

for(j=0;j<=n;j++)

{

array[i][j] =-( array[i][j] - s * array[k][j]);

}

}

}

}

}

printf("变换后的矩阵\n");

for(i=0;i

for(j=0;j

{

printf("%8.4f", array[i][j]);

}

printf("\n");

}

printf("\n");

array[n-1][n] = array[n-1][n]/array[n-1][n-1];

array[n-1][n-1]=1;

for(i=n-2;i>=0;i--)

{

e = 0;

for(j=i+1;j

{

e = e + array[i][j] * array[j][n];

}

array[i][n]=(array[i][n] - e) / array[i][i];

array[i][i]=1;

for(j=i+1;j

{array[i][j]=0;}

}

printf("消元后的矩阵\n"); for(i=0;i

for(j=0;j

{

printf("%8.4f", array[i][j]);

}

printf("\n");

}

for(i=0;i

//输出解矩阵// {

X[i]=array[i][n];

}

printf("解的集合\n");

for(j=0;j

{

printf("%8.4f", X[j]);

}

printf("\n");

}

例子:求方程组的解。

11

2305438

32321321321-=-+-=++-=-+x x x x x x x x x

运算程序结果:

计算结果与分析:

计算结果如下:4,1,2321===x x x 。代入方程中得带的结果等于右边。可见列主元消元法求解精度高。

二 编写多项式插值的程序,要求附有算例。(本题 20 分)

问题描述:

写一C 语言程序,算法为拉格朗日插值法,功能为求解多项式函数。插值函数为:()()()()()()()()()()()

n i i i i i i n i i i i n i i n x x x x x x x x x x x x x x x x x l x l y x L --------=

=----=∑............,1101100 解:

#include "stdio.h"

#define N 200

void main()

{

int i,t,j,n;

float a,b,c =0,x,w;

float X[N];

float Y[N];

printf("请输入已知的数个数\n");

scanf("%d",&n);

printf("请输入x 的值\n");

for (j =0;j

{

scanf("%f", &X[j]);

}

printf("\n");

printf("X 的集合\n");

for (i =0;i

{

printf("%8.4f", X[i]);

}

printf("\n");

printf("\n");

printf("请输入对应y 的值\n");

for (j =0;j

{

scanf("%f", &Y[j]);

}

printf("y 的集合\n");

for (i =0;i

{

printf("%8.4f", Y[i]);

}

printf("\n");

printf("\n");

printf("请输入要计算的x\n");

scanf("%f",&w);

printf("x=%f",w);

for (i =0;i <=n;i ++) //计算基函数//

{

a =1;

b =1;

for (t =0;t

{

a =(w -X[t])*a /(X[i]-X[t]);

}

for (t =i +1;t

{

b =(w -X[t])*b /(X[i]-X[t]);

}

c =a *b *Y[i]+c;

}

printf("\n");

printf("结果\n");

printf("当x=%f,y=%f\n",w,c);

} 例子:设3)(x x f =在125,64,27,83210====x x x x 的值为2,3,4,5。用多项式插值方法计算在25=x 的值。

计算结果924017738.2=y

运行程序结果:

计算结果与分析:

当25=x 。计算器算的924017738.2=y 与程序算的914235.2=y 。结果的精度为0.01。精度还可以,说明该方法可以。如果选的的点多精度会更高。

三 编写 Gauss 积分方法的程序,要求附有算例。(本题 20 分) 问题描述:

编写一C 语言程序,算法为 定步长Gauss 法,功能为求函数的积分。积分原理为:()??? ??-++-≈∑?=k n k k b a

t a b b a f A a b x f 2220 例子:求()()

dx x x x ?

++522121的积分。 解: #include "stdio.h"

#include

#define N 100

数值计算方法课程设计

重庆邮电大学 数学与应用数学 专业 《数值计算方法》课程设计 姓名: 李金徽 王莹 刘姝楠 班级: 1131001 1131002 1131002 学号: 2010213542 2010213570 2010213571 设计时间: 2012-6-4 指导教师: 朱伟

一、课程设计目的 在科学计算与工程设计中,我们常会遇到求解线性方程组的问题,对于系数矩阵为低阶稠密矩阵的线性方程组,可以用直接法进行消元,而对于系数矩阵为大型稀疏矩阵的情况,直接法就显得比较繁琐,而迭代法比较适用。比较常用的迭代法有Jacobi 迭代与Gauss - seidel 迭代。本文基于两种方法设计算法,并比较他们的优劣。 二、课程设计内容 给出Jacobi 迭代法和Gauss-Seidel 迭代法求解线性方程组的算法思想和MATLAB 程序实现,并对比分析这两种算法的优劣。 三、问题的分析(含涉及的理论知识、算法等) Jacobi 迭代法 方程组迭代法的基本思想和求根的迭代法思想类似,即对于线性 方程组Ax = b( 其中n n n R b R R A ∈?∈,),即方程组 )1(2211222221211 1212111?? ???? ?=+?++??=+?++=+?++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 将系数矩阵A 写为 )2(000000 21122 12122 11U L D a a a a a a a a a A n n n n nn --≡??? ?? ? ? ??---- ??????? ??----??????? ??= 若选取D M =,则U L A M N +=-=,方程组)1(转化为等价方程组 b x U L Dx ++=)(

数值计算方法学习心得

数值计算方法学习心得 ------一个代码的方法是很重要,一个算法的思想也很重要,但 在我看来,更重要的是解决问题的方法,就像爱因斯坦说的内容比 思维本身更重要。 我上去讲的那次其实做了挺充分的准备,程序的运行,pdf文档,算法公式的推导,程序伪代码,不过有一点缺陷的地方,很多细节 没有讲的很清楚吧,下来之后也是更清楚了这个问题。 然后一学期下来,总的来说,看其他同学的分享,我也学习到 许多东西,并非只是代码的方法,更多的是章胜同学的口才,攀忠 的排版,小冯的深入挖掘…都是对我而言比算法更加值得珍惜的东西,又骄傲地回想一下,曾同为一个项目组的我们也更加感到做项 目对自己发展的巨大帮助了。 同时从这些次的实验中我发现以前学到的很多知识都非常有用。 比如说,以前做项目的时候,项目导师一直要求对于要上传的 文件尽量用pdf格式,不管是ppt还是文档,这便算是对产权的一种 保护。 再比如代码分享,最基础的要求便是——其他人拿到你的代码 也能运行出来,其次是代码分享的规范性,像我们可以用轻量级Ubuntu Pastebin,以前做过一小段时间acm,集训队里对于代码的分享都是推荐用这个,像数值计算实验我觉得用这个也差不多了,其 次项目级代码还是推荐github(被微软收购了),它的又是可能更 多在于个人代码平台的搭建,当然像readme文档及必要的一些数据 集放在上面都更方便一些。

然后在实验中,发现debug能力的重要性,对于代码错误点的 正确分析,以及一些与他人交流的“正规”途径,讨论算法可能出 错的地方以及要注意的细节等,比如acm比赛都是以三人为一小组,讨论过后,讲了一遍会发现自己对算法理解更加深刻。 然后学习算法,做项目做算法一般的正常流程是看论文,尽量 看英文文献,一般就是第一手资料,然后根据论文对算法的描述, 就是如同课上的流程一样,对算法进一步理解,然后进行复现,最 后就是尝试自己改进。比如知网查询牛顿法相关论文,会找到大量 可以参考的文献。 最后的最后,想说一下,计算机专业的同学看这个数值分析, 不一定行云流水,但肯定不至于看不懂写不出来,所以我们还是要 提高自己的核心竞争力,就是利用我们的优势,对于这种算法方面 的编程,至少比他们用的更加熟练,至少面对一个问题,我们能思 考出对应问题的最佳算法是哪一个更合适解决问题。 附记: 对课程的一些小建议: 1. debug的能力不容忽视,比如给一个关于代码实现已知错误的代码给同学们,让同学们自己思考一下,然后分享各自的debug方法,一步一步的去修改代码,最后集全班的力量完成代码的debug,这往往更能提升同学们的代码能力。 2. 课堂上的效率其实是有点低的,可能会给学生带来一些负反馈,降低学习热情。 3. 总的来说还是从这门课程中学到许多东西。 数值分析学习心得体会

数值分析大作业-三、四、五、六、七

大作业 三 1. 给定初值 0x 及容许误差 ,编制牛顿法解方程f (x )=0的通用 程序. 解:Matlab 程序如下: 函数m 文件:fu.m function Fu=fu(x) Fu=x^3/3-x; end 函数m 文件:dfu.m function Fu=dfu(x) Fu=x^2-1; end 用Newton 法求根的通用程序Newton.m clear; x0=input('请输入初值x0:'); ep=input('请输入容许误差:'); flag=1; while flag==1 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)

while flag1==1 && m<=10^3 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)=ep flag=0; end end fprintf('最大的sigma 值为:%f\n',sigma); 2.求下列方程的非零根 5130.6651()ln 05130.665114000.0918 x x f x x +??=-= ?-???解:Matlab 程序为: (1)主程序 clear clc format long x0=765; N=100; errorlim=10^(-5); x=x0-f(x0)/subs(df(),x0); n=1; while nerrorlim n=n+1; else break ; end x0=x; end disp(['迭代次数: n=',num2str(n)]) disp(['所求非零根: 正根x1=',num2str(x),' 负根x2=',num2str(-x)]) (2)子函数 非线性函数f function y=f(x) y=log((513+0.6651*x)/(513-0.6651*x))-x/(1400*0.0918); end

数值计算方法课程报告

课程报告 课程名称______《数值计算》 __ 学生学院_____机电工程学院___ 专业班级_____微电子(1)班____ 学号________ 学生姓名_______________ 指导教师_____ ________ XXXX年XX月XX日

姓 名: 线 学 号 : 订 装专 业:学院: 广东工业大学考试试卷( A ) 课程名称: 数值计算试卷满分100 分考试时间: 2015 年 12 月 26 日(第 17 周星期六) 题号一二三四五六七八九十总分 评卷得分 评卷签名 复核得分 复核签名 “数值计算”考试要求 “数值计算”考试以开卷形式进行。在“数值计算”课程考试日(2015 年12 月 19 日,第 12 周星期五)考试时间,在考试教室领取试题,在 2015 年12 月 26 日(第 17 周星期六)进行答辩。不参加答辩者将取消考试成绩。 “数值计算”考试结果要求独立在计算机上完成,可使用Matlab或 C 程序编程实现。考试结果将以报告书形式提交,内容包括对问题描述、计算程序以及算例、计算结果、分析组成。计算程序要求具有通用性,能够处理异常情况,可以输入问题、算法参数、算例及初始值,在计算过程中显示当前计算状态、计算完成后显示计算结果。上述内容将作为试卷成绩的主要评定依据。特别提醒,不得使用教师在讲课和实验时的范例作为考试结果。报告书具体格式参考毕业设计手册。 以考生学号命名的文件夹存放程序及报告书电子版,以班级为单位刻录在一张光盘中,与打印版报告书一起由班长和学习委员一起上交任课教师。 数值计算课程总成绩将由试卷成绩(70%)、平时成绩(30%)组成。

数值分析大作业三 四 五 六 七

大作业 三 1. 给定初值 0x 及容许误差 ,编制牛顿法解方程f (x )=0的通用程序. 解:Matlab 程序如下: 函数m 文件:fu.m function Fu=fu(x) Fu=x^3/3-x; end 函数m 文件:dfu.m function Fu=dfu(x) Fu=x^2-1; end 用Newton 法求根的通用程序Newton.m clear; x0=input('请输入初值x0:'); ep=input('请输入容许误差:');

flag=1; while flag==1 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)

while flag==1 sigma=k*eps; x0=sigma; k=k+1; m=0; flag1=1; while flag1==1 && m<=10^3 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)=ep flag=0;

end end fprintf('最大的sigma 值为:%f\n',sigma); 2.求下列方程的非零根 5130.6651()ln 05130.665114000.0918 x x f x x +?? =-= ?-???解: Matlab 程序为: (1)主程序 clear clc format long x0=765; N=100; errorlim=10^(-5); x=x0-f(x0)/subs(df(),x0); n=1;

太原理工大学数值计算方法实验报告

本科实验报告 课程名称:计算机数值方法 实验项目:方程求根、线性方程组的直接解 法、线性方程组的迭代解法、代数插值和最 小二乘拟合多项式 实验地点:行勉楼 专业班级: ******** 学号: ********* 学生姓名: ******** 指导教师:李誌,崔冬华 2016年 4 月 8 日

y = x*x*x + 4 * x*x - 10; return y; } float Calculate(float a,float b) { c = (a + b) / 2; n++; if (GetY(c) == 0 || ((b - a) / 2) < 0.000005) { cout << c <<"为方程的解"<< endl; return 0; } if (GetY(a)*GetY(c) < 0) { return Calculate(a,c); } if (GetY(c)*GetY(b)< 0) { return Calculate(c,b); } } }; int main() { cout << "方程组为:f(x)=x^3+4x^2-10=0" << endl; float a, b; Text text; text.Getab(); a = text.a; b = text.b; text.Calculate(a, b); return 0; } 2.割线法: // 方程求根(割线法).cpp : 定义控制台应用程序的入口点。// #include "stdafx.h" #include"iostream"

心得体会 使用不同的方法,可以不同程度的求得方程的解,通过二分法计算的程序实现更加了解二分法的特点,二分法过程简单,程序容易实现,但该方法收敛比较慢一般用于求根的初始近似值,不同的方法速度不同。面对一个复杂的问题,要学会简化处理步骤,分步骤一点一点的循序处理,只有这样,才能高效的解决一个复杂问题。

数值计算方法大作业

目录 第一章非线性方程求根 (3) 1.1迭代法 (3) 1.2牛顿法 (4) 1.3弦截法 (5) 1.4二分法 (6) 第二章插值 (7) 2.1线性插值 (7) 2.2二次插值 (8) 2.3拉格朗日插值 (9) 2.4分段线性插值 (10) 2.5分段二次插值 (11) 第三章数值积分 (13) 3.1复化矩形积分法 (13) 3.2复化梯形积分法 (14) 3.3辛普森积分法 (15) 3.4变步长梯形积分法 (16) 第四章线性方程组数值法 (17) 4.1约当消去法 (17) 4.2高斯消去法 (18) 4.3三角分解法 (20)

4.4雅可比迭代法 (21) 4.5高斯—赛德尔迭代法 (23) 第五章常积分方程数值法 (25) 5.1显示欧拉公式法 (25) 5.2欧拉公式预测校正法 (26) 5.3改进欧拉公式法 (27) 5.4四阶龙格—库塔法 (28)

数值计算方法 第一章非线性方程求根 1.1迭代法 程序代码: Private Sub Command1_Click() x0 = Val(InputBox("请输入初始值x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = (Exp(2 * x0) - x0) / 5 If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求f(x)=e2x-6x=0在x=0.5附近的根(ep=10-10)

1.2牛顿法 程序代码: Private Sub Command1_Click() b = Val(InputBox("请输入被开方数x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = x0 - (x0 ^ 2 - b) / (2 * b) If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求56的值。(ep=10-10)

数值分析实验报告总结

数值分析实验报告总结 随着电子计算机的普及与发展,科学计算已成为现代科 学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。 算法算法是指由基本算术运算及运算顺序的规定构成的完 整的解题步骤。算法可以使用框图、算法语言、数学语言、自然语言来进行描述。具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。 误差 计算机的计算结果通常是近似的,因此算法必有误差, 并且应能估计误差。误差是指近似值与真正值之差。绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。误差来源见表 第三章泛函分析泛函分析概要 泛函分析是研究“函数的函数”、函数空间和它们之间 变换的一门较新的数学分支,隶属分析数学。它以各种学科

如果 a 是相容范数,且任何满足 为具体背景,在集合的基础上,把客观世界中的研究对象抽 范数 范数,是具有“长度”概念的函数。在线性代数、泛函 分析及相关的数学领域,泛函是一个函数,其为矢量空间内 的所有矢量赋予非零的正长度或大小。这里以 Cn 空间为例, Rn 空间类似。最常用的范数就是 P-范数。那么 当P 取1, 2 ,s 的时候分别是以下几种最简单的情形: 其中2-范数就是通常意义下的距离。 对于这些范数有以下不等式: 1 < n1/2 另外,若p 和q 是赫德尔共轭指标,即 1/p+1/q=1 么有赫德尔不等式: II = ||xH*y| 当p=q=2时就是柯西-许瓦兹不等式 般来讲矩阵范数除了正定性,齐次性和三角不等式之 矩阵范数通常也称为相容范数。 象为元素和空间。女口:距离空间,赋范线性空间, 内积空间。 1-范数: 1= x1 + x2 +?+ xn 2-范数: x 2=1/2 8 -范数: 8 =max oo ,那 外,还规定其必须满足相容性: 所以

MATLAB与数值分析课程总结

MATLAB与数值分析课程总结 姓名:董建伟 学号:2015020904027 一:MATLAB部分 1.处理矩阵-容易 矩阵的创建 (1)直接创建注意 a中括号里可以用空格或者逗号将矩阵元素分开 b矩阵元素可以是任何MATLAB表达式,如实数复数等 c可以调用赋值过的任何变量,变量名不要重复,否则会被覆盖 (2)用MATLAB函数创建矩阵如:a空阵[] b rand/randn——随机矩阵 c eye——单位矩阵 d zeros ——0矩阵 e ones——1矩阵 f magic——产生n阶幻方矩阵等 向量的生成 (1)用冒号生成向量 (2)使用linspace和logspace分别生成线性等分向量和对 数等分向量 矩阵的标识和引用 (1)向量标识 (2)“0 1”逻辑向量或矩阵标识 (3)全下标,单下标,逻辑矩阵方式引用 字符串数组 (1)字符串按行向量进行储存 (2)所有字符串用单引号括起来 (3)直接进行创建 矩阵运算 (1)注意与数组点乘,除与直接乘除的区别,数组为乘方对应元素的幂

(2)左右除时斜杠底部靠近谁谁是分母 (3)其他运算如,inv矩阵求逆,det行列式的值, eig特征值,diag 对角矩阵 2.绘图-轻松 plot-绘制二维曲线 (1)plot(x)绘制以x为纵坐标的二维曲线 plot(x,y) 绘制以x为横坐标,y为纵坐标的二维曲线 x,y为向量或矩阵 (2)plot(x1,y1,x2,y2,。。。。。。)绘制多条曲线,不同字母代替不同颜色:b蓝色,y黄色,r红色,g绿色 (3)hold on后面的pl ot图像叠加在一起 hold off解除hold on命令,plot将先冲去窗口已有图形(4)在hold后面加上figure,可以绘制多幅图形 (5)subplot在同一窗口画多个子图 三维图形的绘制 (1)plot3(x,y,z,’s’) s是指定线型,色彩,数据点形的字 符串 (2)[X,Y]=meshgrid(x,y)生成平面网格点 (3)mesh(x,y,z,c)生成三维网格点,c为颜色矩阵 (4)三维表面处理mesh命令对网格着色,surf对网格片着色 (5)contour绘制二维等高线 (6)axis([x1,xu,y1,yu])定义x,y的显示范围 3.编程-简洁 (1)变量命名时可以由字母,数字,下划线,但是不得包含空格和标点 (2)最常用的数据类型只有双精度型和字符型,其他数据类型只在特殊条件下使用 (3)为得到高效代码,尽量提高代码的向量化程度,避免使用循环结构

数值分析大作业

数值分析报大作业 班级:铁道2班 专业:道路与铁道工程 姓名:蔡敦锦 学号:13011260

一、序言 该数值分析大作业是通过C语言程序编程在Microsoft Visual C++ 6.0编程软件上运行实现的。本来是打算用Matlab软间来计算非线性方程的根的。学习Matlab也差不多有一个多月了,感觉自己编程做题应该没什么问题了;但是当自己真心的去编程、运行时才发现有很多错误,花了一天时间修改、调试程序都没能得到自己满意的结果。所以,我选择了自己比较熟悉的C程序语言来编程解决非线性的求值问题,由于本作业是为了比较几种方法求值问题的收敛速度和精度的差异,选择了一个相对常见的非线性函数来反映其差异,程序运行所得结果我个人比较满意。编写C语言,感觉比较上手,程序出现问题也能比较熟练的解决。最终就决定上交一份C程序语言编程的求值程序了!

二、选题 本作业的目的是为了加深对非线性方程求根方法的二分法、简单迭代法、、牛顿迭代法弦截法等的构造过程的理解;能将各种方法的算法描述正确并且能够改编为程序并在计算机上实现程序的正确合理的运行,能得到自己满意的结果,并且能调试修改程序中可能出现的问题和程序功能的增减修改。本次程序是为了比较各种方法在求解同一非线性方程根时,在收敛情况上的差异。 为了达到上面的条件我选择自己比较熟悉的语言—C语言来编程,所选题目为计算方程f(x)=x3-2x-5=0在区间[2,3]内其最后两近似值的差的绝对值小于等于5 ?的根的几种方法的比较。 110- 本文将二分法、牛顿法、简单迭代法、弦截法及加速收敛法这五种方法在同一个程序中以函数调用的方式来实现,比较简洁明了,所得结果能很好的比较,便于分析;发现问题和得出结论。

数值分析心得体会

数值分析心得体会 篇一:学习数值分析的经验 数值分析实验的经验、感受、收获、建议班级:计算131 学号:XX014302 姓名:曾欢欢 数值分析实验主要就是学习MATLAB的使用以及对数值分析类容的应用,可以使学生更加理解和记忆数值分析学得类容,也巩固了MATLAB的学习,有利于以后这个软件我们的使用。在做实验中,我们需要具备较好的编程能力、明白MATLAB软件的使用以及掌握数值分析的思想,才能让我们独立自主的完成该作业,如果是上述能力有限的同学,需要借助MATLAB的书以及网络来完成实验。数值分析实验对于我来说还是有一定难度,所以我课下先复习了MATLAB的使用方法以及编写程序的基本类容,借助互联网和同学老师资源完成了数值分析得实验的内容。在实验书写中,我复习了各种知识,所以我认为这门课程是有必要且是有用处的,特别是需要处理大量实验数据的人员,很有必要深入了解学习它,这样在以后的工作学习里面就减少了很多计算问题也提高了实验结果的精确度。 学习数值分析的经验、感受、收获、建议数值分析的内容包括插值与逼近,数值微分与数值积分,非线性方程与线性方程组的数值解法,矩阵的特征值与特征向量计算,常微分方程数值解等。

首先我们必须明白数值分析的用途。通常所学的其他数学类学科都是由公式定理开始,从研究他们的定义,性质再到证明与应用。但实际上,尤其是工程,物理,化学等其它具体的学科。往往我们拿到 手的只是通过实验得到的数据。如果是验证性试验,需要代回到公式 进行分析,验证。但往往更多面对的是研究性或试探性试验,无具体 公式定理可代。那就必须通过插值,拟合等计算方法进行数据处理以得到一个相对可用的一般公式。还有许多计算公式理论上非常复杂,在工程中不实用,所以必须根据实际情况把它转化成多项式近似表 示。学习数值分析,不应盲目记公式,因为公事通常很长且很乏味。其次,应从公式所面临的问题以及用途出发。比如插值方法,就 是就是把实验所得的数据看成是公式的解,由这些解反推出一个近似公式,可以具有局部一般性。再比如说拟合,在插值的基础上考虑实 验误差,通过拟合能将误差尽可能缩小,之后目的也是得到一个具有 一定条件下的一般性的公式。。建议学习本门课程要结合知识与实际,比如在物理实验里面很多

数值计算方法总结计划复习总结提纲.docx

数值计算方法复习提纲 第一章数值计算中的误差分析 1 2.了解误差 ( 绝对误差、相对误差 ) 3.掌握算法及其稳定性,设计算法遵循的原则。 1、误差的来源 模型误差 观测误差 截断误差 舍入误差 2误差与有效数字 绝对误差E(x)=x-x * 绝对误差限x*x x* 相对误差E r (x) ( x x* ) / x ( x x* ) / x* 有效数字 x*0.a1 a2 ....a n10 m 若x x*110m n ,称x*有n位有效数字。 2 有效数字与误差关系 ( 1)m 一定时,有效数字n 越多,绝对误差限越小; ( 2)x*有 n 位有效数字,则相对误差限为E r (x)1 10 (n 1)。 2a1 选择算法应遵循的原则 1、选用数值稳定的算法,控制误差传播; 例 I n 11n x dx e x e I 0 1 1 I n1nI n1 e △ x n n! △x0 2、简化计算步骤,减少运算次数; 3、避免两个相近数相减,和接近零的数作分母;避免

第二章线性方程组的数值解法 1.了解 Gauss 消元法、主元消元法基本思想及算法; 2.掌握矩阵的三角分解,并利用三角分解求解方程组; (Doolittle 分解; Crout分解; Cholesky分解;追赶法) 3.掌握迭代法的基本思想,Jacobi 迭代法与 Gauss-Seidel 4.掌握向量与矩阵的范数及其性质, 迭代法的收敛性及其判定。 本章主要解决线性方程组求解问题,假设n 行 n 列线性方程组有唯一解,如何得到其解? a 11x 1 a 12 x 2... a 1n x n b1 a 21x 1 a 22 x 2... a 2n x n b2 ... a n1x 1 a n 2 x 2... a nn x n b n 两类方法,第一是直接解法,得到其精确解; 第二是迭代解法,得到其近似解。 一、Gauss消去法 1、顺序G auss 消去法 记方程组为: a11(1) x1a12(1) x2... a1(1n) x n b1(1) a21(1) x1a22(1) x2... a2(1n) x n b2(1) ... a n(11) x1a n(12) x2... a nn(1) x n b n(1) 消元过程: 经n-1步消元,化为上三角方程组 a11(1) x1b1(1) a 21(2) x1a22(2 ) x2b2( 2 ) ... a n(1n) x1a n(n2) x2...a nn(n ) x n b n( n ) 第k步 若a kk(k)0 ( k 1)( k) a ik(k )(k )( k 1)( k )a ik(k )( k) a ij a ij a kk(k ) a kj b i b i a kk(k )b k k 1,...n 1 i, j k 1,....,n 回代过程:

(整理)数值分析计算方法超级总结

工程硕士《数值分析》总复习题(2011年用) [由教材中的习题、例题和历届考试题选编而成,供教师讲解和学生复习用] 一. 解答下列问题: 1)下列所取近似值有多少位有效数字( 注意根据什么? ): a) 对 e = 2.718281828459045…,取* x = 2.71828 b) 数学家祖冲之取 113355 作为π的近似值. c) 经过四舍五入得出的近似值12345,-0.001, 90.55000, 它们的有效 数字位数分别为 位, 位, 位。 2) 简述下名词: a) 截断误差 (不超过60字) b) 舍入误差 (不超过60字) c) 算法数值稳定性 (不超过60字) 3) 试推导( 按定义或利用近似公式 ): 计算3 x 时的相对误差约等于x 的相对 误差的3倍。 4) 计算球体积3 34r V π= 时,为使其相对误差不超过 0.3% ,求半径r 的相对 误差的允许范围。 5) 计算下式 341 8 )1(3)1(7)1(5)1(22345+-+---+---=x x x x x x P )( 时,为了减少乘除法次数, 通常采用什么算法? 将算式加工成什么形式? 6) 递推公式 ?????=-==- ,2,1,1102 10n y y y n n 如果取 * 041.12y y =≈= ( 三位有效数字 ) 作近似计算, 问计算到 10y 时误差为初始误差的多少倍? 这个计算过程数值稳定吗 ? 二. 插值问题: 1) 设函数 )(x f 在五个互异节点 54321,,,,x x x x x 上对应的函数值为 54321,,,,f f f f f ,根据定理,必存在唯一的次数 (A ) 的插值多项式 )(x P ,满足插值条件 ( B ) . 对此,为了构造Lagrange 插值多项式 )(x L ,由5个节点作 ( C ) 个、次数均为 ( D ) 次的插值基函数

数值分析课程报告

插值法和多项式拟合的研究 摘要 在科研和生产实践中,常常需要通过一组测量数据来寻找变量x与y的函数关系近似表达式。解决这类问题的方法有两种:一种是插值法,另一种是拟合法。插值法的原理是用一个简单函数逼近被计算函数,然后用该简单函数的函数值近似替代被计算函数的函数值。拟合法能够是从给定的一组实验数据出发,寻找函数的一个近似表达式,该近似表达式能反映数据的基本趋势而又不一定过全部的点,即曲线拟合。本文主要介绍拉格朗日插值法、埃尔米特插值法、三次样条插值法以及基于最小二乘法的多项式拟合。 关键词:拉格朗日插值,埃尔米特插值,样条插值,多项式拟合

1方法的意义 在许多实际问题及科学研究中,因素之间往往存在着函数关系,然而,这种关系经常很难有明显的解析表达,通常只是由观察与测试得到一些离散数值。有时,即使给出了解析表达式,却由于表达式过于复杂,不仅使用不便,而且不易于进行计算与理论分析。解决这类问题的方法有两种:一种是插值法,另一种是拟合法。插值法的原理是用一个简单函数逼近被计算函数,然后用该简单函数的函数值近似替代被计算函数的函数值。它要求给出函数的一个函数表,然后选定一种简单的函数形式,比如多项式、分段线性函数及三角多项式等,通过已知的函数表来确定一个简单的函数()x ?作为()f x 的近似,概括地说,就是用简单函数为离散数组建立连续模型。插值法在实际应用中非常广泛,但是它也有明显的缺陷,一是测量数据常常带有测试误差,而插值多项式又通过所有给出的点,这样就是插值多项式保留了这些误差;二是如果实际得到的数据过多,则必然得到次数较高的插值多项式,这样近似的效果并不理想。拟合法能够很好的解决这些问题,它从给定的一组实验数据出发,寻找函数的一个近似表达式y=()x ?,该近似表达式能反映数据的基本趋势而又不一定过全部的点,即曲线拟合的问题,函数的近似表达式y=()x ?称为拟合曲线。常用最小而二乘法来确定拟合曲线。 2插值法的介绍 2.1 插值法定义 设 f (x )为[a ,b ]上的函数,在互异点n x x x ,...,,10处的函数值分别为 )(),...,(),(10n x f x f x f ,构造一个简单函数 ?(x ) 作为函数 f (x ) 的近似表达式y = f (x ) ≈ ?(x ),使 )()(i i x f x =? , i =0, 1, 2, …,n (1.0) 则称?(x ) 为关于节点n x x x ,...,,10的插值函数;称n x x x ,...,,10 为插值节点;称 ))((i i x f x , i =1,2,… , n 为插值点;f (x ) 称为被插值函数。式(1.0)称为插值条 件。这类问题称为插值问题。插值的任务就是由已知的观测点,为物理量(未知量)建立一个简单的、连续的解析模型,以便能根据该模型推测该物理量在非观测点

数值分析 第一章 学习小结

数值分析 第1章绪论 --------学习小结 一、本章学习体会 通过本章的学习,让我初窥数学的又一个新领域。数值分析这门课,与我之前所学联系紧密,区别却也很大。在本章中,我学到的是对数据误差计算,对误差的分析,以及关于向量和矩阵的范数的相关内容。 误差的计算方法很多,对于不同的数据需要使用不同的方法,或直接计算,或用泰勒公式。而对于二元函数的误差计算亦有其独自的方法。无论是什么方法,其目的都是为了能够通过误差的计算,发现有效数字、计算方法等对误差的影响。 而对误差的分析,则是通过对大量数据进行分析,从而选择出相对适合的算法,尽可能减少误差。如果能够找到一个好的算法,不仅能够减少计算误差,同时也可以减少计算次数,提高计算效率。 对于向量和矩阵的范数,我是第一次接触,而且其概念略微抽象。因此学起来较为吃力,仅仅知道它是向量与矩阵“大小”的度量。故对这部分内容的困惑也相对较多。 本章的困惑主要有两方面。一方面是如何能够寻找一个可靠而高效的算法。虽然知道算法选择的原则,但对于很多未接触的问题,真正寻找一个好的算法还是很困难。另一方面困惑来源于范数,不明白范数的意义和用途究竟算什么。希望通过以后的学习能够渐渐解开自己的疑惑。 二、本章知识梳理

2.1 数值分析的研究对象 数值分析是计算数学的一个重要分支,研究各种数学问题的数值解法,包括方法的构造和求解过程的理论分析。它致力于研究如何用数值计算的方法求解各种基本数学问题以及在求解过程中出现的收敛性,数值稳定性和误差估计等内容。 2.2误差知识与算法知识 2.2.1误差来源 误差按来源分为模型误差、观测误差、截断误差、舍入误差与传播误差五种。其中模型误差与观测误差属于建模过程中产生的误差,而截断误差、舍入误差与传播误差属于研究数值方法过程中产生的误差。 2.2.2绝对误差、相对误差与有效数字 1.(1)绝对误差e指的是精确值与近似值的差值。 绝对误差:

数值计算方法学习心得

数值计算方法学习心得 在研究生一年级的上半学期,我们安排了计算方法的课程,通过课堂授课、网上学习、学术报告以及课堂监督等方式的引导,我们对计算方法有了全新的认识。我们知道,数学是一门重要的基础学科。离开了数学,科技便无法发展。而在数学这门学科中,数值计算方法有着其不可取代的重要地位。 在授课的过程中,首先利用前几讲课的时间对计算方法的基础进行补充,考虑到有部分专业的学生在本科时期没有接触过计算方法这门课程;计算方法主要研究实际问题,当今社会计算机高速的发展,为人们使用数值计算方法解决科学技术中的各种数学问题提供了有力的硬件条件。要将关于数值计算的实际问题借助于计算机来解决,那么实际的上机操作就显得十分重要。因此,老师在平时课堂授课的同时,也推广网上学习,通过课堂掌握知识、网上复习内容双重方式学习,更有利于我们掌握知识,另外对于我们上机操作也具有十分重要的指导意义。通过网上看教学视频,一方面我们对课上学习的内用加深了印象,另一方面由于课堂上时间有限,对于某些知识,我们在听课时不是很清楚,似懂非懂,在网上学习的帮助下,我们可以在课后及时对这些知识进行进一步的消化,对于我们吸收知识也是一种很好的方式。此外,网上学习具有可重复性的优点,这是课堂上所不具有的特点,在课堂上不懂的知识,在网上可以反复学习,在网上学习中遇到的问题也能够反馈到课堂。所以课堂授课与网上学习相辅相成,各有优点,弥补了各自的不足之处。 很多课应用却是另一码事,学是一码事,当然课程的学术报告也十分重要, 程中,我们学会了,遇到问题却不会解决,所以课程学术报告此时起了关键作用。

学术报告是基于每组学生各自的专业设置的,这样做一方面检验学生应用计算方法的能力,另一方面也是为了引导学生将计算方法与本专业联系起来,学会应用学过的知识对现象进行描述、建模以及采用编程的方法处理数据等。 本学期的计算方法课程相当充实,在老师课上精心的授课、学生课下利用网上资源认真复习、对课程学术报告的完成以及课堂监督下,同学们都受益匪浅,尤其是对于数据处理方法的学习、思维的形成都有极其重要的作用,对于后期的专业研究也有深远的影响。 本学期已经接近尾声,计算方法课程也已经结束,在此向老师表示敬意和感谢。.

数值计算方法实验报告(例)讲解

实验报告 一、实验目的 二、实验内容 三、实验环境 四.实验方法 五、实验过程 1实验步骤 2 关键代码及其解释 3 调试过程 六、实验总结 1.遇到的问题及解决过程 2.产生的错误及原因分析 3.体会和收获。 七、程序源代码: 八、教师评语

实验报告 一.试验目的:练习用数值方法求解给定的非线性方程。 二.实验内容:求解人口方程: )1(5 .43e 1004.156-+ =λλλ e 要求误差小于410-。 三.实验环境:PC 计算机,FORTRAN 、C 、C ++、VB 任选一种。 四.实验方法:牛顿法 牛顿法简述:牛顿法是一种特殊的迭代法,其迭代公式为: ,2,1,0,) () (1='- =+k x f x f x x k k k k , 当数列{}k x 收敛时,其极限值x 即为方程的解。 定理:给定方程],[,0)(b a x x f ∈= 1)设0)()(''x f x f ; 则牛顿法产生的序列{}k x 收敛于0)(=x f 在],[b a 内的唯一解x 。 五.实验过程: 1.编程: 用C 语言编出牛顿法的源程序。 2. 开机, 打开C 语言编译程序,键入所编程序源代码. 3. 调试程序, 修改错误至能正确运行. 六.实验总结: (1)牛顿法收敛速度快,但初值不容易确定,往往由于初值取得

不当而使迭代不收敛或收敛慢,但若能保证)()(1+>K K x f x f (称为下山条件),则有可能收敛。把新的近似值看作初值的话会比原来的取得好,有可能落入局部收敛的邻域。 (2)牛顿法要求)(x f '在x 附近不为零。亦即x 只能是单根, 不能求重根。可用重根加速收敛法求重根。 (3)牛顿法的每一步迭代中,都要计算一次导数值,若计算)(x f '比计算函数的近似值要麻烦的多。为了避免求导数,可用差商近似代替微商 1 1) ()()(----='K K K K K x x x f x f x f 此时牛顿迭代法改为 )() ()() (111--+--- =K K K K K K K x x x f x f x f x x . (4) 由于人口方程来源于实际问题, λ代表人口增长率, 其真实 值不会太大, 初值不应取得过大.否则会得到该方程的另外一个解 七、程序源代码: #include #define ep 1e-4 float f (float x) { float y; y=100*exp(x)+43.5*(exp(x)-1)/x-156.4; return(y); } float df (float x) { float y; y=100*exp(x)+43.5*( x*exp(x)-exp(x)+1)/(x*x); return(y); } float root(float x) { float y; if (fabs)f

数值分析学习心得体会.doc

数值分析学习感想 一个学期的数值分析,在老师的带领下,让我对这门课程有了深刻的理解和感悟。这门 课程是一个十分重视算法和原理的学科,同时它能够将人的思维引入数学思考的模式,在处 理问题的时候,可以合理适当的提出方案和假设。他的内容贴近实际,像数值分析,数值微 分,求解线性方程组的解等,使数学理论更加有实际意义。 数值分析在给我们的知识上,有很大一部分都对我有很大的帮助,让我的生活和学习有 了更加方便以及科学的方法。像第一章就讲的误差,在现实生活中,也许没有太过于注意误 差,所以对误差的看法有些轻视,但在学习了这一章之后,在老师的讲解下,了解到这些误 差看似小,实则影响很大,更如后面所讲的余项,那些差别总是让人很容易就出错,也许在 别的地方没有什么,但是在数学领域,一个小的误差,就很容易有不好的后果,而学习了数 值分析的内容,很容易就可以将误差锁定在一个很小的范围内,在这一范围内再逼近,得出 的近似值要准确的多,而在最开始的计算中,误差越小,对后面的影响越小,这无疑是好的。 数值分析不只在知识上传授了我很多,在思想上也对我有很大的影响,他给了我很多数 学思想,很多思考的角度,在看待问题的方面上,多方位的去思考,并从别的例子上举一反三。像其中所讲的插值法,在先学习了拉格朗日插值法后,对其理解透彻,了解了其中 的原理和思想,再学习之后的牛顿插值以及三次样条插值等等,都很容易的融会贯通,很容 易的就理解了其中所想,他们的中心思想并没有多大的变化,但是使用的方式却是不同的, 这不仅可以学习到其中心内容,还可以去学习他们的思考方式,每个不同的思考方式带来的 都是不同的算法。而在看待问题上,不同的思考方式总是可以快速的全方位的去看透彻问题, 从而知道如何去解决。 在不断的学习中,知识在不断的获取,能力在不断的提升,同时在老师的不懈讲解下, 我逐渐的发现数值分析所涵盖的知识面特别的广泛,而我所需要学习的地方也更加的多,自 己的不足也在不断的体现,我知道这只是我刚刚接触到了数学的那一角,在以后我还会接触 到更多,而这求知的欲望也在不停的驱赶我,学习的越多,对今后的生活才会有更大的帮助。 计算132 2013014923 张霖篇二:数值分析学习报告 数值分析学习心得报告 班级:11级软工一班 姓名: * * * 学号: 20117610*** 指导老师:* * * 学习数值分析的心得体会 无意中的一次选择,让我接触了数值分析。 作为这学期的选修课,我从内心深处来讲,数值分析真的有点难。感觉它是在高等数学 和线性代数的基础上,又加深了探讨。虽然这节课很难,我学的不是很好,但我依然对它比 较感兴趣。下面就具体说说我的学习体会,让那些感兴趣的同学有个参考。 学习数值分析,我们首先得知道一个软件——matlab。matrix laboratory,即矩阵实验 室,是math work公司推出的一套高效率的数值计算和可视化软件。它是当今科学界最具影 响力、也是最具活力的软件,它起源于矩阵运算,并高速发展成计算机语言。它的优点是强 大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面、便捷的与其他程序和语 言接口。 根据上网搜集到的资料,你就会发现matlab有许多优点: 首先,编程简单使用方便。到目前为止,我已经学过c语言,机器语言,java语言,这

上海大学_王培康_数值分析大作业

数值分析大作业(2013年5月) 金洋洋(12721512),机自系 1.下列各数都是经过四舍五入得到的近似值,试分别指出它 们的绝对误差限, 相对误差限和有效数字的位数。 X1 =5.420, x 2 =0.5420, x 3=0.00542, x 4 =6000, x 5=50.610? 解:根据定义:如果*x 的绝对误差限 不超过x 的某个数位的半个单位,则从*x 的首位非零数字到该位都是有效数字。 显然根据四舍五入原则得到的近视值,全部都是有效数字。 因而在这里有:n1=4, n2=4, n3=3, n4=4, n5=1 (n 表示x 有效数字的位数) 对x1:有a1=5, m1=1 (其中a1表示x 的首位非零数字,m1表示x1的整数位数) 所以有绝对误差限 143 11 (1)101022 x ε--≤ ?=? 相对误差限 31() 0.510(1)0.00923%5.4201 r x x x εε-?= == 对x2:有a2=5, m2=0 所以有绝对误差限 044 11 (2)101022 x ε--≤ ?=? 相对误差限 42() 0.510(2)0.00923%0.54202 r x x x εε-?= == 对x3:有a3=5, m3=-2 所以有绝对误差限 235 11 (3)101022 x ε---≤ ?=? 相对误差限 53() 0.510(3)0.0923%0.005423 r x x x εε-?= == 对x4:有a4=0, m4=4 所以有绝对误差限 4411(4)1022 x ε-≤?= 相对误差限 4() 0.5 (4)0.0083%6000 4 r x x x εε= = = 对x5:有a5=6, m5=5 所以有绝对误差限 514 11(5)101022 x ε-≤ ?=? 相对误差限 45() 0.510(5)8.3%600005 r x x x εε?= ==

相关主题
文本预览
相关文档 最新文档