当前位置:文档之家› 面积法在平面几何问题求解中的巧妙应用

面积法在平面几何问题求解中的巧妙应用

面积法在平面几何问题求解中的巧妙应用
面积法在平面几何问题求解中的巧妙应用

平面几何问题的证明——面积法(教案)

教学目的:掌握面积法在平面几何解题中的巧妙应用

教学重点:1、三角形、凸四边形面积公式的推导

2、面积法在平面几何解题中的巧妙应用

教学内容:

2002年,张景中院士推出《新概念几何》,其中对三角学作了全新的处理,他把边长为

1、夹角为α的菱形的面积定义为αsin ,由此研究正弦的性质,到处理余弦,用面积的方法证明大量的平面几何问题,把三角学和几何学打成一片,别具一格,极有新意。

张院士指出:抓住面积,不但能把平面几何课程变得更容易学,而且使几何问题求解变得更有趣味。

在求解平面几何问题的时候,根据有关几何量与涉及的有关图形面积之间的内在联系,用面积或面积比表示有关的几何量或其比,从而把要论证的几何量之间的关系转化为有关面积之间的关系,并通过图形面积的等积变换对所论问题来进行求解的方法,这就是面积法。

一、为运用面积法解题,我们需要一些面积公式:

1、设ABC ?中,角C B A ,,所对的边依次为c b a ,,,又a h 为a 边上的高,R 为其外接圆半径,r 为其内切圆半径,)(21c b a p ++=

,则 (1)a ABC

ah S 21=?; (2)A bc S ABC sin 21?=?; (3)R abc S ABC 4=?; (4)A

C B a S ABC sin 2sin sin 2?=?; (5)rp S ABC =?; (6)))()((c p b p a p p S ABC ---=

?。(海伦公式) 2、在凸四边形ABCD 中,边长分别为d c b a ,,,,两对角线长为,,f e 两对角线夹角θ,且)(2

1d c b a l +++=

,则: (1)θsin 21?=ef S ABCD (2) 2222222)(441d b c a f e S ABCD --+-= (3)))()()((d l c l b l a l S ABCD ----= (当D C B A ,,,四点共圆时)

(4)?2cos ))()()((?-----=abcd d l c l b l a l S ABCD ,2D B +=?或2C A +=?

引理1:圆内接四边形ABCD 的四边是,,,,d DA c CD b BC a AB ====则四边形ABCD 的面积

]1[

))()()((d p c p b p a p S ABCD ----=,)(21d c b a p +++=

事实上,以E 为一组对边BC AD 、的交点,设y BE x AE ==,。 d b c a C D o E

A

B 由ABE ?~CDE ?得22

c a S S CDE ABE

=?? ,而???????-===-===c d x CD DE AB BE a y c b y CD CE AB AE a x c a d b c d b y x a y x -+=--+=+∴ c

a b d c d b y x a y x +-=+-+-=-, )(2)(c p c a a c a c a d b a a y x --=--++=

++∴,)(21d c b a p +++= 同理 )(2a p c a a a y x --=

-+,)(2b p c a a a y x -+=+-,)(2d p c a a a y x -+=++-, 由海伦公式得 ))()()(())()()((41222

d p c p b p a p c a a a y x a y x a y x a y x S ABE -----=++-+--+++=?))()()((22

d p c p b p a p S a

c S S S S ABE ABE CDE ABE ABCD ----=-=-=∴???? 对于一般情况的凸四边形,不满足四个顶点共圆,就没有如上的相似三角形,所以面积公式有所不同。

定理:一般地,任意凸四边形ABCD 的四边是,,,,d DA c CD b BC a AB ====则四边形ABCD 的面积为]2[

?2cos ))()()((?-----=abcd d p c p b p a p S ABCD 其中)(21d c b a p +++=,2

2C A D B ++=或?. 证明: d a b c m

A D

B C

设对角线m AC =,

D cd B ab S S S ACD ABC ABCD sin 2

1sin 21?+?=+=?? D

cd d c B ab b a m cos 2cos 2222

22?-+=?-+= ②

由于任意四边形由四条边和一个内角确定,所以可将内角D 看作

是内角B 的函数,即)(B D D =。

①、②两式两边同时对角B 求导得:

dB

dD D cd B ab dB dS ABCD ??+?=cos 21cos 21 ③ dB

dD D cd B ab ??=?sin 2sin 2 ④ 将④式代入①式有

)1(sin 21dB

dD D cd S ABCD +??= ⑤ ⑤?③

)cos sin sin cos ()1(41dB dD D D cd D B ab dB dD cd dB dS S ?+???+=? ⑥

将④式代入⑥式有

dB

dS S ? )cos sin sin cos )(1(41D B ab D B ab dB

dD cd ?+??+= )][cos(41D B dB

d abcd +-= )][cos(212D B dB

d abcd dB dS +-=∴ 上式两边积分得

)cos(2

12D B abcd S ABCD +?-K =, 其中K 是待定的常数]1[。

当四边形ABCD 的四点共圆时,π=+D B , 此时))()()((d p c p b p a p S ABCD ----=

)cos(21D B abcd +?-K =abcd 2

1+K = abcd d p c p b p a p 2

1))()()((-----=K ∴ 所以任意凸四边形ABCD 的面积

)]cos(1[2

1))()()((D B abcd d p c p b p a p S ABCD

++-----=?2cos ))()()((?-----=abcd d p c p b p a p , 2

D B +=? 同理可证任意凸四边形ABCD 的面积 ?2cos ))()()((?-----=abcd d p c p b p a p S ABCD 2C A +=

? 由此我们也看出,四边给定的所有四边形中,当四点共圆时,四边形面积最大。

二、面积法在平面几何解题中的应用

引理2:共边定理 若直线PQ 和直线AB 交于M ,可能的情况如下图, 则QM

PM S S QAB PAB =??.]1[

例1、设P 是ABC ?的A ∠平分线上任一点,过C 引PB CE //交AB

的延长线于E ,过B 引PC BF //交AC 的延长线于F ,求证:CF BE =.

连接,,PF PE 由BF PC //有PBC PCF S S ??=.

由,//CE PB 有PBC PBE S S ??=.

故PBE PCF S S ??=

又P 是A ∠的平分线上的点,P 点到BE 及CF 的距离相等,

即PCF ?的CF 边上的高等于PBE ?的BE 边上的高,从而CF BE =.

例2、如图,在ABC ?中,P 是BC 边上的高AH 上的任一点,

直线CP 交AB 于D ,直线BP 交AC 于E ,连接EH DH ,,

求证:EHP DHP ∠=∠.

证明:过点A 作BC 的平行线,分别交HE HD ,的延长线于,,G F 则有PCB PAB S S EC AE HC AG ??==, PBC PAC S S BH AF ??=,PAC

PAB S S HC BH ??=

AF AG =∴

三、小结:

正如张院士所说的抓住面积,不但能把平面几何课程变得更容易学,而且使几何问题求解变得更有趣味。因此,在求解平面几何问题的时候,根据有关几何量与涉及的有关图形面积之间的内在联系,用面积或面积比表示有关的几何量或其比,从而把要论证的几何量之间的关系转化为有关面积之间的关系求解。

四、课后思考题:

1、用面积法证明塞瓦定理。

塞瓦(Ceva )定理]2[:设C B A ''',,分别是ABC ?的边

AB CA BC ,,所在直线上的点(即三点中或三点或一点在边上),

则三直线C C B B A A ''',,共点或平行的充要条件是

1=''?''?''B

C C A A B B C C A A B 证明 必要性:若三直线C C B B A A ''',,交于一点P

,则

1=??=''?''?''??????PBC

PAC PAB PBC PAC PAB S S S S S S B C C A A B B C C A A B 若三直线C C B B A A ''',,

平行,则

1

='

'?''?''=??=??=''?''?'''?'?'?'?'?'?'?'?'?'?'?'?A A C C C C B B B B A A S S S S S S S S S S S S B C C A A B B C C A A B C A A C AC BC C BC B BA B A AB BC

C C AC BA B BC B C A A A AB

充分性:

若直线B B A A '',交于一点P ,设CP 与AB 的交点

为1C ,则由必要性知111=?''?''B

C AC A B B C C A A B 。而题设 有1=''?''?''B C C A A B B C C A A B ,由此有B C AC 11B C C A ''=,即AB AC 1AB C A '=, 由此知1C 与C '重合,从而三直线C C B B A A ''',,共点。

若B B A A ''//,则A B CB A B B C '=''代入已知条件有CB

C A B C C A '='', 由此知A A C C ''//.

故C C B B A A '''////。证毕。

2、凸四边形ABCD 中, 60=∠ABC , 90=∠=∠BCD BAD , ,1,2==CD AB 对角线BD AC ,交于点O .求AOB ∠

sin .

证明 法1(常规解法):

由题意可知

3615,34,232-=-=-=AC BC AD 且D C B A ,,,四点共圆。 设α=∠ABD ,则

,60,αα-=∠=∠

CAD ACD

在ACD ?中运用正弦定理有: ADC

AC ACD AD CAD CD ∠=∠=∠sin sin sin ,即 3252120sin 3615sin 232)60sin(1-=-=-=-

αα ,32521

)60sin(-=-∴α ,3252

3s i n --=α

在ABD ?中应用张角定理有:AB

OAD AD BAO OA BAD ∠+∠=∠sin sin sin ,

即2)60sin(2

32)30sin(1αα-+-+= OA ,3

333258+-=∴OA 在AOB ?中应用正弦定理有

αsin sin OA AOB AB =∠, 即2

33253333258sin 2--?+-=∠AOB , 34103sin -=

∠∴AOB . 法2(面积法)

由题意可知,34,232-=-=BC AD 且D C B A ,,,四点共圆, 由托勒密定理可知:

BC AD CD AB BD AC ?+?=?,而

2

331)34(2

1)232(2212

121=?-?+-??=?+?=CD BC AD AB S ABCD AOB

AOB AOB BC AD CD AB AOB BD AC S ABCD ∠-=∠-?-+?=∠?+?=∠??=sin )635(sin )]34()232(12[2

1sin )(21sin 2

1

34103sin -=

∠∴AOB .证毕

初二数学面积法几何专题

初二数学---面积法解题 【本讲教育信息】 【讲解内容】——怎样证明面积问题以及用面积法解几何问题 【教学目标】 1. 使学生灵活掌握证明几何图形中的面积的方法。 2. 培养学生分析问题、解决问题的能力。 【重点、难点】: 重点:证明面积问题的理论依据和方法技巧。 难点:灵活运用所学知识证明面积问题。 【教学过程】 (一)证明面积问题常用的理论依据 1. 三角形的中线把三角形分成两个面积相等的部分。 2. 同底同高或等底等高的两个三角形面积相等。 3. 平行四边形的对角线把其分成两个面积相等的部分。 4. 同底(等底)的两个三角形面积的比等于高的比。 同高(或等高)的两个三角形面积的比等于底的比。 5. 三角形的面积等于等底等高的平行四边形的面积的一半。 8. 有一个角相等或互补的两个三角形的面积的比等于夹角的两边的乘积的比。 (二)证明面积问题常用的证题思路和方法 1. 分解法:通常把一个复杂的图形,分解成几个三角形。 2. 作平行线法:通过平行线找出同高(或等高)的三角形。 3. 利用有关性质法:比如利用中点、中位线等的性质。 4. 还可以利用面积解决其它问题。 【典型例题】 (一)怎样证明面积问题 1. 分解法 例1. 从△ABC的各顶点作三条平行线AD、BE、CF,各与对边或延长线交于D、E、F,求证:△DEF的面积=2△ABC的面积。 分析:从图形上观察,△DEF可分为三部分,其中①是△ADE,它与△ADB同底等

③三是△AEF,只要再证出它与△ABC的面积相等即可 由S△CFE=S△CFB 故可得出S△AEF=S△ABC 证明:∵AD//BE//CF ∴△ADB和△ADE同底等高 ∴S△ADB=S△ADE 同理可证:S△ADC=S△ADF ∴S△ABC=S△ADE+S△ADF 又∵S△CEF=S△CBF ∴S△ABC=S△AEF ∴S△AEF+S△ADE+S△ADF=2S△ABC ∴S△DEF=2S△ABC 2. 作平行线法 例2. 已知:在梯形ABCD中,DC//AB,M为腰BC上的中点 分析:由M为腰BC的中点可想到过M作底的平行线MN,则MN为其中位线,再利用平行线间的距离相等,设梯形的高为h 证明:过M作MN//AB ∵M为腰BC的中点 ∴MN是梯形的中位线 设梯形的高为h (二)用面积法解几何问题 有些几何问题,往往可以用面积法来解决,用面积法解几何问题常用到下列性质:性质1:等底等高的三角形面积相等 性质2:同底等高的三角形面积相等 性质3:三角形面积等于与它同底等高的平行四边形面积的一半 性质4:等高的两个三角形的面积比等于底之比

解析法证明平面几何经典问题--举例

五、用解析法证明平面几何问题----极度精彩!充分展现数学之美感!何妨一试? 例1、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引两条直线分别交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初二) (例1图) (例2图) 例2、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、 BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 【部分题目解答】 例1、(难度相当于高考压轴题) ; ,、点的方程为:直线的方程为:设直线方程为:轴建立坐标系,设圆的为为原点,轴,为如图,以)(),(,AD ,,)-(2211222y x C y x B nx y mx y AB r a y x Y AO A x MN ===+ 、;则,、,C B )()(4433y x E y x D , 1 - ;12-2-)1,{)-(22 2212212222222+=+=+=++=+=m r a x x m am x x r a amx x m y r a y x mx y 由韦达定理知:得:(消去,1- ;1222 243243+=+=+n r a x x n an x x 同理得: ),-(---23 23 22x x x x y y y y CD = 方程为:直线 ,--Q 3 23 223Q y y y x y x x = 点横坐标:由此得 , --P 1 41441P y y y x y x x = 点横坐标:同理得 ,------1 41441323223P Q y y y x y x y y y x y x x x AQ AP ===;即证:,只需证明:故,要证明 N B

解析法在几何中的应用 -

解析法在几何中的应用 姓名:周瑞勇 学号:201001071465 专业:物理学 指导教师:何巍巍

解析法在几何的应用 周瑞勇 大庆师范学院物理与电气信息工程学院 摘要:通过分析几何问题中的各要素之间的关系,用最简练的语言或形式化的符号来表达他们的关系,得出解决问题所需的表达式,然后设计程序求解问题的方法称为解析法。 关键词:几何问题,表达关系,表达式,求解问题 一前言 几何学的历史深远悠久,欧几里得总结前人的成果,所著的《几何原本》。一直是几何学的坚固基石,至今我国中学教学的几何课本仍未脱离他的衣钵。长期的教学实践证明,采用欧式体系学习几何是培养学生逻辑思维能力的行之有效的方法。 但是,事物都有两重性。实践同样证明,过多强调它的作为也是不适当的。初等几何的构思之难,使人们为此不知耗费了多少精力,往往为寻求一条神奇、奥秘的辅助线而冥思苦索。开辟新的途径,已是势在必行。近些年来,用解析法、向量法、复数法、三角法证明几何问题,受到越来越多的数学工作者的重视。 由于平面几何的内容,只研究直线和园的问题,所以我们完全可以用解析法来研究几何问题。解析法不仅具有几何的直观性,而且也还有证明方法的一般性。综合几何叙述较简,但构思困难,而解析法思路清晰,过程简捷,可以作为证明几何问题中一种辅助方法,两者课去唱补短,想得益彰。 二解析法概述 几何数学主要是从几何图形这个侧面去研究客观事物的,其基本元素是点,代数学则主要是从数量关系这个侧面来研究客观事物,其基本元素是数。笛卡尔综合了前人的成果,创立了坐标概念,把代数学和几何学结合起来,于是产生了以研究点的位置和一对有序实数的关系、方程和曲线以及有研究连续运动而产生

第二章 迭代法的一般原理

第二章 迭代法的一般原理 非线性方程组无论从理论上还是计算方法上,都比线性方程组复杂得多。一般的非线性方程组很难求出解析解,往往只能求出其数值解,且往往只能借助于迭代法。本章我们将讨论迭代法的一般原理、迭代法的一般构造及迭代收敛速度的衡量标准。 2-1 迭代法与不动点定理 设n n R R D →?:f ,考虑方程 ()0=x f (2-1) 若存在D *∈x ,使()0=*x f ,则称*x 为方程(2-1) 的解。 用迭代法求解(2-1) ,先将(2-1)化为等价的方程 ()x g x = (2-2) 这里映象n n R R D →?:g 。 方程(2-2)的解*x (即()**x g x =)称为映象g 的不动点。因此用迭代法解方程(2-1),就是求(2-2)中映象g 的不动点。这样以及g 是否存在不动点自然就是我们关心的问题。 定理2-1 若n n R R D →?:g 为有界闭集D D ?0上的严格非膨胀映象,()00D D ?g ,则g 在0D 内有唯一不动点。 证 唯一性 设g 在0D 内至少有两个不动点1x ,2x ,则 ()() 2121x x x g x g x x 21-≤-=-α 因1<α,所以由上式推得21x x =。唯一性得证。 记()()x g x x -=?,由g 及泛数的连续性可知1:R R D n →??连续。因0D 为有界闭集,故?在0D 上有最小值。设0D *∈x 为最小点,即

()()x g x x -=∈min 0 D x *? 则*x 为g 的不动点。因为若不然,则有()**x g x ≠,再由g 严格非膨胀,可得 ()()()()()***x g g x g x g -=?()()***x x g x ?=-< 这与*x 为?的最小点相矛盾,故*x 为g 的不动点。 注 定理中0D 的有界闭性、g 的压缩性和g 映0D 入自身,此3个条件缺一不可。例如,()x x x g 1+=在[)+∞=,D 10上严格非膨胀,但它在0D 中却没有不动点。 下面我们介绍在应用上非常广泛的不动点定理。 定理2-2 (Brouwer 不动点定理) 设n n R R D →?:g 在有解闭凸集D D ?0上连续,且()00D D G ?,则g 在0D 至少有一个不动点。 本定理在一维情形下叙述为:[]b a f ,: []b a ,→则f 在[]b a ,中至少有一个不动点。几何解释见图2-1。 x b a 图2-1 一维Brouwer 定理

面积法在平面几何问题求解中的巧妙应用

平面几何问题的证明——面积法(教案) 教学目的:掌握面积法在平面几何解题中的巧妙应用 教学重点:1、三角形、凸四边形面积公式的推导 2、面积法在平面几何解题中的巧妙应用 教学内容: 2002年,张景中院士推出《新概念几何》,其中对三角学作了全新的处理,他把边长为 1、夹角为α的菱形的面积定义为αsin ,由此研究正弦的性质,到处理余弦,用面积的方法证明大量的平面几何问题,把三角学和几何学打成一片,别具一格,极有新意。 张院士指出:抓住面积,不但能把平面几何课程变得更容易学,而且使几何问题求解变得更有趣味。 在求解平面几何问题的时候,根据有关几何量与涉及的有关图形面积之间的内在联系,用面积或面积比表示有关的几何量或其比,从而把要论证的几何量之间的关系转化为有关面积之间的关系,并通过图形面积的等积变换对所论问题来进行求解的方法,这就是面积法。 一、为运用面积法解题,我们需要一些面积公式: 1、设ABC ?中,角C B A ,,所对的边依次为c b a ,,,又a h 为a 边上的高,R 为其外接圆半径,r 为其内切圆半径,)(21c b a p ++= ,则 (1)a ABC ah S 21=?; (2)A bc S ABC sin 21?=?; (3)R abc S ABC 4=?; (4)A C B a S ABC sin 2sin sin 2?=?; (5)rp S ABC =?; (6)))()((c p b p a p p S ABC ---= ?。(海伦公式) 2、在凸四边形ABCD 中,边长分别为d c b a ,,,,两对角线长为,,f e 两对角线夹角θ,且)(2 1d c b a l +++= ,则: (1)θsin 21?=ef S ABCD (2) 2222222)(441d b c a f e S ABCD --+-= (3)))()()((d l c l b l a l S ABCD ----= (当D C B A ,,,四点共圆时) (4)?2cos ))()()((?-----=abcd d l c l b l a l S ABCD ,2D B +=?或2C A +=? 引理1:圆内接四边形ABCD 的四边是,,,,d DA c CD b BC a AB ====则四边形ABCD 的面积 ]1[ ))()()((d p c p b p a p S ABCD ----=,)(21d c b a p +++= 。

解析法巧解中考数学压轴题

解析法巧解中考压轴题 在平面几何题中,适当的建立直角坐标系,利用代数的方法解决几何问题,即解析法,有时会显得更简洁高效.现以近年中考压轴题为例,分析说明解析法之妙.例1 (2013泰州)如图1,在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连结PQ,M为PQ中点. 若AD=10,AB=a,DP=8,随着a的大小的变化,点M的位置也在变化.当点M 落在矩形ABCD外部时,求a的取值范围. 分析本题将矩形、三角形、动点、参数相结合,考察学生利用相似解决问题的综合能力,难度较大,区分度高,按照参考答案给出的解题思路,如图2所示,当点M落在矩形ABCD外部时,须满足的条件是“BE>MN”.分别求出BE与MN的表达式,列不等式求解,即可求出a的取值范围. 由△ADP∽△ABQ,解得QB=4 5 a. 由△QBE∽△QCP,同样由比例关系得出BE= () 28 225 a a a - + . 又因为MN为QCP的中位线,得出 MN=1 2 PC= 1 2 (a-8). 再由BE>MN, 即 () 28 225 a a a - + () 1 8 2 a >- 得出a> . 当点M落在矩形ABCD外部时,a的取值范围为a>. 这种解法不仅要想到添加辅助线,还两次运用了相似比,计算量大,易出错.比较稳妥而简洁的做法是将图形放进直角坐标系中,利用数形结合的方法来解决此类问题. 一如何建立合适、恰当的坐标系呢通常需要考虑以下两点: 第一,让尽可能多的点落在直角坐标系上,这些点的坐标含有数字O,可以起到简化运算的功效; 第二,考虑图形的对称性,同样,也能起到简化运算的作用. 解答如图3所示,建立以B点为原点,BC方向为x轴正半轴,BA方向为y轴正半轴的直角坐标系.

专题28 求几何图形面积及面积法解题的问题(解析版)

专题28 求几何图形面积及面积法解题的问题 一、几何图形面积公式 1.三角形的面积:设三角形底边长为a ,底边对应的高为h ,则面积S=ah/2 2.平行四边形的面积:设平行四边形的底边长为a ,高为h ,则面积S=ah 3.矩形的面积:设矩形的长为a ,宽为b ,则面积S=ab 4.正方形的面积:设正方形边长为a ,对角线长为b ,则面积S=22 2 b a = 5.菱形的面积:设菱形的底边长为a ,高为h ,则面积S=ah 若菱形的两条对角线长分别为m 、n ,则面积S=mn/2 也就是说菱形的面积等于两条对角线乘积的一半。 6.梯形的面积:设梯形的上底长为a,下底长为b ,高为h ,则面积S=(a+b )h/2 7.圆的面积:设圆的半径为r,则面积S=πr 2 8.扇形面积计算公式 9.圆柱侧面积和表面积公式 (1)圆柱的侧面积公式S 侧=2π rh 2360r n s π?=lr s 2 1=或

(2)圆柱的表面积公式:S 表=2S 底+S 侧=2πr 2 +2πrh 10.圆锥侧面积公式 从右图中可以看出,圆锥的母线L 即为扇形的半径,而圆锥底面的周长是扇形的弧长2πr ,这样,圆锥侧面积计算公式:S 圆锥侧=S 扇形=πrL 注意:有时中考题还经常考查圆的周长、扇形的弧长的公式的应用。 (1)圆的周长计算公式为:C=2πr (2)扇形弧长的计算公式为: (3)其他几何图形周长容易计算,不直接给出。 二、用面积法解题的理论知识 1.面积方法:运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。 2.面积法解题的特点:把已知量和未知量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。 三、面积方法问题主要涉及以下两部分内容 1.证明面积相等的理论依据 (1)三角形的中线把三角形分成两个面积相等的部分。 (2)同底同高或等底等高的两个三角形面积相等。 180 2360r n r n l ππ=?=

中考专题复习怎样证明面积问题以及用面积法解几何问题

中考专题复习——怎样证明面积问题以及用面积法解几何 问题 (一)证明面积问题常用的理论依据 1. 三角形的中线把三角形分成两个面积相等的部分。 2. 同底同高或等底等高的两个三角形面积相等。 3. 平行四边形的对角线把其分成两个面积相等的部分。 4. 同底(等底)的两个三角形面积的比等于高的比。 同高(或等高)的两个三角形面积的比等于底的比。 5. 三角形的面积等于等底等高的平行四边形的面积的一半。 8. 有一个角相等或互补的两个三角形的面积的比等于夹角的两边的乘积的比。 (二)证明面积问题常用的证题思路和方法 1. 分解法:通常把一个复杂的图形,分解成几个三角形。 2. 作平行线法:通过平行线找出同高(或等高)的三角形。 3. 利用有关性质法:比如利用中点、中位线等的性质。 4. 还可以利用面积解决其它问题。 【典型例题】 (一)怎样证明面积问题 1. 分解法 例1. 从△ABC的各顶点作三条平行线AD、BE、CF,各与对边或延长线交于D、E、F,求证:△DEF的面积=2△ABC的面积。 分析:从图形上观察,△DEF可分为三部分,其中①是△ADE,它与△ADB同底等 ③三是△AEF,只要再证出它与△ABC的面积相等即可 由S△CFE=S△CFB 故可得出S△AEF=S△ABC 证明:∵AD//BE//CF ∴△ADB和△ADE同底等高 ∴S△ADB=S△ADE

同理可证:S△ADC=S△ADF ∴S△ABC=S△ADE+S△ADF 又∵S△CEF=S△CBF ∴S△ABC=S△AEF ∴S△AEF+S△ADE+S△ADF=2S△ABC ∴S△DEF=2S△ABC 2. 作平行线法 例2. 已知:在梯形ABCD中,DC//AB,M为腰BC上的中点 分析:由M为腰BC的中点可想到过M作底的平行线MN,则MN为其中位线,再利用平行线间的距离相等,设梯形的高为h 证明:过M作MN//AB ∵M为腰BC的中点 ∴MN是梯形的中位线 设梯形的高为h (二)用面积法解几何问题 有些几何问题,往往可以用面积法来解决,用面积法解几何问题常用到下列性质:性质1:等底等高的三角形面积相等 性质2:同底等高的三角形面积相等 性质3:三角形面积等于与它同底等高的平行四边形面积的一半 性质4:等高的两个三角形的面积比等于底之比 性质5:等底的两个三角形的面积比等于高之比 1. 证线段之积相等 例3. 设AD、BE和CF是△ABC的三条高,求证:AD·BC=BE·AC=CF·AB

平面几何证明题的一般思路及方法简述

平面几何证明题的一般思路及方法简述 【摘要】惠特霍斯曾说过,“一般地,解题之所以成功,在很大程度上依赖于选择一种最适宜的方法。”灵活、恰当地选择解题方法是求解平面几何问题的良好途径。解决任何一道平面几何证明题,都要应用这样或那样的方法,而选择哪一种方法,就取决于我们用什么样的解题思路。本文试对平面几何证明题中常用的几种解题思路及方法进行分析。 【关键词】平面几何证明题思路方法 平面几何难学,是很多初中生在学习中的共识,这里面包含了很多主观和客观因素,而学习不得法,没有适当的解题思路则是其中的一个重要原因。波利亚曾说过,“解题的成功要靠正确思路的选择,要靠从可以接近它的方向去攻击堡垒。为了辨别哪一条思路正确,哪一个方向可接近它,就要试探各种方向和思路。”由此可见,掌握证明题的一般思路、探索证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。常见的证题思路有直接式思路和间接式思路。 一、直接式思路 证题时,首先应仔细审查题意,细心观察题目,分清条件和结论,并尽量挖掘题目中隐含的一些解题信息,以在缜密审题的基础上,根据定义、公式、定理进行一系列正面的逻辑推理,最后得出命题的证明,这种证题的思路被称为直接式思路。由于思维方式的逆顺,在证题时运用的方法主要有“分析法”和“综合法”。 1.分析法。分析法是从命题的结论入手,先承认它是正确的,执果索因,寻求结论正确的条件,这样一步一步逆而推之,直到与题设会合,于是就得出了由题设通往结论的思维过程。在由结论向已知条件的寻求追溯过程中,则由于题设条件的不同,或已知条件之间关系的隐含程度不同等,寻求追溯的形式会有一定差异,因而常把分析法分为以下四种类型。 (1)选择型分析法。选择型分析法解题,首先要从题目要求解的结论A出发,逐步把问题转化为分析要得出结论A需要哪些充分条件。假设有条件B,就有结论A,那么B就成为选择找到的使A成立的充分条件,然后再分析在什么条件下能选择得到B……最终追溯到命题中的某一题设条件。 (2)可逆型分析法。如果再从结论向已知条件追溯的过程中,每一步都是推求的充分必要条件,那么这种分析法又叫可逆型分析法,因而,可逆型分析法是选择型分析法的特殊情形。用可逆型分析法证明的命题用选择型分析法一定能证明,反之用选择型分析法证明的命题,用可逆型分析不一定能证明。 (3)构造型分析法。如果在从结论向已知条件追溯的过程中,在寻找新的充分条件的转化“三岔口”处,需采取相应的构造型措施:如构造一些条件,作某些辅助图等,进行探讨、推导,才能追溯到原命题的已知条件的分析法叫做构造型分析法。 (4)设想型分析法。在向已知条件追溯的过程中,借助于有根据的设想、假定,形成“言之成理”的新构思,再进行“持之有据”的验证,逐步地找出正确途径的分析法称为设想型分析法。 2.综合法。综合法则是由命题的题设条件入手,由因导果,通过一系列的正确推理,逐步靠近目标,最终获得结论。再从已知条件着手,根据已知的定义、公式、定理,逐步推导出结论。在这一过程中,由于思考角度不同,立足点不同,综合法常分为四种类型: (1)分析型综合法。我们把分析法解题的叙述倒过来,稍加整理而得到的解法称为分析型综合法。 (2)奠基型综合法。当由已知条件着手较难,或没有熟悉的模式可供归纳推导,就可转而寻找简单的模式,然后再将一般情形化归到这个简单的模式中来,这样的综合法称为奠基型综合法。 (3)媒介型综合法。当问题给出的已知条件较少,且看不出与所求结论的直接联系时,或条

六年级下册数学思维训练——比例法解几何图形题讲解学习

六年级下册数学思维训练——比例法解几 何图形题

六年级下册数学思维训练——比例法解几何图形题 例1在△ABC中,B D︰DC=2︰3,阴影部分的面积是27平方厘米。求△ABC的面积。 例2在△ABC 中,AD垂直于BC,CE垂直于AB,AD=8厘米,CE=7厘米,AB+BC=21厘米,△ABC的面积是多少平方厘米? 基本练习 1、如图,ABCD是一个梯形,E是AD的中点,线段CE把梯形分成甲、乙两部分,它们的面积之比是10︰7.求上底AB与下底CD的长度之比。 2、如图,平行四边形ABCD的周长为75厘米,以BC为底时,高是14厘米;以CD为底时,高是16厘米。问平行四边形ABCD的面积是多少?

巩固练习 1、如图,一个长方形被分成8个小长方形,其中五个小长方形的面积如图所示,那么其中最大的长方形面积是多少? 2、如图,梯形ABCD与△DEC的面积比为6:7,BE和EC的长度分别是多少?(单位:厘米) 拓展提高 1、如图,BF:AB=1:6,AE:AC=1;5,CD:CB=1:4,若△ABC的面积为120平方厘米,求△DEF的面积。

2、梯形ABCD 的面积为20,点E 在BC 上,△ADE 的面积是△ABE 的面积的2倍,BE 的长度为2,EC 的长度为5。问:△DEC 的面积是多少? 竞赛训练 1、例题:如图所示,甲圆和乙圆的面积之和是丙圆的53 ,甲圆内阴影部分面积占甲圆的31 ,乙圆内阴影部分面积占乙圆面积的2 1 ,丙圆内阴影部分面积占丙圆面积的4 1 ,那么甲。乙两圆面积之比是多少? 2、如图所示,长方形AEGH 与正方形BFGH 的面积比为3︰2,则正方形ABCD 的面积是正方形BFGH 的面积的多少倍?(结果写成小数) 3、如图所示,已知直角三角形ABC 中,BDEF 是一个正方形,AD 长4厘米,FC

(完整word)初二几何面积法

专题复习一、面积法 何谓面积法 在求解平面几何问题的时候,根据有关几何量与涉及的有关图形面积之间的内在联系,用面积或面积之间的关系表示有关线段间的关系,从而把要论证的线段之间的关系转化为面积的关系,并通过图形面积的等积变换对所论问题来进行求解的方法,称之为面积法。 (一)证明面积问题常用的理论依据 用面积法解几何问题常用到下列性质: 1、全等三角形的面积相等; 2、三角形的中线把三角形分成面积相等的两部分; 3、同底同高或等底等高的两个三角形面积相等。 4、同底(等底)的两个三角形面积的比等于高的比。 同高(或等高)的两个三角形面积的比等于底的比。 一、证线段相等 1、已知:△ABC 中,∠A 为锐角,AB=AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,求证:BD=CE E D C B A 2、已知:等腰△ABC 中,AB=AC ,D 为底边BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F. 求证:DE=DF. 3、(1)已知: △ABC 中,AB=AC ,P 为底边BC 上一点,PD ⊥AB 于D ,PE ⊥AC 于E ,BF ⊥AC 于F ,求证:PD+PE=BF. P (2)若P 为 △ABC 的底边BC 的延长线上一点,其他条件不变,请画出图形,并猜想(1)中的结论仍然成立吗?若成立,请说明理由;若不成立,请写出正确的结论,并证明。 F E C B A

A 4、(1)已知等边△ABC内有一点P,PD⊥AB,PE⊥BC,PF⊥CA,垂足分别为D、E、F,又AH 为△ABC的高,求证:PD+PE+PF=AH. P H F E D C B A (2)若P是等边△ABC外部一点,其他条件不变,(1)中的结论仍然成立吗?若成立,请说明理由;若不成立,请写出正确的结论,并说明理由。 A B C D E F H P 二、证角相等 5、点C是线段AB上一点,分别以AC、BC为边在AB同侧作等边△ACD和等边△BCE,连接BD、AE交于O点,再连接OC,求证:∠AOC=∠BOC. 1、Rt△ABC中,∠BAC=90°,AB=3,M为边BC上一点,连接AM,若将△ABM沿直线AM翻折

第56讲 解析法证几何题教学内容

第56讲解析法证 几何题

第56讲解析法证 几何题 解析法是利用代数方法解决几何问题的一种常用方法.其一般的顺序是:建立坐标系,设出各点坐标及各线的方程,然后根据求解或求证要求进行代数推算.它的优点是具有一般性与程序性,几何所有的平面几何问题都可以用解析法获解,但对于有些题目演算太繁. 此外,如果建立坐标系或设点坐标时处理不当,也可能增加计算量.建系设点坐标的一般原则是使各点坐标出现尽量多的0,但也不可死搬教条,对于一些“地位平等”的点、线,建系设点坐标时,要保持其原有的“对称性”. A类例题 收集于网络,如有侵权请联系管理员删除

斜边AB及直角边BC为边向三角形两 侧作正方形ABDE、CBFG. 求证:DC⊥FA. 分析只要证k CD·k AF=-1,故只要求点D的坐标. 证明以C为原点,CB为x轴正方向建立直角坐标 系.设A(0,a),B(b,0),D(x,y). 则直线AB的方程为ax+by-ab=0. 故直线BD的方程为bx-ay-(b·b-a·0)=0, 即bx-ay-b2=0. ED方程设为ax+by+C=0. 由AB、ED距离等于|AB|,得 |C+ab| =a2+b2, a2+b2 解得C=±(a2+b2)-ab. 如图,应舍去负号. 收集于网络,如有侵权请联系管理员删除

所以直线ED方程为ax+by+a2+b2-ab=0. 解得x=b-a,y=-b.(只要作DH⊥x轴,由△DBH≌△BAC就可得到这个结果). 即D(b-a,-b). 因为k AF=b-a b,k CD= -b b-a,而k AF·k CD=-1.所以 DC⊥FA. 例2.自ΔABC的顶点A引BC的垂线,垂足为D,在AD上任取一点H,直线BH交AC于E,CH交AB于F.试证:AD平分ED与DF所成的角. 证明建立直角坐标系,设A(0,a),B(b,0),C(c,0),H(0,h),于是 BH:x b+ y h=1 AC:x c+ y a=1 x

高中竞赛数学讲义第56讲解析法证几何题

第56讲 解析法证 几何题 解析法是利用代数方法解决几何问题的一种常用方法.其一般的顺序是:建立坐标系,设出各点坐标及各线的方程,然后根据求解或求证要求进行代数推算.它的优点是具有一般性与程序性,几何所有的平面几何问题都可以用解析法获解,但对于有些题目演算太繁. 此外,如果建立坐标系或设点坐标时处理不当,也可能增加计算量.建系设点坐标的一般原则是使各点坐标出现尽量多的0,但也不可死搬教条,对于一些“地位平等”的点、线,建系设点坐标时,要保持其原有的“对称性”. A 类例题例1.如图,以直角三角形ABC 的斜边A B 及直角边B C 为边向三角形两侧作正方形ABDE 、CBFG . 求证:DC ⊥FA . 分析 只要证k C D ·k AF =-1,故只要求点D 的坐标. 证明 以C 为原点,CB 为x 轴正方向建立直角坐标系.设A (0,a ),B (b ,0),D (x ,y ). 则直线AB 的方程为ax +by -ab =0. 故直线BD 的方程为bx -ay -(b ·b -a ·0)=0, 即bx -ay -b 2=0. ED 方程设为ax +by +C =0. 由AB 、ED 距离等于|AB |,得 |C +ab | a 2+b 2=a 2+b 2, 解得C =±(a 2+b 2)-ab . 如图,应舍去负号. 所以直线ED 方程为ax +by +a 2+b 2-ab =0. 解得x =b -a ,y =-b .(只要作DH ⊥x 轴,由△DBH ≌△BAC 就可得到这个结果). 即D (b -a ,-b ). 因为k AF =b -a b ,k CD =-b b -a ,而k AF ·k CD =-1.所以DC ⊥FA . 例2.自ΔABC 的顶点A 引BC 的垂线,垂足为D ,在AD 上任取一点H ,直线BH 交AC 于E ,CH 交AB 于F . 试证:AD 平分ED 与DF 所成的角. 证明 建立直角坐标系,设A (0,a ),B (b ,0),C (c ,0),H (0,h ),于是 BH :x b +y h =1 AC :x c +y a =1 过BH 、AC 的交点E 的直线系为: λ(x b +y h -1)+μ(x c +y a -1)=0. 以(0,0)代入,得λ+μ=0. y x H F E D C B A y x O A B C D E F G

最新张景中——面积法开辟平面几何新天地

张景中——面积法开辟平面几何新天地

张景中——面积法开辟平面几何新天地 提起张景中,景仰之情不禁油然而生,心底涌出一堆的形容词和感叹句。诸如百折不回燃烧生命、身居逆境不改其志、目光如炬睿智如芒、思维如风顶尖成就、平凡之中凸显伟大、横扫千军势如破竹、与时俱进思维超前、破除迷信引领革命,等等等等,都不足以概括张景中院士对中国教育数学的贡献,即使在整个中国科学界,诞生这样的科学巨人,也是50年来仅见。 张景中的伟大,不在于在高等数学的多少个领域内做出了贡献,恰恰在所有人都认为不可能有突破性进展的初等数学领域,其中最稳定、最古老、最不可能创新的欧式几何王国内,取得了划时代的进展,颠覆性的进展。从17世纪以来的300多年,世界范围内的大科学家,他们在科学理论上的所有发现,几乎没有普通中学生能够读懂的东西。在初等数学领域,代数是一潭百年死水,平面几何更是一潭千年死水,没有活水也没有新鲜氧气注入。 是张景中,也仅仅是张景中,只在三年的初中几何教学中,就发现了问题并开始思考教材的改革。在平面几何2000多年的古老仓库中,捡起了从不被人重视的“面积方法”这件武器,将顽铁锻造成神器,像当年的孙悟空一样,从地下到天上,从18层地狱到33天兜率宫,将2300年不变的并被公认为完美杰作的欧几里德几何体系从公理体系到定理体系,从思想方法到解题思路搅了个天翻地覆,将欧几里德几何体系彻底改造了一番,创造了一个面目一新的张氏几何,名曰新概念几何。上至各路神仙、下至黎民百姓,看得目瞪口呆,看得如醉如痴。 张景中的这项科学发现,比起60年来国内任何一个科学家的发现影响面都要大得多,因为他的受众是8700万中学生!他影响的是整个中国的下一代。 张景中的脚步没有停歇,他的眼光自然而然地投向了机器证明几何定理这个百年难题。从莱布尼兹发明数值计算机械化以来,随着计算机科学的发展,机器证明几何定理也有了一定进展。中国老一辈数学家吴文俊将平面几何坐标化,创立了吴方法——代数消元法,

求几何图形的面积法

求几何图形的面积法 (1)直接用三角形,特殊四边形,圆,扇形的面积公式来求。 (2)间接割补法,把不规则图形面积通过割补、运动、变形转化为规则易求图形面积的和或差。 (3)特殊求法,即利用相似图形的面积比等于相似比的平方,等底(等高)的三角形面积比等于高(底)比的性质来解。 其次有些乘法公式、勾股定理、三角形的一边平行四边形的比例式等性质,也可用面积法来推导。 面积法是什么? 运用面积关系解决平面几何体的方法,称为面积法。 它是几何中常用的一种方法。特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系会变成数量之间的关系。这个时候,问题就化繁为简了,只需要计算,有事甚至可以不添置补助线就迎刃而解了! 此外,用面积法还可以用来求线段长,证明线段相等(不等),角相等,比例式或等积式,求线段比等。虽然这些几乎都可以用其他方法来解决,但是面积法无疑是一种更直接、简易、有效的方法。 面积法的常用理论口诀

1.三角形的中线把三角形分成两个面积相等的部分。 2.同底同高或等底等高的两个三角形面积相等。 3.平行四边形的对角线把其分成两个面积相等的部分。 4.同底(等底)的两个三角形面积的比等于高的比。 同高(或等高)的两个三角形面积的比等于底的比。 5.三角形的面积等于等底等高的平行四边形的面积的一半。 6.三角形的中位线截三角形所得的三角形的面积等于原三角形面积的1/4 7.三角形三边中点的连线所成的三角形的面积等于原三角形面积的1/4 8.有一个角相等或互补的两个三角形的面积的比等于夹角的两边的乘积的比。面积法的常用解题思路 1.分解法:通常把一个复杂的图形,分解成几个三角形。 2.作平行线法:通过平行线找出同高(或等高)的三角形。 3.利用有关性质法:比如利用中点、中位线等的性质。 4.还可以利用面积解决其它问题

用面积法求解几何问题

人教版 初中 解决几何问题有很多方法,在这些方法中很容易被大家忽略的是面积法. 面积法既能解决题目中直接涉及面积的问题,也可解决一些题目中不涉及面积的问题. 在平时的学习、解题过程中,如果有意识的使用面积法.,可以使有些几何图形性质的证明、几何问题的解决等起到事半功倍的作用. 对有些几何题,如果单纯用图形的几何性质、全等三角形或相似三角形等知识来解答,会使计算或证明过程很复杂,而用面积法却可以轻松得到解决.下面举例说明. 例1 如图1,E 、F 分别为□ABCD 的边CD 、AD 上的点,且AE=CF ,设AE 、CF 交于P ,求证:BP 平分∠APC . 证明 连BE 、BF , ∵AE=CF , ∴ 三角形ABE 的面积等于三角形FBC 的面积 即ABE FBC S S ??= ∴ 点B 到AE 、FC 的距离相等. 即点B 到∠APC 的两边P A 、PC 的距离相等, ∴ BP 平分∠APC . 例2 如图2,已知:△ABC 中,AD 是∠BAC 的平分线. 求证:AB BD AC CD =. 分析 由于AD 是∠A 的平分线,且在△ABD 与△ADC 中,BD 、DC 边上的高相等,因此可利用三角形面积公式来证明. 证明 设△ABC 中BC 边上的高为h ,则 12 ABD S BD h ?=?, 12 ACD S CD h ?=?. 又 过D 分别作DE ⊥AB 于E ,DF ⊥AC 于F ,则 12 ABD S AB DE ?=?, 12 ACD S AC DF ?=?. 于是 11221122 ABD ADC BD h AB DE S S CD h AC DF ????==??. ∵ ∠1=∠2, ∴ DE =DF . 故 AB BD AC CD =. .1. 例3 如图3,P 为△ABC 内任意一点,连AP 、BP 、CP 并分别延长交对边 于D 、E 、F ,求证:1PD PE PF AD BE CF ++=. 分析 本题应用了线段的比转化为面积的比来解决.

解析法教学文档

解析法 一、 方法介绍 解析法是把几何问题转化为代数问题来处理的更一般方法,用解析法解平面几何题时,要特别注意选择适当的坐标系,同时还要灵活利用几何图形的性质及代数、三角知识的综合运用。 二、 例题精讲 例1、 如图,O 是正方形ABCD 内的一点,且?=∠=∠15OCB OBC ,求证:OAD ?是等边三角形。 例2、在锐角三角形ABC ?中,AB 上的高CE 与AC 上的高BD 相交与点H ,以DE 为直径的圆分别交 AB 、AC 于F 、G 两点,FG 与AH 相交与点 已知25=BC ,20=DB ,7=BE ,求AK A B B C A D

例3、 知直线l 与⊙O 相离,l OP ⊥于点P ,Q 是l 上异于P 的一点,QB QA ,分别 切⊙O 于B A ,。直线AB 交OP 于点K 。BQ PN ⊥于点N ,AQ PM ⊥于点M 。求证:MN 平分线段PK 。 练习 1、 设M 、N 分别是ABC ?的边AC 、BC 上的点,且?=∠90ACB 。设AN 与BM 交 于点L 。证明:AML ?、BNL ?的垂心与点C 三点共线。 l C B A N M

2、 一张纸上画有半径为R 的⊙O 和圆内一定点A ,且a OA =,折叠纸片,使圆周上某点 A '刚好与点A 重合,这样的每一种折法,都留下一条直线折痕,当A '取遍圆周上所有点时,求所有折痕所在直线的点的集合。 3以ABC ?的边BC 为直径作半圆,与AC AB ,分别交于点D 和E ,过D 、E 作BC 的垂线,垂足分别为G F ,,线段DG 、EF 交于点M 。求证:BC AM ⊥。 4如图,在四边形ABCD 中,对角线AC 平分∠BAD 。在CD 上取一点E ,BE 与AC 相交于F ,延长DF 交BC 于G 。求证:∠GAC =∠EAC . G F C B A C B

静力学分析中的几何法或解析法

静力学分析中的几何法或解析法 作者:王晓鹍{摘要}:静力学研究的内容主要是研究作用于物体上力系的平衡。 通过静力学公理具体研究以下三个问题①物体的受力分析②力系的等效替换③力系的平衡条件。根据几何法的三步骤:确定受力体,画出脱离体和已知受力,解除约束体,画出受力方向的步骤。从而根据几何作图解决问题。至于解析法可以根据平衡力系中,合力必为零以及力多边形自行闭合的特点分析问题。 {关键词} 静力学二力平衡公理质点 {英文摘要} { the }: Statics study is the main content of research on object on the equilibrium of force system. The axioms of statics study the following three problems of objects in the stress analysis in power system equivalent substitution of the force equilibrium condition. According to the geometric method in three steps: determining force body, draw out of body and the known force, lift the restriction, draw the step stress direction.According to the geometry problem solving. As for the analytical method based on balanced force, force will be zero and the force polygon self closing characteristic analysis. { the } Statics two force balance axiom particle 静力学是力学的一个分支,它主要研究物体在力的作用下处于平衡的规律,以及如何建立各种力系的平衡条件。平衡是物体机械运动的特殊形式,严格地说,物体相对于惯性参照系处于静止或作匀速直线运动的状态,即加速度为零的状态都称为平衡。对于一般工程问题,平衡状态是以地球为参照系确定的。静力学还

学会用面积法解证几何题

学会用“面积法”解证几何题 楚雄育才学校 刘宪敏 在初中几何课教学中,常常会遇到一些与直角形有关的证明题或计算题,在解决此类问题时,若我们能够利用“面积”这一中介来求解,往往会达到异象不到的效果,下面举几个例子来说明。 例1、在矩形ABCD 中,AB=a ,BC=b ,M 是AB 的中点,DE ⊥AM ,E 为垂足,求证:2 2 42b a a b DE += 。 【分析】:1、如图(1)所示,此题的常规解法是证明Rt △ABM ∽Rt △DEA ,从而得出 AD AM DE AB =,又22BM AB AM +=代入上述比例式即可得出证明 结果。 2、考虑到此题有一些Rt △,因此,我们还可以这样来分析,如图(2所示),连结DM ,易证Rt △ABM ≌Rt △DCM ,由此利用“面积”来证明(∵S 矩形ABCD =S △AMD +2S △ABM ),证明过程如下: 证明:如图(2)所示,连结DM ∵M 是BC 的中点 ∴BM=CM ∠B=∠C=900 ?Rt △ABM ≌Rt △DMC A E B C D A E D

AB=AC 又∵S 矩形ABCD =S △AMD +2S △ABM 即:a b DE AM ab ???+?=2 121221 ∴AM ?DE=ab 又∵2 442 222 2 2 b a b a BM AB AM +=+=+= ∴2 2 42b a a b DE += . 说明:在解证与矩形有关的问题时,可将其分解成几个直角三角形,从中利用“面积”来解题。 例2、在Rt △ABC 中,BC 、CA 、AB 的长分别为a 、b 、c ,则Rt △ABC 的内切圆半径为: 。 解法一:(运用切线长定理) 如图(3)所示,设⊙0切AB 、BC 、CA 于点D 、E 、F , AE=AD=x ;BD=BF=y ,于是:x=a-R ,y=b-R ,c=x+y=a-R+b-R , ∴R= 2 c b a -+ ① 解法二:(用面积法)如图(4)所示, 连结OA 、OB 、OC 则有:S △ABC =S △AOC +S △ COB +S △BOA E C F A E C F

小学平面几何图形的十大解法

几何图形的十大解法(30例) 一、分割法 例1:将两个相等的长方形重合在一起,求组合图形的 面积。(单位:厘米) 2 例2:下列两个正方形边长分别为8厘米和5厘米, 求阴影部分面积。 例3:左图中两个正方形的边长分别为8厘米和6厘米。 求阴影部分面积。 二、添辅助线 例1:已知正方形边长4厘米,A、B、C、D是正方形边上的中点,P是任意一点。求阴影部分面积。 C P D B A 例2:将下图平行四边形分成三角形和梯形两部分,它们面积相差40平方

厘米,平行四边形底20.4厘米,高8厘米。梯形下底是多少厘米? 例3:平行四边形的面积是48平方厘米,BC分别是 A 这个平行四边形相邻两条边的中点,连接A、 B B、C得到4个三角形。求阴影部分的面积。 C 三、倍比法 例1: A B 已知:OC=2AO,S ABO=2㎡,求梯形ABCD O 的面积。 例2:7.5 已知:S阴=8.75㎡,求下图梯形的面积。 2.5 例3: A 下图AB是AD的3倍,AC是AE的5倍, D E 那么三角形ABC的面积是三角形ADE的多少 倍? C 四、割补平移

例1: A B 已知:S阴=20㎡, EF为中位线 E F 求梯形ABCD的面积。 D C 例2:10 求左图面积(单位:厘米) 5 5 10 例3:把一个长方形的长和宽分别增加2 厘米,面积增加24平方厘米。 求原长方形的周长。 2 五、等量代换 例已知:AB平行于EC,求阴影部分面积。 8 E 10 D (单位:m) 例2:下图两个正方形边长分别是6分米、4分米。求阴影部分面积。 例3:已知三角形ABC的面积等于三角形AED的面积(形状大小都相同),

相关主题
文本预览
相关文档 最新文档