当前位置:文档之家› a美国2005钢结构规范中关于螺栓连接的计算

a美国2005钢结构规范中关于螺栓连接的计算

a美国2005钢结构规范中关于螺栓连接的计算
a美国2005钢结构规范中关于螺栓连接的计算

钢结构连接计算书

钢结构连接计算书 计算依据: 1、《钢结构设计规范》GB50017-2017 一、连接件类别: 普通螺栓。 二、普通螺栓连接计算: 1、普通螺栓受剪连接时,每个普通螺栓的承载力设计值,应取抗剪和承压承载力设计值中的较小者。 受剪承载力设计值应按下式计算: N v b = n vπd2f v b/4 式中d──螺栓杆直径,取 d = 8 mm; n v──受剪面数目,取 n v = 1; f v b──螺栓的抗剪强度设计值,取 f v b =125 N/mm2; 计算得:N v b = 1×3.1415×82×125/4=6283.185 N; 承压承载力设计值应按下式计算: N c b= d∑tf c b 式中d──螺栓杆直径,取 d = 8 mm; ∑t──在同一受力方向的承压构件的较小总厚度,取 ∑t=8 mm; f c b──普通螺栓的抗压强度设计值,取 f c b =250 N/mm2; 计算得:N c b = 8×8×250=16000 N; 故: 普通螺栓的承载力设计值取 6283.185 N; 2、普通螺栓杆轴方向受拉连接时,每个普通螺栓的承载力设计值应按下式计算: N t b= πd e2f t b/4 式中普通螺栓或锚栓在螺纹处的有效直径,取 de= 8 mm;

f t b──普通螺栓的抗拉强度设计值,取 f t b =215 N/mm2; 计算得:N t b = 3.1415×82×215 / 4 = 10807.079 N; 3、普通螺栓同时受剪和受拉连接时,每个普通螺栓同时承受剪力和杆轴方向拉力应符合下式要求: ((N v/N v b)2 + (N t/N t b)2)1/2≤ 1 N v≤ N c b 式中N v──普通螺栓所承受的剪力,取 N v= 3 kN =3×103 N; N t──普通螺栓所承受的拉力,取 N t= 1 kN =1×103 N; [(N v/N v b)2+(N t/N t b )2]1/2=[(3×103/6283.185)2+(1×103/10807.079)2]1/2= 0.486 ≤ 1; N v= 3000 N ≤ N c b = 16000 N; 所以,普通螺栓承载力验算满足要求!

钢结构螺栓连接-附答案.

钢结构练习四螺栓连接 一、选择题(××不做要求) 1.单个螺栓的承压承载力中,[N]= d∑t·f y,其中∑t为( D )。 A)a+c+e B)b+d C)max{a+c+e,b+d} D)min{a+c+e,b+d} 2.每个受剪拉作用的摩擦型高强度螺栓所受的拉力应低于其预拉力的( C )。 A)1.0倍B)0.5倍C)0.8倍D)0.7倍 3.摩擦型高强度螺栓连接与承压型高强度螺栓连接的主要区别是( D )。 A)摩擦面处理不同B)材料不同 C)预拉力不同D)设计计算不同 4.承压型高强度螺栓可用于( D )。 A)直接承受动力荷载 B)承受反复荷载作用的结构的连接 C)冷弯薄壁型钢结构的连接 D)承受静力荷载或间接承受动力荷载结构的连接 5.一个普通剪力螺栓在抗剪连接中的承载力是( D )。 A)螺杆的抗剪承载力B)被连接构件(板)的承压承载力 C)前两者中的较大值D)A、B中的较小值 6.摩擦型高强度螺栓在杆轴方向受拉的连接计算时,( C )。 A)与摩擦面处理方法有关B)与摩擦面的数量有关 C)与螺栓直径有关D)与螺栓性能等级无关 7.图示为粗制螺栓连接,螺栓和钢板均为Q235钢,则该连接中螺栓的受剪面有( C )个。 A)1 B)2 C)3 D)不能确定 8.图示为粗制螺栓连接,螺栓和钢板均为Q235钢,连接板厚度如图示,则该连接中承压板厚度为( B )mm。 A)10 B)20 C)30 D)40

9.普通螺栓和承压型高强螺栓受剪连接的五种可能破坏形式是:I .螺栓剪断;Ⅱ.孔壁承压破坏;Ⅲ.板件端部剪坏;Ⅳ.板件拉断;Ⅴ.螺栓弯曲变形。其中( B )种形式是通过计算来保证的。 A )I 、Ⅱ、Ⅲ B )I 、Ⅱ、Ⅳ C )I 、Ⅱ、Ⅴ D )Ⅱ、Ⅲ、Ⅳ 10.摩擦型高强度螺栓受拉时,螺栓的抗剪承载力( B )。 A )提高 B )降低 C )按普通螺栓计算 D )按承压型高强度螺栓计算 11.高强度螺栓的抗拉承载力( B )。 A )与作用拉力大小有关 B )与预拉力大小有关 C )与连接件表面处理情况有关 D )与A ,B 和C 都无关 12.一宽度为b ,厚度为t 的钢板上有一直径为d 0的孔,则钢板的净截面面积为( C )。 A )t d t b A n ?-?=20 B )t d t b A n ?-?=4 2 0π C )t d t b A n ?-?=0 D )t d t b A n ?-?=2 0π 13.剪力螺栓在破坏时,若栓杆细而连接板较厚时易发生( A )破坏;若栓杆粗而连接板较薄时,易发生( B )破坏。 A )栓杆受弯破坏 B )构件挤压破坏 C )构件受拉破坏 D )构件冲剪破坏 14.摩擦型高强度螺栓的计算公式)25.1(9.0t f b v N P n N -?=μ中符号的意义,下述何项为正确? ( D )。 A )对同一种直径的螺栓,P 值应根据连接要求计算确定 B )0.9是考虑连接可能存在偏心,承载力的降低系数 C )1.25是拉力的分项系数 D )1.25是用来提高拉力N t ,以考虑摩擦系数在预压力减小时变小使承载力降低的不利因素。 ???15.在直接受动力荷载作用的情况下,下列情况中采用( A )连接方式最为适合。 A )角焊缝 B )普通螺栓 C )对接焊缝 D )高强螺栓 16.在正常情况下,根据普通螺栓群连接设计的假定,在M≠0时,构件B ( D )。 A )必绕形心d 转动 B )绕哪根轴转动与N 无关,仅取决于M 的大小 C )绕哪根轴转动与M 无关,仅取决于N 的大小 D )当N=0时,必绕c 转动

钢结构连接计算书(螺栓)

钢结构连接计算书 一、连接件类别: 普通螺栓。 二、普通螺栓连接计算: 1、普通螺栓受剪连接时,每个普通螺栓的承载力设计值,应取抗剪和承压承载力设计值中的较小者。 受剪承载力设计值应按下式计算: 式中 d──螺栓杆直径,取 d = 22.000 mm; n v──受剪面数目,取 n v = 2.000; f v b──螺栓的抗剪强度设计值,取 f v b=125.000 N/mm2; 计算得:N v b = 2.000×3.1415×22.0002×125.000/4=95033.178 N; 承压承载力设计值应按下式计算: 式中 d──螺栓杆直径,取 d = 22.000 mm; ∑t──在同一受力方向的承压构件的较小总厚度,取∑t=12.000 mm; f c b──普通螺栓的抗压强度设计值,取 f c b=250.000 N/mm2; 计算得:N c b = 22.000×12.000×250.000=66000.000 N; 故: 普通螺栓的承载力设计值取 66000.000 N; 2、普通螺栓杆轴方向受拉连接时,每个普通螺栓的承载力设计值应按下式计算:

式中普通螺栓或锚栓在螺纹处的有效直径,取 de= 21.000 mm; f t b──普通螺栓的抗拉强度设计值,取 f t b=215.000 N/mm2; 计算得:N t b = 3.1415×21.0002×215.000 / 4 = 74467.527 N; 3、普通螺栓同时受剪和受拉连接时,每个普通螺栓同时承受剪力和杆轴方向拉力应符合下式要求: 式中 N v──普通螺栓所承受的剪力,取 N v= 23.000 kN =23.000×103 N; N t──普通螺栓所承受的拉力,取 N t= 35.000 kN =35.000×103 N; [(N v/N v b)2+(Nt/Nt b)2]1/2=[(23.000×103/95033.178)2+(35.000×103/74467.527)2]1/2= 0.529 ≤ 1; N v = 23000.000 N ≤ N c b = 66000.000 N; 所以,普通螺栓承载力验算满足要求!

钢结构安装、高强螺栓的连接

钢结构安装知识 高强度螺栓连接已经发展成为与焊接并举的钢结构主要连接形式之一,它具有受力性能好、耐疲劳、抗震性能好、连接刚度高,施工简便等优点,被广泛应用在建筑钢结构和桥梁钢结构的工地连接中,成为钢结构安装的主要手段之一。高强度螺栓连接按其受力状况,可分为摩擦型连接、摩擦-承压型连接、承压型连接和张拉型连接等几种类型,其中摩擦型连接是目前广泛采用的基本连接形式。 高强螺栓的连接和固定: (1)高强螺栓穿孔时应自由穿入,不许强制打入孔中或随意扩孔,螺栓穿入方向应力求一致。 (2)高强螺栓安装时,临时螺栓不得少于接头螺栓数量的1/3,且不得少于2个,但不得使用高强螺栓兼作临时螺栓,防止损伤高强螺栓引起扭距总数变化。 (3)高强螺栓安装不得在雨雪天进行,被安装构件的摩擦面应处于干燥状态。 (4)高强螺栓的拧紧分初拧和终拧,初拧扭矩值是终拧扭矩值的30%~50%,初拧后用颜色笔在螺母上涂上记号,每节主框架校正合格后,用专用电动扳手终拧,直至拧掉螺栓尾部的梅花头。 (5)高强螺栓连接部位的附近,严禁随意动用气割、电焊等,当天安装高强螺栓,必须当天初拧完毕。 (6)为使螺栓群中所有螺栓均匀受力,保证摩擦面摩擦系数,初拧和终拧必须按一定的顺序进行,一般高强螺栓群由中央向外拧紧,对于作业面狭小,专用终拧扳手紧固有困难的少量螺栓,可用手动测力扳手进行终拧,并在螺栓上涂白油漆以便检查。 (7)每个钢框架高强螺栓安装紧固顺序:最上层框架梁→最下层框架梁→中间框架梁。 栓接之高强螺栓的安装: 1).高强螺栓连接摩擦面是否保持干燥整洁,有无飞边、毛刺、焊接飞溅物、污垢和不应有的涂料等。 2).高强螺栓是否能自由穿入螺栓孔,必须扩孔时,最大扩孔量不应超过1.2d(d 为螺栓公称直径)。 3).高强度螺栓是否有产品合格证和质量保证书。 4).施工扭矩值:M20高强度螺栓扭矩值为***KN.m(8.8s)M24高强度螺栓扭矩值为***KN.m(10.9s) 高强螺栓简介 高强度螺栓从外形上可分为大六角头和扭剪型两种;按性能等级可分为8.8级、10.9级、12.9级等,目前我国使用的大六角头高强度螺栓有8.8级和10.9级两种,扭剪型高强度螺栓只有10.9级一种。大六角头高强度螺栓连接副:含一个螺栓、一个螺母、两个垫圈(螺头和螺母两侧各一个垫圈)。螺栓、螺母、垫圈在组成一个连接副时,其性能等级要匹配。扭剪型高强度螺栓连接副:含一个螺栓、一个螺母、一个垫圈。螺栓、螺母、垫圈在组成一个连接副时,其性能等级要匹配。高强度螺栓连接副实物的机械性能主要包括螺栓的抗拉荷载、螺母的保证荷载、及实物硬度等。对于高强度螺栓连接副,不论是10.9级和8.8级螺栓,所采用的垫圈是一致的,其硬度要求都是HV30 329~436(HRC35~45)。(大六角

螺栓连接的知识点

3.6 螺栓连接的构造 螺栓的排列应考虑以下要求: (1) 受力要求 (2) 构造要求螺栓间距不能太大,避免压不紧潮气进入导致腐蚀 (3) 施工要求螺栓间距不能太近,满足净空要求,便于安装 螺栓或铆钉的最大、最小容许距离见P52,表3.4~3.7 3.7 普通螺栓连接的工作性能和计算 普通螺栓按加工精度可分为: 1. 粗制螺栓(C 级) 优点:安装简单,便于拆装 缺点:螺杆与钢板孔壁不够紧密,传递剪力时,连接变形较大。宜用于承受拉力的连接中,或用于次要结构和可拆卸结构的受剪连接及安装时的临时固定。 2. 精制螺栓( A 、B 级) 优点:受力性能好 缺点:安装费时费工,且费用较高。 目前建筑结构中已较少使用。 剪力螺栓(抗剪螺栓):螺栓杆垂直于力线 按受力情况分为 拉力螺栓(抗拉螺栓): 螺栓杆平行于力线 既受剪又受拉的螺栓 抗剪连接——板件之间有相互错动的趋势 抗拉连接——板件之间有相互脱开的趋势 一、 普通螺栓的抗剪连接 (1)单个螺栓的受剪工作性能 1)弹性阶段(0~1): 板件间相互挤压,靠摩擦阻力传力; 2)滑移阶段(1~2): 摩擦阻力被克服后,板件间产生滑移,栓杆与孔壁相接触, 滑移量取决于栓杆与孔的间距; 3)栓杆直接传力的弹性阶段(2~3): 螺栓杆既受剪又受弯,孔壁受到挤压; 4)弹塑性阶段(3~ 4): 连接的剪切变形迅速增大,直至破坏。 (2)受剪螺栓的破坏形式 1)栓杆被剪断 2)钢板被挤压破坏(螺栓承压破坏) 3)钢板被拉断 4)钢板被剪坏 5)杆身弯曲破坏 (3)针对以上破坏形式,应采取以下措施 1)通过计算保证螺栓抗剪 2)通过计算保证螺栓抗挤压 3)通过计算保证板件有足够的拉压强度 4)螺栓端距≥ 2d 。 ——避免钢板被拉豁 级、级8.4)6.0,/400(6.40.3~5.120=≥+=u y u f f mm N f mm d d —螺杆直径 ——螺孔直径—d d 0级、级6.5)8.0,/800(8.85.0~3.02 =≥+=u y u f f mm N f mm d d

钢结构焊接、螺栓连接计算及实例

第一节 钢结构的连接方法 钢结构是由钢板、型钢通过必要的连接组成基本构件,如梁、柱、桁架等;再通过一定的安装连结装配成空间整体结构,如屋盖、厂房、钢闸门、钢桥等。可见,连接的构造和计算是钢结构设计的重要组成部分。好的连接应当符合安全可靠、节约钢材、构造简单和施工方便等原则。 钢结构的连接方法可分为焊缝连接、铆钉连接和螺栓连接三种(详见附图十三)。 一、焊缝连接 焊接是现代钢结构最主要的连接方法。其优点是不削弱构件截面(不必钻孔),构造简单,节约钢材,加工方便,在一定条件下还可以采用自动化操作,生产效率高。此外,焊缝连接的刚度较大密封性能好。 焊缝连接的缺点是焊缝附近钢材因焊接的高温作用而形成热影响区,热影响区由高温降到常温冷却速度快,会使钢材脆性加大,同时由于热影响区的不均匀收缩,易使焊件产生焊接残余应力及残余变形,甚至可能造成裂纹,导致脆性破坏。焊接结构低温冷脆问题也比较突出。 二、铆钉连接 铆接的优点是塑性和韧性较好,传力可靠,质量易于检查和保证,可用于承受动载的重型结构。但是,由于铆接工艺复杂、用钢量多,因此,费钢又费工。现已很少采用。 三、螺栓连接 螺栓连接分为普通螺栓连接和高强度螺栓连接两种。普通螺栓通常用Q235钢制成,而高强度螺栓则用高强度钢材制成并经热处理。高强度螺栓因其连接紧密,耐疲劳,承受动载可靠,成本也不太高,目前在一些重要的永久性结构的安装连接中,已成为代替铆接的优良连接方法。 螺栓连接的优点是安装方便,特别适用于工地安装连接,也便于拆卸,适用于需要装拆结构和临时性连接。其缺点是需要在板件上开孔和拼装时对孔,增加制造工作量;螺栓孔还使构件截面削弱,且被连接的板件需要相互搭接或另加拼接板或角钢等连接件,因而比焊接连接多费钢材。 第二节 焊接方法、焊缝类型和质量级别 一、钢结构中常用的焊接方法 焊接方法很多,钢结构中主要采用电弧焊,薄钢板(mm t 3 )的连接有时也可以采用电阻焊或气焊。 1.电弧焊

同济大学第八章(焊缝、螺栓连接)--钢结构习题参考解答

8.4 有一工字形钢梁,采用I50a (Q235钢),承受荷载如图8-83所示。F=125kN ,因长度不够而用对接坡口焊缝连接。焊条采用E43型,手工焊,焊缝质量属Ⅱ级,对接焊缝抗拉强度设计值2205/w t f N mm =,抗剪强度设计值2120/w v f N mm =。验算此焊缝受力时是否安全。 图8-83 习题8.4 解: 依题意知焊缝截面特性: A=119.25cm 2,Wx =1858.9cm 3,Ix=46472cm 4,Sx=1084.1cm 3,截面高度h=50cm ,截面宽度b=158mm ,翼缘厚t=20mm ,腹板厚tw=12.0mm 。 假定忽略腹板与翼缘的圆角,计算得到翼缘与腹板交点处的面积矩S 1=20×158×(250-10)=7.584×105mm 3。 对接焊缝受力:125V F kN ==;2250M F kN m =?=? 焊缝应力验算: 最大正应力:622 3 25010134.5/205/1858.910w t x M N mm f N mm W σ?===<=? 最大剪应力:33 224125101084.11024.3/120/464721012 w x v x w VS N mm f N mm I t τ???===<=?? 折算应力: 22127.2/205/w zs t N mm f N mm σ=<= 故焊缝满足要求。 8.5 图8-84所示的牛腿用角焊缝与柱连接。钢材为Q235钢,焊条用E43型,手工焊,角焊缝强度设计值2f 160/w f N mm =。T=350kN ,验算焊缝的受力。 图8-84 习题8.5 图8-84-1 焊缝截面计算简图

高强度螺栓连接的设计计算.

第39卷第1期建筑结构2009年1月 高强度螺栓连接的设计计算 蔡益燕 (中国建筑标准设计研究院,北京100044) 1高强度螺栓连接的应用 高强度螺栓连接分为摩擦型和承压型。《钢结构 (G设计规范》B50017—2003)(简称钢规)指出目前制 造厂生产供应的高强度螺栓并无用于摩擦型和承压型连接之分”因高强度螺栓承压型连接的剪切变形比摩擦型的大,所以只适用于承受静力荷载和间接承受动力荷载的结构”。因为承压型连接的承载力取决于钉杆剪断或同一受力方向的钢板被压坏,其承载力较之摩擦型要高出很多。最近有人提出,摩擦面滑移量不大,因螺栓孔隙仅为115?2mm,而且不可能都偏向一侧,可以用承压型连接的承载力代替摩擦型连接的,对结构构件定位影响不大,可以节省很多螺栓,这算一项技术创新。下面谈谈对于这个问题的认识。 在抗震设计中,一律采用摩擦型;第二阶,摩擦型连接成为承压型连接,要求连接的极限承载力大于构件的塑性承载力,其最终目标是保证房屋大震不倒。如果在设计内力下就按承压型连接设计,虽然螺栓用量省了,但是设计荷载下承载力已用尽。如果来地震,螺栓连接注定要破坏,房屋将不再成为整体,势必倒塌。虽然大部分地区的设防烈度很低,但地震的发生目前仍无法准确预报,低烈度区发生较高烈度地震的概率虽然不多,但不能排除。而且钢结构的尺寸是以mm计的,现代技术设备要求精度极高,超高层建筑的安装精度要求也很高,结构按弹性设计允许摩擦面滑移,简直不可思议,只有摩擦型连接才能准确地控制结构尺寸。总体说来,笔者对上述建议很难认同。2高强度螺栓连接设计的新进展 钢规的715节连接节点板的计算”中,提出了支撑和次梁端部高强度螺栓连接处板件受拉引起的剪切破坏形式(图1),类似破坏形式也常见于节点板连接,是对传统连接计算只考虑螺栓杆抗剪和钉孔处板件承压破坏的重要补充。 1994年美国加州北岭地震和1995年日本兵库县南部地震,是两次地震烈度很高的强震,引起大量钢框架梁柱连接的破坏,受到国际钢结构界的广泛关注。

联接螺栓强度计算方法

联接螺栓的强度计算方法

一.连接螺栓的选用及预紧力: 1、已知条件: 螺栓的s=730MPa 螺栓的拧紧力矩T=49N.m 2、拧紧力矩: 为了增强螺纹连接的刚性、防松能力及防止受载螺栓的滑动,装配时需要预紧。 其拧紧扳手力矩T用于克服螺纹副的阻力矩T1及螺母与被连接件支撑面间的摩擦力矩T2。装配时可用力矩扳手法控制力矩。 公式:T=T1+T2=K* F* d 拧紧扳手力矩T=49N.m 其中K为拧紧力矩系数, F为预紧力N d为螺纹公称直径mm 其中K为拧紧力矩系数, F为预紧力N d为螺纹公称直径mm 摩擦表面状态K值 有润滑无润滑 精加工表面0.1 0.12 一般工表面0.13-0.15 0.18-0.21 表面氧化0.2 0.24 镀锌0.18 0.22 粗加工表面- 0.26-0.3 取K=0.28,则预紧力 F=T/0.28*10*10-3=17500N 3、承受预紧力螺栓的强度计算: 螺栓公称应力截面面积As(mm)=58mm2

外螺纹小径d1=8.38mm 外螺纹中径d2=9.03mm 计算直径d3=8.16mm 螺纹原始三角形高度h=1.29mm 螺纹原始三角形根部厚度b=1.12mm 紧螺栓连接装配时,螺母需要拧紧,在拧紧力矩的作用下,螺栓除受预紧力F0的拉伸而产生拉伸应力外,还受螺纹摩擦力矩T1的扭转而产生扭切应力,使螺栓处于拉伸和扭转的复合应力状态下。 螺栓的最大拉伸应力σ1(MPa)。 1s F A σ==17500N/58*10-6m 2=302MPa 剪切应力: =0.51σ=151 MPa 根据第四强度理论,螺栓在预紧状态下的计算应力: =1.3*302=392.6 MPa 强度条件: =392.6≤730*0.8=584 预紧力的确定原则: 拧紧后螺纹连接件的预紧应力不得超过其材料的屈服极限s σ的80%。 () 203 1tan 2 16 v T d F T W d ?ρτπ += = 1.31ca σσ≈[] 02 11.34F ca d σσπ =≤

摩擦型高强螺栓的计算方式

第三章连接返回 §3-6 高强度螺栓连接的构造和计算 3.6.1高强度螺栓连接的工作性能和构造要求 一、高强度螺栓连接的工作性能 1、高强度螺栓的抗剪性能 由图3.5.2中可以看出,由于高强度螺栓连接有较大的预拉力,从而使被连板叠中有很大的预压力,当连接受剪时,主要依靠摩擦力传力的高强度螺栓连接的抗剪承载力可达到1点。通过1点后,连接产生了滑解,当栓杆与孔壁接触后,连接又可继续承载直到破坏。如果连接的承载力只用到1点,即为高强度螺栓摩擦型连接;如果连接的承载力用到4点,即为高强度螺栓承压型连接。 2、高强度螺栓的抗拉性能 高强度螺栓在承受外拉力前,螺杆中已有很高的预拉力P,板层之间则有压力C,而P与C维持平衡(图3.6.1a)。当对螺栓施加外拉力N t,则栓杆在板层之间的压力未完全消失前被拉长,此时螺杆中拉力增量为ΔP,同时把压紧的板件拉松,使压力C减少ΔC(图3.6.1b)。 计算表明,当加于螺杆上的外拉力N t为预拉力P的80%时,螺杆内的拉力增加很少,因此可认为此时螺杆的预拉力基本不变。同时由实验得知,当外加拉力大于螺杆的预拉力时,卸荷后螺杆中的预拉力会变小,即发生松弛现象。但当外加拉力小于螺杆预拉力的80%时,即无松弛现象发生。也就是说,被连接板件接触面间仍能保持一定的压紧力,可以假定整个板面始终处于紧密接触状态。但上述取值没有考虑杠杆作用而引起的撬力影响。实际上这种杠杆作用存在于所有螺栓

的抗拉连接中。研究表明,当外拉力N t≤0.5P时,不出现撬力,如图3.6.2所示,撬力Q大约在N t达到0.5P时开始出现,起初增加缓慢,以后逐渐加快,到临近破坏时因螺栓开始屈服而又有所下降。 由于撬力Q的存在,外拉力的极限值由N u下降到N'u。因此,如果在设计中不计算撬力Q,应使N≤0.5P;或者增大T形连接件翼缘板的刚度。分析表明,当翼缘板的厚度t1不小于2倍螺栓直径时,螺栓中可完全不产生撬力。实际上很难满足这一条件,可采用图3.5.7所示的加劲肋代替。 在直接承受动力荷载的结构中,由于高强度螺栓连接受拉时的疲劳强度较低,每个高强度螺栓的外拉力不宜超过0.5P。当需考虑撬力影响时,外拉力还得降低。 二、高强度螺栓连接的构造要求 1、高强度螺栓预拉力的建立方法 为了保证通过摩擦力传递剪力,高强度螺栓的预拉力P的准确控制非常重要。针对不同类型的高强度螺栓,其预拉力的建立方法不尽相同。 (1)大六角头螺栓的预拉力控制方法有: ①力矩法一般采用指针式扭力(测力)扳手或预置式扭力(定力)扳手。目前用得多的是电动扭矩扳手。力矩法是通过控制拧紧力矩来实现控制预拉力。拧紧力矩可由试验确定,应使施工时控制的预拉力为设计预拉力的1.1倍。当采用电动扭矩搬手时,所需要的施工扭矩T f为:

普通螺栓的连接方式及计算

第三章 连接 返回 §3-5 普通螺栓的构造和计算 3.5.1螺栓的排列和其他构造要求 一、螺栓的排列 螺栓在构件上排列应简单、统一、整齐而紧凑,通常分为并列和错列两种形式(图3.5.1)。并列比较简单整齐,所用连接板尺寸小,但由于螺栓孔的存在,对构件截面削弱较大。错列可以减小螺栓孔对截面的削弱,但螺栓孔排列不如并列紧凑,连接板尺寸较大。 螺栓在构件上的排列应满足受力、构造和施工要求: (1)受力要求:在受力方向螺栓的端距过小时,钢材有剪断或撕裂的可能。各排螺栓距和线距太小时,构件有沿折线或直线破坏的可能。对受压构件,当沿作用方向螺栓距过大时,被连板间易发生鼓曲和张口现象。 (2)构造要求:螺栓的中矩及边距不宜过大,否则钢板间不能紧密贴合,潮气侵入缝隙使钢材锈蚀。 (3)施工要求:要保证一定的空间,便于转动螺栓板手拧紧螺帽。 根据上述要求,规定了螺栓(或铆钉)的最大、最小容许距离,见表3.5.1。螺栓沿型钢长度方向上排列的间距,除应满足表3.5.1的要求外,尚应满足附录10螺栓线距的要求。

二、螺栓的其他构造要求 螺栓连接除了满足上述螺栓排列的容许距离外,根据不同情况尚应满足下列构造要求: (1)为了使连接可靠,每一杆件在节点上以及拼接接头的一端,永久性螺栓数不宜少于两个。但根据实践经验,对于组合构件的缀条,其端部连接可采用一个螺栓。 (2)对直接承受动力荷载的普通螺栓连接应采用双螺帽或其他防止螺帽松动的有效措施。例如采用弹簧垫圈,或将螺帽或螺杆焊死等方法。 (3)由于C级螺栓与孔壁有较大间隙,只宜用于沿其杆轴方向受拉的连接。承受静力荷载结构的次要连接、可拆卸结构的连接和临时固定构件用的安装连接中,也可用C级螺栓受剪。但在重要的连接中,例如:制动梁或吊车梁上翼缘与柱的连接,由于传递制动梁的水平支承反力,同时受到反复动力荷载作用,不得采用C级螺栓。柱间支撑与柱的连接,以及在柱间支撑处吊车梁下翼缘的连接,因承受着反复的水平制动力和卡轨力,应优先采用高强度螺栓。 (4)沿杆轴方向受拉的螺栓连接中的端板(法兰板),应适当加强其刚度(如加设加劲肋),以减少撬力对螺栓抗拉承载力的不利影响。 3.5.2普通螺栓的受剪连接 普通螺栓连接按受力情况可分为三类:螺栓只承受剪力;螺栓只承受拉力;螺栓承受拉力和剪力的共同作用。下面先介绍螺栓受剪时的工作性能和计算方法。 一、受剪连接的工作性能 抗剪连接是最常见的螺栓连接。如果以图3.5.2(a)所示的螺栓连接试件作抗剪试验,可得出试件上a、b两点之间的相对位移δ与作用力N的关系曲线(图3.5.2b)。该曲线给出了试件由零载一直加载至连接破坏的全过程,经历了以下四个阶段: (1)摩擦传力的弹性阶段在施加荷载之初,荷载较小,荷载靠构件间接触面的摩擦力传递,螺栓杆与孔壁之间的间隙保持不变,连接工作处于弹性阶段,在N-δ图上呈现出0,1斜直线段。但由于板件间摩擦力的大小取决于拧紧螺帽时在螺杆中的初始拉力,一般说来,普通螺栓的初拉力很小,故此阶段很短。 (2)滑移阶段当荷载增大,连接中的剪力达到构件间摩擦力的最大值,板件间产生相对滑移,其最大滑移量为螺栓杆与孔壁之间的间隙,直至螺栓与孔壁接触,相应于N-δ曲线上的1,2水平段。

钢结构连接用螺栓性能等级分

钢结构连接用螺栓性能等级分 3.6、 4.6、4.8、 5.6、 6.8、8.8、9.8、10.9、12.9 等10余个等级,其中8.8级及以上螺栓材质为低碳 合金钢或中碳钢并经热处理(淬火、回火),通 称为高强度螺栓,其余通称为普通螺栓。螺栓性 能等级标号有两部分数字组成,分别表示螺栓材 料的公称抗拉强度值和屈强比值。例如,性能等 级4.6级的螺栓,其含义是: 1、螺栓材质公称抗拉强度达400MPa级; 2、螺栓材质的屈强比值为0.6; 3、螺栓材质的公称屈服强度达400×0.6=240MP a级性能等级10.9级高强度螺栓,其材料经过热处 理后,能达到: 1、螺栓材质公称抗拉强度达1000MPa级; 2、螺栓材质的屈强比值为0.9; 3、螺栓材质的公称屈服强度达1000×0.9=900MPa级 螺栓性能等级的含义是国际通用的标准,相同性能等 级的螺栓,不管其材料和产地的区别,其性能是相同 的,设计上只选用性能等级即可。 强度等级所谓8.8级和10.9级 是指螺栓的抗剪切应力等级为8.8GPa和10.9Gpa 8.8 公称抗拉强度800N/MM2 公称屈服强度640N/MM2 一般的螺栓是用"X.Y"表示强度的, X*100=此螺栓的抗拉强度, X*100*(Y/10)=此螺栓的屈服强度 (因为按标识规定:屈服强度/抗拉强度=Y/10) =============== 如4.8级 则此螺栓的 抗拉强度为:400MPa 屈服强度为:400*8/10=320MPa ================= 另:不锈钢螺栓通常标为A4-70,A2-70的样子,意义另 有解释 度量 当今世界上长度计量单位主要有两种,一种为公制 ,计量单位为米(m)、厘米(cm)、毫米(mm)等 ,在欧州、我国及日本等东南亚地区使用较多,另一种 为英制,计量单位主要为英寸(inch),相当于我国旧制 的市寸,在美国、英国等欧美国家使用较多。 1、公制计量:(10进制) 1m =100 cm=1000 mm 2、英制计量:(8进制) 1英寸=8英分1英寸=25.4 mm 3/8ⅱ×25.4 =9.52 3、1/4ⅱ以下的产品用番号来表示其称呼径,如: 4#,5#,6#,7#,8#,10#,12# 螺纹 一、螺纹是一种在固体外表面或内表面的截面上,有均匀螺 旋线凸起的形状。根据其结构特点和用途可分为三大类:

相关主题
文本预览
相关文档 最新文档