当前位置:文档之家› 常用电子元器件参数参考资料

常用电子元器件参数参考资料

常用电子元器件参数参考资料
常用电子元器件参数参考资料

常用电子元器件参考资料第一节部分电气图形符号

一.电阻器、电容器、电感器和变压器

248

二.半导体管

三.其它电气图形符号

249

第二节常用电子元器件型号命名法及主要技术参数一.电阻器和电位器

1.电阻器和电位器的型号命名方法

示例:

(1)精密金属膜电阻器

R J7 3

第四部分:序号

第三部分:类别(精密)

第二部分:材料(金属膜)

第一部分:主称(电阻器)

(2) 多圈线绕电位器

W X D 3

第四部分:序号

第三部分:类别(多圈)

第二部分:材料(线绕)

第一部分:主称(电位器)

250

2.电阻器的主要技术指标

(1) 额定功率

电阻器在电路中长时间连续工作不损坏,或不显著改变其性能所允许消耗的最大功率称为电阻器的额定功率。电阻器的额定功率并不是电阻器在电路中工作时一定要消耗的功率,而是电阻器在电路工作中所允许消耗的最大功率。不同类型的电阻具有不同系列的额定功率,如表2所示。

(2) 标称阻值

阻值是电阻的主要参数之一,不同类型的电阻,阻值范围不同,不同精度的电阻其阻值系列亦不同。根据国家标准,常用的标称电阻值系列如表3所示。E24、E12和E6系列也适用于电位器和电容器。

(3) 允许误差等级

3.电阻器的标志内容及方法

(1)文字符号直标法:用阿拉伯数字和文字符号两者有规律的组合来表示标称阻值,额定功率、允许误差等级等。符号前面的数字表示整数阻值,后面的数字依次表示第一位小数阻值和第二位小数阻值,其文字符号所表示的单位如表5所示。如1R5表示1.5Ω,2K7表示2.7kΩ,

表5

251

例如:

RJ71-0.125-5k1-II

允许误差±10%

标称阻值(5.1kΩ)

额定功率1/8W

型号

由标号可知,它是精密金属膜电阻器,额定功率为1/8W,标称阻值为5.1kΩ,允许误差为±10%。

(2)色标法:色标法是将电阻器的类别及主要技术参数的数值用颜色(色环或色点)标注在它的外表面上。色标电阻(色环电阻)器可分为三环、四环、五环三种标法。其含义如图1和图2所示。

标称值第一位有效数字

标称值第二位有效数字

标称值有效数字后0的个数

允许误差

图1 两位有效数字阻值的色环表示法

三色环电阻器的色环表示标称电阻值(允许误差均为±20%)。例如,色环为棕黑红,表示10?102=1.0kΩ±20%的电阻器。

四色环电阻器的色环表示标称值(二位有效数字)及精度。例如,色环为棕绿橙金表示15?103=15kΩ±5%的电阻器。

五色环电阻器的色环表示标称值(三位有效数字)及精度。例如,色环为红紫绿黄棕表示275?104=2.75MΩ±1%的电阻器。

252

一般四色环和五色环电阻器表示允许误差的色环的特点是该环离其它环的距离较远。较标准的表示应是表示允许误差的色环的宽度是其它色环的(1.5~2)倍。

有些色环电阻器由于厂家生产不规范,无法用上面的特征判断,这时只能借助万用表判断。

标称值第一位有效数字

标称值第二位有效数字

标称值第三位有效数字

标称值有效数字后0的个数

允许误差

图2 三位有效数字阻值的色环表示法

4.电位器的主要技术指标

(1) 额定功率

电位器的两个固定端上允许耗散的最大功率为电位器的额定功率。使用中应注意额定功率不等于中心抽头与固定端的功率。

(2) 标称阻值

标在产品上的名义阻值,其系列与电阻的系列类似。

(3) 允许误差等级

实测阻值与标称阻值误差范围根据不同精度等级可允许±20%、±10%、±5%、±2%、±1%的误差。精密电位器的精度可达±0.1%。

(4) 阻值变化规律

指阻值随滑动片触点旋转角度(或滑动行程)之间的变化关系,这种变化关系可以是任何函数形式,常用的有直线式、对数式和反转对数式(指数式)。

253

在使用中,直线式电位器适合于作分压器;反转对数式(指数式)电位器适合于作收音机、录音机、电唱机、电视机中的音量控制器。维修时若找不到同类品,可用直线式代替,但不宜用对数式代替。对数式电位器只适合于作音调控制等。

5.电位器的一般标志方法

WT-2 3.3k ±10%

允许误差±10%

标称阻值3.3kΩ

额定功率2W

碳膜电位器

WX-1 510ΩJ

允许误差±5%

标称阻值510Ω

额定功率1W

线绕电位器

二.电容器

1.电容器型号命名法

表6电容器型号命名法

示例:

(1) 铝电解电容器

254

255

C D 1 1

第四部分:序号

第三部分:特征分类(箔式) 第二部分:材料(铝) 第一部分:主称(电容器) (2) 圆片形瓷介电容器

C C 1-1

第四部分:序号

第三部分:特征分类(圆片) 第二部分:材料(瓷介质) 第一部分:主称(电容器) (3)纸介金属膜电容器

C Z J X

第四部分:序号

第三部分:特征分类(金属膜) 第二部分:材料(纸介) 第一部分:主称(电容器) 2.电容器的主要技术指标

(1) 电容器的耐压: 常用固定式电容的直流工作电压系列为:6.3V ,10V ,16V ,25V ,40V ,63V ,100V ,160V ,250V ,400V 。

(2) 电容器容许误差等级:常见的有七个等级如表7所示。

(3) 标称电容量:

表8 固定式电容器标称容量系列和容许误差

注:标称电容量为表中数值或表中数值再乘以10,其中n 为正整数或负整数,单位为pF 。

3.电容器的标志方法

(1) 直标法 容量单位:F (法拉)、μF (微法)、nF (纳法)、pF (皮法或微微法)。 1法拉=610微法=1210微微法, 1微法=310纳法=610微微法 1纳法=310微微法

例如:4n7 表示4.7nF 或4700pF ,0.22 表示0.22μF ,51 表示51pF 。 有时用大于1的两位以上的数字表示单位为pF 的电容,例如101表示100 pF ;用小于1的数字表示单位为μF 的电容,例如0.1表示0.1μF 。

256

(2) 数码表示法 一般用三位数字来表示容量的大小,单位为pF 。前两位为有效数字,后一位表示位率。即乘以10i ,i 为第三位数字,若第三位数字9,则乘10-1。如223J 代表22?103pF =22000pF =0.22μF ,允许误差为±5%;又如479K 代表47?10-1pF ,允许误差为±5%的电容。这种表示方法最为常见。

(3)色码表示法 这种表示法与电阻器的色环表示法类似,颜色涂于电容器的一端或从顶端向引线排列。色码一般只有三种颜色,前两环为有效数字,第三环为位率,单位为pF 。有时色环较宽,如红红橙,两个红色环涂成一个宽的,表示22000pF 。

三.电感器

1.电感器的分类

常用的电感器有固定电感器、微调电感器、色码电感器等。变压器、阻流圈、振荡线圈、偏转线圈、天线线圈、中周、继电器以及延迟线和磁头等,都属电感器种类。

2.电感器的主要技术指标 (1) 电感量:

在没有非线性导磁物质存在的条件下,一个载流线圈的磁通量与线圈中的电流成正比 其比例常数称为自感系数,用L 表示,简称为电感。即:

I L ?

=

式中:?=磁通量 I =电流强度

(2) 固有电容:线圈各层、各匝之间、绕组与底板之间都存在着分布电容。统称为电感 器的固有电容。

(3) 品质因数:

电感线圈的品质因数定义为:

R L

Q ω=

式中:ω-工作角频率,L -线圈电感量,R -线圈的总损耗电阻 (4) 额定电流:线圈中允许通过的最大电流。 (5) 线圈的损耗电阻:线圈的直流损耗电阻。 2.电感器电感量的标志方法

(1) 直标法。单位H (亨利)、mH (毫亨)、μH (微亨)、 (2) 数码表示法。方法与电容器的表示方法相同。

(3) 色码表示法。这种表示法也与电阻器的色标法相似,色码一般有四种颜色,前两种 颜色为有效数字,第三种颜色为倍率,单位为μH ,第四种颜色是误差位。

四.半导体分立器件

1.半导体分立器件的命名方法

(1)我国半导体分立器件的命名法

例:

1) 锗材料PNP型低频大功率三极管:2) 硅材料NPN型高频小功率三极管:

3A D50C3D G201 B

规格号规格号

序号序号

低频大功率低频大功率

PNP型、锗材料PNP型、锗材料

三极管三极管

3) N型硅材料稳压二极管:4) 单结晶体管:

2C W51B T3 3 E

序号规格号

稳压管耗散功率

N型、硅材料三个电极

二极管特种管

半导体(2)国际电子联合会半导体器件命名法

257

表10 国际电子联合会半导体器件型号命名法

示例(命名):

A F239S

AF239型某一参数的S档

普通用登记序号

高频小功率三极管

锗材料

国际电子联合会晶体管型号命名法的特点:

1) 这种命名法被欧洲许多国家采用。因此,凡型号以两个字母开头,并且第一个字母是A,B,C,D或R的晶体管,大都是欧洲制造的产品,或是按欧洲某一厂家专利生产的产品。

2) 第一个字母表示材料(A表示锗管,B表示硅管),但不表示极性(NPN型或PNP 型)。

3) 第二个字母表示器件的类别和主要特点。如C表示低频小功率管,D表示低频大功率管,F表示高频小功率管,L表示高频大功率管等等。若记住了这些字母的意义,不查手册也可以判断出类别。例如,BL49型,一见便知是硅大功率专用三极管。

4) 第三部分表示登记顺序号。三位数字者为通用品;一个字母加两位数字者为专用品,顺序号相邻的两个型号的特性可能相差很大。例如,AC184为PNP型,而AC185则为NPN 型。

5) 第四部分字母表示同一型号的某一参数(如h FE或N F)进行分档。

6) 型号中的符号均不反映器件的极性(指NPN或PNP)。极性的确定需查阅手册或测量。

(3) 美国半导体器件型号命名法

258

美国晶体管或其它半导体器件的型号命名法较混乱。这里介绍的是美国晶体管标准型号命名法,即美国电子工业协会(EIA)规定的晶体管分立器件型号的命名法。如表11所示。

例:

1) JAN2N29042) 1N4001

JAN2N2904 1N4001

EIA登记序号EIA登记序号

EIA注册标志EIA注册标志

三极管二极管

军用品

美国晶体管型号命名法的特点:

1) 型号命名法规定较早,又未作过改进,型号内容很不完备。例如,对于材料、极性、主要特性和类型,在型号中不能反映出来。例如,2N开头的既可能是一般晶体管,也可能是场效应管。因此,仍有一些厂家按自己规定的型号命名法命名。

2) 组成型号的第一部分是前缀,第五部分是后缀,中间的三部分为型号的基本部分。

3) 除去前缀以外,凡型号以1N、2N或3N 开头的晶体管分立器件,大都是美国制造的,或按美国专利在其它国家制造的产品。

4) 第四部分数字只表示登记序号,而不含其它意义。因此,序号相邻的两器件可能特性相差很大。例如,2N3464为硅NPN,高频大功率管,而2N3465为N沟道场效应管。

5) 不同厂家生产的性能基本一致的器件,都使用同一个登记号。同一型号中某些参数的差异常用后缀字母表示。因此,型号相同的器件可以通用。

6) 登记序号数大的通常是近期产品。

(4) 日本半导体器件型号命名法

日本半导体分立器件(包括晶体管)或其它国家按日本专利生产的这类器件,都是按日本工业标准(JIS)规定的命名法(JIS-C-702)命名的。

日本半导体分立器件的型号,由五至七部分组成。通常只用到前五部分。前五部分符号及意义如表12所示。第六、七部分的符号及意义通常是各公司自行规定的。第六部分的符号表示特殊的用途及特性,其常用的符号有:

M-松下公司用来表示该器件符合日本防卫厅海上自卫队参谋部有关标准登记的产品。

N-松下公司用来表示该器件符合日本广播协会(NHK)有关标准的登记产品。

Z-松下公司用来表示专用通信用的可靠性高的器件。

259

H-日立公司用来表示专为通信用的可靠性高的器件。

K-日立公司用来表示专为通信用的塑料外壳的可靠性高的器件。

T-日立公司用来表示收发报机用的推荐产品。

G-东芝公司用来表示专为通信用的设备制造的器件。

S-三洋公司用来表示专为通信设备制造的器件。

第七部分的符号,常被用来作为器件某个参数的分档标志。例如,三菱公司常用R,G,Y等字母;日立公司常用A,B,C,D等字母,作为直流放大系数h FE的分档标志。

示例:

1)2SC502A(日本收音机中常用的中频放大管)

2S C502 A

2SC502型的改进产品

日本电子工业协会登记顺序号

NPN型高频三极管

日本电子工业协会注册产品

三极管(两个PN结)

2)2SA495(日本夏普公司GF-9494收录机用小功率管)

2S A495

日本电子工业协会登记顺序号

260

PNP高频管

日本电子工业协会注册产品

三极管(两个PN结)

日本半导体器件型号命名法有如下特点:

1) 型号中的第一部分是数字,表示器件的类型和有效电极数。例如,用“1”表示二极管,用“2”表示三极管。而屏蔽用的接地电极不是有效电极。

2) 第二部分均为字母S,表示日本电子工业协会注册产品,而不表示材料和极性。

3) 第三部分表示极性和类型。例如用A表示PNP型高频管,用J表示P沟道场效应三极管。但是,第三部分既不表示材料,也不表示功率的大小。

4) 第四部分只表示在日本工业协会(EIAJ)注册登记的顺序号,并不反映器件的性能,顺序号相邻的两个器件的某一性能可能相差很远。例如,2SC2680型的最大额定耗散功率为200mW,而2SC2681的最大额定耗散功率为100W。但是,登记顺序号能反映产品时间的先后。登记顺序号的数字越大,越是近期产品。

5) 第六、七两部分的符号和意义各公司不完全相同。

6) 日本有些半导体分立器件的外壳上标记的型号,常采用简化标记的方法,即把2S省略。例如,2SD764,简化为D764,2SC502A简化为C502A。

7) 在低频管(2SB和2SD型)中,也有工作频率很高的管子。例如,2SD355的特征频率f T为100MHz,所以,它们也可当高频管用。

8) 日本通常把P cm≥1W的管子,称做大功率管。

2.常用半导体二极管的主要参数

表13部分半导体二极管的参数

261

3.常用整流桥的主要参数

4.常用稳压二极管的主要参数

5.常用半导体三极管的主要参数

262

(1) 3AX51(3AX31)型PNP型锗低频小功率三极管

(2)3AX81型PNP型锗低频小功率三极管

(3)3BX31型NPN型锗低频小功率三极管

263

表18 3BX31型NPN型锗低频小功率三极管的参数

(4)3DG100(3DG6) 型NPN型硅高频小功率三极管

264

(5) 3DG130(3DG12) 型NPN型硅高频小功率三极管

(5)9011~9018塑封硅三极管

265

6.常用场效应管主要参数

五.模拟集成电路

1.模拟集成电路命名方法(国产)

表23器件型号的组成

例:

C F 741 C T

金属圆形封装

0 o~ 70 o C

器件代号

线性放大器

中国国家标准

266

267

2.国外部分公司及产品代号

3.部分模拟集成电路引脚排列

(1) 运算放大器,如图3所示: (2) 音频功率放大器,如图所示: 抑 抑 正 输 调 电 自 制 制 输

电 出 零 源 举 纹 空 纹 入 空

源 端 端 端 端 波 脚 波 端 脚

调 负 正 负 输 电 衬 补 补 负 空 零 输 输 电 出 源 底 偿 偿 反 脚 端 入 入 源 端 地 地 端 端 馈

端 端 端 端 图3 图4

(3) 集成稳压器,如图所示:

123 输出

图 5

常用电力电子器件特性测试

实验二:常用电力电子器件特性测试 (一)实验目的 (1)掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性;(2)掌握各器件的参数设置方法,以及对触发信号的要求。 (二)实验原理 图1.MATLAB电力电子器件模型 MATLAB电力电子器件模型使用的是简化的宏模型,只要求器件的外特性与实际器件特性基本相符。MATLAB电力电子器件模型主要仿真了电力电子器件的开关特性,并且不同电力电子器件模型都具有类似的模型结构。 模型中的电阻Ron和直流电压源Vf分别用来反映电力电子器件的导通电阻和导通时的门槛电压。串联电感限制了器件开关过程中的电流升降速度,模拟器件导通或关断时的动态过程。MATLAB电力电子器件模型一般都没有考虑器件关断时的漏电流。 在MATLAB电力电子器件模型中已经并联了简单的RC串联缓冲电路,在参数表中设置,名称分别为Rs和Cs。更复杂的缓冲电路则需要另外建立。对于MOSFET模型还反并联了二极管,在使用中要注意,需要设置体内二极管的正向压降Vf和等效电阻Rd。对于GTO和IGBT需要设置电流下降时间Tf和电流拖尾时间Tt。 MATLAB的电力电子器件必须连接在电路中使用,也就是要有电流的回路,

但是器件的驱动仅仅是取决于门极信号的有无,没有电压型和电流型驱动的区别,也不需要形成驱动的回路。尽管模型与实际器件工作有差异,但使MATLAB电力电子器件模型与控制连接的时候很方便。MATLAB的电力电子器件模型中含有电感,因此具有电流源的性质,所以在模块参数中还包含了IC即初始电流项。此外也不能开路工作。 含电力电子模型的电路或系统仿真时,仿真算法一般采用刚性积分算法,如ode23tb、ode15s。电力电子器件的模块上,一般都带有一个测量输出端口,通过输出端m可以观测器件的电压和电流。本实验将电力电子器件和负载电阻串联后接至直流电源的两端,给器件提供触发信号,使器件触发导通。 (三)实验内容 (1)在MATLAB/Simulink中构建仿真电路,设置相关参数。 (2)改变器件和触发脉冲的参数设置,观察器件的导通情况及负载端电压、器件电流的变化情况。 (四)实验过程与结果分析 1.仿真系统 Matlab平台 2.仿真参数 (1)Thyristor参数设置: 直流源和电阻参数:

电子元器件的规格参数

123电子元器件的规格参数 描述电子元器件的特性参数的数量称为它们的规格参数。规格参数包括标称值、额定值和允许偏差等。电子元器件在整机中要占有一定的体积空间,所以其外形尺寸也是一种规格参数。 电子元器件的质量系数:用于度量电子元器件的质量水平,通常描述了元器件的特性参数、规格参数环境因素变化的规律,或者划定了他们不能完成功能的边界条件。 电子工艺的质量参数一般有:温度系数、噪声电动势、高频特性及可靠性等,从整机制造工艺方面考虑,主要有机械强度和可焊性。 通常,用信噪比来描述电阻、电容、电感一类无源元件的噪声指标,对于晶体管或集成电路一类有源器件的噪声,则用噪声系数来衡量。在设计制作接收微弱信号的高增益放大器时,应当尽量选用低噪声的电子元器件。使用专用的“噪声测试仪”可以方便的测量出元器件的噪声指标。 电子元器件的命名与标注 通常电子元器件的名称应该反映出它们的种类、材料、特征、型号、生产序号和区别代号,并且能够表示出主要的电器参数。电子元器件的名称由字母和数字组成。对于元件来说,一般用一个字母代表它的主称,如R表示电阻器,C 代表电容,L表示电感,W表示电位器,等等;用数字或字母表示其他信息。型号及参数在电子元器件上的标注:直标法、文字符号法和色标法。 文字符号法:①用元件的形状及其表面的颜色区别元件的种类,如在表面安装的元件中,除了形状的区别外,黑色表示电阻,棕色表示电容,淡蓝色表示电感。②电阻的基本标注单位是欧姆,电容的基本标注单位是皮法,电感的基本标注单位是微亨;用三位数字标注元件的数值。③对于十个基本标注单位以上的元件,前两位数字表示数值的有效数字,第三位数字表示数值的倍率。例如,对于电阻器上的标注,100表示其阻值为10×10^0=10,223表示其阻值为22×10^3=22K 对于电容器上的标注,103表示其容量为10×10^3pf=0.01uf,475表示其容量为47×10^5=4.7uf 对于电感器上的标注,820表示82×10^0=82Uh

电子元器件S参数的含义和用途

电子元器件S参数的含义和用途 上网时间:2008-12-19 作者:Albert 来源:电子元件技术网中心议题: S参数介绍的由来和含义 S参数的使用范围 S参数在电路仿真中的应用 解决方案: 对于高频电路,需要采用网络法来进行分析,此时需要用到S参数 可以使用元器件厂家的S参数也可以自己搭建测试电路使用网络分析仪来测得S参数 要想深刻的理解S参数,需要具备足够的高频电子电路的基础知识 在进行射频、微波等高频电路设计时,节点电路理论已不再适用,需要采用分布参数电路的分析方法,这时可以采用复杂的场分析法,但更多地时候则采用微波网络法来分析电路,对于微波网络而言,最重要的参数就是S参数。在个人计算机平台迈入 GHz阶段之后,从计算机的中央处理器、显示界面、存储器总线到I/O接口,全部走入高频传送的国度,所以现在不但射频通信电路设计时需要了解、掌握S参数,计算机系统甚至消费电子系统的设计师也需要对相关知识有所掌握。 S参数的作用S参数的由来和含义 在低频电路中,元器件的尺寸相对于信号的波长而言可以忽略(通常小于波长的十分之一),这种情况下的电路被称为节点(Lump)电路,这时可以采用常规的电压、电流定律来进行电路计算。其回路器件的基本特征为: 具体来说S参数就是建立在入射波、反射波关系基础上的网络参数,适于微波电路分析,以器件端口的反射信号以及从该端口传向另一端口的信号来描述电路网络。 针对射频和微波应用的综合和分析工具几乎都许诺具有用S参数进行仿真的能力,这其中包括安捷伦公司的ADS(Advanced Design System),ADS被许多射频设计平台所集成。 在进行需要较高频率的设计时,设计师必须利用参数曲线以及预先计算的散射参数(即S-参数)模型,才能用传输线和器件模型来设计所有物理元件。 电阻:能量损失(发热) 电容:静电能量 电感:电磁能量 但在高频微波电路中,由于波长较短,组件的尺寸就无法再视为一个节点,某一瞬间组件上所分布的电压、电流也就不一致了。因此基本的电路理论不再适用,而必须采用电磁场理论中的反射及传输模式来分析电路。元器件内部电磁波的进行波与反射波的干涉失去了一致性,电压电流比的稳定状态固有特性再也不适用,取而代之的是“分布参数”的特性阻抗观念,此时的电路被称为分布(Distributed)电路。分布参数回路元器件所考虑的要素是与电磁波的传送与反射为基础的要素,即: 反射系数

常用电子元器件培训资料

常用电子元器件参考资料第一节部分电气图形符号

二.半导体管 三.其它电气图形符号

第二节常用电子元器件型号命名法及主要技术参数一.电阻器和电位器 1.电阻器和电位器的型号命名方法 示例: (1)精密金属膜电阻器 R J7 3 第四部分:序号 第三部分:类别(精密) 第二部分:材料(金属膜) 第一部分:主称(电阻器) (2) 多圈线绕电位器 W X D 3 第四部分:序号 第三部分:类别(多圈) 第二部分:材料(线绕) 第一部分:主称(电位器)

2.电阻器的主要技术指标 (1) 额定功率 电阻器在电路中长时间连续工作不损坏,或不显著改变其性能所允许消耗的最大功率称为电阻器的额定功率。电阻器的额定功率并不是电阻器在电路中工作时一定要消耗的功率,而是电阻器在电路工作中所允许消耗的最大功率。不同类型的电阻具有不同系列的额定功率,如表2所示。 (2) 标称阻值 阻值是电阻的主要参数之一,不同类型的电阻,阻值范围不同,不同精度的电阻其阻值系列亦不同。根据国家规范,常用的标称电阻值系列如表3所示。E24、E12和E6系列也适用于电位器和电容器。 (3) 允许误差等级 3.电阻器的标志内容及方法 (1)文字符号直标法:用阿拉伯数字和文字符号两者有规律的组合来表示标称阻值,额定功率、允许误差等级等。符号前面的数字表示整数阻值,后面的数字依次表示第一位小数阻值和第二位小数阻值,其文字符号所表示的单位如表5所示。如1R5表示1.5Ω,2K7表示2.7kΩ, 表5

例如: RJ71-0.125-5k1-II 允许误差±10% 标称阻值(5.1kΩ) 额定功率1/8W 型号 由标号可知,它是精密金属膜电阻器,额定功率为1/8W,标称阻值为5.1kΩ,允许误差为±10%。 (2)色标法:色标法是将电阻器的类别及主要技术参数的数值用颜色(色环或色点)标注在它的外表面上。色标电阻(色环电阻)器可分为三环、四环、五环三种标法。其含义如图1和图2所示。 标称值第一位有效数字 标称值第二位有效数字 标称值有效数字后0的个数 允许误差 图1 两位有效数字阻值的色环表示法 三色环电阻器的色环表示标称电阻值(允许误差均为±20%)。例如,色环为棕黑红,表示10?102=1.0kΩ±20%的电阻器。 四色环电阻器的色环表示标称值(二位有效数字)及精度。例如,色环为棕绿橙金表示15?103=15kΩ±5%的电阻器。 五色环电阻器的色环表示标称值(三位有效数字)及精度。例如,色环为红紫绿黄棕表示275?104=2.75MΩ±1%的电阻器。

电子元器件的规格参数知识讲解

电子元器件的规格参 数

123电子元器件的规格参数 描述电子元器件的特性参数的数量称为它们的规格参数。规格参数包括标称值、额定值和允许偏差等。电子元器件在整机中要占有一定的体积空间,所以其外形尺寸也是一种规格参数。 电子元器件的质量系数:用于度量电子元器件的质量水平,通常描述了元器件的特性参数、规格参数环境因素变化的规律,或者划定了他们不能完成功能的边界条件。 电子工艺的质量参数一般有:温度系数、噪声电动势、高频特性及可靠性等,从整机制造工艺方面考虑,主要有机械强度和可焊性。 通常,用信噪比来描述电阻、电容、电感一类无源元件的噪声指标,对于晶体管或集成电路一类有源器件的噪声,则用噪声系数来衡量。在设计制作接收微弱信号的高增益放大器时,应当尽量选用低噪声的电子元器件。使用专用的“噪声测试仪”可以方便的测量出元器件的噪声指标。 电子元器件的命名与标注 通常电子元器件的名称应该反映出它们的种类、材料、特征、型号、生产序号和区别代号,并且能够表示出主要的电器参数。电子元器件的名称由字母和数字组成。对于元件来说,一般用一个字母代表它的主称,如R表示电阻器,C代表电容,L表示电感,W表示电位器,等等;用数字或字母表示其他信息。型号及参数在电子元器件上的标注:直标法、文字符号法和色标法。 文字符号法:①用元件的形状及其表面的颜色区别元件的种类,如在表面安装的元件中,除了形状的区别外,黑色表示电阻,棕色表示电容,淡蓝色表示电感。②电阻的基本标注单位是欧姆,电容的基本标注单位是皮法,电感的

基本标注单位是微亨;用三位数字标注元件的数值。③对于十个基本标注单位以上的元件,前两位数字表示数值的有效数字,第三位数字表示数值的倍率。例如, 对于电阻器上的标注,100表示其阻值为10×10^0=10,223表示其阻值为22×10^3=22K 对于电容器上的标注,103表示其容量为10×10^3pf=0.01uf,475表示其容量为47×10^5=4.7uf 对于电感器上的标注,820表示82×10^0=82Uh ④对于十个基本标注单位以下的元件,第一位、第三位数字表示数值的有效数字,第二位用字母R表示小数点。例如, 对于电阻器上的标注,3R9表示其阻值为3.9 色表法:在圆柱形元件(主要是电阻)上印制色环,在球形元件(电容、电感)和异形器件(如三极管)体上印制色点,表示它们的主要参数和特点,称为色码标注法。 用背景颜色区别种类——用浅色表示碳膜电阻,用红色表示金属膜或金属氧化膜电阻,深绿色表示线绕电阻。在研制电子产品是,要仔细分析电路的具体要求。在那些稳定性、耐热性、可靠性要求比较高的电路中,应该选用金属膜或金属氧化膜电阻;如果要求功率大、耐热性好,工作频率又不高,则可选用线绕电阻;对于无特殊要求的一般电阻则可使用碳膜电阻,以便降低成本。 电阻器的质量判别方法 ①看电阻器引线有无折断及外壳烧焦现象。

常用电子元器件型号命名法及主要技术参数

常用电子元器件参考资料第一节部分电气图形符号 一.电阻器、电容器、电感器和变压器

二.半导体管 三.其它电气图形符号

第二节常用电子元器件型号命名法及主要技术参数一.电阻器和电位器 1.电阻器和电位器的型号命名方法 示例: (1)精密金属膜电阻器 R J 7 3 第四部分:序号 第三部分:类别(精密) 第二部分:材料(金属膜) 第一部分:主称(电阻器) (2) 多圈线绕电位器 W X D 3 第四部分:序号 第三部分:类别(多圈) 第二部分:材料(线绕) 第一部分:主称(电位器)

2.电阻器的主要技术指标 (1) 额定功率 电阻器在电路中长时间连续工作不损坏,或不显著改变其性能所允许消耗的最大功率称为电阻器的额定功率。电阻器的额定功率并不是电阻器在电路中工作时一定要消耗的功率,而是电阻器在电路工作中所允许消耗的最大功率。不同类型的电阻具有不同系列的额定功率,如表2所示。 (2) 标称阻值 阻值是电阻的主要参数之一,不同类型的电阻,阻值范围不同,不同精度的电阻其阻值系列亦不同。根据国家标准,常用的标称电阻值系列如表3所示。E24、E12和E6系列也适用于电位器和电容器。 (3) 允许误差等级 3.电阻器的标志内容及方法 (1)文字符号直标法:用阿拉伯数字和文字符号两者有规律的组合来表示标称阻值,额定功率、允许误差等级等。符号前面的数字表示整数阻值,后面的数字依次表示第一位小数阻值和第二位小数阻值,其文字符号所表示的单位如表5所示。如1R5表示1.5Ω,2K7表示2.7kΩ, 表5

例如: RJ71-0.125-5k1-II 允许误差±10% 标称阻值(5.1kΩ) 额定功率1/8W 型号 由标号可知,它是精密金属膜电阻器,额定功率为1/8W,标称阻值为5.1kΩ,允许误差为±10%。 (2)色标法:色标法是将电阻器的类别及主要技术参数的数值用颜色(色环或色点)标注在它的外表面上。色标电阻(色环电阻)器可分为三环、四环、五环三种标法。其含义如图1和图2所示。 标称值第一位有效数字 标称值第二位有效数字 标称值有效数字后0的个数 允许误差 图1 两位有效数字阻值的色环表示法 三色环电阻器的色环表示标称电阻值(允许误差均为±20%)。例如,色环为棕黑红,表示10?102=1.0kΩ±20%的电阻器。 四色环电阻器的色环表示标称值(二位有效数字)及精度。例如,色环为棕绿橙金表示15?103=15kΩ±5%的电阻器。 五色环电阻器的色环表示标称值(三位有效数字)及精度。例如,色环为红紫绿黄棕表示275?104=2.75MΩ±1%的电阻器。

电子元件参数大全11

IRF10N15N沟 150V 10A 75W IRF120N沟100V 8A 40W 70/70ns Ron=0.3ΩMOS场效应开关/功率放大管IRF121N沟60V 8A 40W 70/70ns Ron=0.3ΩMOS场效应开关/功率放大管IRF122N沟100V 7A 40W 70/70ns Ron=0.4ΩMOS场效应开关/功率放大管IRF123N沟60V 7A 40W 70/70ns Ron=0.4ΩMOS场效应开关/功率放大管 IRF12N0812A 80V 75W IRF130N沟100V 14A 79W 75/45ns Ron=0.16ΩMOS场效应开关/功率放大管IRF130CHPN沟100V Ron=0.18ΩMOS场效应开关管IRF131N沟60V 14A 79W 75/45ns Ron=0.16ΩMOS场效应开关/功率放大管IRF1310N沟 100V 43A 190W通用型场效应管 IRF1310SN沟 100V 43A 150W通用型场效应管 IRF132N沟100V 12A 79W 75/45ns Ron=0.25ΩMOS场效应开关/功率放大管IRF133N沟60V 12A 79W 75/45ns Ron=0.25ΩMOS场效应开关/功率放大管IRF140N沟100V 27A 150W 110/75ns Ron=0.077ΩMOS场效应开关/功率放大管IRF140CHPN沟100V 27A 125W 60/30ns Ron=0.085ΩMOS场效应开关/功率放大 管 IRF141N沟80V 28A 150W 110/75ns Ron=0.077ΩMOS场效应开关/功率放大管IRF142N沟100V 25A 150W 110/75ns Ron=0.077ΩMOS场效应开关/功率放大管IRF143N沟100V 25A 150W 110/75ns Ron=0.1ΩMOS场效应开关/功率放大管IRF150N沟 100V 40A 150W 100/100ns Ron=0.0550624MOS场效应开关/功率放大 管 IRF150CFN沟100V 44A 150W 100/100ns Ron=0.055ΩMOS场效应开关/功率放大 管 IRF150CHPN沟100V Ron=0.055ΩMOS场效应开关/功率放大管 IRF151N沟60V 40V 150W 100/100ns Ron=0.055ΩMOS场效应开关/功率放大管IRF151CHPN沟60V 40A Ron=0.055ΩMOS场效应开关/功率放大管 IRF152N沟100V 33A 150W 100/100ns Ron=0.08ΩMOS场效应开关/功率放大管IRF153N沟60V 33A 150W 100/100ns Ron=0.08ΩMOS场效应开关/功率放大管IRF210N沟 200V 2.2A 15W通用型场效应管 IRF211N沟 150V 2.2A 15W通用型场效应管 IRF212N沟 200V 1.8A 15W通用型场效应管 IRF213N沟 150V 1.8A 15W通用型场效应管 IRF220N沟200V 4A 40W 60/60ns Ron=0.8ΩMOS场效应开关/功率放大管IRF221N沟150V 4A 40W 60/60ns Ron=0.8ΩMOS场效应开关/功率放大管IRF222N沟200V 3.5A 40W 60/60ns Ron=1.2ΩMOS场效应开关/功率放大管IRF222RN沟200V 3A 20W 60/60ns Ron=1.2ΩMOS场效应开关/功率放大管

电子元器件培训资料

一、电子及传感器基础知识、元器件基础知识前言: PCBA维修原则: 1、首先,要确认不良现象,排除误判误测,不良现象要有可重复性; 2、第二,要对外观进行复检,及时发现是否存在有错料,少料,多料等简单的外观不良; 3、第三,要找出维修记录或维修速查表,针对相应电子元件作检查。确认不良元件时可以与良 品交替互换或从电路板上拆除后单独测量; 4、第四,要找出PCBA功能的原理图,对照相应电路模块作检查,测量相关元件是否存在不良; 5、第五,如果是批量性不良,或以上方法无法维修的不良,可能是设计缺陷。 1、电子基础知识 电路的基本原理:电流,电压,电阻,电荷 电流是电荷在导线内流动的现象,电流的测量单位是安培(A)。电荷分为正电荷和负电荷二种。物质中的电子带有负电荷;而质子带有正电荷。电荷在导线内会由高电位的地方流向低电位的地方。电位的高低便形成了电位差,我们称为电压。电压愈大,流动的电流便愈大,电压的测量单位是伏特(V)。电流流动时会遇到阻力,就是电阻。每种物质都有电阻值,优良的导体如铜、白金等,它们的电阻很小,电流很容易通过。电阻很大,大到电流无法通过的物质就是绝缘体,而介于导体和绝缘体之间就是半导体。电阻的测量单位是欧姆(Ω)。 电流 是指电线中电子流动的相反方向,也就是质子流动的方向,通常以I表示,其单位为安培 A(Ampere)。直流电的电流方向固定由正极流向负极,并不会随时间而改变;而交流电的电流流向则会不断地交替变化,例如公司用电的电流便是每秒正负极交替变换50次的交流电,称为50赫兹(Hz)。而在台湾地区交流电的频率为60Hz。 电压 是指能使电在电线中流动的力量,通常以E表示,其单位为伏特V(Volt),电流一般都是从高电压流向低电压,通常电源电位较高的一端以"+"号表示,而电位较低的一端则以"_"表示。电池、水银电池等,电压包含1.5V、3V、9V等,而家庭用电电压在台湾、美国日本为交流110V;在大陆为220V;欧州为240V。 电阻 是指阻挡电流在电线流动的阻力,通常以R表示,其单位为欧姆,任何物体都具有电阻,如同水流一般,物体的电阻大小随材质、长度、大小而异。电阻值大到不能导电的物质称为「绝缘体」,如塑料、木材等。电阻会消耗能量,消耗的能量通常以热的形式呈现,所以传输材料的电阻值愈低愈好,因此一般电线便采用导电性佳的铜线,为了减低能源的消耗,「低温超导体」已成为新兴的科技了。 电路符号示例 电路是由各种不同的组件组成,其相互关系通常使用电路图描述,而电路图的每个基本组件均使用电路符号表示。下图是摘取ATA2001(1866)一部分电路图为例。 如下图:

电子元器件规范标准

电阻 分类:固定电阻;排阻;可变电阻;特殊电阻 固定电阻: 1.主要参数:阻值材料类型精度功率封装 2.示例: 4.7K SMD +/-5% 1/16W 0603 备注:常用材料:SMD;碳膜;金属膜;合成膜;玻璃釉;水泥电阻; 常见封装:0603;0805;1206;AXIAL0.3; 派瑞电子选型参数: 排阻: 1.主要参数:阻值材料类型精度功率封装 2.示例: 4.7K SMD +/-5% 1/16W 0603*3 备注:常用材料:SMD;碳膜;金属膜;合成膜;玻璃釉; 常见封装:0603*3;0603*4;0805*3;AXIAL0.3*5;AXIAL0.5*6;派瑞电子选型参数: 可变电阻 1.主要参数:总调电阻变化类型精度功率封装 2.示例: 20K 线性 +/-10% 1W VR-6 备注:变化类型:线性;对数 常见封装:VR-6 派瑞电子选型参数:

特殊电阻 常见分类:热敏电阻;压敏电阻 1.热敏电阻: 1.1主要参数:型号类型标称电阻最大电压封装 1.2示例: MZ72-7RM PTC 7欧 220V RAD0.2 备注:类型:PTC;NTC; 常见封装:RAD0.2;DO-35; 风华高科选型参数:. 2.压敏电阻: 1.1主要参数:型号工作电压压敏电压功耗峰值电流封装 1.2示例: FPV100505G3R3 DC=3.3V,AC= 2.5V 5V 0.05W 20A RAD0.2 备注:常见封装:RAD0.2 风华高科选型参数: 电容 常用分类:瓷电容;其他电容 瓷电容: 1.主要参数:材料类型容值精度耐压值封装 2.示例: X7R 100nF +/-10% 25V 0805 备注:常用材料类型:X7R; X5R; Y5V; Z5U; NPO(COG) 常用封装分类:0402;0603;0805;1206;1210;1812;2220; 派瑞电子选型参数:.

常用元器件主要参数

常用元器件主要参数 电阻 容差:通用场合选用1%精读,当有特殊要求比如输出电压精度要求时选用更小的 选择比率:当阻值不是很重要时,比如分压器,以减少电路中不同阻值种类数目以实现大批量采购节约成本 最大电压:电阻其实也可以被击穿,高压应用时要注意 温度系数:大多数电阻都有很小的温度系数(50~250ppm每度),电阻发热时,线绕电阻的温度系数会有较大变化 额定功率:一般电阻功耗为额定值一半 脉冲功率:在较短时间内,线绕电阻可以承受远大于其额定功率的冲击,但非线绕电阻不行 电容 铝电解电容大容量小体积 钽电容中等电容量 陶瓷电容定时与信号电路 多层陶瓷电容低ESR场合 塑胶电容高dv/dt场合 容差:典型值正负20%,电解电容还要差好多 ESR:等效串联电阻,设计大容量滤波器时ESR比容量重要 老化:“电源寿命1000h”实际就是对电解电容电容而言,如果把电源放到实际温度条件或者工作几年就要选择2000h到5000h 肖特基二极管 常用在整流器中,正向导通电压小,没有反向恢复时间 整流二极管 反向恢复:二极管正向导通后在很短时间内能够反向流过电流这段时间叫反向恢复时间,这对变换器的效率非常不利 但并不是越快越好,会产生快速的电压电流尖锋 晶体管(BJT) 脉冲电流:一般BJT上不会提到脉冲电流(除非专为电源设计),取额定直流电流的两倍 放大倍数:一般假定为10,不管手册数据如何 晶体管(MOSFET) 功率损耗:导通损耗+门极充电损耗+开关导通损 导通损耗:当MOSFET全部导通时漏源极之间存在一个电阻,导通损耗大小取决于管中电流大小,而且电阻随温升增大 门极充电损耗:由于MOSFET有一个相当大的等效门极电容引起 开关导通损:在开通或关断转换的任何时候,晶体管上同时既有电压又有电流产生功率损耗 最大门极电压:通常20V 电阻型号命名方法分类及主要特性参数等

电子元器件基础知识培训(资料)

电子元件基础知识培训 一、电阻 1、电阻的外观、形状如下图示: 2、电阻在底板上用字母R(Ω)表示、图形如下表示: 从结构分有:固定电阻器和可变电阻器 3 、电阻的分类:从材料分有:碳膜电阻器、金属膜电阻器、线绕电阻器、热敏电阻等 从功率分有:1/16W、1/8W、1/4W(常用)、1/2W、1W、2W、3W等 4、电阻和单位及换算:1MΩ(兆欧姆)=1000KΩ(千欧姆)=1000'000Ω(欧姆) 一种用数字直接表示出来 5电阻阻值大小的标示四道色环电阻其中均有一 一种用颜色作代码间接表示五道色环电阻道色环为误 六道色环电阻差值色环 颜色黑棕红橙黄绿蓝紫灰白金银无数值0 1 2 3 4 5 6 7 8 9 0.1 0.01 误差值±1℅±2℅±5℅±10℅±20℅四道色环电阻的识别方法如下图五道色环电阻的识别方法如下图 常用四道色环电阻的误差值色环颜色常用五道色环电阻的误差值色是 是金色或银色,即误差值色环为第四棕色或红色,即第五道色环就是误 道色环,其反向的第一道色环为第一差色环,第五道色环与其他色环相 道色环。隔较疏,如上图,第五道色环的反 向第一道即为第一道色环。 四道色环电阻阻值的计算方法: 阻值=第一、第二道色环颜色代表的数值×10 即上图电阻的阻值为:33×10=33Ω(欧姆) 第三道色不订所代表的数值

五道色环电阻阻值的计算方法: 阻值=第一、二、三道色环颜色所代表的数值×10即上图电阻阻值为:440×10=4.4Ω(欧姆) 7、电阻的方向性:在底板上插件时不用分方向。二:电容 1、电容的外观、形状如下图示: 2、电容在底板上用字母C表示,图形如下表示: 从结构上分有:固定电容和可调电容 3电容的分类有极性电容:电解电容、钽电容 从构造上分有: 无极性电容:云母电容、纸质电容、瓷片电容 4、电容的标称有容量和耐压之分 电容容量的单位及换算:1F”(法拉)=10 uF(微法)=10 pF(皮法) 5、电容容量标示如下图: 100uF∕25V 47uF∕25V 0.01 uF 0.01uF∕1KV 0.022uF∕50V 上图的瓷片电容标示是用103来表示的,其算法如下:10×10=0.01 uF=10000 pF 另电容的耐压表示此电容只能在其标称的电压范围内使用,如超过使用电压范围则会损坏炸裂或失效。 6、电容的方向性:在使用时有极性电容要分方向,无极性不用分方向。 三、晶体管 (一)晶体二极管 1、晶体二极管外形如下图: 第四道色不订所代表的数值 -2 6 12 3

变频器常用电力电子器件

无锡市技工院校 教案首页 课题:变频器常用电力电子器件 教学目的要求:1. 了解变频器中常用电力电子器件的外形和符号2.了解相关电力电子器件的特性 教学重点、难点: 重点:1. 认识变频器中常用电力电子器件 2. 常用电力电气器件的符号及特性 难点:常用电力电气器件的特性 授课方法:讲授、分析、图示 教学参考及教具(含多媒体教学设备): 《变频器原理及应用》机械工业出版社王延才主编 授课执行情况及分析: 在授课中,主要从外形结构、符号、特性等几方面对变频器中常用的电力电子器件进行介绍。通过本次课的学习,大部分学生已对常用电力电子器件有了一定的认识,达到了预定的教学目标。

板书设计或授课提纲

电力二极管的内部也是一个PN 结,其面积较大,电力二极管引出了两个极,分别称为阳和阴极K 。电力二极管的功耗较大,它的外形有螺旋式和平板式两种。2.伏安特性:电力二极管的阳极和阴极间的电压和流过管子的电流之间的关系称为伏安特性。 如果对反向电压不加限制的话,二极管将被击穿而损坏。(1)正向特性:电压时,开始阳极电流很小,这一段特性 曲线很靠近横坐标。当正向电压大于时,正向阳极电流急剧上升,管子正向导 通。如果电路中不接限流元件,二极管将 被烧毁。

晶闸管的种类很多,从外形上看主要由螺栓形和平板形两种,螺栓式晶闸管容量一般为10~200A;平板式晶闸管用于200A3个引出端分别叫做阳极A、阴极 控制极。 结构 晶闸管是四层((P1N1P2N2)三端(A、K、G)器件。 晶闸管的导通和阻断控制 导通控制:在晶闸管的阳极A和阴极K间加正向电压,同时在它的门极 正向触发电压,且有足够的门极电流。 晶闸管一旦导通,门极即失去控制作用,因此门极所加的触发电压一般为脉冲电压。 管从阻断变为导通的过程称为触发导通。门极触发电流一般只有几十毫安到几百毫安, 管导通后,从阳极到阴极可以通过几百、几千安的电流。要使导通的晶闸管阻断,必须将阳极电流降低到一个称为维持电流的临界极限值以下。 三、门极可关断晶闸管(GTO) 门极可关断晶闸管,具有普通晶闸管的全部优点,如耐压高、电流大、控制功率大、使用方便和价格低;但它具有自关断能力,属于全控器件。在质量、效率及可靠性方面有着明显的优势,成为被广泛应用的自关断器件之一。 结构:与普通晶闸管相似,也为PNPN四层半导体结构、三端(阳极 )器件。 门极控制 GTO的触发导通过程与普通晶闸管相似,关断则完全不同,GTO 动电路从门极抽出P2基区的存储电荷,门极负电压越大,关断的越快。 四、电力晶体管(GTR) 电力晶体管通常又称双极型晶体管(BJT),是一种大功率高反压晶体管,具有自关断能力,并有开关时间短、饱和压降低和安全工作区宽等优点。它被广泛用于交直流电机调速、中频电源等电力变流装置中,属于全控型器件。 工作原理与普通中、小功率晶体管相似,但主要工作在开关状态, 承受的电压和电流数值较大。 五、电力MOS场效应晶体管(P-MOSFET) 电力MOS场效应晶体管是对功率小的电力MOSFET的工艺结构进行改进,在功率上有

常用电子元件资料全

第二节常用电子元器件型号命名法及主要技术参数一.电阻器和电位器 1.电阻器和电位器的型号命名方法 (1)精密金属膜电阻器 R J 7 3 第四部分:序号 第三部分:类别(精密) 第二部分:材料(金属膜) 第一部分:主称(电阻器) (2) 多圈线绕电位器 W X D 3 第四部分:序号 第三部分:类别(多圈) 第二部分:材料(线绕) 第一部分:主称(电位器) 2 (1) 额定功率 电阻器在电路中长时间连续工作不损坏,或不显著改变其性能所允许消耗的最大功率称为电阻器的额定功率。电阻器的额定功率并不是电阻器在电路中工作时一定要消耗的功率,而是电阻器在电路工作中所允许消耗的最大功率。不同类型的电阻具有不同系列的额定功

(2) 标称阻值 阻值是电阻的主要参数之一,不同类型的电阻,阻值围不同,不同精度的电阻其阻值系列亦不同。根据国家标准,常用的标称电阻值系列如表3所示。E24、E12和E6系列也适用于电位器和电容器。 (3) 允许误差等级 3.电阻器的标志容及方法 (1)文字符号直标法:用阿拉伯数字和文字符号两者有规律的组合来表示标称阻值,额定功率、允许误差等级等。符号前面的数字表示整数阻值,后面的数字依次表示第一位小数阻值和第二位小数阻值,其文字符号所表示的单位如表5所示。如1R5表示1.5W,2K7表示2.7kW, RJ71-0.125-5k1-II 允许误差±10% 标称阻值(5.1kW) 额定功率1/8W 型号 1/8W,标称阻值为5.1kW,允许误差为±10%。 (2)色标法:色标法是将电阻器的类别及主要技术参数的数值用颜色(色环或色点)标注在它的外表面上。色标电阻(色环电阻)器可分为三环、四环、五环三种标法。其含义

常用电子元器件系列知识培训——电感篇

电子元器件系列知识--电感 电感元件的分类 概述:凡是能产生电感作用的原件统称为电感原件,常用的电感元件有固定电感器,阻流圈,电视机永行线性线圈,行,帧振荡线圈,偏转线圈,录音机上的磁头,延迟线等。 1 固定电感器 :一般采用带引线的软磁工字磁芯,电感可做在10-22000uh之间,Q 值控制在40左右。 2 阻流圈:他是具有一定电感得线圈,其用途是为了防止某些频率的高频电流通过,如整流电路的滤波阻流圈,电视上的行阻流圈等。 3 行线性线圈:用于和偏转线圈串联,调节行线性。由工字磁芯线圈和恒磁块组成,一般彩电用直流电流1.5A电感116-194uh频率:2.52MHZ 4 行振荡线圈:由骨架,线圈,调节杆,螺纹磁芯组成。一般电感为5mh调节量大于+-10mh. 电感线圈的品质因数和固有电容 (1)电感量及精度 线圈电感量的大小,主要决定于线圈的直径、匝数及有无铁芯等。电感线圈的用途不同,所需的电感量也不同。例如,在高

频电路中,线圈的电感量一般为0.1uH—100Ho 电感量的精度,即实际电感量与要求电感量间的误差,对它的要求视用途而定。对振荡线圈要求较高,为o.2-o.5%。对耦合线圈和高频扼流圈要求较低,允许10—15%。对于某些要求电感量精度很高的场合,一般只能在绕制后用仪器测试,通过调节靠近边沿的线匝间距离或线圈中的磁芯位置来实现o (2)线圈的品质因数 品质因数Q用来表示线圈损耗的大小,高频线圈通常为50—300。对调谐回路线圈的Q值要求较高,用高Q值的线圈与电容组成的谐振电路有更好的谐振特性;用低Q值线圈与电容组成的谐振电路,其谐振特性不明显。对耦合线圈,要求可低一些,对高频扼流圈和低频扼流圈,则无要求。Q值的大小,影响回路的选择性、效率、滤波特性以及频率的稳定性。一般均希望Q值大,但提高线圈的Q值并不是一件容易的事,因此应根据实际使用场合、对线圈Q值提出适当的要求。 线圈的品质因数为: Q=ωL/R 式中: ω——工作角频; L——线圈的电感量;

典型全控型电力电子器件.docx

湖南省技工学校 理论教学教案 教师姓名: 注:教案首页,教案用纸由学校另行准备湖南省劳动厅编制

[复习导入] 门极可关断晶闸管——在晶闸管问世后不久出现。 全控型电力电子器件的典型代表——门极可关断晶闸管、电力 晶体管、电力场效应晶体 管、绝缘栅双极晶体管。 [讲授新课] 一、门极可关断晶闸管 晶闸管的一种派生器件。可以通过在门极施加负的脉冲电流使其关断。 GTO的电压、电流容量较大,与普通晶闸管接近,因而在兆瓦级以上 的大功率场合仍 有较多的应用。 1)GTO的结构和工作原理 与普通晶闸管的相同点: PNPN四层半导体结构,外部引出阳极、阴极 和门极。和普通晶闸管的不同点:GTO是一种多元的功率集成器件。 工作原理:与普通晶闸管一样,可以用图所示的双晶体管模型来分析。 由P1N1P2和N1P2N2构成的两个晶体管V1、V2分别具有共基极电流 增益α1和α2 。 α1+α2=1是器件临界导通的条件。 GTO的关断过程与普通晶闸管不同。关断时,给门极加负脉冲,产生门 极电流-I G,此电流使得V1管的集电极电流I Cl被分流,V2管的基极电流 I B2减小,从而使I C2和I K减小,I C2的减小进一步引起I A和I C1减小, 又进一步使V2的基极电流减小,形成内部强烈的正反馈,最终导致GTO阳 极电流减小到维持电流以下,GTO由通态转入断态。 结论: ?GTO导通过程与普通晶闸管一样,只是导通时饱和程度较浅。 ?GTO关断过程中有强烈正反馈使器件退出饱和而关断。 ?多元集成结构还使GTO比普通晶闸管开通过程快,承受d i/d t能力 强。 2)GTO的动态特性 益阳高级技工学校

常用电力电子器件

第5章 常用电力电子器件 在开关电源中,电力电子器件是完成电能转换以及主电路拓扑中最为关键的元件。为降低器件的功率损耗,提高效率,电力电子器件通常工作于开关状态,因此又常称为开关器件。电力电子器件种类很多,按照器件能够被控制电路信号所控制的程度,可以将电力电子器件分为①不可控器件,即二极管;②半控型器件,主要包括晶闸管(SCR)及其派生器件;③全控型器件,主要包括绝缘栅双极型晶体管(IGBT)、电力晶体管(GTR)、电力场效应晶体管(电力MOSFET)等。半控型及全控型器件按照驱动方式又可以分为电压驱动型、电流驱动型两类,上述分类见图5-1。 电力电子器件 不可控器件 二极管半控型器件 SCR 全控型器件 IGBT 电力MOSFET GTR GTO 晶闸管 电力电子器件 电压驱动型 电流驱动型 电力MOSFET IGBT SCR GTO 晶闸管GTR 图5-1电力电子器件的分类 随着半导体材料及技术的发展,新型电力电子器件不断推出,传统电力电子器件的性能也不断提高,这成为包括开关电源在内的各种电力电子装置的体积、效率等性能指标不断提高的重要因素。了解和掌握各种电力电子器件的特性和使用方法是正确设计开关电源的基础。 在开关电源中应用的电力电子器件主要为二极管、IGBT 和MOSFET 。SCR 在开关电源的输入整流电路及其软起动中有少量应用,GTR 由于驱动较为困难、开关频率较低,也逐渐被IGBT 和MOSFET 所取代。因此这里将主要介绍二极管、IGBT 和MOSFET 的工作原理,主要参数及驱动方法。 5. 1二极管 二极管是最为简单但又是十分重要的一种电力电子器件,在开关电源的输入整流电路、逆变电路、输出高频整流电路以及缓冲电路中均有使用。 1、二极管的基本结构及工作原理 开关电源中应用的二极管除电压、电流等参数与电子电路中的二极管有较大差别外,其基本结构和工作原理是相同的,都是由半导体PN 结构成,即P 型半导体与N 型半导体结合构成,其结构见图5-2。 P 型半导体是在半导体中添加三价元素,因此硅原子外层缺少一个电子形成稳定结构,即形成空穴。N 型半导体是在半导体中添加五价元素,因此它在形成稳定结构后,半导体晶体中能给出一个多余的电子。在纯净的半导体中,空穴和电子成对出现,数量极少,所以导电能力很差。而P 型或N 型半导体中的空穴或自由电子数量大大增加,导电能力大大增强。在P 型半导体中空穴数远远大于自由电子数,因此空穴称为多子,自由电子称为少子。在N 型半导体中则相反,空穴为少子,自由电子为多子。

电力电子基础知识大作业要点

《电力电子技术》课程大作业电力电子技术器件、电路和技术综述 院(系)名称信息工程学院 专业名称电子信息工程技术 学生姓名XXX 学号xxx 指导教师王照平 2015年6月12日

基于电力电子技术器件、电路和技术综述的 1、概述 从广义来讲,电子技术应包含信息电子技术和电力电子技术两大分支,而通常所说的电子技术一般指信息电子技术。 电力电子技术也称为电力电子学,它真正成为一门独立的学科始于1957年第一只晶闸管的问世。在1970年国际电气和电子工程协会(IEEE)电力电子学会上对电力电子技术作了以下定义:“电力电子技术就是有效地使用电力电子器件,应用电路和设计理论及分析开发工具,实现对电能的高效能变换和控制的一门技术。它包括对电压、电流频率和波形的变换。”简言之,电力电子技术就是利用电力电子器件对电能形态进行变换和控制的一门技术。 电力电子技术是电力、电子控制三大电气工程技术领域之间的交叉学科,它们之间的关系可用倒三角图形描述,如图1-1所示。 图1-1 描述电力电子学的倒三角形 第一,电力电子技术是在电子技术的基础上发展起来的,它们都可可分为器件、电路和应用三个部分,且器件的材料和制造工艺基本相同,只有两者的应用目的有所不同,电

子技术应用于信息的处理(如放大等),电力电子技术应用于电力变换和控制,它所变换的功率可大到数百甚至数千兆瓦,也可以小到几瓦或毫瓦数量级。第二,电力电子技术广泛应用于电器工程,如高压直流输电、静止无功补偿、电力机车牵引、交直流电力传动、电解、励磁、电加热、高性能交直流电源等电力系统和电器工程中,它对电器工程的现代化起着重要推动作用。第三,电力电子技术可以看成是弱电控制强电的技术,是弱点和强电之间的接口。而控制理论是实现这种接口的一种强有力的纽带,是电力电子技术重要理论依据。所以,也可以认为:电力电子技术是运用控制理论将电子技术应用到电力领域的综合性技术。 2、电力电子常用器件 2.1、电力电子器件概念 可以直接用于处理电能的主电路中,实现电能的变换或控制的电子器件。 2.2、电力电子器件分类 按照电力电子器件能够被控制所实现控制的程度分为下列三类: 不可控器件(Power Diode):不能用控制信号来控制其通断, 因此也就不需要驱动电路。 半控型器件(Thyristor):通过控制信号可以控制其导通而不能控制其关断 全控型器件(IGBT,MOSFET):通过控制信号既可控制其导通又可控制其关断,又称自关断器件。 按照驱动电路加在电力电子器件控制端和公共端之间的信号的性质,我们又可以将电力电子器件分为电流驱动型和电压驱动型两类: 电流驱动型:通过从控制端注入或者抽出电流来实现导通或者关断的控制。 电压驱动型:仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。 2.3、不可控器件—电力二极管 2.3.1 电力二极管的工作原理 基本结构和工作原理与信息电子电路中的二极管是一样的。由一个面积较大的PN

常用电子元器件培训资料

常用电子元器件培训资料 -----------------------作者:-----------------------日期:

常用电子元器件参考资料第一节部分电气图形符号

二.半导体管 三.其它电气图形符号

第二节常用电子元器件型号命名法及主要技术参数一.电阻器和电位器 1.电阻器和电位器的型号命名方法 示例: (1)精密金属膜电阻器 R J7 3 第四部分:序号 第三部分:类别(精密) 第二部分:材料(金属膜) 第一部分:主称(电阻器) (2) 多圈线绕电位器 W X D 3 第四部分:序号 第三部分:类别(多圈) 第二部分:材料(线绕) 第一部分:主称(电位器)

2.电阻器的主要技术指标 (1) 额定功率 电阻器在电路中长时间连续工作不损坏,或不显著改变其性能所允许消耗的最大功率称为电阻器的额定功率。电阻器的额定功率并不是电阻器在电路中工作时一定要消耗的功率,而是电阻器在电路工作中所允许消耗的最大功率。不同类型的电阻具有不同系列的额定功率,如表2所示。 (2) 标称阻值 阻值是电阻的主要参数之一,不同类型的电阻,阻值范围不同,不同精度的电阻其阻值系列亦不同。根据国家标准,常用的标称电阻值系列如表3所示。E24、E12和E6系列也适用于电位器和电容器。 表中数值再乘以10,其中n为正整数或负整数。 (3) 允许误差等级 表4电阻的精度等级 3.电阻器的标志内容及方法 (1)文字符号直标法:用阿拉伯数字和文字符号两者有规律的组合来表示标称阻值,额定功率、允许误差等级等。符号前面的数字表示整数阻值,后面的数字依次表示第一位小数阻值和第二位小数阻值,其文字符号所表示的单位如表5所示。如1R5表示1.5Ω,2K7表示2.7kΩ,

相关主题
文本预览
相关文档 最新文档