当前位置:文档之家› 高三数学专题复习:空间向量

高三数学专题复习:空间向量

高三数学专题复习:空间向量
高三数学专题复习:空间向量

一、知识梳理

【高考考情解读】 高考对本节知识的考查以解答题的形式为主:1.以多面体(特别是棱柱、棱锥或其组合体)为载体,考查空间中平行与垂直的证明、空间角(主要是线面角和二面角)的计算.2.以已知结论寻求成立的条件(或是否存在问题)的探索性问题,考查逻辑推理能力、空间想象能力以及探索能力,是近几年高考命题的新亮点,属中高档问题.

1. 直线与平面、平面与平面的平行与垂直的向量方法

设直线l 的方向向量为a =(a 1,b 1,c 1).平面α,β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3)(以下相同).

(1)线面平行:l ∥α?a ⊥μ?a ·μ=0?a 1a 2+b 1b 2+c 1c 2=0.

(2)线面垂直:l ⊥α?a ∥μ?a =k μ?a 1=ka 2,b 1=kb 2,c 1=kc 2.

(3)面面平行:α∥β?μ∥v ?μ=λv ?a 2=λa 3,b 2=λb 3,c 2=λc 3.

(4)面面垂直:α⊥β?μ⊥v ?μ·v =0?a 3a 4+b 3b 4+c 3c 4=0.

2. 直线与直线、直线与平面、平面与平面的夹角计算

设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同).

(1)线线夹角:设l ,m 的夹角为θ(0≤θ≤π2),则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21a 22+b 22+c 22

. (2)线面夹角:设直线l 与平面α的夹角为θ(0≤θ≤π2),则sin θ=|a ·μ||a ||μ|

=|cos 〈a ,μ〉|. (3)面面夹角:设平面α、β的夹角为θ(0≤θ<π),则|cos θ|=|μ·v ||μ||v |

=|cos 〈μ,v 〉|. 提醒 求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析.

3. 求空间距离

直线到平面的距离,两平行平面的距离均可转化为点到平面的距离,点P 到平面α的距

离:d =|PM →·n ||n |

(其中n 为α的法向量,M 为α内任一点). 二、课前预习

1.平面α的法向量为m ,向量a 、b 是平面α之外的两条不同的直线的方向向量,给出三个论断:①a ⊥m ;②a ⊥b ;③m ∥b .以其中的两个论断作为条件,余下一个论断作为结论,

写出所有正确的命题______________________.

2.如图,直三棱柱ABC -A 1B 1C 1的底面△ABC 中,CA =CB =1,

∠BCA =90°,棱AA 1=2,则cos 〈BA 1→,CB 1→〉的值为________.

3.如图所示,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,

CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为________.

4.如图,过正方形ABCD 的顶点A ,引P A ⊥平面ABCD .若P A =BA ,

则平面ABP 和平面CDP 所成的锐二面角的大小是________.

三、典型例题

探究点一 利用向量法求异面直线所成的角

例1 已知直三棱柱ABC —A 1B 1C 1,∠ACB =90°,CA =CB =CC 1,D 为B 1C 1的中点,求异面直线BD 和A 1C 所成角的余弦值.

探究点二 利用向量法求直线与平面所成的角

例2 如图,已知平面ABCD ⊥平面DCEF ,M ,N 分别为AB ,DF 的中点,求直线MN 与平面DCEF 所成的角的正弦值.

探究点三 利用向量法求二面角

例3 如图,ABCD 是直角梯形,∠BAD =90°,SA ⊥平面ABCD ,SA =BC =BA =1,AD =12

,求面SCD 与面SBA 所成角的余弦值大小.

探究点四 综合应用

例4 如图所示,在三棱锥A —BCD 中,侧面ABD 、ACD 是全等的直角三角形,AD 是

公共的斜边,且AD =3,BD =CD =1,另一个侧面ABC 是正三角形.

(1)求证:AD ⊥BC ;

(2)求二面角B -AC -D 的余弦值;

(3)在线段AC 上是否存在一点E ,使ED 与面BCD 成30°角?若存在,确定点E 的位置;若不存在,说明理由.

四、课后练习 一、填空题(每小题6分,共48分)

1.在正方体ABCD —A 1B 1C 1D 1中,M 是AB 的中点,则sin 〈DB 1→,CM →〉的值等于________.

2.已知长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=2,E 是侧棱BB 1的中点,则直线AE 与平面A 1ED 1所成的角的大小为________.

3.如图,在正四面体ABCD 中,E 、F 分别是BC 和AD 的中点,则AE 与CF 所成的角的余弦值为________.

4.(2011·南通模拟) 如图所示,在长方体ABCD —A 1B 1C 1D 1中,已知B 1C ,C 1D 与上底面

A 1

B 1

C 1

D 1所成的角分别为60°和45°,则异面直线B 1C 和C 1D 所成的余弦值为________.

5.P 是二面角α—AB —β棱上的一点,分别在α、β平面上引射线PM 、PN ,如果∠BPM

=∠BPN =45°,∠MPN =60°,那么二面角α—AB —β的大小为________.

6.(2011·无锡模拟)已知正四棱锥P —ABCD 的棱长都相等,侧棱PB 、PD 的中点分别为M 、N ,则截面AMN 与底面ABCD 所成的二面角的余弦值是________.

7.如图,P A⊥平面ABC,∠ACB=90°且P A=AC=BC=a,则异面直线PB与AC所成角的正切值等于________.

8.如图,已知正三棱柱ABC—A1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD 与平面B1DC所成的角的正弦值为________.

二、解答题(共42分)

9.(14分) 如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8.BC是⊙O的直径,AB=AC=6,OE∥AD.

(1)求二面角B-AD-F的大小;

(2)求直线BD与EF所成的角的余弦值.

10.(14分)(2011·大纲全国,19)如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.

(1)证明:SD⊥平面SAB;

(2)求AB与平面SBC所成角的正弦值.

11.(14分)(2011·湖北,18)如图,已知正三棱柱ABC-A1B1C1各棱长都是4,E是BC的

中点,动点F在侧棱CC1上,且不与点C重合.

(1)当CF=1时,求证:EF⊥A1C;

(2)设二面角C-AF-E的大小为θ,求tan θ的最小值.

2014年高三数学选择题专题训练(12套)有答案

高三数学选择题专题训练(一) 1.已知集合{}1),(≤+=y x y x P ,{ }1),(22≤+=y x y x Q ,则有 ( ) A .Q P ?≠ B .Q P = C .P Q P = D .Q Q P = 2.函数11)(+-=x x e e x f 的反函数是( ) A .)11( 11)(1<<-+-=-x x x Ln x f B .)11(11)(1-<>+-=-x x x x Ln x f 或 C .)11( 11)(1 <<--+=-x x x Ln x f D .)11(11)(1-<>-+=-x x x x Ln x f 或 3.等差数列{}n a 的前n 项和为n S ,369-=S ,10413-=S ,等比数列{}n b 中,55a b =,77a b =, 则6b 的值 ( ) A .24 B .24- C .24± D .无法确定 4.若α、β是两个不重合的平面, 、m 是两条不重合的直线,则α∥β的一个充分而非必要 条件是 ( ) A . αα??m 且 ∥β m ∥β B .βα??m 且 ∥m C .βα⊥⊥m 且 ∥m D . ∥α m ∥β 且 ∥m 5.已知n n n x a x a a x x x +++=++++++ 102)1()1()1(,若n a a a n -=+++-509121,则n 的 值 ( ) A .7 B .8 C .9 D .10 6.已知O ,A ,M ,B 为平面上四点,则)1(λλ-+=,)2,1(∈λ,则( ) A .点M 在线段A B 上 B .点B 在线段AM 上 C .点A 在线段BM 上 D .O ,A ,M ,B 四点共线 7.若A 为抛物线24 1x y = 的顶点,过抛物线焦点的直线交抛物线于B 、C 两点,则AC AB ?等于 ( ) A .31- B .3- C .3 D .43- 8.用四种不同颜色给正方体1111D C B A ABCD -的六个面涂色,要求相邻两个面涂不同的颜色, 则共有涂色方法 ( ) A .24种 B .72种 C .96种 D .48种 9.若函数x x a y 2cos 2sin -=的图象关于直线π8 7=x 对称,那么a 的值 ( ) A .2 B .2- C .1 D .1-

高考——空间向量与立体几何(理科)

第14讲 空间向量与立体几何 知识要点? 一.空间向量 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)向量具有平移不变性 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 +=+=; b a OB OA BA -=-=; 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向 量,a 平行于b ,记作 b a //。 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a =λb 。 (3)三点共线:A 、B 、C 三点共线<=> AC AB λ= <=>y x += (1=+y x 其中) (4)与 共线的单位向量为a a ± 4. 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数 ,x y 使 p xa yb =+。 (3)四点共面:若A 、B、C 、P 四点共面<=>y x += <=> )1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有 序实数组,,x y z ,使p xa yb zc =++。 若三向量 ,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意 三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z , 使z y x ++= 。 6. 空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz - 中,对空间任一点A ,存在唯一的有序实数组 (,,)x y z ,zk yi xi OA ++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中 的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。 注:①点A (x,y,z )关于x 轴的的对称点为(x ,-y,-z),关于xoy 平面的对称点为(x,y,-z).即点关于什么轴/平面对称,什么坐标不变,其余的分坐标均相反。②在y 轴上的点设为(0,y,0),在平面yO z中的点设为(0,y,z) (2)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用 {,,}i j k 表示。 空间中任一向量 k z j y i x a ++==(x ,y,z) (3)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++,

平面向量及空间向量高考数学专题训练

平面向量及空间向量高考数学专题训练(四) 一、选择题(本大题共12小题,每小题分6,共72分) 1.设-=1(a cos α,3), (=b sin )3,α,且a ∥b , 则锐角α为( ) A. 6π B. 4π C. 3 π D. 125π 2.已知点)0,2(-A 、)0,3(B ,动点2),(x y x P =?满足,则点P 的轨迹是( ) A. 圆 B. 椭圆 C. 双曲线 D. 抛物线 3.已知向量值是相互垂直,则与且k b a b a k b a -+-==2),2,0,1(),0,1,1(( ) A. 1 B. 51 C. 53 D. 5 7 4.已知b a ,是非零向量且满足的夹角是与则b a b a b a b a ,)2(,)2(⊥-⊥-( ) A. 6π B. 3 π C. 32π D. 65π 5.将函数y=sinx 的图像上各点按向量=a (2,3 π )平移,再将所得图像上各点的横坐标 变为原来的2倍,则所得图像的解析式可以写成( ) A.y=sin(2x+ 3π)+2 B.y=sin(2x -3 π )-2 C.y=(321π+x )-2 D.y=sin(321π-x )+2 6.若A,B 两点的坐标是A(3φcos ,3φsin ,1),B(2,cos θ2,sin θ1),||的取值范围是( ) A. [0,5] B. [1,5] C. (1,5) D. [1,25] 7.从点A(2,-1,7)沿向量)12,9,8(-=a 方向取线段长|AB|=34,则点B 的坐标为( ) A.(-9,-7,7) B. (-9,-7,7) 或(9,7,-7) C. (18,17,-17) D. (18,17,-17)或(-18,-17,17) 8.平面直角坐标系中,O 为坐标原点, 已知两点A(3, 1), B(-1, 3),若点C 满足 =OB OA βα+, 其中α、β∈R 且α+β=1, 则点C 的轨迹方程为 ( ) A.01123=-+y x B.5)2()1(2 2 =-+-y x C. 02=-y x D. 052=-+y x 9.已知空间四边形ABCD 的每条边和对角线的长都等于m ,点E ,F 分别是BC ,AD 的中点,则?的值为 ( ) A.2 m B. 212m C. 4 1 2m D. 432m 10.O 为空间中一定点,动点P 在A,B,C 三点确定的平面内且满足)()(-?-=0,

高中数学:空间向量

空间向量 一、向量的基本概念与运算 1.定义:在空间内,把具有大小和方向的量叫空间向量,可用有向线段来表示.用同向且 等长的有向线段表示同一向量或相等的向量. 2.零向量:起点与终点重合的向量叫做零向量,记为0或0. 3.书写:在手写向量时,在字母上方加上箭头,如a ,AB . 4.模:表示向量a 的有向线段的长度叫做向量的长度或模,记作||a 5.方向:有向线段的方向表示向量的方向. 6.基线:有向线段所在的直线叫做向量的基线. 7.平行向量:如果空间中一些向量的基线互相平行或重合,则这些向量叫做共线向量或平 行向量.a 平行于b 记为a b ∥. 8.向量运算:与平面向量类似; 二、空间向量的基本定理 1.共线向量定理:对空间两个向量a ,b (0b ≠),a b ∥的充要条件是存在实数x ,使a xb =. 2.共面向量:通常我们把平行于同一平面的向量,叫做共面向量. 3.共面向量定理:如果两个向量a ,b 不共线,则向量c 与向量a ,b 共面的充要条件是, 存在唯一的一对实数x ,y ,使c xa yb =+. 4.空间向量分解定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在一 个唯一的有序实数组x ,y ,z ,使p xa yb zc =++.表达式xa yb zc ++,叫做向量a ,b ,c 的线性表示式或线性组合.

注:上述定理中,a ,b ,c 叫做空间的一个基底,记作{}a b c , ,,其中a b c ,,都叫做基向量. 由此定理知,空间任意三个不共面的向量都可以构成空间的一个基底. 三、向量的数量积 1.两个向量的夹角 已知两个非零向量a b ,,在空间任取一点O ,作OA a =,OB b =,则AOB ∠叫做向量a 与b 的夹角,记作a b ??, .通常规定0πa b ??≤,≤.在这个规定下,两个向量的夹角就被唯一确定了,并且a b b a ??=??, ,.如果90a b ??=,°,则称a 与b 互相垂直,记作a b ⊥. 2.两个向量的数量积 已知空间两个向量a ,b ,定义它们的数量积(或内积)为:||||cos a b a b a b ?=??, 空间两个向量的数量积具有如下性质: 1)||cos a e a a e ?=??,;(2)0a b a b ??=; (3)2||a a a =?;(4)a b a b ?||≤||||. 空间两个向量的数量积满足如下运算律: 1)()()a b a b λλ?=?;(2)a b b a ?=?;(3)()a b c a c b c +?=?+?. 四、空间向量的直角坐标运算 前提:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i j k ,,,这三个互相垂直的单位向量构成空间向量的一个基底{}i j k ,,,这个基底叫做单位正交基底. 空间直角坐标系Oxyz ,也常说成空间直角坐标系[]O i j k ;, ,. 1.坐标 在空间直角坐标系中,已知任一向量a ,根据空间向量分解定理,存在唯一数组123()a a a ,,,使123a a i a j a k =++,1a i ,2a j ,3a k 分别叫做向量a 在i j k ,, 方向上的分量,有序实数组123()a a a ,,叫做向量a 在此直角坐标系中的坐标.上式可以简记作123()a a a a =,,. 若123()a a a a =, ,,123()b b b b =,,, 则:112233()a b a b a b a b +=+++, ,;112233()a b a b a b a b -=---,,;

高考数学空间向量与立体几何总复习

空间向量与立体几何总复习一、知识网络构建 二、课标及考纲要求

三、知识要点及考点精析 (一)空间向量及其运算 1.空间向量的概念 在空间,我们把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模. 还需要掌握的几个相关的概念包括相等向量、零向量、共线向量等. 2.空间向量的线性运算 (1)空间向量的加法、减法和数乘运算 平面向量中的三角形法则和平行四边形法则同样适用于空间向量的加(减)法运算.加法运算对于有限个向量求和,交换相加向量的顺序其和不变.三个不共面的向量的和等于以这三个向量为邻边的平行六面体的对角线所表示的向量.加法和数乘运算满足运算律: ①交换律,即a +b =b +a ; ②结合律,即()()+=+a +b c a b+c ; ③分配律,即()λμλμ+a =a +a 及()λλλ=+a +b a b (其中λμ,均为实数). (2)空间向量的基本定理 ① 共线向量定理:对空间向量,a b (0)≠,b a b ∥的充要条件是存在实数λ,使 λa =b . ② 共面向量定理:如果空间向量,a b 不共线,则向量c 与向量a,b 共面的充要条件是,存在惟一的一对实数x y ,,使c =x y a +b . ③ 空间向量基本定理:如果三个向量a , b , c 不共面,那么对空间任一向量p ,存在有序实数组x ,y ,z ,使x y z p =a+b+c .其中{},,a b c 是空间的一个基底,a , b , c 都叫做基向量,该定理可简述为:空间任一向量p 都可以用一个基底{},,a b c 惟一线性表示(线性组合). (3)两个向量的数量积 两个向量的数量积是a ?b= |a||b|cos,数量积有如下性质: a , b , c

空间向量专题讲解

空间向量的概念解析 例1、下列说法中正确的是( ) A.若|a |=|b |,则a,b 的长度相同,方向相同或相反 B.若向量a 是向量b 的相反向量,则|a |=|b | C.空间向量的减法满足结合律 D.在四边形ABCD 中,一定有AB AD AC += 练习 1、给出下列命题:①零向量没有方向;②若两个空间向量相等,则它们的起点相同,终点相同;③若空间向量a,b 满足|a |=|b |,则a=b ;④若空间向量m,n,p 满足m=n,n=p,则m=p ;⑤空间中任意两个单位向量必相等,其中正确命题的个数为( ) A.4 B.3 C.2 D.1 2、下列四个命题: (1)方向相反的两个向量是相反向量 (2)若a,b 满足|a |>|b |,且a,b 同向,则a >b (3)不相等的两个空间向量的模必不相等 (4)对于任何向量a,b ,必有|a+ b |≤|a |+|b | 其中正确命题的序号为( ) A.(1)(2)(3) B.(4) C.(3)(4) D.(1)(4) 空间向量的线性运算 例1、 已知长方体ABCD-A ’B ’C ’D ’,化简下列向量表达式,并标出化简结果的向量 (1)AA CB '-(2)AB B C C D '''''++(3) 111222 AD AB A A '+- 练习 1、如图所示,在正方体ABCD-A 1B 1C 1D 1中,下列各式中运算的结果为向量的共有( ) ①1()AB BC CC ++②11111()AA A D DC ++ ③111()AB BB BC ++④11111()AA A B BC ++ A.1个 B.2个 C.3个 D.4 个

最新高考数学压轴题专题训练(共20题)[1]

1.已知点)1,0(F ,一动圆过点F 且与圆8)1(2 2 =++y x 内切. (1)求动圆圆心的轨迹C 的方程; (2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ; (3)在10<

3.已知点A (-1,0),B (1,0),C (- 5712,0),D (5712 ,0),动点P (x , y )满足AP →·BP → =0,动点Q (x , y )满足|QC →|+|QD →|=10 3 ⑴求动点P 的轨迹方程C 0和动点Q 的轨迹方程C 1; ⑵是否存在与曲线C 0外切且与曲线C 1内接的平行四边形,若存在,请求出一个这样的平行四边形,若不存在,请说明理由; ⑶固定曲线C 0,在⑵的基础上提出一个一般性问题,使⑵成为⑶的特例,探究能得出相应结论(或加强结论)需满足的条件,并说明理由。 4.已知函数f (x )=m x 2+(m -3)x +1的图像与x 轴的交点至少有一个在原点右侧, ⑴求实数m 的取值范围; ⑵令t =-m +2,求[1 t ];(其中[t ]表示不超过t 的最大整数,例如:[1]=1, [2.5]=2, [-2.5]=-3) ⑶对⑵中的t ,求函数g (t )=t +1t [t ][1t ]+[t ]+[1t ]+1的值域。

空间向量及其运算练习题

空间向量及其运算 基础知识梳理 1.空间向量的有关概念 (1)空间向量:在空间中,具有________和________的量叫做空间向量. (2)相等向量:方向________且模________的向量. (3)共线向量:表示空间向量的有向线段所在的直线互相______________的向量. (4)共面向量:________________________________的向量. 2.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是________________________. 推论 如图所示,点P 在l 上的充要条件是: OP →=OA →+t a ①其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →=a , 则①可化为OP →=________或OP →=(1-t )OA →+tOB →. (2)共面向量定理的向量表达式:p =____________,其中x ,y ∈R ,a , b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点 O ,有OP →=____________或OP →=xOM →+yOA →+zOB →,其中x +y +z = ______. (3)空间向量基本定理 如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =____________,把{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向 量a 与b 的夹角,记作____________,其范围是____________,若〈a ,b 〉=π2 ,则称a 与b __________,记作a ⊥b . ②两向量的数量积 已知空间两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作__________,即__________________. (2)空间向量数量积的运算律 ①结合律:(λa )·b =____________;②交换律:a·b =__________; ③分配律:a·(b +c )=__________. 4.空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =________________. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?______________?____________,____________,______________, a ⊥b ?__________?________________________(a ,b 均为非零向量). (3)模、夹角和距离公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =__________________,

空间向量高考题.doc.docx

空间向量高考题 1. 如下图 , 在长方体 ABCD— A1 B1C1 D1中, 已知 AB=4, AD=3, AA1= 2. E、F 分别是线段AB、BC上的点 , 且 EB=FB=1. (Ⅰ)求二面角C— DE—C1的正切值 ; (Ⅱ)求直线 EC1与 FD1所成角的余弦值 . 、如图四棱锥 P—ABCD中底面 ABCD为矩 形AB AD , 侧面 PAD为等 边 2 .,,, =8,=4三角形 , 并且与底面所成二面角为60°. (Ⅰ)求四棱锥P— ABCD的体积 ;(Ⅱ)证明PA⊥BD. 4、如图,α⊥β,α ∩β=l ,∈α,∈β,点 A 在直线 l 上的射影为 1 ,点 A B A B 在直线l 上的射影为1,已知=,1, 1 =,求: B AB 2AA=1BB (Ⅰ)直线 AB分别与平面α,β所成的角的大小;(Ⅱ)二面角A1-AB- B1的大小 .

证∵α⊥β,α∩β=l , AA1⊥l , BB1⊥l ,∴AA1⊥β,BB1⊥α , 则∠ BAB1,∠ ABA1分别是 AB与α和β所成的角 . Rt△BB1A 中, BB1=,AB=2,∴ sin∠BAB1=, ∴∠ BAB1=45°. Rt△AA1B 中, AA1=1,AB=2, ∴sin ∠ABA1=,∴∠ ABA1=30°. 故 AB与平面α,β所成的角分别是45°, 30°. ( Ⅱ) 如图,建立坐标系,则A1( 0, 0, 0), A(0,0, 1), B1(0,1,0), B (,1,0). 在 AB上取一点 F(x,y,z),则存在 t ∈R,使得=t, 即( x,y,z-1)=t() ,∴点 F 的坐标为 (t ,t ,1- t). 要使,须=0,即(,t ,1-t )·(,1,-1)=0, 2t+t-(1 -t)=0 ,解得 t=,∴点 F 的坐标为 () ∴(). 1 ). ∴ 设 E 为 AB 的中点,则点 E 的坐标为( 0, 又 ∴,∴∠A1FE为所求二面角的平面角.

高三数学专项训练:函数值的大小比较

高三数学专项训练:函数值的大小比较 一、选择题1.设112 4 50.5,0.9,log 0.3a b c ,则c b a ,,的大小关系是(). A. b c a B. b a c C. c b a D. c a b 2.设2 lg ,(lg ),lg ,a e b e c e 则( ) A .a b c B .a c b C .c a b D .c b a 3.设 a b c ,,分别是方程1122 2 11 2=log ,() log ,() log ,2 2x x x x x x 的实数根, 则有( ) A. a b c B.c b a C.b a c D.c a b 4.若1 3 (1)ln 2ln ln x e a x b x c x ,,,,,则( ) A . a < b < c B .c

专题11.4 空间向量的应用(专题训练卷)(解析版)

专题11.4 空间向量的应用(专题训练卷) 一、单选题 1.(2020·江苏如东 高一期末)在长方体1111ABCD A B C D -中,2AB BC ==,11AA =,则直线1BC 与平面11BB DD 所成角的正弦值为( ) A . 6 B . 102 C . 155 D . 105 【答案】D 【解析】 以D 点为坐标原点,以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系, 则1(2,0,0),(2,2,0),(0,2,0),A B C C (0,2,1), 1(2,0,1),(2,2,0),BC AC AC ∴=-=-为平面11BB D D 的一个法向量. 110 cos ,558 BC AC ∴<>= =?. ∴直线1BC 与平面11BB DD 10 故选:D . 2.(2020·河北新华 石家庄二中高一期末)在正方体1111ABCD A B C D -中,M N ,分别为AD ,11C D 的中点,O 为侧面11BCC B 的中心,则异面直线MN 与1OD 所成角的余弦值为( )

A.1 6 B. 1 4 C. 1 6 -D. 1 4 - 【答案】A 【解析】 如图,以D为坐标原点,分别以1 ,, DA DC DD所在直线为,, x y z轴建立空间直角坐标系.设正方体的棱长为2,则()( )()() 1 100,012,121,002 M N O D ,,,,,,,,,∴()() 1 1,1,2,1,2,1 MN OD =-=--.则 1 1 1 1 cos, 6 66 MN OD MN OD MN OD ? === ?.∴异面直线 MN与 1 OD所成角的余弦值为 1 6 ,故选A. 3.(2020·辽宁高三其他(文))如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D 所成角的正弦值为() A 6 B 26 C 15 D 10 【答案】D 【解析】 以D点为坐标原点,以DA、DC、1 DD所在的直线为x轴、y轴、z轴,建立空间直角坐标系则A(2,0,

高三数学数列专题训练(含解析)

数列 20.(本小题满分12分) 已知等差数列{}n a 满足:22,5642=+=a a a ,数列{}n b 满足n n n na b b b =+++-12122 ,设数列{}n b 的前n 项和为n S 。 (Ⅰ)求数列{}{}n n b a ,的通项公式; (Ⅱ)求满足1413<

(1)求这7条鱼中至少有6条被QQ 先生吃掉的概率; (2)以ξ表示这7条鱼中被QQ 先生吃掉的鱼的条数,求ξ的分布列及其数学期望E ξ. 18.解:(1)设QQ 先生能吃到的鱼的条数为ξ QQ 先生要想吃到7条鱼就必须在第一天吃掉黑鱼,()177 P ξ== ……………2分 QQ 先生要想吃到6条鱼就必须在第二天吃掉黑鱼,()61667535 P ξ==?= ……4分 故QQ 先生至少吃掉6条鱼的概率是()()()1166735P P P ξξξ≥==+== ……6分 (2)QQ 先生能吃到的鱼的条数ξ可取4,5,6,7,最坏的情况是只能吃到4条鱼:前3天各吃掉1条青鱼,其余3条青鱼被黑鱼吃掉,第4天QQ 先生吃掉黑鱼,其概率为 64216(4)75335P ξ==??= ………8分 ()6418575335 P ξ==??=………10分 所以ξ的分布列为(必须写出分布列, 否则扣1分) ……………………11分 故416586675535353535 E ξ????= +++=,所求期望值为5. (12) 20.∵a 2=5,a 4+a 6=22,∴a 1+d=5,(a 1+3d )+(a 1+5d )=22, 解得:a 1=3,d=2. ∴12+=n a n …………2分 在n n n na b b b =+++-1212 2 中令n=1得:b 1=a 1=3, 又b 1+2b 2+…+2n b n+1=(n+1)a n+1, ∴2n b n+1=(n+1)a n+1一na n . ∴2n b n+1=(n+1)(2n+3)-n (2n+1)=4n+3,

高三数学空间向量一轮复习

第十三章空间向量 1.理解空间向量的概念;掌握空间向量的加法、减法和数乘. 2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算. 3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间的距离公式. 理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直 第1课时 空间向量及其运算 空间向量是平面向量的推广.在空间,任意两个向量都可以通过平移转化为平面向量.因此,空间向量的加减、数乘向量运算也是平面向量对应运算的推广. 本节知识点是: 1.空间向量的概念,空间向量的加法、减法、数乘运算和数量积; (1) 向量:具有和的量. (2) 向量相等:方向且长度. (3) 向量加法法则:. (4) 向量减法法则:. (5) 数乘向量法则:. 2.线性运算律 (1) 加法交换律:a +b =. (2) 加法结合律:(a +b )+c =. (3) 数乘分配律:λ(a +b )=. 3.共线向量 (1)共线向量:表示空间向量的有向线段所在的直线互相或. (2) 共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 等价于存在实数λ,使. 基础过关 知识网络 考纲导读 高考导航 空间向量 定义、加法、减法、数乘运算 数量积 坐标表示:夹角和距离公式 求距离 求空间角 证明平行与垂直

(3) 直线的向量参数方程:设直线l 过定点A 且平行于非零向量a ,则对于空间中任意一点O ,点P 在l 上等价于存在R t ∈,使. 4.共面向量 (1) 共面向量:平行于的向量. (2) 共面向量定理:两个向量a 、b 不共线,则向量P 与向量a 、b 共面的充要条件是存在实数对(y x ,),使P . 共面向量定理的推论:. 5.空间向量基本定理 (1) 空间向量的基底:的三个向量. (2) 空间向量基本定理:如果a ,b ,c 三个向量不共面,那么对空间中任意一个向量p ,存在一个唯一的有序实数组z y x ,,,使. 空间向量基本定理的推论:设O ,A ,B ,C 是不共面的的四点,则对空间中任意一点P ,都存在唯一的有序实数组z y x ,,,使. 6.空间向量的数量积 (1) 空间向量的夹角:. (2) 空间向量的长度或模:. (3) 空间向量的数量积:已知空间中任意两个向量a 、b ,则a ·b =. 空间向量的数量积的常用结论: (a) cos 〈a 、b 〉=; (b) ?a ?2=; (c) a ⊥b ?. (4) 空间向量的数量积的运算律: (a ) 交换律a ·b =; (b ) 分配律a ·(b +c )=. ABCD —A 1B 1C 1D 1中,点F 是侧面CDD 1C 1的中心,若1AA y x ++=,求x -y 的值. 解:易求得0,2 1 =-∴==y x y x 变式训练1.在平行六面体1111D C B A ABCD -中,M 为AC 与BD 的交点,若=11B A a ,=11D A b , =A 1c ,则下列向量中与B 1相等的向量是 ( ) A .-2 1a +2 1b +c B .2 1a +2 1b +c C .2 1a -2 1b +c D .-2 1a -2 1b +c 解:A 例2.底面为正三角形的斜棱柱ABC -A 1B 1C 1中,D 为AC 的中点, 求证:AB 1∥平面C 1BD. 证明:记,,,1c AA b AC a AB ===则 A B C D A 1 B 1

高考专题之空间向量

高考专题之空间向量 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

空间向量专题 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量 也叫做共线向量或平行向量,a 平行于b ,记作b a //。 当我们说向量a 、b 共线(或a //b )时,表示a 、b 的有向线段所在的直线可能是同一直线,也可能是平行直线。 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数 λ,使a =λb 。 4. 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量 p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组 (,,)x y z ,使++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。 (2)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k 表示。 (3)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++,

高三数学专题复习:空间向量

一、知识梳理 【高考考情解读】 高考对本节知识的考查以解答题的形式为主:1.以多面体(特别是棱柱、棱锥或其组合体)为载体,考查空间中平行与垂直的证明、空间角(主要是线面角和二面角)的计算.2.以已知结论寻求成立的条件(或是否存在问题)的探索性问题,考查逻辑推理能力、空间想象能力以及探索能力,是近几年高考命题的新亮点,属中高档问题. 1. 直线与平面、平面与平面的平行与垂直的向量方法 设直线l 的方向向量为a =(a 1,b 1,c 1).平面α,β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3)(以下相同). (1)线面平行:l ∥α?a ⊥μ?a ·μ=0?a 1a 2+b 1b 2+c 1c 2=0. (2)线面垂直:l ⊥α?a ∥μ?a =k μ?a 1=ka 2,b 1=kb 2,c 1=kc 2. (3)面面平行:α∥β?μ∥v ?μ=λv ?a 2=λa 3,b 2=λb 3,c 2=λc 3. (4)面面垂直:α⊥β?μ⊥v ?μ·v =0?a 3a 4+b 3b 4+c 3c 4=0. 2. 直线与直线、直线与平面、平面与平面的夹角计算 设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同). (1)线线夹角:设l ,m 的夹角为θ(0≤θ≤π2),则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21a 22+b 22+c 22 . (2)线面夹角:设直线l 与平面α的夹角为θ(0≤θ≤π2),则sin θ=|a ·μ||a ||μ| =|cos 〈a ,μ〉|. (3)面面夹角:设平面α、β的夹角为θ(0≤θ<π),则|cos θ|=|μ·v ||μ||v | =|cos 〈μ,v 〉|. 提醒 求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析. 3. 求空间距离 直线到平面的距离,两平行平面的距离均可转化为点到平面的距离,点P 到平面α的距 离:d =|PM →·n ||n | (其中n 为α的法向量,M 为α内任一点). 二、课前预习 1.平面α的法向量为m ,向量a 、b 是平面α之外的两条不同的直线的方向向量,给出三个论断:①a ⊥m ;②a ⊥b ;③m ∥b .以其中的两个论断作为条件,余下一个论断作为结论, 写出所有正确的命题______________________. 2.如图,直三棱柱ABC -A 1B 1C 1的底面△ABC 中,CA =CB =1, ∠BCA =90°,棱AA 1=2,则cos 〈BA 1→,CB 1→〉的值为________. 3.如图所示,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,

高中数学--空间向量之法向量求法及应用方法

高中数学空间向量之--平面法向量的求法及其应用 一、 平面的法向量 1、定义:如果α⊥→ a ,那么向量→ a 叫做平面α的法向量。平面α的法向量共有两大类(从方向上分),无数条。 2、平面法向量的求法 方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量(,,1)n x y =[或(,1,)n x z =,或( 1,,)n y z =],在平面α内任找两个不共线的向量,a b 。由n α⊥,得0n a ?=且0n b ?=,由此得到关于,x y 的方程组,解此方程组即可得到n 。 方法二:任何一个z y x ,,的一次次方程的图形是平面;反之,任何一个平面的方程是z y x ,,的一次方程。 0=+++D Cz By Ax )0,,(不同时为C B A ,称为平面的一般方程。其法向量),,(C B A n =→ ;若平面与3个坐 标轴的交点为),0,0(),0,,0(),0,0,(321c P b P a P ,如图所示,则平面方程为:1=++c z b y a x ,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。 方法三(外积法): 设 , 为空间中两个不平行的非零向量,其外积→ → ?b a 为一长度等于θsin ||||→ → b a ,(θ 为 ,两者交角,且πθ<<0),而与 , 皆垂直的向量。通常我们采取「右手定则」,也就是右手四指由 的方向转为 的方向时,大拇指所指的方向规定为→→?b a 的方向,→ →→→?-=?a b b a 。 :),,,(),,,(222111则设z y x b z y x a ==→ → ??=?→ → 21y y b a ,2 1z z 21x x - ,21z z 21x x ???? 21y y (注:1、二阶行列式:c a M = cb ad d b -=;2、适合右手定则。 ) 例1、 已知,)1,2,1(),0,1,2(-==→ → b a , 试求(1):;→ → ?b a (2):.→ →?a b Key: (1) )5,2,1(-=?→ → b a ;)5,2,1()2(-=?→ → a b 例2、如图1-1,在棱长为2的正方体1111ABCD A B C D -中, 求平面AEF 的一个法向量n 。 )2,2,1(:=?=→ →→AE AF n key 法向量

2018高考――空间向量与立体几何(理科)

第14讲 空间向量与立体几何 知识要点 一.空间向量 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示 (2)向量具有平移不变性 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 +=+=; b a OB OA BA -=-=; 运算律:⑴加法交换律:a b b a ? ??ρ+=+ ⑵加法结合律:)()(c b a c b a ? ???ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向 量,a ρ 平行于b ρ,记作b a ρ?//。 (2)共线向量定理:空间任意两个向量a ρ、b ρ(b ρ≠0ρ),a ρ//b ρ存在实数λ,使a ρ =λb ρ。 (3)三点共线:A 、B 、C 三点共线<=> AC AB λ= <=>y x += (1=+y x 其中) (4)与a 共线的单位向量为a ± 4. 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件是存在实数, x y 使 p xa yb =+r r r 。 (3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=> )1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量p r ,存在一个唯一的有 序实数组,,x y z ,使p xa yb zc =++r r r r 。 若三向量,,a b c r r r 不共面,我们把{,,}a b c r r r 叫做空间的一个基底,,,a b c r r r 叫做基向量,空间任意 三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z , 使z y x ++= 。 6. 空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz - 中,对空间任一点A ,存在唯一的有序实数组(,,)x y z , ++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作 (,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。 注:①点A (x,y,z )关于x 轴的的对称点为(x,-y,-z),关于xoy 平面的对称点为(x,y,-z).即点关于什么轴/平面对称,什么坐标不变,其余的分坐标均相反。②在y 轴上的点设为(0,y,0),在平面yOz 中的点设为(0,y,z) (2)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k r r r 表 示。空间中任一向量 k z j y i x a ++==(x,y,z ) (3)空间向量的直角坐标运算律: ①若123(,,)a a a a =r ,123(,,)b b b b =r ,则112233(,,)a b a b a b a b +=+++r r ,

相关主题
文本预览
相关文档 最新文档