当前位置:文档之家› 抽屉原理例习题

抽屉原理例习题

抽屉原理例习题
抽屉原理例习题

8-2抽屉原理

教学目标

抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。本讲的主要教学目标是:

1.理解抽屉原理的基本概念、基本用法;

2.掌握用抽屉原理解题的基本过程;

3. 能够构造抽屉进行解题;

4. 利用最不利原则进行解题;

5.利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。

知识点拨

一、知识点介绍

抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.

二、抽屉原理的定义

(1)举例

桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

(2)定义

一般情况下,把n+1或多于n+1个苹果放到n个抽屉里,其中必定至少有一个抽屉里至少有两个

苹果。我们称这种现象为抽屉原理。

三、抽屉原理的解题方案

(一)、利用公式进行解题

苹果÷抽屉=商……余数

余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里

(2)余数=x ()()11x n -, 结论:至少有(商+1)个苹果在同一个抽屉里

(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里

(二)、利用最值原理解题

将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.

模块一、利用抽屉原理公式解题

(一)、直接利用公式进行解题

(1)求结论 【例 1】 6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?

【解析】 6只鸽子要飞进5个笼子,如果每个笼子装1只,这样还剩下1只鸽子.这只鸽子可以任意飞进

其中的一个笼子,这样至少有一个笼子里有2只鸽子.所以这句话是正确的.

利用刚刚学习过的抽屉原理来解释这个问题,把鸽笼看作“抽屉”,把鸽子看作“苹果”,

6511÷= ,112+=(只)把6个苹果放到5个抽屉中,每个抽屉中都要有1个苹果,那么

肯定有一个抽屉中有两个苹果,也就是一定有一个笼子里有2只鸽子.

【巩固】 把9条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼.

【解析】 在8个鱼缸里面,每个鱼缸放一条,就是8条金鱼;还剩下的一条,任意放在这8个鱼缸其中的

任意一个中,这样至少有一个鱼缸里面会放有两条金鱼.

【巩固】 教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业 试说明:这5名

学生中,至少有两个人在做同一科作业.

【解析】 将5名学生看作5个苹果 将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉 由抽

屉原理,一定存在一个抽屉,在这个抽屉里至少有2个苹果.即至少有两名学生在做同一科的

作业.

【巩固】 年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生

日.”你知道张老师为什么这样说吗?

【解析】 先想一想,在这个问题中,把什么当作抽屉,一共有多少个抽屉?从题目可以看出,这道题显

知识精讲

然与月份有关.我们知道,一年有12个月,把这12个月看成12个抽屉,这道题就相当于把13个苹果放入12个抽屉中.根据抽屉原理,至少有一个抽屉放了两个苹果.因此至少有两个同学在同一个月过生日.

【总结】题目中并没有说明什么是“抽屉”,什么是“物品”,解题的关键是制造“抽屉”,确定假设的“物品”,根据“抽屉少,物品多”转化为抽屉原理来解.

【巩固】数学兴趣小组有13个学生,请你说明:在这13个同学中,至少有两个同学属相一样.

【解析】属相共12个,把12个属相作为12个“抽屉”,13个同学按照自己的属相选择相应的“抽屉”,根据抽屉原理,一定有一个“抽屉”中有两个或两个以上同学,也就是说至少有两个同学属相一样.

【巩固】光明小学有367名2000年出生的学生,请问是否有生日相同的学生?

【解析】一年最多有366天,把366天看作366个“抽屉”,将367名学生看作367个“苹果”.这样,把367个苹果放进366个抽屉里,至少有一个抽屉里不止放一个苹果.这就说明,至少有2名同学的生日相同.

【巩固】用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相同.

【解析】五种颜色最多只能涂5个不同颜色的面,因为正方体有6个面,还有一个面要选择这五种颜色中的任意一种来涂,不管这个面涂成哪种颜色,都会和前面有一个面颜色相同,这样就有两个面会被涂上相同的颜色.也可以把五种颜色作为5个“抽屉”,六个面作为六个物品,当把六个面随意放入五个抽屉时,根据抽屉原理,一定有一个抽屉中有两个或两个以上的面,也就是至少会有两个面涂色相同.

【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天?

【解析】一年最多有366天,可看做366个抽屉,730个学生看做730个苹果.因为7303661364

÷=,所以,至少有1+1=2(个)学生的生日是同一天.

【巩固】试说明400人中至少有两个人的生日相同.

【解析】将一年中的366天或365天视为366个或365个抽屉,400个人看作400个苹果,从最极端的情况考虑,即每个抽屉都放一个苹果,还有35个或34个苹果必然要放到有一个苹果的抽屉里,所以至少有一个抽屉有至少两个苹果,即至少有两人的生日相同.

【例 3】三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩.

【解析】方法一:情况一:这三个小朋友,可能全部是男,那么必有两个小朋友都是男孩的说法是正确的;

情况二:这三个小朋友,可能全部是女,那么必有两个小朋友都是女孩的说法是正

确的;

情况三:这三个小朋友,可能其中1男2女那么必有两个小朋友都是女孩说法是正确

的;

情况四:这三个小朋友,可能其中2男1女,那么必有两个小朋友都是男孩的说法是

正确的.所以,三个小朋友在一起玩,其中必有两个小朋友都是男孩或者

都是女孩的说法是正确的;

方法二:三个小朋友只有两种性别,所以至少有两个人的性别是相同的,所以必有两个小朋友都是男孩或者都是女孩.

【例 4】“六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.

【解析】假设共有n个小朋友到公园游玩,我们把他们看作n个“苹果”,再把每个小朋友遇到的熟人数目看作“抽屉”,那么,n个小朋友每人遇到的熟人数目共有以下n种可能:0,1,2,……,

n-个熟人,所以n-.其中0的意思是指这位小朋友没有遇到熟人;而每位小朋友最多遇见1

1

共有n个“抽屉”.下面分两种情况来讨论:

⑴如果在这n个小朋友中,有一些小朋友没有遇到任何熟人,这时其他小朋友最多只能遇上

n-种可能:0,1,2,……,2

n-.这样,“苹果”数(n个n-个熟人,这样熟人数目只有1

2

小朋友)超过“抽屉”数(1

n-种熟人数目),根据抽屉原理,至少有两个小朋友,他们遇到的熟人数目相等.

⑵如果在这n个小朋友中,每位小朋友都至少遇到一个熟人,这样熟人数目只有1

n-种可能:1,2,3,……,1

n-种熟人数目),

n-.这时,“苹果”数(n个小朋友)仍然超过“抽屉”数(1根据抽屉原理,至少有两个小朋友,他们遇到的熟人数目相等.

总之,不管这n个小朋友各遇到多少熟人(包括没遇到熟人),必有两个小朋友遇到的熟人数目相等.

【巩固】五年级数学小组共有20名同学,他们在数学小组中都有一些朋友,请你说明:至少有两名同学,他们的朋友人数一样多.

【解析】数学小组共有20名同学,因此每个同学最多有19个朋友;又由于他们都有朋友,所以每个同学至少有1个朋友.因此,这20名同学中,每个同学的朋友数只有19种可能:1,2,3,……,19.把这20名同学看作20个“苹果”,又把同学的朋友数目看作19个“抽屉”,根据抽屉原理,至少有2名同学,他们的朋友人数一样多.

【例 5】在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?

【解析】因为任何整数除以3,其余数只可能是0,1,2三种情形.我们将余数的这三种情形看成是三个“抽屉”.一个整数除以3的余数属于哪种情形,就将此整数放在那个“抽屉”里.将四个自然数放入三个抽屉,至少有一个抽屉里放了不止一个数,也就是说至少有两个数除以3的余数相同(需要对学生利用余数性质进行解释:为什么余数相同,则差就能被整除).这两个数的差必能被3整除.

【巩固】四个连续的自然数分别被3除后,必有两个余数相同,请说明理由.

【解析】想一想,不同的自然数被3除的余数有几类?在这道题中,把什么当作抽屉呢?

把这四个连续的自然数分别除以3,其余数不外乎是0,1,2,把这3个不同的余数当作3个

“抽屉”,把这4个连续的自然数按照被3除的余数,分别放入对应的3个“抽屉”中,根据

抽屉原理,至少有两个自然数在同一个抽屉里,也就是说,至少有两个自然数除以3的余数相

同.

【例 6】 证明:任取8个自然数,必有两个数的差是7的倍数.

【解析】 在与整除有关的问题中有这样的性质,如果两个整数a 、b ,它们除以自然数m 的余数相同,

那么它们的差a b -是m 的倍数.根据这个性质,本题只需证明这8个自然数中有2个自然数,

它们除以7的余数相同.我们可以把所有自然数按被7除所得的7种不同的余数0、1、2、3、

4、5、6分成七类.也就是7个抽屉.任取8个自然数,根据抽屉原理,必有两个数在同一个抽屉

中,也就是它们除以7的余数相同,因此这两个数的差一定是7的倍数.

【巩固】 证明:任取6个自然数,必有两个数的差是5的倍数。

【解析】 把自然数按照除以5的余数分成5个剩余类,即5个抽屉.任取6个自然数,根据抽屉原理,至

少有两个数属于同一剩余类,即这两个数除以5的余数相同,因此它们的差是5的倍数。

【巩固】 (第八届《小数报》数学竞赛决赛)将全体自然数按照它们个位数字可分为10类:个位数字

是1的为第1类,个位数字是2的为第2类,…,个位数字是9的为第9类,个位数字是0的

为第10类.(1)任意取出6个互不同类的自然数,其中一定有2个数的和是10的倍数吗?

(2)任意取出7个互不同类的自然数,其中一定有2个数的和是10的倍数吗?如果一定,请

煎药说明理由;如果不一定,请举出一个反例.

【解析】 (1)不一定有.例如1、2、3、4、5、10这6个数中,任意两个数的和都不是10的倍数.

(2)一定有.将第1类与第9类合并,第2类与第8类合并,第3类与第7类合并,第4类

与第6类合并,制造出4个抽屉;把第5类、第10类分别看作1个抽屉,共6个抽屉.任意

7个互不同类的自然数,放到这6个抽屉中,至少有1个抽屉里放2个数.因为7个数互不同

类,所以后两个抽屉中每个都不可能放两个数.当两个互不同类的数放到前4个抽屉的任何一

个里面时,它们的和一定是10的倍数.

【巩固】 证明:任给12个不同的两位数,其中一定存在着这样的两个数,它们的差是个位与十位数字

相同的两位数.

【解析】 两位数除以11的余数有11种:0,1,2,3,4,5,6,7,8,9,10,按余数情况把所有两

位数分成11种.12个不同的两位数放入11个抽屉,必定有至少2个数在同一个抽屉里,这2

个数除以11的余数相同,两者的差一定能整除11.两个不同的两位数,差能被11整除,这个

差也一定是两位数(如11,22……),并且个位与十位相同. 所以,任给12个不同的两位

数,其中一定存在着这样的两个数,它们的差是个位与十位数字相同的两位数.

【例 7】 任给11个数,其中必有6个数,它们的和是6的倍数.

【解析】 设这11个数为1a ,2a ,3a ,……,11a ,由5个数的结论可知,在1a ,2a ,3a ,4a ,5a 中必有

3个数,其和为3的倍数,不妨设12313a a a k ++=;在4a ,5a ,6a ,7a ,8a 中必有3个数,其

和为3的倍数,不妨设45623a a a k ++=;在7a ,8a ,9a ,10a ,11a 中必有3个数,其和为3的

倍数,不妨设78933a a a k ++=.又在1k ,2k ,3k 中必有两个数的奇偶性相同,不妨设1k ,2k 的

奇偶性相同,那么1233k k +是6的倍数,即1a ,2a ,3a ,4a ,5a ,6a 的和是6的倍数.

【巩固】 在任意的五个自然数中,是否其中必有三个数的和是3的倍数?

【解析】 至多有两个数在同一个抽屉里,那么每个抽屉里都有数,在每个抽屉里各取一个数,这三个数

被3除的余数分别为0,1,2.因此这三个数之和能被3整除.综上所述,在任意的五个自然

数中,其中必有三个数的和是3的倍数.

【例 8】 任意给定2008个自然数,证明:其中必有若干个自然数,和是2008的倍数(单独一个数也当做

和).

【解析】 把这2008个数先排成一行:1a ,2a ,3a ,……,2008a ,

第1个数为1a ;

前2个数的和为12a a +;

前3个数的和为123a a a ++;

……

前2008个数的和为122008a a a +++.

如果这2008个和中有一个是2008的倍数,那么问题已经解决;如果这2008个和中没有

2008的倍数,那么它们除以2008的余数只能为1,2,……,2007之一,根据抽屉原理,必

有两个和除以2008的余数相同,那么它们的差(仍然是1a ,2a ,3a ,……,2008a 中若干个数的

和)是2008的倍数.所以结论成立.

【巩固】 20道复习题,小明在两周内做完,每天至少做一道题.证明:小明一定在连续的若干天内恰好

做了7道题目.

【解析】 设小明第1天做了1a 道题,前2天共做了2a 道题,前3天共做了3a 道题,……,前14天共做

了14a 道题.显然1420a =,而1a ~13a 都小于20.考虑1a ,2a ,3a ,……,14a 及17a +,

27a +,37a +,……,147a +这28个数,它们都不超过27.

根据抽屉原理,这28个数中必有两个数相等.由于1a ,2a ,3a ,……,14a 互不相等,17a +,

27a +,37a +,……,147a +也互不相等,因而这两个相等的数只能一个在前一组,另一个在

后一组中,即有:7j i a a =+,所以7j i a a -=.这表明从第1i +天到第j 天,小明恰好做了7

道题.

【例 9】 求证:可以找到一个各位数字都是4的自然数,它是1996的倍数.

【解析】

19964499÷=,下面证明可以找到1个各位数字都是1的自然数,它是499的倍数. 取500个数:1,11,111,……,111……1(500个1).用499去除这500个数,得到

500个余数1a ,2a ,3a ,…,500a .由于余数只能取0,1,2,…,498这499个值,所以根

据抽屉原则,必有2个余数是相同的,这2个数的差就是499的倍数,差的前若干位是1,后

若干位是0:

11…100…0.又499和10是互质的,所以它的前若干位由1组成的自然数是499的倍数,

将它乘以4,就得到一个各位数字都是4的自然数,这是1996的倍数.

【巩固】 任意给定一个正整数n ,一定可以将它乘以适当的整数,使得乘积是完全由0和7组成的数.

【解析】 考虑如下1n +个数:7,77,777,……,77

7n 位,1777n +位,这1n +个数除以n 的余数只能为

0,1,2,……,1n -中之一,共n 种情况,根据抽屉原理,其中必有两个数除以n 的余数相

同,不妨设为77

7p 位和777q 位(p q >),那么()777777777000p q p q q --=位位位

位是n 的倍数,所以n 乘以适当的整数,可以得到形式为()77

7000p q q -位

位的数,即由0和7组成的数. 【例 10】 求证:对于任意的8个自然数,一定能从中找到6个数a ,b ,c ,d ,e ,f ,使得

()()()a b c d e f ---是105的倍数.

【解析】 105357=??.我们可以写出下列数字谜()()()a b c d e f 使其结果为105的倍数,那么我们的

思路是使第一个括号里是7的倍数,第二个括号里是5的倍数,第三个括号里是3的倍数,那

么对于如果六个数字里有7的倍数,那么第一个括号里直接做乘法即可,如果没有7的倍数,

那么我们做如下抽屉:

{除以7的余数是1或者是6}

{除以7的余数是2或者是5}

{除以7的余数是3或者是4}

那么六个数字肯定有两个数字在同一个抽屉里,那么这两个数如果余数相同,做减法就可以得

到7的倍数,如果余数不同,做加法就可以得到7的倍数.

这样剩下的4个数中,同理可得后面的括号里也可以组合出5和3的倍数.于是本题可以证明.

【巩固】 (2008年中国台湾小学数学竞赛决赛(一)在100张卡片上不重复地编上1~100,至少要随意

抽出几张卡片才能保证所抽出的卡片上的数之乘积可被12整除?

【解析】 21223=?,因为3的倍数有100333??=????

个,所以不是3的倍数的数一共有1003367-=(个),抽取这67个数无法保证乘积是3的倍数,但是如果抽取68个数,则必定存在一个数是3的倍

数,又因为奇数只有50个,所以抽取的偶数至少有18个,可以保证乘积是4的倍数,从而可以

保证乘积是12的倍数。于是最少要抽取68个数(即:68张卡片)才可以保证结果。

【例 11】 把1、2、3、…、10这十个数按任意顺序排成一圈,求证在这一圈数中一定有相邻的三个数之

和不小于17.

【解析】 (法1)把这一圈从某一个数开始按顺时针方向分别记为1a 、2a 、3a 、…、10a .相邻的三个数为

一组,有123a a a 、234a a a 、345a a a 、…、9101a a a 、1012a a a 共10组.

这十组三个数之和的总和为:

()()()()12323410121210+++3355165a a a a a a a a a a a a ++++++=+++=?=,

16516105=?+,根据抽屉原理,这十组数中至少有一组数的和不小于17.

(法2)在10个数中一定有一个数是1,不妨设101a =,除去10a 之外,把1a 、2a 、3a 、…、9

a 这9个数按顺序分为三组123a a a 、456a a a 、789a a a .因为这三组数之和的总和为:

()()()123456789++231054a a a a a a a a a ++++++=++

+=,根据抽屉原理,这三组数中至少

有一组数之和不小于17.

【巩固】 圆周上有2000个点,在其上任意地标上0,1,2,,1999(每一点只标一个数,不同的点标上不同

的数).证明必然存在一点,与它紧相邻的两个点和这点上所标的三个数之和不小于2999

【解析】 把这一圈从某一个数开始按顺时针方向分别记为1a 、2a 、3a 、…、2000a .相邻的三个数为一

组,有123a a a 、234a a a 、345a a a 、…、199920001a a a 、200012a a a 共2000组.

这2000组三个数之和的总和为:

()()()()123234************+++33(1231999)5997000a a a a a a a a a a a a ++++++=++

+=?+++=5997000299820001000=?+,根据抽屉原理,这两千组数中至少有一组数的和不小于2999.

【例 12】 证明:在任意的6个人中必有3个人,他们或者相互认识,或者相互不认识.

【解析】 把这6个人看作6个点,每两点之间连一条线段,两人相互认识的话将线段涂红色,两人不认

识的话将线段涂上蓝色,那么只需证明其中有一个同色三角形即可.从这6个点中随意选取一

点A ,从A 点引出的5条线段,根据抽屉原理,必有3条的颜色相同,不妨设有3条线段为红

色,它们另外一个端点分别为B 、C 、D ,那么这三点中只要有两点比如说B 、C 之间的线段

是红色,那么A 、B 、C 3点组成红色三角形;如果B 、C 、D 三点之间的线段都不是红色,

那么都是蓝色,这样B 、C 、D 3点组成蓝色三角形,也符合条件.所以结论成立.

【巩固】 平面上给定6个点,没有3个点在一条直线上.证明:用这些点做顶点所组成的一切三角形

中,一定有一个三角形,它的最大边同时是另外一个三角形的最小边.

【解析】 我们先把题目解释一下.一般情况下三角形的三条边的长度是互不相等的,因此必有最大边和

最小边.在等腰三角形(或等边三角形中),会出现两条边,甚至三条边都是最大边(或最小边).

我们用染色的办法来解决这个问题.分两步染色:

第一步:先将每一个三角形中的最大边涂上同一种颜色,比如红色;第二步,将其它的未涂色

的线段都涂上另外一种颜色,比如蓝色.

这样,我们就将所有三角形的边都用红、蓝两色涂好.根据上题题的结论可知,这些三角形中

至少有一个同色三角形.由于这个同色三角形有自己的最大边,而最大边涂成红色,所以这个

同色三角形必然是红色三角形.由于这个同色三角形有自己的最小边,而这条最小边也是红色

的,说明这条最小边必定是某个三角形的最大边.结论得证.

【巩固】 假设在一个平面上有任意六个点,无三点共线,每两点用红色或蓝色的线段连起来,都连好

后,问你能不能找到一个由这些线构成的三角形,使三角形的三边同色?

【解析】 从这6个点中随意选取一点A ,从A 点引出的5条线段,根据抽屉原理,必有3条的颜色相

同,不妨设有3条线段为红色,它们另外一个端点分别为B 、C 、D ,那么这三点中只要有两

点比如说B 、C 之间的线段是红色,那么A 、B 、C 3点组成红色三角形;如果B 、C 、D 三

点之间的线段都不是红色,那么都是蓝色,这样B 、C 、D 3点组成蓝色三角形,也符合条

件.所以结论成立.(可以拓展玩转数学)

【巩固】 平面上有17个点,两两连线,每条线段染红、黄、蓝三种颜色中的一种,这些线段能构成若

干个三角形.证明:一定有一个三角形三边的颜色相同.

【解析】 从这17个点钟任取一个点A ,把A 点与其它16个点相连可以得到16条线段,根据抽屉原

理,其中同色的线段至少有6条,不妨设为红色.考虑这6条线段的除A 点外的6个端点:

⑴如果6个点两两之间有1条红色线段,那么就有1个红色三角形符合条件;

⑵如果6个点之间没有红色线段,也就是全为黄色和蓝色,由上面的2题可知,这6个点中必

有3个点,它们之间的线段的颜色相同,那么这样的三角形就符合条件.

综上所述,一定存在一个三角形满足题目要求.

【例 13】上体育课时,21名男、女学生排成3行7列的队形做操.老师是否总能从队形中划出一个长方形,使得站在这个长方形4个角上的学生或者都是男生,或者都是女生?如果能,请说明理

由;如果不能,请举出实例.

【解析】因为只有男生或女生两种情况,所以第1行的7个位置中至少有4个位置同性别.为了确定起见,不妨设前4个位置同是男生,如果第二行的前4个位置有2名男生,那么4个角同是男生的情况已经存在,所以我们假定第二行的前4个位置中至少有3名女生,不妨假定前3个是女生.又第三行的前3个位置中至少有2个位置是同性别学生,当是2名男生时与第一行构成一个四角同性别的矩形,当有2名女生时与第二行构成四角同性别的矩形.所以,不论如何,总能从队形中划出一个长方形,使得站在这个长方形4个角上的学生同性别.问题得证.

【例 14】8个学生解8道题目.(1)若每道题至少被5人解出,请说明可以找到两个学生,每道题至少被过两个学生中的一个解出.(2)如果每道题只有4个学生解出,那么(1)的结论一般不成

立.试构造一个例子说明这点.

【解析】(1)先设每道题被一人解出称为一次,那么8道题目至少共解出5?8=40次,分到8个学生身上,至少有一个学生解出了5次或5次以上题目,即这个学生至少解出5道题,称这个学生为A,我们讨论以下4种可能:

第一种可能:若A只解出5道题,则另3道题应由其他7个人解出,而3道题至少共被解出3?5=15次,分到7个学生身上,至少有一名同学解出了3次或3次以上的题目(15=2?7+1,由抽屉原则便知)由于只有3道题,那么这3道题被一名学生全部解出,记这名同学为B.那么,每道题至少被A、B两名同学中某人解出.

第二种可能:若A解出6道题,则另2道题应由另7人解出,而2道题至少共被解出2×5=10次,分到7个同学身上,至少有一名同学解出2次或2次以上的题目(10=1?7+3,由抽屉原则便知).与l第一种可能I同理,这两道题必被一名学生全部解出,记这名同学为C.那么,每道题目至少被A、C学生中一人解出.

第三种可能:若A 解出7道题目,则另一题必由另一人解出,记此人为D .那么,每道题目至

少被A 、D 两名学生中一人解出.

第四种可能:若A 解出8道题目,则随意找一名学生,记为E ,那么,每道题目至少被A 、E

两名学生中一人解出,所以问题(1)得证.

(2)类似问题(1)中的想法,题目共被解出8?4=32次,可以使每名学生都解出4次,那么每人

解出4道题.随便找一名学生,必有4道未被他解出,这4道题共被7名同学解出4?4=16次,由于16=2×7+2,可以使每名同学解出题目不超过3道,这样就无法找到两名学生,使每

道题目至少被其中一人解出.

具体构造如下表,其中汉字代表题号,数字代表学生,打√代表该位置对应的题目被该位置对应

的学生解出.

【巩固】 试卷上共有4道选择题,每题有3个可供选择的答案.一群学生参加考试,结果是对于其

中任何3人,都有一个题目的答案互不相同.问参加考试的学生最多有多少人?

【解析】 设总人数为A ,再由分析可设第一题筛选取出的人数为1A ,第二题筛选的人数为2A ,第三题筛

选取的人数为3A ,第四题筛选的人数为4A .如果不能满足题目要求,则:4A 至少是3,即3

个人只有两种答案.由于4A 是3A 人做第四题后筛选取出的人数,则由抽屉原则知,

(两种答案)中至少放有333A A ??-????个苹果(即4A ).333A A ??-????

=4A =3,则A3至少为4,即4人只有两种答案.由于3A 是2A 人做第三题后筛选的人数,则由抽屉原则知,将2A 个苹果放久三个

抽屉(三种答案),那么必然有两个抽屉(两种答案)中至少放有223A A ??

-????个苹果(即3A ).223A A ??-????=3A =4,则2A 至少为5,即5人只有两种答案.同理,有113A A ??-????

=2A =5

则1A 至少为7,即做完第一道题必然有7个人只有两种答案;则有003A A ??

-????

=1A =7.则0A 至少为10,即当有10人参加考试时无法满足题目的要求.考虑9名学生参加考试,令每人答题

情况如下表所示(汉字表示题号,数字表示学生).故参加考试的学生最多有9人.

(2)求抽屉

【例 15】 把十只小兔放进至多几个笼子里,才能保证至少有一个笼里有两只或两只以上的小兔?

【解析】 要想保证至少有一个笼里有两只或两只以上的小兔,把小兔子当作“物品”,把“笼子”当作

“抽屉”,根据抽屉原理,要把10只小兔放进1019-=个笼里,才能保证至少有一个笼里有两只或两只以上的小兔.

【例 16】 把125本书分给五⑵班的学生,如果其中至少有一个人分到至少4本书,那么,这个班最多有

多少人?

【解析】 本题需要求抽屉的数量,需要反用抽屉原理和最“坏”情况的结合,最坏的情况是只有1个人

分到4本书,而其他同学都只分到3本书,则()12543401-÷=,因此这个班最多有:

40141+=(人)(处理余数很关键,如果有42人则不能保证至少有一个人分到4本书).

【巩固】 某次选拔考试,共有1123名同学参加,小明说:“至少有10名同学来自同一个学校.”如果

他的说法是正确的,那么最多有多少个学校参加了这次入学考试?

【解析】 本题需要求抽屉的数量,反用抽屉原理和最“坏”情况的结合,最坏的情况是只有10个同学来

自同一个学校,而其他学校都只有9名同学参加,则()1123109123

6-÷=,因此最多有:1231124+=个学校(处理余数很关键,如果有125个学校则不能保证至少有10名同学来自同一

个学校)

【巩固】 100个苹果最多分给多少个学生,能保证至少有一个学生所拥有的苹果数不少于12个.

【解析】 从不利的方向考虑:当分苹果的学生多余某一个数时,有可能使每个学生分得的学生少于12

个,求这个数. 100个按每个学生分苹果不多于11个(即少于12个)苹果,最少也要分10人

(9人11个苹果,还有一人一个苹果),否则9×11<100,所以只要分苹果的学生不多余9

人就能使保证至少有一个学生所拥有的苹果数不少于12个(即多于11个).答案为9.

【例 17】 某班有16名学生,每个月教师把学生分成两个小组.问最少要经过几个月,才能使该班的任

意两个学生总有某个月份是分在不同的小组里?

【解析】 经过第一个月,将16个学生分成两组,至少有8个学生分在同一组,下面只考虑这8个学生.

经过第二个月,将这8个学生分成两组,至少有4个学生是分在同一组,下面只考虑这4个学生.

经过第三个月,将这4个学生分成两组,至少有2个学生仍分在同一组,这说明只经过3个月是无法满足题目要求的.如果经过四个月,将每个月都一直保持同组的学生一分为二,放人两个组,那么第一个月保持同组的人数为16÷2=8人,第二个月保持同组的人数为8÷2=4人,第三个月保持同组人数为4÷2=2人,这说明照此分法,不会有2个人一直保持在同一组内,即满足题目要求,故最少要经过4个月.

(3)求苹果

【例 18】班上有50名小朋友,老师至少拿几本书,随意分给小朋友,才能保证至少有一个小朋友能得到不少于两本书?

【解析】把50名小朋友当作50个“抽屉”,书作为物品.把书放在50个抽屉中,要想保证至少有一个抽屉中有两本书,根据抽屉原理,书的数目必须大于50,而大于50的最小整数是50151

+=,所以至少要拿51本书.

【巩固】班上有28名小朋友,老师至少拿几本书,随意分给小朋友,才能保证至少有一个小朋友能得到不少于两本书?

【解析】老师至少拿29本书,随意分给小朋友,才能保证至少有一个小朋友能得到不少于两本书.

【巩固】有10只鸽笼,为保证至少有1只鸽笼中住有2只或2只以上的鸽子.请问:至少需要有几只鸽子?

【解析】有10只鸽笼,每个笼子住1只鸽子,一共就是10只.要保证至少有1只鸽笼中住有2只或2只以上的鸽子.那么至少需要11只鸽子,这多出的1只鸽子会住在这10个任意一个笼子里.这样就有1个笼子里住着2只鸽子.所以至少需要11只鸽子.

【巩固】三年级二班有43名同学,班上的“图书角”至少要准备多少本课外书,才能保证有的同学可以同时借两本书?

【解析】把43名同学看作43个抽屉,根据抽屉原理,要使至少有一个抽屉里有两个苹果,那么就要使苹果的个数大于抽屉的数量.因此,“图书角”至少要准备44本课外书.

【例 19】海天小学五年级学生身高的厘米数都是整数,并且在140厘米到150厘米之间(包括140厘米到150厘米),那么,至少从多少个学生中保证能找到4个人的身高相同?

【解析】陷阱:以前的题基本全是2个人的,而这里出现4个人,那么,就“从倍数关系选”。认真思考,此题中应把什么看作抽屉?有几个抽屉?

在140厘米至150厘米之间(包括140厘米到150厘米)共有11个整厘米数,把这11个整厘米数看作11个抽屉,每个抽屉中放3个整厘米数,就要11333

?=个整厘米数,如果再取出一个整厘米数,放入相应的抽屉中,那么这个抽屉中便有4个整厘米数,也就是至少找出33134

+=个学生,才能找到4个人的身高相同.

【例 20】一次数学竞赛出了10道选择题,评分标准为:基础分10分,每道题答对得3分,答错扣 1分,不答不得分。问:要保证至少有4人得分相同,至少需要多少人参加竞赛?

【解析】由题目条件这次数学竞赛的得分可以从10-10=0分到10+3×10=40分,但注意到39、38、

35这3个分数是不可能得到的,要保证至少有4人得分相同,至少需要3×(41-3)+1=115人.

【巩固】(第十届《小数报》数学竞赛决赛)一次测验共有10道问答题,每题的评分标准是:回答完全正确,得5分;回答不完全正确,得3分,回答完全错误或不回答,得0分.至少____人参加这次测验,才能保证至少有3人得得分相同.

【解析】根据评分标准可知,最高得分为50分,最低得分为0分,在0~50分之间,1分,2分,4分,7分,47分,49分不可能出现.共有51645

-=(种)不同得分.根据抽屉原理,至少有?+=(人)参赛,才能保证至少有3人得分相同.

452191

(二)、构造抽屉利用公式进行解题

【例 21】在一只口袋中有红色、黄色、蓝色球若干个,小聪明和其他六个小朋友一起做游戏,每人可以从口袋中随意取出2个球,那么不管怎样挑选,总有两个小朋友取出的两个球的颜色完全一

样.你能说明这是为什么吗?

【解析】从三种颜色的球中挑选两个球,可能情况只有下面6种:

红、红;黄、黄;蓝、蓝;红、黄;红、蓝;黄、蓝,

我们把6种搭配方式当作6个“抽屉”,把7个小朋友当作7个“苹果”,根据抽屉原理,至少有两个“苹果”要放进一个“抽屉”中,也就是说,至少有两个人挑选的颜色完全一样.

【巩固】在一只口袋中有红色与黄色球各4只,现有4个小朋友,每人从口袋中任意取出2个小球,请你证明:必有两个小朋友,他们取出的两个球的颜色完全一样.

【解析】小朋友从口袋中取出的两个球的颜色的组成只有以下3种可能:红红、黄黄、红黄,把这3种情况看作3个“抽屉”,把4位小朋友看作4只“苹果”,根据抽屉原理,必有两个小朋友取出的两个球的颜色完全一样.

【巩固】篮子里有苹果、梨、桃和桔子,现有若干个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友才能保证有两个小朋友拿的水果是相同的?

【解析】首先应弄清不同的水果搭配有多少种.两个水果是相同的有4种,两个水果不同有6种:苹果和梨、苹果和桃、苹果和桔子、梨和桃、梨和桔子、桃和桔子.所以不同的水果搭配共有

+=(种).将这10种搭配作为10个“抽屉”.由抽屉原理知至少需11个小朋友才能保4610

证有两个小朋友拿的水果是相同的

【巩固】学校里买来数学、英语两类课外读物若干本,规定每位同学可以借阅其中两本,现有4位小朋友前来借阅,每人都借了2本.请问,你能保证,他们之中至少有两人借阅的图书属于同一种吗?

【解析】每个小朋友都借2本有三种可能:数数,英英,数英.第4个小朋友无论借什么书,都可能是这三种情况中的一种,这样就有两个同学借的是同一类书,所以可以保证,至少有2位小朋友,他们所借阅的两本书属于同类.

总结:此题如用简单乘法原理的话,有难度,因为涉及到简单加法原理,所以推荐使用列表

法。与之前不同的是,本题借阅的书只说了两本并没说其他要求,所以可以拿2本同样的书.

【巩固】 11名学生到老师家借书,老师的书房中有文学、科技、天文、历史四类书,每名学生最多可借

两本不同类的书,最少借一本.试说明:必有两个学生所借的书的类型相同

【解析】 设不同的类型书为A、B、C、D四种,若学生只借一本书,则不同的类型有A、B、C、D

四种;若学生借两本不同类型的书,则不同的类型有AB 、AC 、AD 、BC 、BD 、CD 六种.共有

10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”.如果谁借

哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同.

【巩固】 幼儿园买来许多牛、马、羊、狗塑料玩具,每个小朋友任意选择两件,但不能是同样的,问:

至少有多少个小朋友去拿,才能保证有两人所拿玩具相同?

【解析】 从四种玩具中挑选不同的两件,所有的搭配有以下6组:牛、马;牛、羊;牛、狗;马、羊;

马、狗;羊、狗.把每一组搭配看作一个“抽屉”,共6个抽屉.根据抽屉原理,至少要有7个

小朋友去拿,才能保证有两人所拿玩具相同.

【巩固】 体育用品的仓库里有许多足球、排球和篮球,有66个同学来仓库拿球,要求每个人至少拿一

个,最多拿两个球,问至少有多少名同学所拿的球的种类是完全一样的?

【解析】 以拿球配组的方式为抽屉,每人拿一个或两个球,所以抽屉有:足、排、篮、足足、排排、篮

篮、足排、足篮、排篮共9种情况,即有9个抽屉,则:66973÷=,718+=,即至少有8

名同学所拿球的种类是一样的.

【巩固】 幼儿园买来很多玩具小汽车、小火车、小飞机,每个小朋友任意选择两件不同的,那么至少要

有几个小朋友才能保证有两人选的玩具是相同的?

【解析】 根据题意列下表:

有3个小朋友就有三种不同的选择方法,当第四个小朋友准备拿时,不管他怎么选择都可以跟

前面三个同学其中的一个选法相同.所以至少要有4个小朋友才能保证有两人选的玩具是相同

的.

总结: 本题是抽屉原理应用的典型例题,作为重点讲解.学生们可能会这么认为:铺垫:2件?3种6

=件,6件÷2个3=人,要保证有相同的所以至少要有314+=人;对于例题中的题目同样2件

?4种8=件,8件÷2个4=人,要保证有相同的所以至少要有415+=人.因为铺垫是正好配

上数了,而例题中的问题在于4种东西任选两种的选择有几种.可以简单跟学生讲一下简单乘法

原理的思想,但建议还是运用枚举法列表进行分析,按顺序列表可以做到不遗漏,不重复.

【巩固】 篮子里有苹果、梨、桃和桔子,现有若干个小朋友,如果每个小朋友都从中任意拿两个水果,

那么至少有多少个小朋友才能保证有两个小朋友拿的水果是相同的?

【解析】 首先应弄清不同的水果搭配有多少种.两个水果是相同的有4种,两个水果不同有6种:苹果

和梨、苹果和桃、苹果和桔子、梨和桃、梨和桔子、桃和桔子.所以不同的水果搭配共有

4610+=(种).将这10种搭配作为10个“抽屉”.由抽屉原理知至少需11个小朋友才能保

证有两个小朋友拿的水果是相同的

【例 22】 红、蓝两种颜色将一个25?方格图中的小方格随意涂色(见下图),每个小方格涂一种颜

色.是否存在两列,它们的小方格中涂的颜色完全相同?

第二行

第一行

第五列第四列第三列第

第一列

【解析】 用红、蓝两种颜色给每列中两个小方格随意涂色,只有下面四种情形:

蓝蓝红蓝蓝红红

将上面的四种情形看成四个“抽屉”,把五列方格看成五个“苹果”,根据抽屉原理,将五个

苹果放入四个抽屉,至少有一个抽屉中有不少于两个苹果,也就是至少有一种情形占据两列方

格,即这两列的小方格中涂的颜色完全相同.

【例 23】 将每一个小方格涂上红色、黄色或蓝色.(每一列的三小格涂的颜色不相同),不论如何涂

色,其中至少有两列,它们的涂色方式相同,你同意吗?

【解析】 这道题是例题的拓展提高,通过列举我们发现给这些方格涂色,要使每列的颜色不同,最多有

6种不同的涂法,

蓝黄红蓝黄红蓝黄红蓝黄红蓝黄红红

黄蓝

涂到第六列以后,就会跟前面的重复.所以不论如何涂色,其中至少有两列它们的涂色方式相

同.

【例 24】 从2、4、6、8、

、50这25个偶数中至少任意取出多少个数,才能保证有2个数的和是

52? 【解析】 构造抽屉:{2,50},{4,48},{6,46},{8,44},,{24,28},{26},共13种搭配,即13个抽

屉,所以任意取出14个数,无论怎样取,有两个数必同在一个抽屉里,这两数和为52,所以应

取出14个数.或者从小数入手考虑,2、4、6、、26,当再取28时,与其中的一个去陪,

总能找到一个数使这两个数之和为52.

【巩固】证明:在从1开始的前10个奇数中任取6个,一定有2个数的和是20.

【解析】将10个奇数分为五组(1、19),(3、17),(5、15),(7、13),(9、11),任取6个必有两个奇数在同一组中,这两个数的和为20.

【巩固】从1,4,7,10,…,37,40这14个数中任取8个数,试证:其中至少有2个数的和是41. 【解析】构造和为41的抽屉:(1,40),(4,37),(7,34),(10,31),(13,28),(16,25),(19,22),现在取8个数,一定有两个数取在同一个抽屉,所以至少有2个数的和是41.

【巩固】从1,2,3,,100这100个数中任意挑出51个数来,证明在这51个数中,一定有两个数的差为50。

【解析】将100个数分成50组:{1,51},{2,52},{3,53},,{50,100},将其看作50个抽屉,在选出的51个数中,必有两个属于一组,这一组的差为50.这道题也同样可以从小数入手考虑.

【巩固】请证明:在1,4,7,10,…,100中任选20个数,其中至少有不同的两组数其和都等于104.【解析】1,4,7,10,…,100共有34个数,将其分为(4,100),(7,97),…,(49,55),(1),

(52),共有18个抽屉.从这18个抽屉里面任意抽取20个数,则至少有18个数取自前16个

抽屉,所以至少有4个数取自某两个抽屉中,而属于同一“抽屉”的两个数,其和是104.

【巩固】从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12.

【解析】在这20个自然数中,差是12的有以下8对:{20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}.另外还有4个不能配对的数{9},{10},{11},{12},共制成12个抽屉(每个括号看成一个抽屉).只要有两个数取自同一个抽屉,那么它们的差就等于12,根据抽屉原理至少任选13个数,即可办到(取12个数:从12个抽屉中各取一个数(例如取1,2,3,…,12),那么这12个数中任意两个数的差必不等于12).

【巩固】(小学数学奥林匹克决赛)从1,2,3,4,…,1988,1989这些自然数中,最多可以取____个数,其中每两个数的差不等于4.

【解析】将1~1989排成四个数列:

1,5,9,…,1985,1989

2,6,10,…,1986

3,7,11,…,1987

4,8,12,…,1988

每个数列相邻两项的差是4,因此,要使取出的数中,每两个的差不等于4,每个数列中不能取

相邻的项.因此,第一个数列只能取出一半,因为有(19891)41498

-÷+=项,所以最多取出

249项,例如1,9,17,…,1985.同样,后三个数列每个最多可取249项.因而最多取出?=个数,其中每两个的差不等于4.

2494996

【巩固】从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34.

【解析】我们用题目中的15个偶数制造8个抽屉,(2),(4,30),(6,28),…,(16,18),凡是抽屉中的有两个数,都具有一个共同的特点:这两个数的和是34.

现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数在同一

个抽屉中.由制造的抽屉的特点,这两个数的和是34.

【例 25】(北京市第十一届“迎春杯”刊赛)从1,2,3,4,…,1994这些自然数中,最多可以取个数,能使这些数中任意两个数的差都不等于9.

【解析】方法一:把1994个数一次每18个分成一组,最后14个数也成一组,共分成111组.即1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18;

19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36;

…………………

1963,1964,…,1979,1980;1981,1982,…,1994.每一组中取前9个数,共取出9111999

?=(个)数,这些数中任两个的差都不等于9.因此,最多可以取999个数.

方法二:构造公差为9的9个数列(除以9的余数)

{}

1,10,19,28,,1990,共计222个数

{}

2,11,20,29,,1991,共计222个数

{}

3,12,21,30,,1992,共计222个数

{}

4,13,22,31,,1993,共计222个数

{}

5,14,23,32,,1994,共计222个数

{}

6,15,24,33,,1986,共计221个数

{}

7,16,25,34,,1987,共计221个数

{}

8,17,26,35,,1988,共计221个数

{}

9,18,27,36,,1989,共计221个数

每个数列相邻两项的差是9,因此,要使取出的数中,每两个的差不等于9,每个数列中不能取相邻的项.因此,前五个数列只能取出一半,后四个数列最多能取出一半多一个数,所以最多取1119999

?=个数

【巩固】 (南京市首届“兴趣杯”少年数学邀请赛)从1至36个数中,最多可以取出___个数,使得这些数种没有两数的差是5的倍数.

【解析】构造公差为5的数列,如图,有五条链,看成5个抽屉,每条链上取1个数,最多取5个数.1-6-11-16-21-26-31-36

2-7-12-17-22-27-32

3-8-13-18-23-28-33

4-9-14-19-24-29-34

5-10-15-20-25-30-35

【例 26】(2008年第八届“春蕾杯”小学数学邀请赛决赛)从1、2、3、4、5、6、7、8、9、

10、11和12中至多选出个数,使得在选出的数中,每一个数都不是另一个数的2

倍.

【解析】把这12个数分成6个组:

第1组:1,2,4,8

第2组:3,6,12

第3组:5,10

第4组:7

第5组:9

第6组:11

每组中相邻两数都是2倍关系,不同组中没有2倍关系.

选没有2倍关系的数,第1组最多2个(1,4或2,8或1,8),第2组最多2个(3,12),第3组只有1个,第4,5,6组都可以取,一共2211118

+++++=个.如果任意取9个数,因为第3,4,5,6组一共5个数中,最多能取4个数,剩下945

-=个数在2个组中,根据抽屉原理,至少有3个数是同一组的,必有2个数是同组相邻的数,是2倍关系.

【巩固】从1到20这20个数中,任取11个不同的数,必有两个数其中一个是另一个数的倍数.

【解析】把这20个数分成以下10组,看成10个抽屉:(1,2,4,8,16),(3,6,12),(5,10,

20),(7,14),(9,18),(11),(13),(15),(17),(19),前5个抽屉中,任意两个数都有倍数

关系.从这10个抽屉中任选11个数,必有一个抽屉中要取2个数,它们只能从前5个抽屉中取出,这两个数就满足题目要求.

【例 27】 从1,3,5,7,…,97,99中最多可以选出多少个数,使得选出的数中,每一个数都不是另

一个数的倍数?

【解析】 方法一:因为均是奇数,所以如果存在倍数关系,那么也一定是3、5、7等奇数倍.3×33:

99,于是从35开始,1~99的奇数中没有一个是35~99的奇数倍(不包括1倍),所以选出35,37,39,…,99这些奇数即可.共可选出33个数,使得选出的数中,每一个数都不是另一个数的倍数.

方法二:利用3的若干次幂与质数的乘积对这50个奇数分组.(1,3,9,27,81),(5,15,45),(7,21,63),(11,33),(13,39),(17,51),(19,57),(23,69),(25,75),(29,87),(31,93),(35),(37),(41),(43),…,(97)共33组.前11组,每组内任意两个数都存在倍数关系,所以每组内最多只能选择一个数.即最多可以选出33个数,使得选出的数中,每一个数都不是另一个数的倍数.

评注:1~2n 个自然数中,任意取出n+1个数,则其中必定有两个数,它们一个是另一个的整数倍;从2,3.……,2n+1中任取n+2个数,必有两个数,它们一个是另一个的整数倍;从1,2,3.……3n 中任取2n+1个数,则其中必有两个数,它们中一个是另一个的整数倍,且至少是3倍;从1,2,3,……, mn 中任取(m-1)n+1个数,则其中必有两个数,它们中一个是另一个的整数倍,且至少是m 倍(m 、n 为正整数).

【例 28】 从整数1、2、3、…、199、200中任选101个数,求证在选出的这些自然数中至少有两个数,

其中的一个是另一个的倍数.

【解析】 把这200个数分类如下:

(1)1,12?,212?,312?,…,712?,

(2)3,32?,232?,332?,…,632?,

(3)5,52?,252?,352?,…,552?,

(50)99,992?,

(51)101,

(52)103,

(100)199,

以上共分为100类,即100个抽屉,显然在同一类中的数若不少于两个,那么这类中的任意两

个数都有倍数关系.从中任取101个数,根据抽屉原理,一定至少有两个数取自同一类,因此其

中一个数是另一个数的倍数.

【例 29】从1,2,3,……49,50这50个数中取出若干个数,使其中任意两个数的和都不能被7整除,则最多能取出多少个数?

【解析】将1至50这50个数,按除以7的余数分为7类:[0],[1],[2],[3],[4],[5],[6],所含的数的个数分别为7,8,7,7,7,7,7.被7除余1与余6的两个数之和是7的倍数,所以取

出的数只能是这两种之一;同样的,被7除余2与余5的两个数之和是7的倍数,所以取出的

数只能是这两种之一;被7除余3与余4的两个数之和是7的倍数,所以取出的数只能是这两

种之一;两个数都是7的倍数,它们的和也是7的倍数,所以7的倍数中只能取1个.所以

最多可以取出877123

+++=个

【例 30】从1,2,3,…,99,100这100个数中任意选出51个数.证明:(1)在这51个数中,一定有两个数互质;(2)在这51个数中,一定有两个数的差等于50;(3)在这51个数中,一定存在9

个数,它们的最大公约数大于1.

【解析】(1)我们将1~100分成(1,2),(3,4),(5,6),(7,8),…,(99,100)这50组,每组内的数相邻.而相邻的两个自然数互质.将这50组数作为50个抽屉,同一个抽屉内的两个数互

质.而现在51个数,放进50个抽屉,则必定有两个数在同一抽屉,于是这两个数互质.问题

得证.

(2)我们将1—100分成(1,51),(2,52),(3,53),…,(40,90),…(50,100)这50组,每

组内的数相差50.将这50组数视为抽屉,则现在有51个数放进50个抽屉内,则必定有2个

数在同一抽屉,那么这两个数的差为50.问题得证.

(3)我们将1—100按2的倍数、3的奇数倍、既不是2又不是3的倍数的情况分组,有(2,4,

6,8,…,98,100),(3,9,15,21,27,…,93,99),(5,7,11,13,17,19,

23,…,95,97)这三组.第一、二、三组分别有50、17、33个元素.

最不利的情况下,51个数中有33个元素在第三组,那么剩下的18个数分到第一、二两组内,

那么至少有9个数在同一组.所以这9个数的最大公约数为2或3或它们的倍数,显然大于

1.问题得证

【例 31】有49个小孩,每人胸前有一个号码,号码从1到49各不相同.现在请你挑选若干个小孩,排成一个圆圈,使任何相邻两个小孩的号码数的乘积小于100,那么你最多能挑选出多少个孩子? 【解析】将1至49中相乘小于100的两个数,按被乘数分成9组,如下:

(1×2)、(1×3)、(1×4)、…、(1×49);

(2×3)、(2×4)、(2×5)、…、(2×49);

(8×9)、(8×10)、(8 ×11)、(8×12);

(9×10)、(9×11).

抽屉原理例习题

8-2抽屉原理 教学目标 抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。本讲的主要教学目标是: 1.理解抽屉原理的基本概念、基本用法; 2.掌握用抽屉原理解题的基本过程; 3. 能够构造抽屉进行解题; 4. 利用最不利原则进行解题; 5.利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。 知识点拨 一、知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决. 二、抽屉原理的定义 (1)举例 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。 (2)定义 一般情况下,把n+1或多于n+1个苹果放到n个抽屉里,其中必定至少有一个抽屉里至少有两个

苹果。我们称这种现象为抽屉原理。 三、抽屉原理的解题方案 (一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11x n -, 结论:至少有(商+1)个苹果在同一个抽屉里 (3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题 将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法. 模块一、利用抽屉原理公式解题 (一)、直接利用公式进行解题 (1)求结论 【例 1】 6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗? 【解析】 6只鸽子要飞进5个笼子,如果每个笼子装1只,这样还剩下1只鸽子.这只鸽子可以任意飞进 其中的一个笼子,这样至少有一个笼子里有2只鸽子.所以这句话是正确的. 利用刚刚学习过的抽屉原理来解释这个问题,把鸽笼看作“抽屉”,把鸽子看作“苹果”, 6511÷= ,112+=(只)把6个苹果放到5个抽屉中,每个抽屉中都要有1个苹果,那么 肯定有一个抽屉中有两个苹果,也就是一定有一个笼子里有2只鸽子. 【巩固】 把9条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼. 【解析】 在8个鱼缸里面,每个鱼缸放一条,就是8条金鱼;还剩下的一条,任意放在这8个鱼缸其中的 任意一个中,这样至少有一个鱼缸里面会放有两条金鱼. 【巩固】 教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业 试说明:这5名 学生中,至少有两个人在做同一科作业. 【解析】 将5名学生看作5个苹果 将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉 由抽 屉原理,一定存在一个抽屉,在这个抽屉里至少有2个苹果.即至少有两名学生在做同一科的 作业. 【巩固】 年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生 日.”你知道张老师为什么这样说吗? 【解析】 先想一想,在这个问题中,把什么当作抽屉,一共有多少个抽屉?从题目可以看出,这道题显 知识精讲

四年级奥数抽屉原理

一、知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决. 二、抽屉原理的定义 (1)举例 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是组合数学中一个重要的原理。 (2)定义 一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。 三、抽屉原理的解题方案 (一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()1 1x n -, 结论:至少有(商+1)个苹果在同一个抽屉里 (3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题 将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法. 四、应用抽屉原理解题的具体步骤 知识框架 抽屉原理 发现不同

第二步:构造抽屉。这是个关键的一步,这一步就是如何设计抽屉,根据题目的结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的“苹果”及其个数,为使用抽屉铺平道路。第三步:运用抽屉原理。观察题设条件,结合第二步,恰当运用各个原则或综合几个原则,将问题解决。 例题精讲 【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗? 【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业. 【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天? 【巩固】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。

抽屉原理公式及例题精编版

抽屉原理公式及例题“至少……才能保证(一定)…最不利原则 抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有: ①k=[n/m ]+1个物体:当n不能被m整除时。 ②k=n/m个物体:当n能被m整除时。 例1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。 例2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。15+1=16 例3:从一副完整的扑克牌中,至少抽出()张牌,才能保证至少6张牌的花色相同?A.21 B.22 C.23 D.24 解:完整的扑克牌有54张,看成54个“苹果”,抽屉就是6个(黑桃、红桃、梅花、方块、大王、小王),为保证有6张花色一样,我们假设现在前4个“抽屉”里各放了5张,后两个“抽屉”里各放了1张,这时候再任意抽取1张牌,那么前4个“抽屉”里必然有1 个“抽屉”里有6张花色一样。答案选C. 例4:2013年国考:某单位组织4项培训A、B、C、D,要求每人参加且只参加两项,无论如何安排,都有5人参加培训完全相同,问该单位有多少人? 每人一共有6种参加方法(4个里面选2个)相当于6个抽屉,最差情况6种情况都有4个人选了,所以4*6=1=25 例5:有300名求职者参加高端人才专场招聘会,其中软件设计类、市场营销类、财务管理类和人力资源管理类分别有100、80、70和50人。问至少有多少人找到工作,才能保证一定有70名找到工作的人专业相同? 用最不利原则解题。四个专业相当于4个抽屉,该题要有70名找到工作的人专业相同,那最倒霉的情况是每个专业只有69个人找到工作,值得注意的是人力专业一共才50个人,因此软件、市场、财务各有69个人找到工作,人力50个人找到工作才是本题中最不利的情形,最后再加1,就必定使得某专业有70个人找到工作。即答案为69×3+50+1=258。 例6:调研人员在一次市场调查活动中收回了435份调查问卷,其中80%的调查问卷上填写了被调查者的手机号码。那么调研人员需要从这些调查问卷中随机抽多少份,才能保证一定能找到两个手机号码后两位相同的被调查者? 答:在435份调查问卷中,没有填写手机号码的为435×(1-80%)=87份。要找到两个手机号码后两位相同的被调查者,首先要确定手机号码后两位有几种不同的排列方式。因为每一位

抽屉原理基础题

抽屉原理基础题 1.学校买来历史、文艺、科普三种图书若干本,每个学生从中任意借两本。那么,至少多少学生中一 定有两人所借的图书属于同一种。 答:从三种图书中任意借两本有6种借法。6+1=7,由抽屉原理可知,至少7个学生种有两人所借图书种类完全相同。 2.礼堂里有253人开会,这253人中至少有多少人的属相相同 答:22人 3.某旅游车上有47名乘客,每位乘客都只带有一种水果。如果乘客中有人带梨,并且其中任何两位乘 客中至少有一个人带苹果,那么乘客中有______人带苹果。 (A)46 (B)24 (C)23 (D)1 答:选A。 由题意,不带苹果的乘客不多于一名,但又确实有不带苹果的乘客,所以不带苹果的乘客恰有一名,所以带苹果的就有46人。 4.一些苹果和梨混放在一个筐里,小明把这筐水果分成了若干堆,后来发现无论怎么分,总能从这若 干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成了_______堆。 (A)3 (B)4 (C)5 (D)6 答:选C。 要求把其中两堆合并在一起后,苹果和梨的个数一定是偶数,那么这两堆水果中,苹果和梨的奇偶性必须相同。对于每一堆苹果和梨,奇偶可能性有4种:(奇,奇),(奇,偶),(偶,奇),(偶,偶),所以根据抽屉原理可知最少分了4+1=5筐。 5.有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出_____只(拿的时候不许看颜色),才能 使拿出的手套中一定有两双是同颜色的。 (A)4 (B)5 (C)6 (D)7 答:选C。 考虑最坏情况,假设拿了3只黑色、1只白色和1只蓝色,则只有一双同颜色的,但是再多拿一只,不论什么颜色,则一定会有两双同颜色的,所以至少要那6只。 提高班 1.证明:从1,3,5,……,99中任选26个数,其中必有两个数的和是100。 答:将这50个奇数按照和为100,放进25个抽屉:(1,99),(3,97),(5,95),……,(49,51)。根据抽屉原理,从中选出26个数,则必定有两个数来自同一个抽屉,那么这两个数的和即为100。 2.某旅游车上有47名乘客,每位乘客都只带有一种水果。如果乘客中有人带梨,并且其中任何两位乘 客中至少有一个人带苹果,那么乘客中有______人带苹果。 (A)46 (B)24 (C)23 (D)1

2015国家公务员考试行测:数学运算-容斥原理和抽屉原理

【导读】国家公务员考试网为您提供:2015国家公务员考试行测:数学运算-容斥原理和抽屉原理,欢迎加入国家公务员考试QQ群:242808680。更多信息请关注安徽人事考试网https://www.doczj.com/doc/0b4716346.html, 【推荐阅读】 2015国家公务员笔试辅导课程【面授+网校】 容斥原理和抽屉原理是国家公务员考试行测科目数学运算部分的“常客”,了解此两种原理不仅可以提高做题效率,还可以提高自己的运算能力,扫平所有此类计算题。中公教育专家在此进行详细解读。 一、容斥原理 在计数时,要保证无一重复,无一遗漏。为了使重叠部分不被重复计算,在不考虑重叠 的情况下,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数 目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 1.容斥原理1——两个集合的容斥原理 如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是 A类又是B类的部分重复计算了一次,所以要减去。如图所示: 公式:A∪B=A+B-A∩B 总数=两个圆内的-重合部分的 【例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、 数都是满分,那么这个班至少有一门得满分的同学有多少人? 数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一 门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。 2.容斥原理2——三个集合的容斥原理 如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现 两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。 如图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1 次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩ C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。即得到: 公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C

抽屉原理的经典解题思路

抽屉原理的经典解题思路 抽屉原理在公务员考试中的数字运算部分时有出现。抽屉原理是用最朴素的思想解决组合数学问题的一个范例,我们可以从日常工作中的实例来体会抽屉原理的应用。抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 先来看抽屉原理的一般叙述: 抽屉原理(1):讲多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于2。抽屉原理(1)可以进行推广,把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。 抽屉原理(2):将多于件的物品任意放到抽屉中,那么至少有一个抽屉中的物品的件数不少m+1。也可以表述成如下语句:把m个物品任意放入n(n≤m)个抽屉中,则一定有一个抽屉中至多要有k件物品。其中k=〔m/n 〕,这里〔m/n 〕表示不大于m/n的最大整数,即m/n的整数部分。 掌握了抽屉原理解题的步骤就能思路清晰的对一些存在性问题、最小数目问题做出快速准确的解答。一般来讲,首先得分析题意,分清什么是“物品”,什么是“抽屉”,也就是什么作“物品”,什么可作“抽屉”。接着制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。最后运用抽屉原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。 下面两个典型例题的解题过程充分展现了抽屉原理的解题过程,希望读者能有所体会。 例1:证明任取6个自然数,必有两个数的差是5的倍数。 证明:考虑每个自然数被5除所得的余数。即自然数可以作为物品,被5除所得余数可以作为抽屉。显然可知,任意一个自然数被5除所得的余数有5种情况:0,1,2,3,4。所以构造5个抽屉,每个抽屉中所装的物品就是被5除所得余数分别为0,1,2,3,4的自然数。运用抽屉原理,考虑“最坏” 的情况,先从每个抽屉中各取一个“物品”,共5个,则再取一个物品总能在先取的5个中找到和它出自于同一抽屉的“物品”,即它们被5除余数相同,所以它们的差能整除5。

抽屉原理的例题

例1正方体各面上涂上红色或蓝色的油漆(每面只涂一种色),证明正方体一定有三个面颜色相同. 证明:把颜两种色当作两个抽屉,把正方体六个面当作物体,那么6=2×2+2,根据原理二,至少有三个面涂上相同的颜色. 例2:17个科学家中每个人与其余16个人通信,他们通信所讨论的仅有三个问题,而任两个科学家之间通信讨论的是同一个问题。证明:至少有三个科学家通信时讨论的是同一个问题。 解:不妨设A是某科学家,他与其余16位讨论仅三个问题,由鸽笼原理知,他至少与其中的6位讨论同一问题。设这6位科学家为B,C,D,E,F,G,讨论的是甲问题。 若这6位中有两位之间也讨论甲问题,则结论成立。否则他们6位只讨论乙、丙两问题。这样又由鸽笼原理知B至少与另三位讨论同一问题,不妨设这三位是C,D,E,且讨论的是乙问题。 若C,D,E中有两人也讨论乙问题,则结论也就成立了。否则,他们间只讨论丙问题,这样结论也成立。 例3 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。 分析与解答我们用题目中的15个偶数制造8个抽屉: 此抽屉特点:凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数可以在同一个抽屉中(符合上述特点).由制造的抽屉的特点,这两个数的和是34。 例4:某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么情况,在这n个校友中至少有两人握手的次数一样多。 分析与解答共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n-1次,即这个人与每位到会校友都握了手.然而,如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n-2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0、1、2、…、n-2,还是后一种状态1、2、3、…、n-1,握手次数都只有n-1种情况.把这n-1种情况看成n-1个抽屉,到会的n 个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。 例题5:任取5个整数,必然能够从中选出三个,使它们的和能够被3整除.

小学六年级简单的抽屉原理

一、抽屉原理定义 (1)举例 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。 (2)定义 一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。 二、抽屉原理的解题方案 (一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11x n - ,结论:至少有(商+1)个苹果在同一个抽屉里 (3)余数=0,结论:至少有“商”个苹果在同一个抽屉里 例1.A 、3个苹果放到2个抽屉里,那么一定有1个抽屉里至少有2个苹果。 B 、5块手帕分给4个小朋友,那么一定有1个小朋友至少拿了( )块手帕。 C 、6只鸽子飞进5个鸽笼,那么一定有一个鸽笼至少飞进( )只鸽子。 例2、 三个小朋友在一起玩,请说明其中必有两个小朋友是同性别。 例 3. 三年一班有13名女生,她们的年龄都相同,请说明,至少有两个小朋友在一个相同的月份内出生。 例4. 任意三个整数中,总有两个整数的差是偶数。 例5. 有10个鸽笼,为保证每个鸽笼中最多住1只鸽子(可以不住鸽子),那么鸽子总数最多能有几只?请用抽屉原理加以说明。 例6. 某班有37个学生,最大的10岁,最小的8岁,问:是否一定有4个学生,他们是同年同月出生的? 例7、有红袜2双,白袜3双,黑袜4双,黄袜5双,(每双袜子包装在一起)若取出9双,证明其中必有黑袜或黄袜2双. 1.6只鸽子飞进了5个鸟巢,则总有一个鸟巢中至少有( )只鸽子; 2.把三本书放进两个书架,则总有一个书架上至少放着( )本书; 3.把7封信投进3个邮筒,则总有一个邮筒投进了不止( )封信。

抽屉原理及其简单应用

抽屉原理及其简单应用 一、知识要点 抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确地提出来的,因此,也称为狄利克雷原理。 把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。这个人所皆知的常识就是抽屉原理在日常生活中的体现。用它可以解决一些相当复杂甚至无从下手的问题。 原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素。原理2:把m个元素任意放入n(n≤m)个集合,则一定有一个集合至少要有k个元素。其中k=m/n(当n能整除m时)或k=〔m/n〕+1(当n不能整除m时),这里〔m/n〕表示不大于m/n的最大整数,即m/n的整数部分。 原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。二、应用抽屉原理解题的步骤 第一步:分析题意。分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”。 第二步:制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。 第三步:运用抽屉原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。 三、应用抽屉原理解题例举: 1.张叔叔参加飞镖比赛,投了5镖,成绩是41环。张叔叔至少有一镖不低于9环。为什么?(教科书P73 T2) 解答:这道题物体个数和抽屉都比较明显。成绩41环看作个数,5镖看作抽屉,列式为:41÷5=8……1 8+1=9 2.有9支球队进行比赛,已经赛了10场,那么总有一支球队至少赛了几场? 解答:有些题目物体的个数没有直接告诉我们。根据问题至少赛了几场,那我们要知道已经赛过的总的场次。根据已经赛了10场,每场2支球队,总场次应该是20次。这就是物体的个数。9支球队可以看作抽屉。根据今天所教的知识(原理2)我们知道20÷9=2……2,2+1=3 3.有红、黄两种颜色在下面的长方形格子中随意涂色,每个格子涂一种颜色。青青发现无论怎样涂,至少有两列涂法完全相同。请你先试一试,再说明理由。(作业本P29 T4) 解答:根据至少有两列涂法完全相同。我们要知道总的列数。这道题已经知道物体的个数是5列。但抽屉的个数却掩藏起来,我们需要根据排列知识找出抽屉的个数。已知颜色有2种,在一列的排列组合中有这么4种情况。(红红、红黄、黄黄、黄红)所以可以做成4个抽屉。用算式5÷4=1……1,1+1=2就说明问题。 4.任意写出5个非零的自然数,我能找到两个数,让这两个数的差是4的倍数。(作业本P29 T5) 解答:这题已经告诉我们物体的个数是5。但什么做为抽屉?要做几个抽屉却需要我们去构建。根据条件4的倍数,我们知道一个数除以4没有余数那就是4的倍数,在这些数中除以4的过程中会出现这四种情况(整除、余数是1、2、3)那就可以根据这四种情况做成四个

浅谈抽屉原理问题解题技巧

浅谈抽屉原理问题解题技巧 令狐采学 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放两个苹果[是“至少两个苹果”吧?]。这一现象就是我们所说的“抽屉原理”。抽屉原理的一般含义为:如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素[这个定义是有问题的。苹果的问题还可以认为抽屉不能空,“多于N+1个元素在n个集合中必定有两个元素的集合”无论集合空不空肯定是不对的。应该也是“至少两个元素”]。它是组合数学中一个重要的原理[这一段应该是百度百科里的内容。但是注意百科左边的图片里也是“至少有2个苹果”,下面的解析里的狄利克雷原则也是正确定义的。希望老师在引用的时候仔细分辨。]。抽屉原理看似简单,但它是近年来公考行测广大考生很容易丢分的部分。考生不能有效得分的主要原因:一是考生只是去背诵抽屉原理相关定理与公式;二是考生不能透彻理解应用“最不利原则”的思维角度。 目前,处理抽屉原理问题最基本和常用的方法是运用“最不利原则”,构造“最不利”“点最背”的情形。下面利用几道例题对抽屉原理问题的解法进行一下探讨。

一.基础题型 【例1】从一副完整的扑克牌中至少抽出()张牌才能保证至少6张牌的花色相同? A.21 B.22 C.23 D.24 解析:题目要求保证:6张牌的花色相同.考虑最不利情形:每种花色取5张,一共20张,然后抽出大小王共2张,总共22张,再抽取任意一张都能保证6张花色相同,共23张.因此,答案选C. 【例2】一副无“王”的扑克牌,至少抽取几张,方能使其中至少有两张牌具有相同的点数?() A.10 B.11 C.13 D.14 解析:题目要求:两张牌具有相同的点数.考虑最不利情形:从中任取一种花色的牌13张,每张牌点数都不同,再抽取任何一张点数都会重复,总共抽取14张。因此,答案选D. 【例3】调研人员在一次市场调查活动中收回了435份调查试卷,其中80%的调查问卷上填写了被调查者的手机号码.那么调研人员至少需要从这些调查表中随机抽出多少份,才能保证一定能找到两个手机号码后两位相同的被调查者?() A.101 B.175 C.188 D.200

抽屉原理练习题 学生版

抽屉原理练习题 1、光明小学有367名2000年出生的学生,请问是否有生日相同的学生? 2、用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相同. 3、三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩. 4、试说明400人中至少有两个人的生日相同. 5、证明:任取6个自然数,必有两个数的差是5的倍数。 6、从1,4,7,10,…,37,40这14个数中任取8个数,试证:其中至少有

2个数的和是41. 7、从1,2,3, ,100这100个数中任意挑出51个数来,证明在这51个数中,一定有两个数的差为50。 8、从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12. 9、有10只鸽笼,为保证至少有1只鸽笼中住有2只或2只以上的鸽子.请问:至少需要有几只鸽子? 10、三年级二班有43名同学,班上的“图书角”至少要准备多少本课外书,才能保证有的同学可以同时借两本书? 11、篮子里有苹果、梨、桃和桔子,现有若干个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友才能保证有两个小朋友拿的水果是相同的?

12、学校里买来数学、英语两类课外读物若干本,规定每位同学可以借阅其中两本,现有4位小朋友前来借阅,每人都借了2本.请问,你能保证,他们之中至少有两人借阅的图书属于同一种吗? 13、11名学生到老师家借书,老师的书房中有文学、科技、天文、历史四类书,每名学生最多可借两本不同类的书,最少借一本.试说明:必有两个学生所借的书的类型相同 14、有一个布袋中有5种不同颜色的球,每种都有20个,问:一次至少要取出多少个小球,才能保证其中至少有3个小球的颜色相同? 15、有红、黄、白三种颜色的小球各10个,混合放在一个布袋中,一次至少摸出个,才能保证有5个小球是同色的? 16、把9条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼.

抽屉原理及其应用

抽屉原理及其应用 许莉娟 (数学科学学院,2003 ( 4)班,03213123号) [摘要]抽屉原理是数学中的重要原理,在解决数学问题时有非常重要的作用.各种形式的抽屉原理在高等数学和初等数学中经常被采用.本文着重从抽屉的构造方法阐述抽屉原理在高等数学和初等数学(竞赛题)中的应用,同时指岀了它在 应用领域中的不足之处. [关键词]抽屉原理高等数学初等数学 抽屉原理也称为鸽笼原理或鞋箱原理,它是组合数学中的一个最基本的原理.抽屉原 理主要用于证明某些存在性问题及必然性题目,如几何问题、涂色问题等?抽屉原理的简 单形式可以描述为:“如果把n ? 1个球或者更多的球放进n个抽屉,必有一个抽屉至少有两个球.”它的正确性十分明显,很容易被并不具备多少数学知识的人所接受,如果将其灵活地运用,则可得到一些意想不到的效果. 各种形式的抽屉原理在高等数学和初等数学中经常被采用,使用该原理的关键在于如何巧妙地构造抽屉,即如何找出合乎问题条件的分类原则,抽屉构造得好,可得出非常巧妙的结论,下面我们着重从抽屉的构造途径去介绍抽屉原理在高等数学和初等数学(竞赛题)中的应用,同时指出它在应用领域中的不足之处? 一、抽屉原理 陈景林、阎满富编著的中国铁道出版社出版的《组合数学与图论》一书中对抽屉原理给出了比较具体的定义,概括起来主要有下面几种形式: 原理I把多于n个的元素按任一确定的方式分成n个集合,则一定有一个集合中含有两个或两个以上的元素? 原理U把m个元素任意放到n(m ? n)个集合里,则至少有一个集合里至少有 k个元素,其中 当n能整除m时, 当n不能整除m时. 原理川把无穷个元素按任一确定的方式分成有穷个集合,则至少有一个集合中仍含无穷个

抽屉原理问题(公务员考试数学运算基础详解)

抽屉原理问题——基础学习 一、解答题 2、抽屉原理1例1:400人中至少有几个人的生日相同? 【解题关键点】将一年中的366天视为366个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有两人的生日相同. 【结束】 3、抽屉原理1例2:五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。问:至少有几名学生的成绩相同? 【答案】至少有3名学生的成绩是相同的。

【解题关键点】关键是构造合适的抽屉。既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。除3名成绩在60分以下的学生外,其余成绩均在75~95分之间,75~95共有21个不同分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。 44÷21= 2……2, 根据抽屉原理2,至少有1个抽屉至少有3件物品,即这47名学生中至少有3名学生的成绩是相同的。 【结束】 5、抽屉原理2例1:某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具? 【答案】至少会有一个小朋友得到4件或4件以上的玩具。 【解题关键点】将40名小朋友看成40个抽屉。今有玩具122件,122=3×40+2。应用抽屉原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具。也就是说,至少会有一个小朋友得到4件或4件以上的玩具。 【结束】 6、抽屉原理2例2:一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块? 【答案】一次至少要取出9块木块,才能保证其中有3块号码相同的木块。 【解题关键点】将1,2,3,4四种号码看成4个抽屉。要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。所以一次至少要取出9块木块,才能保证其中有3块号码相同的木块。 【结束】 7、抽屉原理2例3:六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种。问:至少有多少名学生订阅的杂志种类相同? 【答案】至少有15人所订阅的报刊种类是相同的。 【解题关键点】首先应当弄清订阅杂志的种类共有多少种不同的情况。 订一种杂志有:订甲、订乙、订丙3种情况;

抽屉原理精华及习题(附答案)

第九讲 抽屉原理 一、 知识点: 1. 把27个苹果放进4个抽屉中,能否使每个抽屉中苹果数均小于等于6?那么至少有一 个抽屉中的苹果数大于等于几? 2. 把25个苹果放进5个抽屉中,能否使每个抽屉中苹果数均小于等于4?那么至少有一 个抽屉中的苹果数大于等于几? 上述两个结论你是如何计算出来的? ★规律:用苹果数除以抽屉数,若余数不为零,则“答案”为商加1,若余数为零,则“答 案”为商。 ★抽屉原则一: 把n 个以上的苹果放到n 个抽屉中,无论怎样放,一定能找到一个抽屉,它里面至少有两个苹果。 ★抽屉原则二: 把多于m ×n 个苹果放到n 个抽屉中,无论怎样放,一定能找到一个抽屉,它里面至少有(m +1)个苹果。 二、 基础知识训练(再蓝皮书) 1、 把98个苹果放到10个抽屉中, 无论怎么放, 我们一定能找到一个含苹果最多的抽屉,它里面至少含有 个苹果。 2、1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢, 它里面至少含有 只鸽子。 3、从8个抽屉中拿出17个苹果,无论怎么拿。我们一定能找到一个拿苹果最多的 抽屉,从它里面至少拿出了 个苹果。 4、从 个抽屉中(填最大数)拿出25个苹果,才能保证一定能找到一个抽屉, 从它当中至少拿了7个苹果。 三、 思路与方法: 在抽屉原理问题,难在有些题目抽屉没有直接给出,要求我们自己根据题意去造抽屉,但我们也不要为此感到困难,往往在题目有一句关键的话,告诉我们抽屉的性质,我们可以根据此性质来构造抽屉即可。 训 练 题 1. 六(1)班有49名学生。数学王老师了解到在期中考试中该班英文成绩除3人外均在86 分以上后就说:“我可以断定,本班同学至少有4人成绩相同。”请问王老师说的对吗?为什么? 2. 从100,,3,2,1 这100个数中任意挑选出51个数来,证明在这51个数中,一定: (1)有2个数互质; (2)有两个数的差为50; 3. 圆周上有2000个点,在其上任意地标上1999,,2,1,0 (每一点只标一个数,不同的点

浅谈抽屉原理问题解题技巧

浅谈抽屉原理问题解题技巧 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放两个苹果[是“至少两个苹果”吧?]。这一现象就是我们所说的“抽屉原理”。抽屉原理的一般含义为:如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素[这个定义是有问题的。苹果的问题还可以认为抽屉不能空,“多于N+1个元素在n个集合中必定有两个元素的集合”无论集合空不空肯定是不对的。应该也是“至少两个元素”]。它是组合数学中一个重要的原理[这一段应该是百度百科里的内容。但是注意百科左边的图片里也是“至少有2个苹果”,下面的解析里的狄利克雷原则也是正确定义的。希望老师在引用的时候仔细分辨。]。抽屉原理看似简单,但它是近年来公考行测广大考生很容易丢分的部分。考生不能有效得分的主要原因:一是考生只是去背诵抽屉原理相关定理与公式;二是考生不能透彻理解应用“最不利原则”的思维角度。 目前,处理抽屉原理问题最基本和常用的方法是运用“最不利原则”,构造“最不利”“点最背”的情形。下面利用几道例题对抽屉原理问题的解法进行一下探讨。 一.基础题型 【例1】从一副完整的扑克牌中至少抽出()张牌才能保证至少6张牌的花色相同? A.21 B.22 C.23 D.24 解析:题目要求保证:6张牌的花色相同.考虑最不利情形:每种花色取5张,一共20张,然后抽出大小王共2张,总共22张,再抽取任意一张都能保证 6张花色相同,共23张.因此,答案选C. 【例2】一副无“王”的扑克牌,至少抽取几张,方能使其中至少有两张牌具有相同的点数?() A.10 B.11 C.13 D.14 解析:题目要求:两张牌具有相同的点数.考虑最不利情形:从中任取一种花色的牌13张,每张牌点数都不同,再抽取任何一张点数都会重复,总共抽取14张。因此,答案选D.

小学奥数:抽屉原理(含答案)

教案 抽屉原理 1、概念解析 把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要苹果的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到: 抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。 如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。 比如,我们从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、…等十二种生肖)相同.怎样证明这个结论是正确的呢只要利用抽屉原理就很容易把道理讲清楚.事实上,由于人数(13)比属相数(12)多,因此至少有两个人属相相同(在这里,把13人看成13个“苹果”,把12种属相看成12个“抽屉”)。 应用抽屉原理要注意识别“抽屉”和“苹果”,苹果的数目一定要大于抽屉的个数。 2、例题讲解 例1 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。 例2 一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的 例3 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

《抽屉原理练习题》#(精选.)

抽屉原理练习题 1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证 取出的球中有两个球的颜色相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。 2.一幅扑克牌有54 张,最少要抽取几张牌,方能保证其中至少有 2 张牌有相同的点数? 解:点数为1(A) 、2、3、4、5、6、7、8、9、10、11(J) 、12(Q) 、13(K) 的牌各取 1 张,再取大王、小王各 1 张,一共15张,这15 张牌中,没有两张的点数相同。这样,如果任意再取 1 张的话,它的点数必为1~13 中的一个,于是有 2 张点数相同。 3 .11 名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。试证明:必有两个学 生所借的书的类型相同。 证明:若学生只借一本书,则不同的类型有A、B、C、D四种,若 学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种。共有10 种类型,把这10 种类型看作10 个“抽屉”,把11 个学生看作11 个“苹果”。如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同。 4 .有50 名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同。 证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况 只有1、2、3??49,只有49种可能,以这49种可能得分的情况为49 个抽屉,现有50 名运动员得分,则一定有两名运动员得分相同。 5 .体育用品仓库里有许多足球、排球和篮球,某班50 名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球 种类是一致的? 解题关键:利用抽屉原理2

国考行测暑期每日一练数学运算:容斥原理和抽屉原理精讲

2015国考行测暑期每日一练数学运算:容斥原理和抽屉原理精讲 容斥原理和抽屉原理是国家公务员测试行测科目数学运算部分的“常客”,了解此两种原理不仅可以提高做题效率,还可以提高自己的运算能力,扫平所有此类计算题。中公教育专家在此进行详细解读。 一、容斥原理 在计数时,要保证无一重复,无一遗漏。为了使重叠部分不被重复计算,在不考虑重叠的情况下,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 1.容斥原理1——两个集合的容斥原理 如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。如图所示: 公式:A∪B=A+B-A∩B 总数=两个圆内的-重合部分的 【例1】一次期末测试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人? 数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。 2.容斥原理2——三个集合的容斥原理 如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。 如图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C -A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。即得到:公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C

抽屉原理例题

抽屉原理 抽屉原理在小学数学教材中没有作为知识向同学们介绍,但它却是我们解决数学问题的一种重要的思考方法。 抽屉原理最早是由德国数学家狄利克雷最早发现的,所以也叫做狄利克雷重叠原则。 下面我们就一起来研究“抽屉原理”。 【典型例题】 1. 第一抽屉原理:把个物体放入n个抽屉中,其中必有一个抽屉中至少有 个物体。 例如:把3个苹果放入2个抽屉中,必然有一个抽屉中有2个苹果。 2. 若把5个苹果放到6个抽屉中,就必然有一个抽屉是空着的。这称为第二抽屉原理:把 个物体放在n个抽屉中,其中必有一个抽屉中至多有个物体。 3. 构造抽屉的方法: 在我们利用抽屉原理思想解决数学问题时,关键是怎样把题目中的数量相对应的想成苹果和抽屉,所以构造“抽屉”是解题的关键。下面我们就通过例题介绍常见的构造“抽屉”的思想方法。 例1. 用“数的分组法”构造抽屉。 从1,2,3,……,100这100个数中任意挑出51个数来,证明在这51个数中,一定有:(1)2个数互质;(2)2个数的差为50;(3)8个数,它们的最大公约数大于1。 分析与解答: (1)将100个数分成50组 {1,2},{3,4},……,{99,100}。 在选出的51个数中,一定有2个数属于同一组,这一组的2个数是相邻的整数,它们一定是互质的。 (2)我们可以将100个数分成下面这样的50组: {1,51},{2,52},……,{50,100}。 在选出的51个数中,必有2个数属于同一组,这一组的2个数的差为50。 (3)将100个数分成5组(一个数可以在不同的组内): 第一组:2的倍数,即{2,4,……,100}; 第二组:3的倍数,即{3,6,……,99}; 第三组:5的倍数,即{5,10,……,100}; 第四组:7的倍数,即{7,14,……,98}; 第五组:1和大于7的质数,即{1,11,13,……,97}。 第五组中一共有22个数,所以选出的51个数中至少有29个数在第一组到第四组中,根据抽屉可以知道总会有8个数在第一组到第四组的某一组中,这8个数的最大公约数大于1。 例2. 用“染色分类法”构造抽屉。 下表是一个3行10列共30个小正方形的长方形,现在把每个小方格添上红色或黄色,请证明无论怎么添法一定能找到两例,它们的添色方式完全相同。 分析与解答:

相关主题
文本预览
相关文档 最新文档