当前位置:文档之家› 常见PCB爆板的成因与解决方案

常见PCB爆板的成因与解决方案

常见PCB爆板的成因与解决方案


摘 要: 爆板是PCB 一种最常见的品质可靠性缺陷,其成因复杂多样,在电子产品的无铅化焊接工艺中,随着焊接温度的提高和焊接时间的延长,在热量增加的情况下,PCB 爆板发生率剧增。本文通过理论和务实做法试从PCB 设计、材料选择、加工过程等方面进行归纳总结,并提出简单可行的解决方案。

关 键 词: 爆板无铅焊接

一、前言

随着欧盟RoHs 法令的实施,组成电子产品的印制电路板、电子器件、组装焊料等全面进入无铅化时代,电子组装工艺发生巨大变化。应用多年的63/37 锡铅焊料已被Sn-Ag-Cu、Sn-Cu-Ni 等无铅焊料替代,其熔点由183℃剧升到217℃以上, 回流焊接温度由220℃升高到250℃,且焊接时间延长20 秒以上,焊接热量的剧增给电路板、电子元器件等的耐热性能提出了更高的要求,在焊接的过程中,爆板(Delamination )是电路板最常见的可靠性缺陷之一。本文通过理论分析和务实做法试从PCB 设计、材料选择、加工过程等方面对爆板进行归纳总结,以期找到简单可行的解决方案与同行共勉。

二、爆板的成因及解决方案

造成PCB 焊接过程爆板的成因众多复杂,我们从PCB 设计、材料选择、焊接曲线、加工过程(包括棕/黑化、压板、钻铣成型及过程吸湿管理等)等四方面对其爆板现象、形成原因和解决方案进行归纳总结。

(一)材料耐热性能不足型爆板

1.典型爆板切片图



2.成因分析

(1) 上述两个爆板案例主要发生在高层板结构中,爆板的位置相对比较固定。爆板的主要位置发生在BGAPitch 间距较小及BGA 密集区域位置。

(2) 无铅焊接的Profile 峰值温度较传统锡铅焊接平均高出34℃(锡铅焊料熔点为183℃,而无铅焊料熔点最低为217℃),对材料的耐热性提出更高要求。锡铅焊料在Reflow 时的峰温平均为225℃,波焊峰温平均为250℃,而无铅焊料的Reflow 峰温需提高到245℃,喷锡及波焊温度需提高到270℃,且Reflow 的平均操作时间延长20s 以上,焊接热量的剧增,对PCB 板的损伤加剧。

(3) Z-CTE 膨胀太大,在高温焊接受条件下,Z 轴膨胀过大导致爆板。

3.解决方案

为应对无铅化对PCB 板的耐热性能的挑战,IPC-4101B/99 针对“无铅FR-4”增加了四项新要求,要求Tg≥150℃(玻璃化转变温度)、Td≥325℃(热裂解温度)、Z-CTE≤3.5%(50—260℃)和T288≥5min。因此,建议在耐无铅工艺的材料选择时应优先选择满足上述要求的材料,同时在配方方面建议优先选择有填料(Filler)和酚醛(PN)硬化的材料。

(二)设计不良型爆板


设计不良造成的爆板主要有三种类型:

1.叠板结构不合适,内层板的铜厚和填胶量计算不正确。实践证明,半固化片的胶含量应足够,特别是低树脂含量的7628PP,使用时更应详加计算。我们的经验是压合后奶油层厚度应大于等于0.25mil;

备注:奶油层厚度=(PP 总厚度-填胶厚度-玻璃布厚度)/2

2.内层板阻流块设计不合适,常见的阻流块设计有三种:铜条结构、“城墙”结构和圆形Pad 设计(如下图),设计时应根据实际情况试验确定;



3.孔设计和编号孔设计不良。板边过多的工具孔设计(工具孔一般为3.2mm)在压合时不能被充分填胶而导致空洞,后工序易藏药水而导致爆板。另外, 编号孔也存在同样的影响。因此,建议在设备购买时应选用一致的对位系统,以减少板边的Tooling 孔数量。

(三)加工过程控制不良型爆板

1.棕黑化不良型爆板

(1)常见缺点照片



(2)成因分析

棕化的反应机理是:2Cu+H2S04+H 202+nR1+nR2→CuSO4+2H20+Cu(R1+R2)

在棕化槽内,由于H2O2 的微蚀作用,使基体铜表面立即沉积上一层簿薄有机金属膜。增加PP 与铜面的结合力。此类分层的主要原因是棕化面的微观粗糙度不良,压合后测试结合力差而导致爆板。另一方面,棕化膜的耐热性不足者,在多次压合(如2+N+2结构HDI 板)产品中常发生内层一次压界面处分层。

(3)改善建议

良好的维护保养和稳定的药水控制,是解决此类爆板的关键,应尽量避免药水换槽时不彻底(常见的做法是排一部分保留一份)或不按时更换药水。其次棕化水质的氯离子控制也很重要,过高的氯离子会严重影响棕化效果。另一方面在药水供应商选择时,需评估棕化的耐热性能,取多次压合的样板进行测试评估。

2.压板不良型爆板

压板不良型爆板是负责压板工程师最熟悉的一种类型,压板工序造成爆板的原因很多。这里只对固化不足型缺陷进行分析。

(1) 常见缺陷图片



(2)原因分析

压合固化不良型爆板一般不容易被怀疑,压合程式一旦设定好,就很少去更改了,但在最初程式设定时因为试验条件的不同,评估好的程序有时却出现问题。我们对失效的PCBA 进行△Tg 测试发现,当△Tg 值大于3℃时即存在较高的爆板风险。以下是失效PCBA 的△Tg 测试值:

样品 测试条件 Tg1 Tg2 △Tg 参考值
PCBA A 态 138.95 144.21 5.26 △Tg≥3℃

(3)改善措施

压合是PCB 制造的最重点工序之一,压合过程的管理,定期的料温测试和△Tg 测试是必须的。或者适当延长压板周期,确

保板子充分固化。另外建议程式设定时采取高温卸压,释放板子在高温高压固化时产生的内应力。

3.钻铣不良型爆板

钻铣不良型爆板常发生在密集孔区和板边位置,其成因主要是钻铣加工过程中的机械应力影响。实践中解决这类问题的方法主要有:

(1)在BGA 等密集孔区,钻孔时除参数应优化外,最好能够采取跳钻;

(2)钻孔后的烘板处理对预防爆板有一定的帮助;

(3)发生在板边的爆板一般与成型铣板有关,应控制铣刀的寿命和叠板块数。

4.过程吸湿型爆板

过程吸湿管理是PCB 制造过程重点,这类爆板常发生于绝缘层中间,没有明显的缺点特征。为预防因吸湿造成的爆板,我们建议:

(1) 应选择吸水率相对低的材料;

(2) PP 储存车间与叠板车间要求有温湿度控制管理,若PP 在冷库中储存,使用前应做解冻(回温)处理;

(3) 半成品过程存放时间不能太长,特别是内层生产过程中的尾数板管理(我们的试验证明,在常温没有湿度控制的环境中,内层板存放7 天再压合,爆板的发生率就非常高);

(4) 成品板的包装不良也是PCB 吸湿爆板的重要影响因素。

三、结论

通过以上分析可以得出以下结论:影响分层爆板主要原因与PCB 设计、材料选择、加工过程、焊接Profile 等有较大的影响。从实验的结果来看,通过优化设计,选择耐热性能较好的板料,加强过程品质控制及优化焊接温度,分层爆板可以得到有效的改善

相关主题
文本预览
相关文档 最新文档