当前位置:文档之家› 通信原理实验模拟调制系统(AM,FM)实现方法

通信原理实验模拟调制系统(AM,FM)实现方法

通信原理实验模拟调制系统(AM,FM)实现方法
通信原理实验模拟调制系统(AM,FM)实现方法

实验一模拟调制系统(AM,FM)实现方法一、实验目的

实现各种调制与解调方式的有关运算

二、实验内容

对DSB,抑制载波的双边带、SSB,FM等调制方式下调制前后的信号波形及频谱进行观察。要求用system view 或Matlab中的基本工具组建各种调制解调系统,观察信号频谱。

三、实验原理

AM:

1)标准调幅就是常规双边带调制,简称调幅(AM)。将调制信号m(t)与一个直流分量A叠加后与载波相乘可形成调幅信号。AM信号的的频谱由载频分量、上边带、下边带组成。上边带的频谱结构与原调制信号的频谱结构相同,下边带是上边带的镜像。

2)DSB。若在AM调制模型中将A0去掉,即得到双边带信号(DSB)。与AM信号比较,因为不存在载波分量。

3)SSB。单边带调制(SSB)是将双边带信号中的一个边带滤掉而形成的。产生SSB信号的方法有:滤波法和相移法。SSB调制包括上边带调制和下边带调制。

解调:

解调是调制的逆过程,其作用是从接受的已调信号中恢复调制信号。解调的方法可分为两类:相干解调和非相干解调(包络检波)。

1)相干解调。解调与调制的实质一样,均是频谱搬移。即把在载频

位置的已调信号的浦搬回到原始基带位置。

2)包络检波。包络检波器就是直接从已调信号的幅度中提取预案调制信号。

FM:

调制中,若载频的频率随调制信号变化,称为频率调制或调频(FM)。调频信号的产生方法有两种:直接调频和间接调频。

1)直接调频。用调制信号直接控制载波振荡器的频率,使其按调制信号的规律线性变化。

2)间接调频。先将调制信号积分,然后对载波进行调相,即可产生一个NBFM信号,再经n次频倍器得到WBFM信号。

解调:

调频信号的解调也分为相干解调和非相干解调。相干解调仅适用于NBFM信号,而非相干解调对于NBFM和WBFM信号均适用。

四、实验内容

(一)标准调幅信号

实验代码:

f=5;

T=1/f;

fc=500;

A=1.5;

ts=0.001;

fs=1/ts;

t=0:ts:2*T;

mt=cos(2*pi*f*t)+cos(2*pi*2*f*t);%调制信号

ft=cos(2*pi*fc*t);%载波

yt=(mt+A).*ft;%调幅信号

N=2*T/ts;%设置抽样点数

Mf=abs(fft(mt,N));%求调制信号频谱

Ff=abs(fft(ft,N));%求载波频谱

Yf=abs(fft(yt,N));%求调幅信号频谱

ff=fs*(0:N-1)/N;

%将调制信号与其频谱在同一图中作出figure(1);

subplot(2,1,1);

plot(t,mt);title('调制信号');

subplot(2,1,2);

plot(ff,Mf(1:N));title('调制信号频谱');

%将载波与其频谱在同一图中作出figure(2);

subplot(2,1,1);

plot(t,ft);title('载波');

subplot(2,1,2);

plot(ff,Ff(1:N));title('载波频谱');

%将调幅信号与其频谱在同一图中作出figure(3);

subplot(2,1,1);

plot(t,yt);title('调幅信号');

subplot(2,1,2);

plot(ff,Yf(1:N)); title('调幅信号频谱'); 生成图像如下:

放大后看到,在4HZ,8HZ处有冲击,符合要求。

放大后看到,在500HZ处有载波,符合要求。

放大后看到,生成的是有载波的调幅信号,符合要求。

(二)DSB信号

实验代码:

f=4;

T=1/f;

fc=500;

ts=0.0005;

fs=1/ts;

t=0:ts:2*T;

mt=cos(2*pi*f*t)+cos(2*pi*2*f*t);%调制信号

ft=cos(2*pi*fc*t);%载波

yt=mt.*ft;%DSB信号

N=2*T/ts;

Mf=abs(fft(mt,N));%求调制信号频谱

Ff=abs(fft(ft,N));%求载波频谱

Yf=abs(fft(yt,N));%求DSB信号频谱

ff=fs*(0:N-1)/N;

figure(1);

subplot(2,1,1);

plot(t,mt);title('调制信号');

subplot(2,1,2);

plot(ff,Mf(1:N));title('调制信号频谱');

figure(2);

subplot(2,1,1);

plot(t,ft);title('载波');

subplot(2,1,2);

plot(ff,Ff(1:N));title('载波频谱');

figure(3);

subplot(2,1,1);

plot(t,yt);title('DSB信号');

subplot(2,1,2);

plot(ff,Yf(1:N)); title('DSB信号频谱');

figure(4);

yt1=yt.*ft;

subplot(2,1,1);

plot(t,yt1);title('原信号的一半叠加0.5*cos(2*pi*2*fc*t).*mt'); subplot(2,1,2);

Yf1=abs(fft(yt1,N));

plot(ff,Yf1(1:N));title('相对应的频谱');

figure(5);

subplot(2,1,1);

plot(t,mt);title('原调制信号');

ft1=yt.*ft-0.5*cos(2*pi*2*fc*t).*mt;

subplot(2,1,2);

plot(t,ft1);title('经解调后信号');

生成图像如下:

放大后看到,信号在4HZ,8HZ处有冲击,符合要求。

放倒后看到,载波频率为500HZ,符合要求。

放大后看到,在载波500HZ左边和右边有双边带,但载波被抑制,符合要求。

放大后看到,在4HZ,8HZ处有冲击,在2*500HZ=1000HZ处有载波抑制的双边带信号,符合要求。

从图中可以看出,经解调后的信号幅度是原信号的一半,幅度乘以2即可恢复原信号。

(三)SSB信号(以下边带为例)

实验代码:

f=4;

T=1/f;

fc=500;

ts=0.0005;

fs=1/ts;

t=0:ts:2*T;

mt=cos(2*pi*f*t)+cos(2*pi*2*f*t);%调制信号

ft=cos(2*pi*fc*t);%载波

yt=0.5*mt.*cos(2*pi*fc*t)+0.5*hilbert(mt).*sin(2*pi*fc*t)*j; %单边带信号

N=2*T/ts;

Mf=abs(fft(mt,N));%求调制信号频谱

Ff=abs(fft(ft,N));%求载波频谱

Yf=(fft(yt,N));%求SSB频谱

ff=fs*(0:N-1)/N;

figure(1);

subplot(2,1,1);

plot(t,mt);title('调制信号');

subplot(2,1,2);

plot(ff,Mf(1:N));title('调制信号频谱');

figure(2);

subplot(2,1,1);

plot(t,ft);title('载波');

subplot(2,1,2);

plot(ff,Ff(1:N));title('载波频谱');

figure(3);

subplot(2,1,1);

plot(t,yt);title('SSB');

subplot(2,1,2);

plot(ff,Yf(1:N));title('SSB频谱');

生成图像如下:

放大后看到,信号在4HZ,8HZ处有冲击,符合要求。

放大后看到,载波频率是500HZ,符合要求。

放大后看到,只有下边带,上边带被抑制,符合要求。(四)FM信号

实验代码:

dt=0.001; %设定时间步长

t=0:dt:1.5; %产生时间向量

am=5; %设定调制信号幅度

fm=6; %设定调制信号频率

mt=am*cos(2*pi*fm*t); %调制信号

fc=60; %设定载波频率

ct=cos(2*pi*fc*t); %载波

mf=10; %设定调频指数

int_mt(1)=0;

for i=1:length(t)-1

int_mt(i+1)=int_mt(i)+mt(i)*dt;

end %求信号m(t)的积分

sfm=am*cos(2*pi*fc*t+2*pi*mf*int_mt); %调制信号

figure(1)

subplot(3,1,1);plot(t,mt); %绘制调制信号的时域图

title('调制信号的时域图');

subplot(3,1,2);plot(t,ct); %绘制载波的时域图

title('载波的时域图');

subplot(3,1,3);

plot(t,sfm); %绘制已调信号的时域图

title('已调信号的时域图');

%对调制信号m(t)求傅里叶变换

ts=0.001; %抽样间隔

fs=1/ts; %抽样频率

df=0.25; %FFT的最小频率间隔

m=am*cos(2*pi*fm*t); %原调制信号

fs=1/ts;

if nargin==2

n1=0;

else

n1=fs/df;

end

n2=length(m);

n=2^(max(nextpow2(n1),nextpow2(n2)));

M=fft(m,n);

m=[m,zeros(1,n-n2)];

df1=fs/n;

M=M/fs; %缩放,便于在频谱图上观察f=[0:df1:df1*(length(m)-1)]-fs/2; %时间向量对应的频率向量

%对已调信号u求傅里叶变换

fs=1/ts;

if nargin==2

n1=0;

else

n1=fs/df;

end

n2=length(sfm);

n=2^(max(nextpow2(n1),nextpow2(n2)));

U=fft(sfm,n);

u=[sfm,zeros(1,n-n2)];

df1=fs/n;

U=U/fs; %缩放

figure(2)

subplot(2,1,1)

plot(f,abs(fftshift(M))) %fftshift:将FFT中的DC分量移到频谱中心xlabel('频率f')

title('原调制信号的频谱图')

subplot(2,1,2)

plot(f,abs(fftshift(U)))

xlabel('频率f')

title('已调信号的频谱图')

figure(3)

subplot(3,1,1);plot(t,mt); %绘制调制信号的时域图

title('调制信号的时域波形');

subplot(3,1,2);plot(t,sfm); %绘制已调信号的时域图

title('已调信号的时域波形');

nsfm=sfm;

for i=1:length(t)-1 %接受信号通过微分器处理diff_sfm(i)=(sfm(i+1)-sfm(i))./dt;

end

diff_sfmn = abs(hilbert(diff_sfm)); %hilbert变换,求绝对值得到瞬时幅度(包络检波)zero=(max(diff_sfm)-min(diff_sfm))/2;

diff_sfm1=diff_sfm-zero;

subplot(3,1,3); %绘制解调信号的时域图

plot((1:length(diff_sfm1))./1000,diff_sfm1./400,'r');

title('解调信号的时域波形');

生成图像如下:

放大后可以看到,调制信号频谱在6HZ处有冲击,符合要求;已调信号频谱宽度较宽,由B FM=2*(m f+1)*f m=2*(10+1)*6=132HZ,由图中可见,理论与实验结果一致。

从图中可以看出,解调信号的包络与原调制信号是一致的。

五、实验心得

这次实验主要做了关于标准调幅波信号AM,抑制载波的双边带信号DSB,单边带信号SSB以及调频FM的仿真实验。通过实验,自己进一步掌握了AM,DSB,SSB及FM的联系与区别,理解了课本上的理论知识。通过实验的形式将理论知识加以应用,得出的实验结果又进一步论证了理论的正确性。

模拟调制仿真

课程设计报告题目模拟调制仿真

目录 一.原理 (1) 二.编程思想 (2) 三.结果 (3) 四.分析 (5) 五.程序代码 (8)

一.原理 1.1模拟调制原理 模拟调制包括幅度调制(DSB,SSB,AM)和相角调制(频率和相位调制)。在本次设计中主要讨论模拟调制中的幅度调制,幅度调制即用基带调制信号去控制高频载波的幅度,使其按基带信号的规律变化的过程。幅度调制主要有AM调制,DSB调制,SSB调制。他们的调制原理如下,AM调制:AM 是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程;DSB调制:在幅度调制的一般模型中,若假设滤波器为全通网络,调制信号中无直流分量,则输出的已调信号就是无载波分量的双边调制信号,或称抑制载波双边带调制信号;SSB调制:由于 DSB 信号的上、下两个边带是完全对称的,皆携带了调制信号的全部信息,因此从信息传输的角度来考虑,仅传输其中一个边带。 1.2 AM调制 AM信号的时域表示式: 频谱: 调制器模型如图所示: 1.3 DSB调制 DSB信号的时域表示式 频谱: 1.4 相干解调 相干解调器原理:为了无失真地恢复原基带信号,接收端必须提供一个与接收的已调载波严格同步(同频同相)的本地载波(称为相干载波),它与接收的已调信号相乘后,经低 00 ()[()]cos cos()cos AM c c c s t A m t t A t m t t ωωω =+=+ 1 ()[()()][()()] 2 AM c c c c S A M M ωπδωωδωωωωωω=++-+++- ? () m t() m s t c t ⊕

通信原理(陈启兴版)第4章课后习题答案

第四章 模拟调制 4.1 学习指导 4.1.1 要点 模拟调制的要点主要包括幅度调制、频率调制和相位调制的工作原理。 1. 幅度调制 幅度调制是用调制信号去控制载波信号的幅度,使之随调制信号作线性变化的过程。在时域上,已调信号的振幅随基带信号的规律成正比变化;在频谱结构上,它的频谱是基带信号频谱在频域的简单平移。由于这种平移是线性的,因此,振幅调制通常又被称为线性调制。但是,这里的“线性”并不是已调信号与调制信号之间符合线性变换关系。事实上,任何调制过程都是一种非线性的变换过程。 幅度调制包括标准调幅(简称调幅)、双边带调幅、单边带调幅和残留边带调幅。 如果调制信号m (t )的直流分量为0,则将其与一个直流量A 0相叠加后,再与载波信号相乘,就得到了调幅信号,其时域表达式为 []()()()AM 0c 0c c ()()cos cos ()cos (4 - 1)s t A m t t A t m t t ωωω=+=+ 如果调制信号m (t )的频谱为M (ω),则调幅信号的频谱为 [][]AM 0c c c c 1 ()π()()()() (4 - 2)2 S A M M ωδωωδωωωωωω=++-+ ++- 调幅信号的频谱包括载波份量和上下两个边带。上边带的频谱结构与原调制信号的频谱结构相同,下边带是上边带的镜像。由波形可以看出,当满足条件 |m (t )| ≤ A 0 (4-3) 时,其包络与调制信号波形相同,因此可以用包络检波法很容易恢复出原始调制信号。否则,出现“过调幅”现象。这时用包络检波将发生失真,可以采用其他的解调方法,如同步检波。 调幅信号的一个重要参数是调幅度m ,其定义为 [][][][]00max min 00max min ()() (4 - 4)()()A m t A m t m A m t A m t +-+=+++ AM 信号带宽B AM 是基带信号最高频率分量f H 的两倍。 AM 信号可以采用相干解调方法实现解调。当调幅度不大于1时,也可以采用非相干解调方法,即包络检波,实现解调。 双边带信号的时域表达式为 ()DSB c ()()cos (4 - 5)s t m t t ω= 其中,调制信号m (t )中没有直流分量。 如果调制信号m (t )的频谱为M (ω),双边带信号的频谱为 []DSB c c 1 ()()() (4 - 6)2 S M M ωωωωω= ++-

模拟调制系统AM系统

西安邮电大学 《通信原理》软件仿真实验报告 实验名称:模拟调制系统——AM系统 院系:通信与信息工程学院 专业班级:XXXX 学生姓名:XXX XX 学号:XXXX (班内序号) 指导教师:XXX 报告日期:XXXX年XX月XX日 ●实验目的: 1、掌握AM信号的波形及产生方法; 2、掌握AM信号的频谱特点; 3、掌握AM信号的解调方法; 4、掌握AM系统的抗噪声性能。 仿真设计电路及系统参数设置: 时间参数:No. of Samples = 4096;Sample Rate = 20000Hz; ●仿真波形及实验分析: 1、调制信号与AM信号的波形和频谱: 调制信号为正弦信号,Amp= 1V,Freq=200Hz;直流信号Amp = 2V;余弦载波Amp = 1V,Freq= 1000Hz;无噪声;调制信号: AM信号: ●采用相干解调,记录恢复信号的波形和频谱: 接收机模拟带通滤波器Low Fc = 750Hz,Hi Fc = 1250Hz,极点个数6; 接收机模拟低通滤波器Fc = 250Hz,极点个数为9;恢复信号: ●采用包络检波 全波整流器Zero Point = 0V;模拟低通滤波器Fc = 250Hz,极点个数为9;恢复信号: 由信号功率谱可以看出,相干解调要比包络检波的恢复效果好。 ●改变高斯白噪声的功率谱密度,观察并记录恢复信号的变化:

无高斯白噪声: 加高斯白噪声(功率谱密度(density in 1 ohm=0.00002W/Hz))恢复信号: 改变高斯白噪声的功率谱密度(density in 1 ohm=0.0002W/Hz)恢复信号: 改变高斯白噪声的功率谱密度(density in 1 ohm=0.002W/Hz)恢复信号: 综上可得高斯白噪声越大,恢复信号失真越严重。 实验成绩评定一览表

FM调制解调系统设计与仿真

贵州大学明德学院 《高频电子线路》 课程设计报告 题目:模拟角度调制系统 学院:明德学院 专业:电子信息工程 班级: 学号: 姓名:周科远 指导老师:宁阳 2012年1月 1日

《高频电子线路》课程设计任务书 一、课程设计的目的 高频电子线路课程设计是专业实践环节之一,是学习完《高频电子线路》课程后进行的一次全面的综合练习。其目的让学生掌握高频电子线路的基本原理极其构造和运用,特别是理论联系实践,提高学生的综合应用能力。 二、课程设计任务 课程设计一、高频放大器 课程设计二、高频振荡器 课程设计三、模拟线性调制系统 课程设计四、模拟角度调制系统 课程设计五、数字信号的载波传输 课程设计六、通信系统中的锁相环调制系统 共6个课题选择,学生任选一个课题为自己的课程设计题目,独立完成;具体内容按方向分别进行,不能有雷同;任务包括原理介绍、系统仿真、波形分析等;要求按学校统一的课程设计规范撰写一份设计说明书。 三、课程设计时间 课程设计总时间1周(5个工作日) 四、课程设计说明书撰写规范 1、在完成任务书中所要求的课程设计作品和成果外,要撰写课程设计说明书1份。课程设计说明书须每人一份,独立完成。 2、设计说明书应包括封面、任务书、目录、摘要、正文、参考文献(资料)等内容,以及附图或附件等材料。 3、题目字体用小三,黑体,正文字体用五号字,宋体,小标题用四号及小四,宋体,并用A4纸打印。

目录 摘要...................................................................I ABSTRACT .............................................................II 一.课程设计的目的与要求.. (1) 1.1课程设计的目的 (1) 1.2课程设计的要求 (1) 二.FM调制解调系统设计 (2) 2.1FM调制模型的建立 (3) 2.2调制过程分析 (3) 2.3FM解调模型的建立 (4) 2.4解调过程分析 (5) 2.5高斯白噪声信道特性 (6) 2.6调频系统的抗噪声性能分析 (9) 三.仿真实现 (10) 3.1MATLAB源代码 (11) 3.2仿真结果 (15) 四.心得体会 (18) 五.参考文献 (19)

第四章模拟调制系统习题答案

第四章 模拟调制系统习题答案 4-1 根据图P4-1所示的调制信号波形,试画出DSB 及AM 信号的波形图,并比较它们分别通 解 由包络检波后波形可知:DSB 解调信号已严重失真,而AM 的解调信号不失真。所以,AM 信号采用包络检波法解调,DSB 信号不能采用包络检波法解调。 4-2 设某信道具有均匀的双边噪声功率谱密度P n (f)=×10-3 W/H Z ,在该信道中传输抑制载波的双边带信号,并设调制信号m(t)的频带限制在5kH Z ,而载波为100kH Z ,调制信号的功率为10kW 。若接收机的输入信号在加至解调器之前,先经过带宽为10kH z 的一理想带通滤波器,试问 (1) 该理想带通滤波器中心频率为多大 (2) 解调器输入端的信噪功率比为多少 (3) 解调器输出端的信噪功率比为多少 (4) 求出解调器输出端的噪声功率谱密度,并用图形表示出来。 解 (1)为了保证信号顺利通过和尽可能的滤除噪声,带通滤波器的带宽等于已调信号宽度,即B=2f m =2×5=10kH Z ,其中心频率应选信号的载波频率100kH Z ,带通滤波器特性为 ()? ? ?≤≤=其它 010595Z z kH f kH k H ω (2) S i =10kW N i =2BP n (f)=2×10×103××10-3 =10W 故输入信噪比 S i /N i =1000 (3) 因有G DSB =2,故输出信噪比 002210002000i i S S N N =?=?=

(4) 根据双边带解调器的输出噪声与输入噪声功率之间的关系,有 W N N i 5.24 10410=== 故 ()()Z n Z m n kH f f p H W f N f P 52 1 105.021/1025.010525.22333 00≤=??= ?=??== --双 其双边谱如右图所示 4-3某线性调制系统的输出信噪比为20dB ,输出噪声功率为10-9 W ,由发射机输出端到解调器输入端之间总的传输损耗为100dB ,试求: ⑴DSB/SC 时的发射机输出功率; ⑵SSB/SC 时的发射机输出功率。 解:设发射机输出功率为S F ,解调器输入功率为S r ,由题意,传输损耗 K =S F /S r =1010 (100dB) 已知S 0/N 0=100 (20dB),N 0=10-9 W ⑴对于DSB 方式,因为G =2, 则 00111005022 i i S S N N ==?= 又N i =4N 0 故S i =50×N i =50×4N 0=200×10-9 =2×10-7 W 所以发射功率S F =KS i =1010×2×10-7=2×103 W ⑵对于SSB ,因为G =1, 则 00 100i i S S N N ==,故S i =100×4N 0=400×10-9=4×10-7W 所以发射功率S F =KS i =1010 ×4×10-7 =4×103 W 4-4试证明:当AM 信号采用同步检波法进行解调时,其制度增益G 与公式的结果相同。 证明:设接收到的AM信号为s AM (t)=[A+m(t)]cos ωc t ,相干载波为c(t)=cos ωc t 噪声为:n i (t)=n c (t)cos ωc t-n s (t)sin ωc t 信号通过解调器 相乘输出:s AM (t) c(t)=[A+m(t)]cos 2 ωc t =A /2+m(t)/2+1/2×[A+m(t)]cos2ωc t 低通输出:A/2 +m(t)/2 隔直流输出:s 0(t)=m(t)/2 噪声通过解调器 相乘输出: [n c (t)cos ωc t-n s (t)sin ωc t] cos ωc t=n c (t)/2+n c (t)/2×cos2ωc t-n s (t)/2×sin2ωc t 低通滤波器输出:n c (t)/2 隔直流输出:n 0(t)=n c (t)/2 输入信号功率:()[]()2 22222 t m A t s E s AM i +==, 输入噪声功率:B n t n N i i 02 )(== 输出信号功率:()()422 00t m t s S == , 输出噪声功率:()()B n t n t n N c 0202 04 14== = () ()[] ()() t m A t m t m A B n B n N S N S G t m i i AM 2 2 22 2 2 1 00414002//2 += +?==∴ 证毕。 4-5 设一宽带频率调制系统,载波振幅为100V ,载频为100MH Z ,调制信号m(t)的频带限制在5kH Z , ()2 25000,500/(.)F m t V k rad sV π==,最大频偏Δf=75KH Z ,并设信道中噪声

基于Matlab模拟通信系统仿真设计

目录 摘要------------------------------------------------------4 第一章课程设计容及要求--------------------------------4 1、课程设计的容-----------------------------------4 2、课程设计的要求-----------------------------------4 第二章通信系统的调制与解调------------------------------5 1、通信系统的概念----------------------------------5 2、调制和解调的概念--------------------------------6 第三章MATLAB软件及功能介绍------------------------------7 1、MATLAB软件简介-----------------------------------7 2、GUI功能简介--------------------------------------7 3、基于MATLAB相关函数介绍---------------------------8 第四章四种模拟信号的调制解调---------------------------10 1、AM的调制与解调---------------------------------10 2、DSB的调制与解调--------------------------------13 3、SSB的调制与解调--------------------------------16 4、FM的调制与解调---------------------------------19 5、GUI界面的设计----------------------------------23 第五章总结与结束语-------------------------------------25 1、各调制解调方式性能分析总结----------------------25

第四章 模拟调制系统习题答案教学文案

第四章模拟调制系统 习题答案

第四章 模拟调制系统习题答案 4-1 根据图P4-1所示的调制信号波形,试画出DSB 及AM 信号的波形图,并比 解 由包络检波后波形可知:DSB 解调信号已严重失真,而AM 的解调信号不失真。所以,AM 信号采用包络检波法解调,DSB 信号不能采用包络检波法解调。 4-2 设某信道具有均匀的双边噪声功率谱密度P n (f)=0.5×10-3 W/H Z ,在该信道中传输抑制载波的双边带信号,并设调制信号m(t)的频带限制在5kH Z ,而载波为100kH Z ,调制信号的功率为10kW 。若接收机的输入信号在加至解调器之前,先经过带宽为10kH z 的一理想带通滤波器,试问 (1) 该理想带通滤波器中心频率为多大? (2) 解调器输入端的信噪功率比为多少? (3) 解调器输出端的信噪功率比为多少? (4) 求出解调器输出端的噪声功率谱密度,并用图形表示出来。 解 (1)为了保证信号顺利通过和尽可能的滤除噪声,带通滤波器的带宽等于已调信号宽度,即B=2f m =2×5=10kH Z ,其中心频率应选信号的载波频率100kH Z ,带通滤波器特性为 ()???≤≤=其它 010595Z z kH f kH k H ω

(2) S i =10kW N i =2BP n (f)=2×10×103×0.5×10-3=10W 故输入信噪比 S i /N i =1000 (3) 因有G DSB =2,故输出信噪比 002210002000i i S S N N =?=?= (4) 根据双边带解调器的输出噪声与输入噪声功率之间的关系,有 W N N i 5.24 10410=== 故 ()()Z n Z m n kH f f p H W f N f P 52 1105.021/1025.010525.2233300≤=??=?=??==--双 其双边谱如右图所示 4-3某线性调制系统的输出信噪比为20dB ,输出噪声功率为10-9W ,由发射机输出端到解调器输入端之间总的传输损耗为100dB ,试求: ⑴DSB/SC 时的发射机输出功率; ⑵SSB/SC 时的发射机输出功率。 解:设发射机输出功率为S F ,解调器输入功率为S r ,由题意,传输损耗 K =S F /S r =1010 (100dB) 已知S 0/N 0=100 (20dB),N 0=10-9W ⑴对于DSB 方式,因为G =2, 则00111005022 i i S S N N ==?= 又N i =4N 0 故S i =50×N i =50×4N 0=200×10-9=2×10-7W 所以发射功率S F =KS i =1010×2×10-7=2×103W ⑵对于SSB ,因为G =1, 则00 100i i S S N N ==,故S i =100×4N 0=400×10-9=4×10-7W 所以发射功率S F =KS i =1010×4×10-7=4×103W 4-4试证明:当AM 信号采用同步检波法进行解调时,其制度增益G 与公式(4.2-55)的结果相同。 证明:设接收到的AM信号为s AM (t)=[A+m(t)]cos ωc t ,相干载波为 c(t)=cos ωc t 噪声为:n i (t)=n c (t)cos ωc t-n s (t)sin ωc t 信号通过解调器 相乘输出:s AM (t) c(t)=[A+m(t)]cos 2ωc t =A /2+m(t)/2+1 /2×[A+m(t)]cos2ωc t 低通输出:A/2 +m(t)/2

基于MATLAB的模拟调制系统仿真与测试(AM调制)

闽江学院 《通信原理设计报告》 题目:基于MATLAB的模拟调制系统仿真与测试学院:计算机科学系 专业:12通信工程 组长:曾锴(3121102220) 组员:薛兰兰(3121102236) 项施旭(3121102222) 施敏(3121102121) 杨帆(3121102106) 冯铭坚(3121102230) 叶少群(3121102203) 张浩(3121102226) 指导教师:余根坚 日期:2014年12月29日——2015年1月4日

摘要在通信技术的发展中,通信系统的仿真是一个重点技术,通过调制能够将信号转化成适用于无线信道传输的信号。 在模拟调制系统中最常用最重要的调制方式是用正弦波作为载波的幅度调制和角度调制。在幅度调制中,文中以调幅、双边带和单边带调制为研究对象,从原理等方面阐述并进行仿真分析;在角度调制中,以常用的调频和调相为研究对象,说明其调制原理,并进行仿真分析。利用MATLAB下的Simulink工具箱对模拟调制系统进行仿真,并对仿真结果进行时域及频域分析,比较各个调制方式的优缺点,从而更深入地掌握模拟调制系统的相关知识,通过研究发现调制方式的选取通常决定了一个通信系统的性能。 关键词模拟调制;仿真;Simulink 目录 第一章绪论 (1) 1.1 引言 (1) 1.2 关键技术 (1) 1.3 研究目的及意义 (2) 1.4 本文工作及内容安排 (2) 第二章模拟调制原理 (3) 2.1 幅度调制原理 (3) 2.1.1 AM调制 (4) 第三章基于Simulink的模拟调制系统仿真与分析 (6) 3.1 Simulink工具箱简介 (6) 3.2 幅度调制解调仿真与分析 (8) 3.2.1 AM调制解调仿真及分析 (8) 第四章总结 (12) 4.1 代码 (13) 4.2 总结 (14)

B8章模拟调制系统习题及答案_通信原理

第三章(模拟调制原理)习题及其答案 【题3-1】已知线性调制信号表示式如下: (1)cos cos c t w t Ω (2)(10.5sin )cos c t w t +Ω 式中,6c w =Ω。试分别画出它们的波形图和频谱图。 【答案3-1】 (1)如图所示,分别是cos cos c t w t Ω的波形图和频谱图 设()M S w 是cos cos c t w t Ω的傅立叶变换,有 ()[()() 2 ()()] [(7)(5)(5)(7)] 2 M c c c c S w w w w w w w w w w w w w π δδδδπ δδδδ= +Ω+++Ω-+-Ω++-Ω-= +Ω+-Ω++Ω+-Ω (2)如图所示分别是(10.5sin )cos c t w t +Ω的波形图和频谱图:

设()M S w 是(10.5sin )cos c t w t +Ω的傅立叶变换,有 ()[()()] [()()2 ()()] [(6)(6)] [(7)(5)2 (7)(5)]M c c c c c c S w w w w w j w w w w w w w w w w j w w w w πδδπ δδδδπδδπ δδδδ=++-+ +Ω+++Ω---Ω+--Ω-=+Ω+-Ω+ +Ω+-Ω--Ω-+Ω 【题3-2】根据下图所示的调制信号波形,试画出DSB 及AM 信号的波形图,并比较它们分别通过包络检波器后的波形差别。 【答案3-2】 AM 波形如下:

通过低通滤波器后,AM 解调波形如下: DSB 波形如下: 通过低通滤波器后,DSB 解调波形如下: 由图形可知,DSB 采用包络检波法时产生了失真。 【题3-3】已知调制信号()cos(2000)cos(4000)m t t t ππ=+载波为4cos10t π,进行单边带调制,试确定单边带信号的表达式,并画出频谱图。 【答案3-3】 可写出上边带的时域表示式

模拟通信调制解调技术的仿真实现

南昌工程学院 《通信原理》课程设计 题目模拟通信调制解调技术的仿真实现—— 相角调制——频率调制 课程名称通信系统原理 系院信息工程学院 专业09通信工程 班级一班 学生姓名 学号 设计地点电子信息楼B405 指导教师侯友国 设计起止时间:2012年6月4日至2012年6月15日

目录 一、需求分析 (2) 二、系统总体设计 (2) 三、系统详细设计 (4) 1.解调过程分析 (4) 四、调试与维护 (5) 频率调制的Matlab演示源程序 (5) 六、参考文献 (8) 七、指导教师评阅(手写) (9)

)(K π <

基于MATLAB的模拟信号频率调制(FM)与解调分析

课程设计任务书 学生姓名:杨刚专业班级:电信1302 指导教师:工作单位:武汉理工大学 题目:信号分析处理课程设计 -基于MATLAB的模拟信号频率调制(FM)与解调分析 初始条件: 1.Matlab6.5以上版本软件; 2.先修课程:通信原理等; 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、利用MATLAB中的simulink工具箱中的模块进行模拟频率(FM)调制与解调,观 察波形变化 2、画出程序设计框图,编写程序代码,上机运行调试程序,记录实验结果(含计算结 果和图表等),并对实验结果进行分析和总结; 3、课程设计说明书按学校统一规范来撰写,具体包括: ⑴目录;⑵理论分析; ⑶程序设计;⑷程序运行结果及图表分析和总结; ⑸课程设计的心得体会(至少800字,必须手写。); ⑹参考文献(不少于5篇)。 时间安排: 周一、周二查阅资料,了解设计内容; 周三、周四程序设计,上机调试程序; 周五、整理实验结果,撰写课程设计说明书。 指导教师签名: 2013 年 7月 2 日 系主任(或责任教师)签名: 2013年 7月 2日

目录 1 Simulink简介 (1) 1.1 Matlab简介······················································错误!未定义书签。 1.2 Simulink介绍 ···················································错误!未定义书签。 2 原理分析 ·····························································错误!未定义书签。 2.1通信系统 ·························································错误!未定义书签。 2.1.1通信系统的一般模型 ···································错误!未定义书签。 2.1.2 模拟通信系统 (3) 2.2 FM调制与解调原理···········································错误!未定义书签。 3 基于Matlab方案设计 (6) 3.1 Matlab代码 (6) 3.2 Matlab仿真 (8) 4 基于Simulink方案设计 (12) 4.1 使用Simulink建模和仿真的过程 (12) 4.1.1 Simulink模块库简介 (12) 4.1.2 调制解调模块库简介 (13) 4.2 FM调制与解调电路及仿真 (14) 4.3 仿真结果分析 (17) 5 心得体会 ·····························································错误!未定义书签。 6 参考文献 (20) 本科生课程设计评定表

实验一(模拟调制系统调制及解调模拟)

实验一:模拟调制系统调制及解调模拟 实验要求: 1、 学生按照实验指导报告独立完成相关实验的内容; 2、 上机实验后撰写实验报告,记录下自己的实验过程,记录实验心得。 3、 以电子形式在规定日期提交实验报告。 实验指导 一、线性调幅 1. 普通调幅 原理介绍: 普通调幅 即:AM 幅度调制 ,常规双边带幅度调制(Double-SideBand Modulation Passband) 其中输入信号是u(t),输出信号是y(t),y(t)是个实信号,若u(t)=0cos u t Ω,则有 0()(())cos(2) ()(cos())cos(2)c c c a c a c y t u t U f t y t U m t f t u m U απθαπθ=++=+Ω+= ① 其中,α是输入信号的偏移,c f 是载波频率,θ是初始相位(设θ=0),c U 是载波幅度,a m 是调制指数。传输载波时,α=1;不传输载波时,α=0。 ()(1cos )cos ()cos cos()cos()22 c a c a a c c c c y t U m t t m m y t U t t t ωωωω=+Ω=++Ω+-Ω ② 由②得出,幅度调制的结果含有:载波c ω、上边带()c ω+Ω、下边带()c ω-Ω的

成分,双边带幅度调制的输出包含了载频高端和低端的频率成分。 参数说明: DSB AM Modulator Passband(双边带频带幅度调制器)的主要参数 DSB AM Demodulator Passband(双边带频带幅度解调器)的主要参数 系统仿真框图: 本例中信源是一个幅度为0.7,频率为8HZ的正弦信号。

03章通信原理习题-答案

习题解答 3-1.填空题 (1) 在模拟通信系统中,有效性与已调信号带宽的定性关系是( 已调信号带宽越小,有效性越 好),可靠性与解调器输出信噪比的定性关系是(解调器输出信噪比越大,可靠性越好)。 (2) 鉴频器输出噪声的功率谱密度与频率的定性关系是(功率谱密度与频率的平方成正比),采 用预加重和去加重技术的目的是(提高解调器输出信噪比)。 (3) 在AM 、DSB 、SSB 、FM 等4个通信系统中,可靠性最好的是(FM ),有效性最好的是(SSB ), 有效性相同的是(AM 和DSB ),可靠性相同的是(DSB 、SSB )。 (4) 在VSB 系统中,无失真传输信息的两个条件是:(相干解调)、(系统的频率特性在载频两 边互补对称)。 (5) 某调频信号的时域表达式为6310cos(2105sin10)t t ππ?+,此信号的载频是(106)Hz ,最大 频偏是(2500)Hz ,信号带宽是(6000)Hz ,当调频灵敏度为5kHz/V 时,基带信号的时域表达式为(30.5cos10t π)。 3-2.根据题3-2图(a )所示的调制信号波形,试画出DSB 及AM 信号的波形图,并比较它们分别通过包络检波器后的波形差别。 解:设载波()sin c s t t ω=, (1)DSB 信号()()()DSB s t m t s t =的波形如题3-2图(b ),通过包络后的输出波形为题3-2图(c)。 (2)AM 信号0()[()]sin AM c s t m m t t ω=+,设0max ()m m t >,波形如题3-2图(d ),通过包络后的输出波形为题3-2图(e)。 结论:DSB 解调信号已严重失真,故对DSB 信号不能采用包络检波法;而AM 可采用此法恢复。 3-3.已知调制信号()cos(2000)cos(4000)m t t t ππ=+,载波为4cos10t π,进行单边带调制,试确定该单边带信号的表示式,并画出频谱图。 解法一:若要确定单边带信号,需先求得()m t 的希尔波特变换 题3-2图(a ) 题3-2图(b)、(c)、(d)和 (e)

通信原理实验B-软件仿真实验四 模拟调制系统—SSB系统

班级:通工1612 姓名:学号: 软件仿真实验四模拟调制系统—SSB系统 实验目的: 1、掌握SSB信号的产生方法; 2、掌握SSB信号波形和频谱的特点; 3、掌握SSB信号的解调方法; 4、掌握SSB系统的抗噪声性能。 知识要点: 1、SSB信号的产生方法; 2、SSB信号的波形和频谱; 3、SSB信号的解调方法; 4、SSB系统的抗噪声性能。 仿真要求: 建议时间参数:No. of Samples = 4096;Sample Rate = 20000Hz 双边谱选择(20Log|FFT|【dB】) 1、利用移相法产生SSB信号,记录SSB信号的波形和频谱; 其中:图符0为调制信号,采用幅度1V、频率400Hz的正弦信号; 图符3为载波信号,采用幅度1V、频率2000Hz的正弦信号; 2、自行设计调整系统结构及参数,利用滤波法实现SSB信号(建议使用带阻滤波器); 3、采用相干解调,记录恢复信号的波形; LSB模拟带通滤波器Low Fc = 1500Hz,Hi Fc = 1700Hz,极点个数5; USB模拟带通滤波器Low Fc = 2300Hz,Hi Fc = 2500Hz,极点个数5;

接收机模拟低通滤波器Fc = 500Hz,极点个数9; 4、在接收机模拟带通滤波器前加入高斯白噪声; 建议Density in 1 ohm = 0.00002W/Hz,观察并记录恢复信号波形的变化; 5*、改变高斯白噪声功率谱密度,观察并记录恢复信号波形的变化; 实验报告要求: 1、记录SSB信号的波形和频谱,分析SSB信号波形和频谱的特点; 2、记录恢复信号波形的变化,分析噪声对恢复信号的影响。 系统框图: 仿真结果与实验分析: 1、利用相移法产生SSB上边带信号,记录SSB上边带信号的波形 2、利用相移法产生SSB上边带信号,记录SSB上边带信号的频谱

通信原理习题答案_西安邮电

第一章绪论 学习要求: 常用通信术语; 模拟信号与数字信号的定义; 通信系统的组成、分类、和通信方式; 数字通信系统的优缺点; 离散消息的信息量、平均信息量(信源熵)的计算; 衡量模拟通信系统和数字通信系统的性能指标; 传码率、传信率、频带利用率、平均传信率和最大传信率的计算及其关系; 误码率和误信率的定义及计算。 一、简答题 1.消息、信息、信号,通信的含义是什么通信系统至少包含哪几部分 2.试画出模拟和数字通信系统的模型图,并指出各组成部分的主要功能,说明数字通信系统有什么特点 3.举例说明单工、半双工及全双工的工作方式及其特点。 4.举例说明如何度量信息量。 5.通信系统的性能指标是什么这些性能指标在模拟和数字通信系统中指的是什么 二、综合题 1.设有四个符号,其中前三个符号出现的概率分别为1/4,1/8,1/8,且各符号的出现是相对独立的。试计算该符号集的平均信息量。 H x bit/符 2.一个由字母A、B、C、D组成的字,对于传输的每一个字母用二进制脉冲编码,00代替A、 01代替B、10代替C,11代替D,每个二进制脉冲宽度为5ms。 (1)不同字母是等可能出现时,试计算传输的平均信息速率; (2)若每个字母出现的可能性分别为 1 1 1 3 P A ,P B ,P C ,P D 5 4 4 10 试计算传输的平均信息速率。 R b max 200 bit/s R b bit/s 3.国际莫尔斯电码用“点”和“划”的序列发送英文字母,“划”用持续3单位的电流脉冲

表示,“点”用持续1单位的电流脉冲表示;且“划”出现的概率是“点”出现概率的1/3。 (1)计算“点”和“划”的信息量; (2)计算“点”和“划”的平均信息量。 I 2 bit I. bit H x bit/符 4.设一信息源的输出由128个不同的符号组成,其中16个出现的概率为1/32,其余112出现的概率为 1/224。信息源每秒发出 1000个符号,且每个符号彼此独立。试计算该信息源的平均信息速率。 R b 6405 bit/s 5.已知某四进制数字传输系统的传信率为2400b/s,接收端在小时内共收到126个错误码元,试计算该系统的误码率P e 。 P e 105 6.某4ASK系统的4个振幅值分别为0,1,2,3。这4个振幅是相互独立的; (1)振幅0,1,2,3出现概率分别为:,,,,求各种振幅信号的平均信息量 (2)设每个振幅的持续时间(即码元宽度)为1s,求此系统的信息速率 H x bit/符 R b 106 bit/s 7.某离散信源符号集由4个符号组成,其中前三个符号出现的概率分别为1/4、 1/8、 1/8,且各符号的出现是相对独立的,信息源以1000B速率传递信息,试计算:(1)该符号集的平均信息量; (2)传送1小时的信息量; (3)传送1小时可能达到的最大信息量。 H x bit/符 I 106 bit I max 106 bit 8.某通信系统采用脉冲组方式进行信息传送,每个脉冲组包含 4 个信息脉冲和一个休止脉冲,休止脉冲不传送信息。每个信息脉冲和休止脉冲的宽度为2ms,且四个信息脉冲等概率出现。试计算: (1)码元速率;

实验1 模拟信号光调制和光接收

实验一模拟信号光调制和光接收 一实验目的 1、了解发送光端机的发光管特性和光检测器的原理 2、掌握如何在光纤信道中高性能传输模拟信号 3、掌握发送光端机中传输模拟信号驱动电路的设计 二实验仪器 1、ZH7002型光纤通信多功能综合实验系统一台 2、20MHz双踪示波器一台 3、低频信号源一台 4、光功率计一台 5、万用表一台 6、光纤跳线一根 三预备知识 1、光端机发光管特性; 2、信道的非线性; 3、光电转换特性; 4、弱信号检测; 四实验原理 1、模拟光纤传输系统的主要技术指标 模拟光纤传输系统有两个关键性的质量指标: (1)信噪比S/N (2)信道线性度(非线性失真度) 信噪比S/N与信道线性度分别表达噪声大小和线性好坏,这两个指标的数值依据传输的实际用途而定。一般地说高质量的电视传输(例如演播室图像传输)要求信噪比S/N达到56Db,差分增益△G=0.3dB(差分增益是用于表示在不同输入信号电平上所引起增益的差值,即通道的线性度)。对于数字载波传输系统(模拟信号传输),所需信噪比S/N和通道线性度一般比这要求低,可根据实际系统指标的分配决定。 2、模拟光纤传输系统的噪声来源 噪声问题是模拟光纤传输系统最重要的问题之一,系统的任何组成部分包括有源器件和无源器件都可产生噪声,并叠加在传输信号之上。在模拟传输系统中,主要有光发射机、传输光纤、光接收机和各类连接器所组成。在光接收机中光检测器又由光检二极管和前置放大器组成。 模拟光纤传输链路中的噪声主要来源于以下几个方面: (1)光发射机中激光器光强的涨落,即相对强度噪声。在模拟光纤系统中,激光器的直流偏置点是至于线性范围的中间,即在高于激光器阈值电流Ith的某一电流I 处。相对强度噪声随着激光器的偏置不同而变化,在阈值附近,其达到最大,随 着偏置增加,即激光器输出功率增加,其会下降。相对强度噪声和激光器的工作 频率亦有关系,一般在低频时较小,而在高频时相对强度噪声则明显增加。 (2)由光纤链路中光纤连接器(活接头)、固定连接点(死接头)、光纤耦合端面产生

模拟信号幅度调制与Matlab仿真

模拟信号幅度调制与Matlab 仿真 作者:蛙蛙通信 调制,顾名思义,是指用调制信号(基带信号)去控制载波信号,改变载波某些参数的过程。通过调制,不仅可以实现信号的频谱搬移,而且参数设计合理时,还能将改善系统传输的有效性和可靠性,所以调制过程在通信中占据着非常重要的部分。本文将讨论模拟信号幅度调制(AM )解调过程中的性能。 幅度调制使用调制信号去控制载波的振幅,使载波的振幅按照调制信号去变化的过程。幅度调制的一般模型如下图(1)所示: 图(1) 幅度调制一般模型 如图(1)所示,调制信号为m(t) ,假定调制信号的频谱为M(ω),载波为cos(ωc t),滤波器h(t)的频谱为H(ω),已调信号为S(t),则S(t)的时域表达式和频域表达式如下: S (t )=m (t ) cos(ωc t) * h(t) S(ω) = 1 2 [M (ω?ωc ) +M(ω+ ωC )]H(ω) 式(1)中,*表示为卷积运算。由式(1)可知,载波信号的幅度被调制信号m(t)控制,在频谱结构上,实现了把调制信号的频谱进行左右搬移。由于这种频谱搬移是线性的,所以幅度调制是一种线性调制。 本文将以MATLAB 仿真结果的形式,来仿真调幅(AM)与解调,抑制载波双边带调制与解调(DSBSC),单边带调制与解调(SSB)。 调幅(AM ) 在图(1)中,令h(t) = δ(t),即H(ω) = 1,全通滤波器,m(t) = m(t) +A0,其中A0为直流信号。则此时产生的信号S(t)即为调幅信号,记为S AM (T)。 调幅信号的框图如下图(2)所示: + S(t) cos(ωc t) m(t) 式(1) S AM (T ) m(t)

模拟调制系统.doc

第四章模拟调制系统 4.1 引言 由消息变换过来的原始信号具有频率较低的频谱分量,这种信号大多不 适宜直接传输。必须先经过在发送端调制才便于信道传输。而在接收端解调。 所谓调制,就是按原始信号(基带信号、调制信号)的变化规律去改变 载波某些参数的过程。 ①将基带信号频谱搬移到载频附近,便于 发送接收; 调制的作用: ②实现信道复用,即在一个信道中同时传 输多路信息信号; ③利用信号带宽和信噪比的互换性,提高 通信系统的抗干扰性。 常用调制方式分类: 连续波调制 模拟调制 数字调制幅度调制 频率调制 振幅键控(ASK) 频移键控(FSK) 脉冲幅度调制 模拟调制脉冲宽度调制 脉冲位置调制脉冲调制 数字调制脉冲编码调制(PCM)增量调制(?M) 4.2 幅度调制(线性调制)原理 幅度调制是高频正弦载波的幅度随调制信号作线性变化的过程。 一、线性调制器的一般模型 所谓线性调制:波形上,幅度随基带信号呈正比例变化; 频率上,简单搬移。 但是,已调信号和基带信号之间非线性。

58

s t A cos t c 正弦型载波: 振幅载波角频率 基带调制信号(消息信号):m t M 用消息信号(调制信号)m t 去调制正弦型载波s t A cos c t ,或者说正弦载波的幅度随消息信号作线性变化。 已调信号:m t A cos A t c 2 M M c c 已调信号的频谱,s m t ~ 已调信号 可看出M 频率 搬移了。 第一章讲过,消息信号m t 类比货物,A t cos(可看成幅度 A 1) c 类比火车,货物m t 承载在火车带通滤波器 h t s m t c os t 上,发送给接收方,类比到 c cos t c 达站上海车站,到站后卸货,即接 图:线性调制器的一般模型 收机解调。 已调信号s t m 的产生方法如图:(即线性调制器的一般模型)带通滤波器的传递函数:H ,带通滤波器的冲激响应:H h t 线性调制器的输出: 时域表示: s m t m t cos c t h t 频域表示: 1 S m 2 M M H c c 在该模型中,适当地选择带通滤波器的传递函数,可得到不同的幅度调制信号: 普通调幅AM 双边带信号(DSB—SC)

相关主题
文本预览
相关文档 最新文档