当前位置:文档之家› 电力有源滤波器的设计

电力有源滤波器的设计

电力有源滤波器的设计
电力有源滤波器的设计

工学院毕业设计(论文)

题目:电力有源滤波器的设计

专业:电气工程及其自动化

班级:电气082

姓名:邓大伟

学号: 1609080203

指导教师:国海

日期: 2011年12月22日

目录

摘要: (1)

1 绪论 (2)

1.1概述 (2)

1.2抑制谐波的方法 (2)

1.3本文研究的内容 (3)

2 APF的工作原理和结构 (4)

2.1APF的基本原理和种类 (4)

2.2APF的谐波检测方法 (5)

2.3APF的补偿电流控制方法 (6)

3 有源电力滤波器谐波检测及控制策略 (8)

3.1瞬时无功功率理论简介及其应用 (8)

3.2SVPWM调制策略 (10)

4 控制系统的总体设计方案 (14)

4.1系统初始化程序的设计 (14)

4.2中断子程序设计 (14)

4.3I P-I Q法补偿谐波和无功电流的原理框图 (15)

5 电力有源滤波器的仿真实现 (17)

5.1源电力滤波器仿真模型的建立 (17)

5.2结果仿真 (21)

总结与展望 (25)

致谢 (26)

参考文献 (27)

ABSTRACT: (28)

电力有源滤波器的设计

摘要:随着电力电子装置日益广泛的应用,电力电子装置自身所具有的非线性导致了电网中含有大量谐波,这些谐波给电力系统带来了严重的污染,严重危害了用电设备和通信系统的稳定运行。虽然传统的无源电力滤波器具有结构简单、成本低、技术成熟、运行费用低等优点,但同时也有一些缺点,例如只能抑制固定的几次谐波,并对某次谐波在一定条件下会与电网阻抗产生谐振反而而使谐波放大。

目前,谐波抑制的一个重要趋势是采用有源电力滤波器,有源电力滤波器也是一种电力电子装置,且相关技术的研究也日渐成为研究的热点。本文阐述了几种常见APF的拓扑结构及各自的优缺点,详细分析了基于瞬时无功功率理论的谐波检测方法,比例控制和前馈控制两种电流环控制策略以及SPWM和SVPWM两种调制策略。介绍了电力有源滤波器的基本原理和结构,并设计了并联型有源电力滤波器的控制系统,实验结果表明,其谐波抑制和无功补偿可以达到良好的效果,在技术上是可行的。

关键词:电力有源滤波器;谐波检测 ;APF

1 绪论

1.1 概述

电能是现代社会的主要能源之一,在各行各业中有着广泛的应用,电能质量的好坏直接关系到国民经济的总体效益。理想的供电系统对负荷供电时,应该保持三相平衡对称,电压电流波形皆为单频恒定正弦波,电能质量不受负载变化的影响。随着电力电子装置及非线性、冲击性设备的广泛运用,谐波和低功率因数等问题越来越严重。目前的大型企业中,几乎每家企业都或多或少有着电网污染的现象。在供电的过程中电压的波形会由于某些原因而偏离正弦波形,即产生谐波[1]。并且在电力的生产、传输、转换和使用的各个环节中都会产生谐波。供电系统中的谐波问题已经引起了社会各界的广泛关注,为了保证供电系统中所有的电气、电子设备能在电磁兼容意义的基础上进行正常、和谐的工作,必须采取有力的措施,抑制并防止电网中因谐波危害所造成的严重后果。

谐波主要危害:增加电力设施的负荷,降低系统的功率因数,降低发电、输电及用电设备的有效容量和效率,造成了设备、线路的浪费和电能损失;引起无功补偿电容器谐振和谐波电流放大,导致电容器组因过电流或过电压而损坏或无法投入运行;产生脉冲转矩致使电动机振动,影响产品质量和电机寿命;由于涡流和集肤效应,使电机、变压器、输电线路等因产生附加功率损耗而过热,浪费电能并加速绝缘老化[2];

1.2 抑制谐波的方法

随着工业、农业和人民生活水平的不断提高,除了需要电能成倍的增长,对供电质量及供电可靠性的要求也越来越多,电能质量(Power Quality)受到人们的日益重视。于是各国纷纷出台措施,制定相关标准。目前滤波是治理电网污染的有效方法,滤波就是将信号中特定的波段频率滤除的操作,是抑制和防止干扰的一项重要措施。它分为“无源滤波”(PF: passive filter)和“有源滤波”(APF: active power filter)。

(1)无源滤波

无源滤波器,又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。无源滤波器具有结构简单、成本低廉、运行可靠性较高、运行费用较低等优点。基本的无源滤波器的拓扑结构如下图所示:

图1-1 无源滤波器结构

(2)有源滤波

目前,谐波抑制的一个重要趋势是采用电力有源滤波器(Active Power Filter-APF)[3]。有源电力滤波器也是一种电力电子装置。其基本原理是从补偿对象中检测出谐波电流,由补偿装置产生与该谐波电流大小相等而极性相反的补偿电流,从而消除电网中的谐波。这种滤波器能对频率和幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响,因而受到广泛的重视,并且在日本等国得到广泛的应用。有源电力滤波器的基本思想在六七十年代就己经形成。80年代以来,由于大中功率全控型半导体器件的成熟,脉冲宽度调制(Pulse Width Modulation-PWM)控制技术的进步,以及基于瞬时无功功率理论的谐波电流瞬时检测方法的提出,有源电力滤波器才得以迅速发展。

1.3 本文研究的内容

本课题是根据自己的兴趣自选的,本文的研究内容主要包括以下几个方面:

第 1 章为绪论,概述了谐波的危害、谐波抑制的各种方法以及有源电力滤波器发展现状,阐述了当前 APF 的研究热点。

第 2 章分析了有源电力滤波器的拓扑结构、工作原理和工作特性。从多个方面出发对有源电力滤波器进行了分类和介绍,并分析了各自的优缺点。

第 3 章分析了有源电力滤波器谐波检测方法,并分析了各种谐波检测方法的工作原理和特性,通过对比选择 ip-iq 算法作为本文谐波检测方法。

第 4 章介绍了本次论文的总体设计方案,并给出了相关的原理框图。

第 5 章在MATLAB/Simulink中建立三相三相制有源电力滤波器的仿真模型,并对各个模块进行仿真和详细的阐述。选择不同的整流负载,对负载电流波形和补偿后的电流波形进行对比,验证了 APF 的补偿性能。

第 6 章对全文做出总结,对有源电力滤波器系统存在的一系列问题进行探讨,并提出下一步的展望。

2 APF 的工作原理和结构

2.1 APF 的基本原理和种类 2.1.1 APF 的基本原理

APF 的基本原理是检测电网中的谐波电流。通过可控功率半导体器件向电网注入与原有谐波电流幅值相等、相位相反的电流, 使电源的总谐波电流为0, 从而达到实时补偿谐波电流的目的。其原理框图如图2.1所示。

图2.1 有源电力滤波器系统原理图

2.1.2 按联接方式确定APF 的种类

APF 的结构形式很多,但其基本原理都是类似的,按电路拓朴结构可分为并联型APF 、串联型APF 和串--并联型APF 。 (1)并联型APF

图2.2为并联型APF 基本结构。由于与系统并联, 可等效为一受控电流源。并联型APF 可产生与负荷电流大小相等、方向相反的谐波电流, 从而将电源侧电流补偿为正弦基波电流。主要适用于抵消非线性负载的谐波电流、无功补偿及平衡三相系统中的不平衡电流等。并联型APF 在技术上比较成熟[4]。

图2.2 并联型有源滤波器结构图

(2)串联型APF

图2.3为串联型APF基本结构。通过1个匹配变压器将APF串联在电源和负载之间, 以消除电压谐波, 平衡或调整负载的端电压。与并联型APF相比, 串联型APF损耗较大, 且各种保护电路也较复杂。因此, 很少单位使用串联型APF, 大多将其作为混合型APF 的一部分。

图2.3 串联型有源滤波器结构图

(3)串—并联APF

图2.4为串--并联型APF 基本结构。具有串联APF 和并联APF 的优点, 能解决电气系统发生的电能质量问题, 又称为万能APF或统一电能质量调节器。串联型APF将电源和负载隔离,阻止电源谐波电压串入负载和负载电流流入电网。并联型APF提供一个零阻抗的谐波支路,把负载中的谐波电流吸收掉[5]。这种方案兼有串、并联APF的功能,可以抑制闪变、补偿谐波、消除共同耦合点处的三相电压不平衡,具有较高的性价比。该类APF的主要问题是控制复杂、造价较高。

2.4 串联—并联型有源滤波器结构图

2.2 APF的谐波检测方法

2.2.1 基于频域的检测方法

这是最早应用于指令电流运算的一类方法。其基本思想是利用模拟带(或陷波)滤波器进行谐波检测时他的缺点是:当电网频率波动时,所设计的滤波器中心频率会发生偏移,加上该中心频率易受器件参数及温度影响,会使检测出的谐波信号中含有大量基波分量,增加了APF 的设计容量和有功损耗,因此,已基本不用。

2.2.2 瞬时空间矢量法

基于瞬时无功功率理论的瞬时空间矢量法是目前三相电力有源滤波器中应用最广的一种指令电流运算方法。最早是由日本学者 H·Akagi 于1984 年提出,仅适用于对称三相电路,后经过不断地改进,现已包括 p-q 法、Ip-Iq法以及 d-p 法等。p-q 法最早应用,仅适用于对称三相且无畸变的电网;Ip-Iq 法不仅对电源电压畸变有效,而且也适用于不对称三相电网;基于同步旋转 park 变换的 d-q法不仅简化了对称无畸变下的指令电流运算,而且也适用于不对称、有畸变的电网[6]。

2.2.3 有功分离法

该方法将被检测量分解为理想传输量(即从公共供电点上看去,负荷是三相对称且纯阻性的,该负荷只消耗有功能量)和另一分量之和,简单明了、易于实现。但该方法以平均有功功率理论为基础,至少存在一个工频周期的延时,实时性较差;并且当电源电压存在畸变时,与电压谐波同次的谐波电流(有功部分)将被淹没一部分。另外,该方法不能单独分离出基波有功分量。

2.2.4 自适应检测法

该方法基于自适应滤波中的自适应干扰抵消原理,从负载电流中消去基波有功分量,从而得到所需的补偿电流指令值。该方法的突出优点是对电网电压畸变、频率偏移及电网参数变化有较好的自适应调整能力,但目前其动态响应速度还较慢。后来又提出了用神经网络实现的自适应检测法。

2.2.5 同步测定法

针对三相不平衡系统提出了同步测定法,可分为等功率法、等电流法和等电阻法3类,即把补偿分量分配到三相中去,分别使补偿后的每相功率、每相电流或每相电阻相等。该方法的缺点是计算量大、时间延迟大。

2.3 APF的补偿电流控制方法

目前电力有源滤波器的闭环控制策略中最常用的是PI控制,另外国内外的学者还对变结构控制,模糊控制和人工神经网控制等现代新型控制方法进行了研究。APF控制策略还包括开关器件的PWM脉冲信号的形成[7]。目前PWM生成方式的研究主要集中在载波比较法、滞环控制法、无差拍控制法和空间矢量法等方法上:

2.3.1 三角载波控制

将电流实际值与参考值之间的偏差经P I调制后与高频三角载波相比较,所得矩形脉冲作为逆变器开关元件的控制信号,从而在逆变器输出端获得所需波形。其优点是动态响应好,开关频率固定,实现简单,缺点是输出波形中含有与三角载波相同频率的高频畸变分量,开关损耗较大,在大功率应用中受到限制。

2.3.2 滞环比较控制

它的原理为:将补偿电流参考值与逆变器实际电流输出值之差输入到具有滞环特性的比较器中,通过比较器的输出来控制开关动作,使逆变器输出值实时跟踪补偿参考值。与三角载

波控制相比,滞环比较控制具有开关损耗小、动态响应快、鲁棒性好、控制精度高等特点。其缺点是系统的开关频率、响应速度及电流的跟踪精度均受滞环带宽影响。当带宽固定时,开关频率会随补偿电流的变化而变化,从而引起较大的脉动电流和开关噪音。为了解决开关频率变化的问题,提出了基于电压矢量的滞环电流控制法[8]。

2.3.3 变结构控制

变结构控制对系统的变化和外部干扰不敏感,具有很强的鲁棒性。本质上可视为带宽等于零的滞环比较控制,所以他同样存在开关频率高、变化范围大的缺点。

2.3.4 无差拍控制与差拍控制

无差拍控制是一种在电流滞环比较控制技术上发展起来的全数字化控制技术。他利用前一时刻补偿电流的参考值和实际值,计算出下一时刻的电流参考值及各种开关状态下的逆变器电流输出值,然后选择某种开关模式作为下一时刻的开关状态,从而达到电流误差等于零的目标。该方法的优点是动态响应快且易于计算机执行,缺点是计算量大、对系统参数依赖性较大、鲁棒性差、瞬态响应的超调量大。

2.3.5 单周控制(又称积分复位控制)

单周控制技术具有调制和控制的双重性,通过复位开关、积分器、触发电路及比较器达到跟踪指令信号的目的。其基本思想是控制开关占空比,在每个周期内强迫开关变量平均值与控制参考量相等或成比例。单周控制能在一个周期内自动消除稳态、暂态误差,前一周期的误差不会带到下一周期。这种控制方法具有反应快、开关频率恒定、鲁棒性强、易于实现、控制电路简单等优点。

2.3.6 空间矢量调制

SVM ( Space Vector Modulation) 技术具有以下优点: 直流侧电压的利用率比SPWM 提高15%;采用不连续开关方式调制时,开关器件的损耗降低1 /3;调制方法便于数字实现。

3 有源电力滤波器谐波检测及控制策略

3.1 瞬时无功功率理论简介及其应用

三相电路瞬时无功功率理论由日本学者赤木泰文最先提出,理论的基本思路是:将abc 三相系统电压、电流转换成α,β坐标系上的矢量,将电压、电流矢量的点积定义为瞬时有功功率;将电压、电流矢量的叉积定义为瞬时无功功率,然后再将这些功率逆变为三相补偿电流。瞬时无功功率理论突破了传统功率理论在“平均值”基础上的功率定义,使谐波及无功电流的实时检测成为可能。该方法对于三相平衡系统的瞬变电流检测具有较好的实时性,有利于系统的快速控制,可以获得较好的补偿效果。但该方法对于三相不平衡负荷所产生的无功和谐波电流,补偿效果则不理想,且只适用于三相系统,不能用于单相系统。 3.1.1 瞬时无功理论定义

瞬时无功理论在无功补偿和谐波检测等领域都得到了广泛的应用,以该理论为基础构成的 APF 可以实现对频率和大小都变化的无功与谐波电流进行实时的检测。这种检测方法有可以分为 p-q 法和ip-iq 法。本论文就是利用ip-iq 法进行谐波与无功电流的实时检测的。

本文研究的系统为三相三线制系统,可以先将三相的电压和电流转换到静止的α-β系统中[9]。设三相电路各相瞬时电压和电流分别为e a ,e b ,e c 和i a ,i b ,i c ,分别将它们变换到两相正交的α-β坐标上,两项瞬时电压为e α,e β,电流为i α,i β,即

??

???

?

??

????????=????

?????????????????

?-

-

=

??

????=c b a c

b a u e e e C e e e e e F 32123212

321

0132βα (1) ??????????=???

????????????

?

?????

?-

-

=

??

?

???=c b a c b a i i i i C i i i i i F 3223212

3210132βα (2) 式中,C32是三相到两相的坐标变换阵,定义瞬时有功功率 p 和无功功率q 为:

??

?

?????????-=????????=??????βααββα

i i u u u u F F F F q p i u i u 11 (3) 现在假设系统三相电压和三相电流均为正序基波正弦信号时,设三相电压、三相电流分

别为:

?????

?????+-=??????????)3/2sin()3/2sin(sin ππwt E wt E wt E u u u m m m c b a (4) ????

??????+-=??????????)3/2sin()3/2sin(sin ππwt I wt I wt I i i i m m m c b a (5)

则变换到α-β两相静止坐标系中的向量为:

???

???-=??????=wt wt E u u F m u cos sin 231βα (6) ???

???---=??

????=??wt wt I i i F m i cos()sin(23βα (7) 所以得到瞬时有功功率和无功功率为:

?cos 2

31m m i u I E F F p =?=,?sin 23

1m m i u I E F F q =?= (8)

从式(8)可以看出,在三相系统的电压和电流均为基波正序电压和电流时,按照上面定义计算的瞬时有功功率和无功功率 p 、q 只包含直流分量,并且与传统的三相有功功率和无功功率计算的结果一样。瞬时无功功率理论只用了一个时刻三相电压和电流的数值,所以这种功率计算方法大大提高了计算的效率。 3.1.2 ip-iq 算法

当系统三相电压中不含谐波且为基波正序电压时,运用 p-q 法可以迅速、准确的检测出被检电流中的谐波分量和无功分量,克服了传统方法延时、精度低等缺点。但是当系统电压也有畸变时,就会大大影响谐波检测的精度,并且电压畸变越严重,检测结果的精度越低,因此 p-q 法快速检测的精度受电压质量的影响。为了克服电压存在谐波分量的不足,我们让电源电压不直接参与计算,用与电源电压同相位的正弦信号 sin wt 和 cos wt 来代替,这样电源有畸变也不会影响计算结果,从而提高三相电流谐波检测的精度。这就是ip-iq 算法,其具体的做法如下:

定义C 32,C 如下:

????

??

??????

--

-=

23212321013232C ,??

?

???---=wt wt wt wt C sin cos cos sin (9) 设A 相电压为:wt E e a sin 21= (10)

设三相电流为:???

?

??

???

++=+-=+=∑∑∑∞=∞

=∞

=111

])32(sin[2])32(sin[2)

sin(2n n n

c n n n b n n n a wt n I i wt n I i nwt I i ?π?π

? (11) 其中n=3k ±1,k 为整数。根据ip=icos ?,iq=isin ?有:

??????

??????--±=????

??????=????????∑∑∞=∞=1132])1cos[(])1cos[(3n n n n n n c b a q p wt n I wt n I i i i C C i i ?? (12) 式中n=3k+1时取正号,n=3k-1时取负号。

将计算得到的电流经过低通滤波器后,得到ip ,iq 的直流分量为:

???

???--=???

?????)sin()cos(31111??I I q p (13) 在经过反变换即得到电流的基波分量为:

?

???

??

?

?

????????+++-+=????????=??????????--])32([sin 2])32([sin 2)(sin 21111132n n n q p cf bf af wt n I wt n I nwt I i i C C i i i ?π

?π? (14)

最后,三相电流减去上式所计算得到的基波分量,就得到所需要补偿的谐波分量。

??

???

?????-??????????=??????????cf bf af c b a ch bh ah i i i i i i i i i (15) 3.2 SVPWM 调制策略

采用同步旋转变换的控制方法得到dq 两相的电压给定后,可以采用正弦脉宽调制(SPWM )技术来得到三相VSR 六个开关管的开关信号。基本的原理是:根据式(1)的反变换将两相旋转坐标系中的电压给定变换到三相静止坐标系中,标定后与频率固定的三角波进行比较,就可以得到脉宽调制信号,这种方法在早期的三相VSR 控制中得到了广泛的应用。

近年来随着算法的不断改进和控制芯片的迅猛发展,电压空间矢量脉宽调制技术(SVPWM )被引入高频变流领域的研究中。(SVPWM)是一种优化的PWM 技术,此方法控制简单,电流波形畸变小,数字化实现方便,能明显减少交流侧电流的谐波成分,提高电压利用率(比SPWM 高15%)[11],已有取代传统SPWM 的趋势。基本的控制思想如下:

定义三相 VSR 网侧输入电压空间矢量U rf :

)(3

2

U 2rf c b a U U U αα++=

(16) 其中πα3

1j e

=,根据三相 VSR 开关信号S 的定义,整流器有八种导通模式,对应八个空

间电压矢量:U 0(000)、U 1(100)、U 2(110)、U 3(010)、U 4(011)、 U 5(001)、U 6(101)、U 7(111)。其中U 1~U 6六个非零矢量为基本有效矢量,U 0(000)、U 7(111)为两个零矢量。在一个电流采样周期内,开关管的导通总是以零矢量开始并以零矢量结束。用六个非零矢量和两个零矢量

去逼近电压源,整流器三相桥输入端会得到等效的三相正弦波波形。这样对任一空间电压矢量就可以用两个相邻的非零矢量和两个零矢量去逼近,使三相桥的输入为等效正弦波[12]。如U rf 在第一扇区,则有:

U rf T s = U 1T 1+U 2T 2 (15) 如下图所示:

图3.1 空间电压矢量分解图

T1和T2分别为空间矢量U1和U2的作用时间,Ts 为一个PWM 周期。 (1) 空间电压矢量所在扇区的计算

由于U rf =U α+jU β,所以在一个电流采样周期T s 中,U rf 的作用效果可等效表示为:U rf = U αT s +jU βT β,如U r f 在第一扇区,则有0o 0且(U α/U β)<3。同理可得U rf 在其他扇区时的等价条件。

定义:

???

??

?

?++=--=-==)(sin 4)(sin 2)(sin 33C g B g A g X U U C U U B U A β

αβαβ(17)

这里得 sign( M)是符号函数,满足:??

?<≥=0

00

1

)(sin M M M g X 与空间电压矢量所在扇区号(sec)存在如下对应关系:

表3-1:扇区表

X 3 1 5 4 6 2 sex

(2) 开关时间的计算

如果空间电压矢量在Ⅰ区,由图 3.1 可知:

?????=+=)60sin()

60cos(222211o

o

T U T

U T U T U T U βββα (18) 则可以求得T1和T2为:

???

?

???==)60sin(23)31-(2321

o dc s dc s U V T T U U V T T ββα (19) 同理当U rf 在其他扇区时,可计算T 1和T 2:

???

????-+--=-=)

π

π()

π

π(βαβαU U V T T U U V T T dc

s dc

s ))1(sec 3cos())1(sec 3sin(33sec)3cos(sec)3sin(3321 (20) 如果T 1+ T 2>T s ,则过饱和。针对这种情况就需要对T 1和T 2进行归一化处理,同时得到零矢量的开通时间:

???

?

?

?

???

--=+=+=210212

22111

)()

(T T T T T T T T T T T T T T s s s (21)

(3)开关管导通时间的分配

仍以空间矢量在第一扇区为例来分析开关管导通时间的分配。第一扇区相邻两个向量分别为U1(100)和U2(110),如果采用零矢量对称的插法,则三相桥臂导通情况可用如下图表示:

图3.2 空间矢量在第一扇区时三相桥臂的开通时间分配此时开关变换顺序为:000→100→110→111→110→100→000。同理可以得到其他扇区开关变换转换顺序,如下表所示。

表3-2 各扇区开关变换顺序

各扇区三相各相桥臂的导通时间计算如下表所示:

图3-3 各相桥臂在不同扇区中的导通时间分配表

4 控制系统的总体设计方案

有源电力滤波器的软件开发由以下几个部分组成:系统初始化程序、中断处理程序。其中系统初始化是指对系统参数变量、中断向量、DSP 引脚配置和控制寄存器设置等。而中断处理程序是有源电力滤波器的主要部分,其包括 A/D 转换中断、外部中断、功率器件故障信号中断等[13~15]。

4.1 系统初始化程序的设计

图4.1所示为主程序的流程图,它主要完成的任务是对系统控制寄存器进行初始化,如系统时钟和状态设置、时间管理器 EV 寄存器设置、A/D 模块寄存器设置、通用 I/O 口设置等。

图4.1 主程序流程图

4.2 中断子程序设计

中断服务子程序主要完成有源电力滤波器控制系统的整个控制算法。

图4.2 中断子程序的流程图

4.3 Ip-Iq法补偿谐波和无功电流的原理框图

瞬时无功理论是本文的核心理论,Ip-Iq算法补偿谐波和无功电流也是本文的核心方法,所以在此介绍一下它的原理框图,以便对下文仿真的理解。

图4.3 Ip-Iq法补偿谐波和无功电流的原理框图

5 电力有源滤波器的仿真实现

MATLAB 是美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境,MATLAB是一个高度集成的系统,分为核心部分和各种工具箱两个部分[14]。核心部分有数百个内部核心函数;Simulink工具箱作为MATLAB的一部分,为系统模块提供了一个可综合分析的集成环境。在该环境下,用户可通过拖拉和连接典型模块的方式就可以绘制系统电路,从而很容易就能构造出需要的连续系统、非线性系统和离散系统模型。

5.1 源电力滤波器仿真模型的建立

5.1.1 APF的系统仿真模型

基于MATLAB的优点与有源电力滤波器的特点,本文采用Simulink的PowerSystems 工具箱建立了非线性负载模型、谐波检测模型、控制算法模块、主电路模块。如图 5.1 所示为有源电力滤波器的系统构成模型。

图 5.1 有源电力滤波器的系统构成模型5

无源滤波器设计

长沙学院 模电课程设计说明书 题目 系(部) 电子与通信工程系 专业(班级) 姓名 学号 指导教师 起止日期

数字电子技术课程设计任务书(11)系(部):电子与通信工程系专业:电子信息工程

长沙学院课程设计鉴定表

目录 一.无源滤波器的简介 (5) 1.无源滤波器定义 (5) 2.无源滤波器的优点 (5) 3.滤波器的分类 (5) 4.无源滤波器的发展历程 (5) 二.无源滤波器的工作原理与电路与电路分析 (6) 1.工作原理 (6) 2.电路分析 (7) 三.设计思路及电路仿真 (11) 1.无源低通滤波器 (11) 2.无源高通滤波器 (11) 3.无源带通滤波器 (12) 4.无源带阻滤波器 (13) 四.设计心得与体会 (15) 五.参考文献 (15)

一.无源滤波器的简介 1.无源滤波器定义 无源滤波器,又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最普通易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波(3、5、7)构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。 2.无源滤波器的优点 无源滤波器具有结构简单、成本低廉、运行可靠性较高、运行费用较低等优点,至今仍是应用广泛的被动谐波治理方法。 3.滤波器的分类 ⑴按所处理的信号 按所处理的信号分为模拟滤波器和数字滤波器两种。 ⑵按所通过信号的频段 按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。 低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。 高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。 带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。 带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。 ⑶按照阶数来分 通过传递函数的阶数来确定滤波器的分类。 4.无源滤波器的发展历程 (1)1917年美国和德国科学家分别发明了LC滤波器,次年导致了美国第一个多路复用系统的出现。 (2)20世纪50年代无源滤波器日趋成熟。 (3)自60年代起由于计算机技术、集成工艺和材料工业的发展,滤波器发展上了一个新台阶,并且朝着低功耗、高精度、小体积、多功能、稳定可靠和价廉方向努力,其中小体积、多功能、高精度、稳定可靠成为70年代以后的主攻方向。导致RC有源滤波器、数字滤波器、开关电容滤波器和电荷转移器等各种滤波器的飞速发展; (4)到70年代后期,上述几种滤波器的单片集成已被研制出来并得到应用。 (5)80年代,致力于各类新型滤波器的研究,努力提高性能并逐渐扩大应用范围。 (6)90年代至现在主要致力于把各类滤波器应用于各类产品的开发和研制。 当然,对滤波器本身的研究仍在不断进行。

有源电力滤波器设计

1 引言 近年来,公用电网受到谐波电流和谐波电压的严重污染,而电力电子装置是其主要的谐波污染源。随着电力电子装置的日益广泛应用,电网中的谐波污染也日益严重,谐波污染影响到供电质量和用户使用的安全性,因此电网谐波污染的治理越来越受到关注。 滤波器在本质上是一种频率选择电路,通常用幅频响应和相位响应来表征一个滤波电路的特性。理想滤波电路在通带内应具有零衰减的幅频响应和线性的相位响应,而在阻带内应具有无限大的幅度衰减。按照通带和阻带的相互位置不同,滤波器可分为低通、高通、带通、带阻、全通5类。有源滤波器采用有源器件需要使用电源,加上功耗较大且集成运放的带宽有限,因此目前有源滤波电路的工作频率难以做得很高,一般不能用于高频场合。但总的来讲有源滤波器在低频(低于1MHz)场合中使用有较无源滤波器更优的性能,因而目前在音频处理、工业测控等领域广泛应用。有源电力滤波器是一种用于动态抑制谐波、补偿无功功率的新型电力电子装置,能对大小和频率都变化的谐波及无功功率进行补偿。和传统的无源滤波器相比,有以下几点突出的优点: (1)对各次谐波和分数谐波均能有效地抑制,且可提高功率因数; (2)系统阻抗和频率发生波动时,不会影响补偿效果。并能对频率和幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响; (3)不会产生谐振现象,且能抑制由于外电路的谐振产生的谐波电流的变化; (4)用一台装置就可以实现对各次谐波和基波无功功率的补偿; (5)不存在过载问题,即当系统中谐波较大时,装置仍可运行,无需断开。 由以上可看出,它克服了传统的无源滤波器的缺点,具有良好的调节性能,因而有很大的发展前途。

电力有源滤波器的设计

工学院毕业设计(论文) 题目:电力有源滤波器的设计 专业:电气工程及其自动化 班级:电气082 姓名:邓大伟 学号: 1609080203 指导教师:国海 日期: 2011年12月22日

目录 摘要: (1) 1 绪论 (2) 1.1概述 (2) 1.2抑制谐波的方法 (2) 1.3本文研究的内容 (3) 2 APF的工作原理和结构 (4) 2.1APF的基本原理和种类 (4) 2.2APF的谐波检测方法 (5) 2.3APF的补偿电流控制方法 (6) 3 有源电力滤波器谐波检测及控制策略 (8) 3.1瞬时无功功率理论简介及其应用 (8) 3.2SVPWM调制策略 (10) 4 控制系统的总体设计方案 (14) 4.1系统初始化程序的设计 (14) 4.2中断子程序设计 (14) 4.3I P-I Q法补偿谐波和无功电流的原理框图 (15) 5 电力有源滤波器的仿真实现 (17) 5.1源电力滤波器仿真模型的建立 (17) 5.2结果仿真 (21) 总结与展望 (25) 致谢 (26) 参考文献 (27) ABSTRACT: (28)

电力有源滤波器的设计 摘要:随着电力电子装置日益广泛的应用,电力电子装置自身所具有的非线性导致了电网中含有大量谐波,这些谐波给电力系统带来了严重的污染,严重危害了用电设备和通信系统的稳定运行。虽然传统的无源电力滤波器具有结构简单、成本低、技术成熟、运行费用低等优点,但同时也有一些缺点,例如只能抑制固定的几次谐波,并对某次谐波在一定条件下会与电网阻抗产生谐振反而而使谐波放大。 目前,谐波抑制的一个重要趋势是采用有源电力滤波器,有源电力滤波器也是一种电力电子装置,且相关技术的研究也日渐成为研究的热点。本文阐述了几种常见APF的拓扑结构及各自的优缺点,详细分析了基于瞬时无功功率理论的谐波检测方法,比例控制和前馈控制两种电流环控制策略以及SPWM和SVPWM两种调制策略。介绍了电力有源滤波器的基本原理和结构,并设计了并联型有源电力滤波器的控制系统,实验结果表明,其谐波抑制和无功补偿可以达到良好的效果,在技术上是可行的。 关键词:电力有源滤波器;谐波检测 ;APF

无源滤波器和有源滤波器特点

无源滤波器:这种电路主要有无源元件R、L和C组成。 有源滤波器:集成运放和R、C组成,具有不用电感、体积小、重量轻等优点。集成运放的开环电压增益和输入阻抗均很高,输出电阻小,构成有源滤波电路后还具有一定的电压放大和缓冲作用。但集成运放带宽有限,所以目前的有源滤波电路的工作频率难以做得很高。 无源滤波装置 该装置由电容器、电抗器,有时还包括电阻器等无源元件组成,以对某次谐波或其以上次谐波形成低阻抗通路,以达到抑制高次谐波的作用;由于SVC的调节范围要由感性区扩大到容性区,所以滤波器与动态控制的电抗器一起并联,这样既满足无功补偿、改善功率因数,又能消除高次谐波的影响。 国际上广泛使用的滤波器种类有:各阶次单调谐滤波器、双调谐滤波器、二阶宽颇带与三阶宽频带高通滤波器等。 1单调谐滤波器:一阶单调谐滤波器的优点是滤波效果好,结构简单;缺点是电能损耗比较大,但随着品质因数的提高而减少,同时又随谐波次数的减少而增加,而电炉正好是低次谐波,主要是2~7次,因此,基波损耗较大。二阶单调谐滤波器当品质因数在50以下时,基波损耗可减少20~50%,属节能型,滤波效果等效。三阶单调谐滤波器是损耗最小的滤波器,但组成复杂些,投资也高些,用于电弧炉系统中,2次滤波器选用三阶滤波器为好,其它次选用二阶单调谐滤波器。 2高通(宽频带滤波器,一般用于某次及以上次的谐波抑制。当在电弧炉等非线性负荷系统中采用时,对5次以上起滤波作用时,通过参数调整,可形成该滤波器回路对5次及以上次谐波的低阻抗通路。 有源滤波器 虽然无源滤波器具有投资少、效率高、结构简单及维护方便等优点,在现阶段广泛用于配电网中,但由于滤波器特性受系统参数影响大,只能消除特定的几次谐波,而对某些次谐波会产生放大作用,甚至谐振现象等因素,随着电力电子技术的发展,人们将滤波研究方向逐步转向有源滤波器(Active PowerFliter,缩写为APF。 APF即利用可控的功率半导体器件向电网注入与谐波源电流幅值相等、相位相反的电流,使电源的总谐波电流为零,达到实时补偿谐波电流的目的。它与无源滤波器相比,有以下特点: a.不仅能补偿各次谐波,还可抑制闪变,补偿无功,有一机多能的特点,在性价比上较为合理; b.滤波特性不受系统阻抗等的影响,可消除与系统阻抗发生谐振的危险; c.具有自适应功能,可自动跟踪补偿变化着的谐波,即具有高度可控性和快速响应性等特点 一、无源滤波器的优点 无源滤波器具有结构简单、成本低廉、运行可靠性较高、运行费用较低等优点,至今仍是应

有源电力滤波器课程设计

目录 1 设计相关知识介绍 (1) 1.1 谐波基本概念 (1) 1.2 谐波主要危害 (1) 1.3抑制谐波方法 (1) 2 APF的基本工作原理 (3) 3 APF基本组成部分 (5) 3.1 主电路 (5) 3.1.1 PWM控制的基本原理 (5) 3.1.2 主电路结构 (7) 3.2 指令电流运算部分 (8) 3.2.1 瞬时无功理论定义 (8) 3.2.2 基于瞬时无功理论检测法 (9) 3.3 电流跟踪控制部分 (11) 3.3.1电流滞环控制原理 (11) 3.3.2 三相电流滞环控制原理 (12) 3.4 驱动电路 (13) 参考文献 (15)

1 设计相关知识介绍[1] 1.1 谐波基本概念 1882年,法国数学家傅里叶指出,一个任意函数都可以分解为无穷多个不同频率正弦信号的和。基于此,国际电工标准定义谐波为:谐波分量为周期量的傅里叶级数中大于1的H次分量。把谐波次数的H定义为:以谐波频率和基波频率的之比的整数。电气和电子工程协会标准定义谐波为:谐波为一个周期波或量的正弦波分量,其频率为基波的整数倍。总结二者,目前国际普遍定义谐波为:谐波是一个周期电气量的正弦波分量,其频率为基波频率的整数倍。 1.2 谐波主要危害 谐波研究与治理对于现代工业生产意义重大,这是因为谐波不仅降低电能的生产、传输和利用效率,而且给供、用电设备的正常运行带来严重危险。对于电力系统,谐波会放大系统局部并联谐振或串联谐振现象,使谐波含量放大,造成电容器等设备烧毁。谐波还会引起继电保护和自动装置误动作,使电能计量出现混乱。对于电气设备,谐波可以使电气设备产生振动和噪声,还可以产生过热现象,促使绝缘老化,缩短设备使用寿命,甚至发生故障或烧毁。 谐波对通信设备和电子设备会产生严重干扰。电力系统产生的谐波与普通电话线路传输的音频信号及人耳的音频敏感信号相比在信号频带上具有一定的重叠性,而且二者功率相差悬殊。对于通信的干扰,也是谐波的主要危害之一。 谐波污染是电力电子技术发展的重大障碍。电力电子技术是未来科学技术发展的重要支柱。有人预言,电力电子连同运动控制将和计算机技术一起成为21世纪最重要的两大技术。然而,电力电子装置所产生的谐波污染已成为阻碍电力电子技术发展的重大障碍,它迫使电力电子领域的研究人员必须对谐波问题进行更为有效研究。 因此,谐波治理已经成为电气工程领域迫切需要解决的问题。 1.3抑制谐波方法 随着工业、农业和人民生活水平的不断提高,除了需要电能成倍的增长,对供电质量及供电可靠性的要求也越来越多,电能质量受到人们的日益重视。于是各国纷纷出台措施,制定相关标准。目前滤波是治理电网污染的有效方法,滤波就是将信号中特定的波段频率滤除的操作,是抑制和防止干扰的一项重要措施。它分为无源滤波和有源滤波。(1) 无源滤波

如何正确区别无源和有源电力滤波器

如何正确区别无源和有源电力滤波器 安科瑞王志彬2019.03 有源电力滤波器装置:集成运放和R、C组成,具有不用电感、体积小、重量轻等优点。集成运放的开环电压增益和输入阻抗均很高,输出电阻小,构成有源滤波电路后还具有一定的电压放大和缓冲作用。但集成运放带宽有限,所以目前的有源滤波电路的工作频率难以做得很高。 无源电力滤波器装置:这种电路主要有无源元件R、L和C组成。 无源电力滤波器装置 该装置由电容器、电抗器,有时还包括电阻器等无源元件组成,以对某次谐波或其以上次谐波形成低阻抗通路,以达到抑制高次谐波的作用;由于SVC的调节范围要由感性区扩大到容性区,所以滤波器与动态控制的电抗器一起并联,这样既满足无功补偿、改善功率因数,又能消除高次谐波的影响。 有源电力滤波器装置 虽然无源滤波器具有投资少、效率高、结构简单及维护方便等优点,在现阶段广泛用于配电网中,但由于滤波器特性受系统参数影响大,只能消除特定的几次谐波,而对某些次谐波会产生放大作用,甚至谐振现象等因素,随着电力电子技术的发展,人们将滤波研究方向逐步转向有源电力滤波器(Active PowerFliter,缩写为APF)。 APF即利用可控的功率半导体器件向电网注入与谐波源电流幅值相等、相位相反的电流,使电源的总谐波电流为零,达到实时补偿谐波电流的目的。它与无源滤波器相比,有以下三个特点: a.不仅能补偿各次谐波,还可抑制闪变,补偿无功,有一机多能的特点,在性价比上较为合理; b.有源电力滤波器特性不受系统阻抗等的影响,可消除与系统阻抗发生谐振的危险; c.具有自适应功能,可自动跟踪补偿变化着的谐波,即具有高度可控性和快速响应性等特点。 国际上广泛使用的滤波器种类有:各阶次单调谐滤波器、双调谐滤波器、二阶宽颇带与三阶宽频带高通滤波器等。 (1)高通(宽频带)滤波器,一般用于某次及以上次的谐波抑制。当在电弧炉等非线性负荷系统中采用时,对5次以上起滤波作用时,通过参数调整,可形成该滤波器回路对5次及以上次谐波的低阻抗通路。 (2)单调谐滤波器:一阶单调谐滤波器的优点是滤波效果好,结构简单;缺点是电能损耗比较大,但随着品质因数的提高而减少,同时又随谐波次数的减少而增加,而电炉正好是低次谐波,主要是2~7次,因此,基波损耗较大。二阶单调谐滤波器当品质因数在50以下时,基波损耗可减少20~50%,属节能型,滤波效果等效。三阶单调谐滤波器是损耗最小的滤波器,但组成复杂些,投资也高些,用于电弧炉系统中,2次滤波器选用三阶滤波器为好,其它次选用二阶单调谐滤波器。 安科瑞ANAPF有源电力滤波器 1、概述 1.1谐波的产生 电力系统中理想的电压、电流波形都是频率为50Hz的正弦波,但是非线性电力设备(大功率可控硅、变频器、UPS、开关电源、中频炉等)的广泛应用产生了大量畸变的谐波电流,谐波电流耦合在线路上产生谐波电压。对非正弦的畸变电流作傅立叶级数分解,其中频率与工频相同的分量为基波,频率是基波频率整数倍的分量为谐波。谐波是电能质量的重要指标。 1.2谐波的危害

无源滤波器设计概述

关于无源滤波器设计 随着电网中非线性负载(如电力电子装置、可调速电机)应用的增多,供电质量日趋下降,电网中的谐波含量严重超过国家标准,对电力用户的安全用电构成威胁。并且,国家对电力市场管制的开放,无疑加剧电力市场的竞争,一方面电力用户对供电电源的谐波含量的要求越来越高,另一方面电力公司对电力用户注入电网的谐波水平也提出了限制。因此,对电网的经济安全运行起到十分重要的作用的电力滤波器有大量的市场需求和市场潜力。 概述 电力系统是由电感、电阻、电容组成的网络,在一定的参数配合下可能会对某些频率产生谐振,诱发出过量的电压和电流。因此,应当尽量避免谐振。对于正常设计的电网来说,发生工频谐振的可能性很小。但是,却有可能在某些高次谐波下谐振,使谐波电流和电压剧增,危害设备的运行和安全。 当谐波源产生的谐波大于规定限值时,应装设滤波装置。在谐波源处装设滤波器,就地吸收谐波电流,可以使注入系统的谐波减少到很低的程度,这是当前最主要的抑制谐波的手段。 目前大量应用于在电力系统中的是无源交流滤波装置,由电力电容器、电抗器和电阻组成,可以抑制谐波并兼有一定的无功补偿作用。无源滤波器结构简单、运行可靠、维护方便,成本低、技术成熟。 最理想的滤波器设计是能够将注入的全部谐波都进行衰减的单个宽频带结构,但需要的电容量非常大,比较经济的做法是使用单调谐滤波器将较低次的谐波衰减掉,由高通滤波器衰减较高次数的谐波。 无源谐波滤波器包括一组对应于某几次低次谐波的单调谐滤波器组和一个用于滤除高次谐波的高通滤波器。 运行特点 使用无源滤波器的特点主要有: ①滤波效果受电网阻抗影响大,会因制造误差、设备老化、电网频率变化造成滤波效果下降; 对谐波频率经常变化的负载滤波效果差。 ②容易与电网产生谐振,产生并联或串联谐振,造成谐波放大; ③对谐波进行抑制的同时引入一定量的无功,兼有谐波补偿和无功补偿功能; ④可利用现有无功补偿设备容量; ⑤不具有处理复杂频谱谐波的能力。 ⑥容易过载而产生危险

有源电力滤波器品牌排行

有源电力滤波器(APF)品牌排行 当前,市场上生产有源电力滤波器的厂家很多,各个品牌参差不齐,且国家标准未正式出台,所以只能挑选出一些市场上一些主流的APF品牌,从质量、稳定性各方面介绍一下当前市场上主流有源电力滤波器品牌的市场情况: 合资主流品牌:霍尼韦尔、GE、诺基亚、ABB、施耐德、 传统的电气行业的几大合资品牌从稳定性、可靠性来说都依然是值得可靠信赖,但是技术参数比得上国内品牌,国内品牌因为竞争的缘故一味追求性能参数,产品稳定性大打折扣,合资品牌的价格都相对较高,一般市场标价达2000~4000元/A。传统的合资品牌西门子貌似还没有APF。 国产一线品牌:南京亚派麦克斯韦电气深圳盛弘上海思源赛博电气深圳英纳仕追日电气........数百家品牌 估计国内生产APF的厂家有上百家,以上品牌都是最近2年广告比较多的品牌,推广力度比较大而已。但是参差不齐。国产品牌的通病就是质量不稳定,国产品牌没有7年以上的应用案例,价格也不一定便宜,国产品牌的价格一般是合资的50%~100%。有源电力滤波器的核心器件比如IGBT、电容器、CPU等国内电子元件技术都不稳定,所以国内生产APF 的厂家大多依靠进口国外品牌的核心元器件,然后再在国内组装,所以成本总体也不低,主要是人工成本较低。另外国产有源电力滤波器的通病就是并联技术,IGBT并联技术还不过关。但是未来的趋势肯定是核心器件国产化后,国内APF厂家的价格也许才会真正降到很低。 另外,有源电力滤波器出来10年左右,市场上有部分打着国外欧美公司品牌(如意大利、美国)的旗号,游龙混杂,有些品牌名字看着大气,实际上是国内生产的,满足国内市场扬眉崇外的心理,所以要注意辨别。

并联型有源电力滤波器的Matlab仿真

并联型有源电力滤波器的Matlab仿真 摘要:并联混合型有源电力滤波器能够很好地实现谐波抑制和无功补偿。给出了有源电力滤波器系统结构,建立了数学模型, 还给出了主电路直流侧电容电压值和交流侧电感值的选取方法,利用Matlab\simulink\PsB构建了仿真模型,得到了仿真结果。 关键词:有源电力滤波器;直流侧电容电压;交流测电感:Matlab/simulink Abstract :Shunt hybrid active power filter can commendably achieve hannonic suppression and reactive power compensation.In this paper,it shows the APF’s architecture and sets up amathematical model.And the way ofchoosing the value ofthe main circuit’s voltage ripple of DC side capacitor and the AC side inductance is proposed.MA TLAB\Simulink\PSB is used to build simulation model and then get the simulation results. Key words:APF;V oltage of DC side capacitor;AC side inductance;Matlab/Simulink 引言: 在谐波含量较高的配电网中,对无功功率补偿有着严格的要求。目前电力系统中无功补偿大都是采用机械开关控制的电容器投切,谐波补偿大多采用无源滤波装置,负序治理的工作尚未大范围开展。另外,无功补偿、负序电流补偿、谐波抑制是分别单独地进行的。由于不是按统一的数学模型综合地进行治理,常出现顾此失彼的情况,且响应速度慢、经济性差、安装维护工作量大,妨碍了电网污染治理工作的顺利进行。 1.有源滤波器的发展历史 有源滤波器的思想最早出现于1969年B.M.Bird和J.F.Marsh的论文中。文中描述了通过向交流电源注入三次谐波电流以减少电源中的谐波,改善电源电流波形的新方法。文中所述的方法认为是有源滤波器思想的诞生。1971年日本的H.Sasaki和T.Machida完整描述了有源电力滤波器的基本原理。1976年美国西屋电气公司的L.Gyugyi和E.C.Strycula提出了采用脉冲宽度调制控制的有源电力滤波器,确定了主电路的基本拓扑结构和控制方法,从原理上阐明了有源电力滤波器是一理想的谐波电流发生器,并讨论了实现方法和相应的控制原理,奠定了有源电力滤波器的基础。然而,在20世纪70年代由于缺少大功率可关断器件,有源电力滤波器除了少数的实验室研究外,几乎没有任何进展。进入20世纪80年代以来,新型半导体器件的出现,PWM技术的发展,尤其是1983年日本的H.Akagi等人提出了“三相电路瞬时无功功率理论”,以该理论为基础的谐波和无功电流检测方法在三相有源电力滤波器中得到了成功的应用,极大促进了有源电力滤波器的发展。 与无源滤波器相比,有源滤波器是一种主动型的补偿装置,具有较好的动态性能。有源电力滤波器是近年来电力电子领域的热门话题。目前,有源滤波技术已在日本、美国等少数工业发达国家得到应用,有工业装置投入运行,其装置容量最高可达60MV.A;国内对有源电力滤波器的研究尚处于起步阶段。 2、APF的基本工作原理 有源电力滤波器是一种用于动态抑制谐波、补偿无功的新型电力电子装置。它能对大小

有源电力滤波器的要求及应用

有源电力滤波器通过电流互感器检测负载电流,并通过内部DSP计算,提取出负载电流中的谐波成分,然后通过PWM信号发送给内部IGBT,控制逆变器产生一个和负载谐波电流大小相等,方向相反的谐波电流注入到电网中,达到滤波的目的。 有源电力滤波器是现代化工业的主要副产品之一,随着工业现代化程度提高,谐波的问题日益严重。这主要是现代化工业的用电方式发生了巨大的变化。传统工业的主要电力负荷是电动机和电阻加热设备,这些设备是线性负载,不会产生谐波电流。而现代化工业的主要电力负荷是电流变换器,包括变频器、中频炉、直流电机驱动器等,这些负荷都是非线性负载,工作时产生严重的谐波。 另一方面,大部分配电系统,包括变压器、开关柜、继电保护器、无功补偿柜等,都是按照线性负荷设计的。当实际负荷为非线性负荷时,对配电系统造成严重的危害,轻则导致系统过热、不稳定,重则损坏配电设备。 解决这个问题的最好方法就是在非线性设备的电源输入端安装有源电力滤波器,将非线性负荷转变为线性负荷,谐波导致的各种问题便迎刃而解。这种安装在设备的电源输入端的谐波滤波器就是设备级谐波滤波器。 有源电力滤波器的特殊要求 设备级有源电力滤波器与母线级谐波滤波器有不同的要求。设备级有源电力滤波器与所配的设备一同构成一个完整的系统,谐波滤波器的作用是保证这个系统的谐波电流发射满足特定的标准,例如,GB17625标准。因此,设备级有源电力滤波器要满足一下四个方面的要求: 1)不与系统发生不良作用:配装了谐波滤波器的设备可能在任何系统中使用,而任何情况下都不允许与系统之间发生不良的相互作用,例如与系统发生谐振,放大谐波电流。 2)不会导致超前的功率因数:设备配装了滤波器,功率因数要达到0.98以上,不允许出现过大的感性无功功率和容性无功功率; 3)滤波效果确定:滤波器与特定设备组合起来后,谐波电流发射必须是确定的,与系统的参数无关,这样才能确保设备安装了滤波器后,满足特定的要求;

有源电力滤波器设计

有源电力滤波器设计 摘要:以三相系统中的电网电流为研究对象,介绍了有源电力滤波器的系统结构和工作原理,讨论了主要元件参数的设计和计算。 键词:有源电力滤波器;滤波器设计;谐波检测 O 引言 近年来,公用电网受到了谐波电流和谐波电压的严重污染,而电力电子装置是其主要的谐波污染源。随着电力电子装置的日益广泛应用,电网中的谐波污染也日益严重,并影响到供电质量和用户使用的安全性,因此电网谐波污染的治理越来越受到关注。 有源电力滤波器是一种用于动态抑制谐波、补偿无功功率的新型电力电子装置,能对大小和频率都变化的谐波及无功功率进行补偿。和传统的无源滤波器相比,有突出的优点。 (1)对各次谐波和分数谐波均能有效地抑制,且可提高功率因数; (2)系统阻抗和频率发生波动时,不会影响补偿效果。并能对频率和幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响; (3)不会产生谐振现象,且能抑制由于外电路的谐振产生的谐波电流的变化; (4)用一台装置就可以实现对各次谐波和基波无功功率的补偿; (5)不存在过载问题,即当系统中谐波较大时,装置仍可运行,无需断开等。 由以上可看出,它克服了传统的无源滤波器的缺点,具有良好的调节性能,因而有很大的发展前途。 本文对适用于电力系统的有源电力滤波器的原理和设计进行介绍。 l 有源电力滤波器系统结构 有源电力滤波器系统结构如图l所示。

有源电力滤波器的基本工作原理是:实时检测补偿对象的电压和电流,经指令电流运算单元计算出补偿电流指令信号,该信号经补偿电流发生电路放大产生补偿电流,补偿电流与负载电流中需用补偿的谐渡及无功等电流抵消,最终得到期望的电源电流。在图1中的体现是,当需要补偿负载所产生的谐波电流时,有源电力滤波器检测出补偿对象负载电流iL中的谐波分量iLb后,将其反极性作为补偿电流的指令信号iC*,再由补偿电流发生电路产生补偿电流ic,其中补偿电流ic与负载电流中谐波分量iLh大小相等,方向相反,因而两者相互抵消,使得电源中电流中只含基波,达到消除电源电流中谐波的目的。 图1为有源滤波器的系统框图。通过霍尔传感器检测非线性负载的电流iLa、iLb、iLc经电流信号调理后送入指令电流产生电路,指令电流产生模块是由TI公司的DSP TMS320LF2407为核心建立的。DSP计算出需要补偿的谐波和无功电流后,通过外部D/A送入电流跟踪控制电路。霍尔传感器检测有源电力滤波器主电路的电流ica、icb、icc,经电流信号调理后也送入电流跟踪控制电路,电流跟踪控制电路对主电路补偿电流与指令电流进行滞环比较后送出栅极开关驱动信号,驱动电路接受来自前级电流跟踪控制电路的PWM信号,并经隔离放大后驱动主电路的开关管,以控制主电流的电路跟随指令电流的变化,最终达到实时补偿谐波与无功功率的目的。电压传感器检测变流器直流侧总电压,经电压信号调理后送入指令电流发生电路,通过合理的控制以凋节直流侧电压的稳定。启动、关断和保护模块按一定的时序控制装置的启动和关断,并提供装置的过流、过压、过热、缺相等故障保护功能。 2 有源电力滤波器主电路设计 设计主电路时,应首先确定主电路的形式,目前,有源电力滤波器主电路的形式绝大多数采用电压型,本文选择主电路为并联电压型、单个变流器的形式。 主电路设计需要解决的问题是:主电路容量的计算;开关器件的选择及其参数的确定;对补偿电流的跟踪特性起决定作用的参数(输出电感L、直流侧电容电压Ud、滞环宽度δ)的设计;按所选器件要求的驱动电路的设计以及整个装置的各种保护电路设计。 2.1 主电路容量的计算 有源电力滤波器的容量SA由式(1)确定 式中:E为电网相电压有效值; Lc为补偿电流有效值。 如果所设计装置的容量为15 kVA,则 Ic=SA/3E=15x103/3x220=22.7 A 2.2 功率开关器件的选取 目前适用于APFP中的全控型开关器件主要有GTR、IGBT、IGCT等,器件的选择,首先应当满足工作频率和器件容量的要求,当单个器件的容量难以满足要求时,可考虑采用器件的串并联或主电路多重化等方式。其次,再考虑它们的价格。 器件的种类确定后,再确定其额定参数。其中,额定电压由直流侧电压决定,并考虑适当的安全裕量。额定电流由补偿电流决定。 2.3 主电路滞环宽度的选取 由于有源电力滤波器的指令电流包含高次谐波和暂态电流,故要求实际输出的电流对指令电流有很高的跟踪能力。在有源电力滤波器的补偿对象已确定的情况下,有源电力滤波器主电路参数的选取,对有源电力滤波器的性能和效率有较大的影响。 下面以A相为例,分析采用滞环控制时逆变器的工作频率f与电网电压ea、变流器直流侧电压Ud及

论关于低通无源滤波器优秀设计详细.doc

低通无源滤波器仿真与分析 一、滤波器定义 所谓滤波器( filter ),是一种用来消除干扰杂讯的,对输入或输出的信号中特定频率的频点或该频点以外的频率进行有效滤除的,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。一般可实为一个可实现的线性时不变系 统。 二、滤波器的分类 常用的滤波器按以下类型进行分类。 1)按所处理的信号: 按所处理的信号分为和两种。 2)按所通过信号的频段 按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。 低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。 高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。 带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。 带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。 3)按所采用的元器件 按所采用的分为无源和两种。 :仅由 (R、L 和 C)组成的滤波器,它是利用电容和电感元件的随频率的变 化而变化的构成的。这类滤波器的优点是:电路比较简单,不需要直流电源供 电,可靠性高;是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时 容易引起电磁感应,当电感 L 较大时滤波器的和重量都比较大,在低频域不适 用。 有源滤波器:由无源元件 (一般用 R 和 C)和(如集成运算放大器)组成。这类滤波器的优点是:通带内的信号不仅没有能量损耗,而且还可以放大,负载效应不明显,多级相联时相互影响很小,利用级联的简单方法很容易构成高阶滤波器,并且滤波器的体积小、重量轻、不需要磁屏蔽 (由于不使用电感元件);缺点是:通带范围受有源器件 (如集成运算放大器)的带宽限制,需要直流电源供电,可 靠性不如无源滤波器高,在、高频、大功率的场合不适用。 4)按照阶数来分 通过传递函数的阶数来确定滤波器的分类。 三、网络的频率响应 在时域中,设输入为x(t ) ,输出为 y(t ) ,滤波器的脉冲响应函数为h(t ) 。转换到频域,激励信号为X ( j ) ,经过一个线性网络得到的响应信号为Y( j) 。

三相有源电力滤波器的matlab仿真电路要点

能力拓展训练任务书 学生姓名:专业班级:电气 指导教师:胡红明工作单位:自动化学院 题目: 三相有源电力滤波器的仿真电路 初始条件: VS1-VS3为标准三相正旋电压源,相电压有效值为220V。 要求完成的主要任务: (1)设计出主电路拓扑结构和控制系统原理图; (2)采用MATLAB搭建系统仿真电路,对仿真结果进行分析: a补偿后输入电压与输入电流波形 b非线性负载输入电压与输入电 流波形 c三相APF输入电压与输入电流波形 时间安排: 2012年7月9日至2012年7月13日,历时一周,具体进度安排见 下表 具体时间设计内容 7.9 指导老师就课程设计内容、设计要求、进度安排、评分标准等做具体介 绍;学生确定选题,明确设计要求 7.10 开始查阅资料,完成方案的初步设计 7.11 由指导老师审核系统结构图,学生修改、完善 7.12 撰写课程设计说明书 7.13 上交课程设计说明书,并进行答辩 参考文献: [1]洪乃刚.《电力电子和电力拖动控制系统的MATLAB仿真》. 北京:机械工业出版社,2006 指导教师签名:年月日

目录 摘要 (1) 1 有源滤波器介绍 (2) 1.1有源滤波器基本原理 (2) 1.2有源滤波器的优点 (2) 1.3有源电力滤波器的分类 (3) 1.4有源滤波器的关键技术 (4) 2有源电力滤波器的控制策略 (4) 2.1滞环比较控制 (4) 2.2三角波比较方式 (5) 3有源电力滤波器的主电路设计 (6) 3.1直流侧电容量的选择 (6) 3.2直流侧电压的选择 (8) 4 MATLAB仿真 (11) 4.1仿真模型图 (11) 4.2仿真结果图 (12) 参考资料 (15)

有源电力滤波器

顾名思义该装置需要提供电源,其应用可克服LC滤波器等传统的谐波抑制和无功补偿方法的缺点(传统的只能固定补偿),实现了动态跟踪补偿,而且可以既补谐波又补无功;三相电路瞬时无功功率理论是APF发展的主要基础理论;APF有并联型和串联型两种,前者用的多;并联有源滤波器主要是治理电流谐波,串联有源滤波器主要是治理电压谐波等引起的问题。有源滤波器同无源滤波器比较,治理效果好,主要可以同时滤除多次及高次谐波,不会引起谐振,但是价位相对高! 二、基本原理: 有源电力滤波器,是采用现代电力电子技术和基于高速DSP器件的数字信号处理技术制成的新型电力谐波治理专用设备。它由指令电流运算电路和补偿电流发生电路两个主要部分组成。指令电流运算电路实时监视线路中的电流,并将模拟电流信号转换为数字信号,送入高速数字信号处理器(DSP)对信号进行处理,将谐波与基波分离,并以脉宽调制(PWM)信号形式向补偿电流发生电路送出驱动脉冲,驱动IGBT或IPM功率模块,生成与电网谐波电流幅值相等、极性相反的补偿电流注入电网,对谐波电流进行补偿或抵消,主动消除电力谐波。 三、基本应用: 谐波主要危害: ? 增加电力设施负荷,降低系统功率因数,降低发电、输电及用电设备的有效容量和效率,造成设备浪费、线路浪费和电能损失; ?引起无功补偿电容器谐振和谐波电流放大,导致电容器组因过电流或过电压而损坏或无法投入运行; ? 产生脉动转矩致使电动机振动,影响产品质量和电机寿命; ? 由于涡流和集肤效应,使电机、变压器、输电线路等产生附加功率损耗而过热,浪费电能并加速绝缘老化; ? 谐波电压以正比于其峰值电压的形式增强了绝缘介质的电场强度,降低设备使用寿命; ? 零序(3的倍数次)谐波电流会导致三相四线系统的中线过载,并在三角形接法的变压器绕组内产生环流,使绕组电流超过额定值,严重时甚至引发事故。 ? 谐波会改变保护继电器的动作特性,引起继电保护设施的误动作,造成继电保护等自动装置工作紊乱;

基于DSP的有源电力滤波器设计

一一收稿日期:2013-10-21基金项目:西北民族大学中央高校基本科研业务费专项资金资 助项目(31920130013) 作者简介:王彩霞(1974),女,河南荥阳人,硕士,副教授,主要研究方向为控制理论,计算机控制系统分析设计等三 基于DSP 的有源电力滤波器设计 王彩霞,周志文 (西北民族大学电气工程学院,兰州730030) 一一摘要:随着非线性负载的大量接入和电力系统自身的发展,电力系统中的谐波污染日益严重,谐波影响着电力系统的可靠二安全二经济运行,同时对电力用户也造成潜在的威胁三该文设计了以TMS320F2812型DSP 为核心的有源电力滤波器对电力系统的谐波进行了补偿三完成硬件电路的搭建和软件程序编制,对性能二参数进行了测试,测试结果表明设计的滤波器具有电路结构简单二补偿效果好等优点三 关键词:有源电力滤波器;谐波;DSP ;电压矢量控制 中图分类号:TM46一一文献标志码:A一一文章编号:1000-0682(2014)04-0023-03 The design of active power filter based on DSP WANG Caixia,ZHOU Zhiwen (College of Electric Engineering ,Northwest Minorities University ,Lanzhou 730030,China ) 一一Abstract :Along with the access of nonlinear load and the development of electric power system,the harmonic pollution in power system is deteriorating.Harmonic not only affects the reliability,safety and economic operation of power system but also poses potential risks to power users.An active power filter with TMS320F2812DSP as the core is designed for harmonic compensation for power system.After the hardware circuit configuring,software programming and circuit debugging,the system performances and parameters are tested and studied.The testing results show that the designed filter has the advantages of simple circuit structure and good compensation effect. 一一Key words :active power filter(APF);harmonic;DSP ;voltage vector control 0一引言 电力系统中谐波的产生有两个原因,一个是由接入系统的非线性负载产生的,这类负载的伏安特性不是线性的,即使加在其两端的电压是理想的正弦,通过的电流也不是正弦,含有谐波,使得电力系统的电能质量受到了严重影响三另一个是电力系统自身的发展所产生的,如高压直流输电技术的应用,对电力系统带来的污染也日益严重三随着电力系统自身的发展和用电设备的不断更新,预计谐波对终端用户侧的影响将会越来越严重三因谐波干扰所引发的公用电网供电质量日趋恶化,严重的威胁着整 个电力系统的可靠运行[1]三 传统的抑制谐波的方法是无源滤波技术,由电 阻二电力电容器和电抗器等器件构成LC 无源滤波器,与需要补偿的负载并联三无源滤波器具有结构简单二使用方便的优点,但也存在如LC 滤波器只能抑制固定次的谐波,且在一定频率谐波条件下会产生谐振,反而使谐波放大,LC 滤波器滤波特性受系统参数的影响较大等缺点三尽管如此,LC 滤波器仍然是目前补偿谐波主要方法三 近几年随着电力电子技术的发展,出现了用电力电子变流器构成有源电力滤波器(Active Power Filter,简称APF)对电力系统的谐波进行补偿三与传统无源滤波器相比,有源滤波器具有如下明显的 优越性能: 1)能够迅速地对变化的谐波进行动态跟踪补偿,补偿效果不受电网特性的影响,不会和电网发生谐振,补偿后畸变率很低且功率因数接近1; 四 32四2014年第4期一一一一一一一一一一一一一一一工业仪表与自动化装置

浅谈有源电力滤波器设计

综述 随着大容量电力电子装置在高压交流电力系统中日益广泛的应用,谐波和无功等问题严重地威胁着系统自身的安全稳定运行。针对10~35kV高压交流电力系统,国内外目前主要采用无源电力滤波器来抑制谐波并补偿无功功率。无源电力滤波器具有诸多的缺陷,难以达到理想的性能。受功率半导体开关器件的约束,有源电力滤波器常规技术方案的应用限制在低压交流电力系统。提出一种基于基波磁通补偿的串联型有源电力滤波器新原理,通过电力电子变换器的控制,使串联变压器对基波呈现很小的一次侧漏阻抗,对谐波呈现很大的励磁阻抗。通过电力电子变换器的控制,变压器一次侧呈现连续无极可调的电抗。借鉴基波磁通补偿理论及磁通可控的可调电抗器原理,根据串并联的对偶特性,本文提出一种新型的基于阻抗可控的并联混合型有源电力滤波器。在电力电子变换器的控制下,变压器对谐波电流呈现近似为零的低阻抗,从而输导电力系统中的谐波电流,同时对基波电流呈现连续无极可调的电抗,与无源电力滤波器相结合,实时补偿系统的无功功率。通过变压器隔离降压,确保该滤波器安全、可靠、稳定地工作。

1 工作原理 1.1 变压器的结构 变压器的结构如图1所示。其一次侧AX与二次侧ax的匝数分别为W1、W2,变比k=W1/W2,一次侧与二次侧的互感为M。一次侧绕组的电阻为r1,自感为L11。变压器采用非晶态合金铁心,为了确保变压器工作在B-H曲线的线性区,铁心开有气隙。利用电压型逆变器向变压器二次侧绕组中注入补偿电流i2且满足i2=-α*∑i1(n)-β*i1(1) 式中:α为谐波补偿系数;∑i1(n)为实时检测的变压器一次侧谐波电流;β为基波补偿系数;i1(1)为实时检测的变压器一次侧基波电流。 1.2 谐波抑制原理 从AX端看,变压器n次谐波电压方程为ù1(n)=(r1+jW n L11)/ì1(n)+jW n Mì2(n) 若α满足谐波补偿条件α=L11/M 则从AX端看,变压器对谐波电流的等效阻抗为Z AX(n)=ù1(n)/ì1(n)=r1通常r1可忽略,因此,在满足谐波补偿条件时,变压器对谐波电流呈现近似为零的低阻抗。谐波等效电路如图2所示。

有源电力滤波器课程设计

目录 1 设计相关知识介绍[1] (1) 1.1 谐波基本概念 (1) 1.2 谐波主要危害 (1) 1.3抑制谐波方法 (1) 2 APF的基本工作原理[2] (2) 3 APF基本组成部分 (5) 3.1 主电路 (5) 3.1.1 P WM控制的基本原理[3] (5) 3.1.2主电路结构 (7) 3.2 指令电流运算部分[4] (8) 3.2.1瞬时无功理论定义 (8) 3.2.2基于瞬时无功理论检测法 (9) 3.3 电流跟踪控制部分[3] (11) 3.3.1电流滞环控制原理 (11) 3.3.2三相电流滞环控制原理 (12) (13) 图3-10 三相电流跟踪型PWM逆变电路输出波形 (13) 3.4 驱动电路[5] (13) 4 心得体会 (14) 参考文献 (15)

1 设计相关知识介绍[1] 1.1 谐波基本概念 1882年,法国数学家傅里叶指出,一个任意函数都可以分解为无穷多个不同频率正弦信号的和。基于此,国际电工标准定义谐波为:谐波分量为周期量的傅里叶级数中大于1的H次分量。把谐波次数的H定义为:以谐波频率和基波频率的之比的整数。电气和电子工程协会标准定义谐波为:谐波为一个周期波或量的正弦波分量,其频率为基波的整数倍。总结二者,目前国际普遍定义谐波为:谐波是一个周期电气量的正弦波分量,其频率为基波频率的整数倍。 1.2 谐波主要危害 谐波研究与治理对于现代工业生产意义重大,这是因为谐波不仅降低电能的生产、传输和利用效率,而且给供、用电设备的正常运行带来严重危险。对于电力系统,谐波会放大系统局部并联谐振或串联谐振现象,使谐波含量放大,造成电容器等设备烧毁。谐波还会引起继电保护和自动装置误动作,使电能计量出现混乱。对于电气设备,谐波可以使电气设备产生振动和噪声,还可以产生过热现象,促使绝缘老化,缩短设备使用寿命,甚至发生故障或烧毁。 谐波对通信设备和电子设备会产生严重干扰。电力系统产生的谐波与普通电话线路传输的音频信号及人耳的音频敏感信号相比在信号频带上具有一定的重叠性,而且二者功率相差悬殊。对于通信的干扰,也是谐波的主要危害之一。 谐波污染是电力电子技术发展的重大障碍。电力电子技术是未来科学技术发展的重要支柱。有人预言,电力电子连同运动控制将和计算机技术一起成为21世纪最重要的两大技术。然而,电力电子装置所产生的谐波污染已成为阻碍电力电子技术发展的重大障碍,它迫使电力电子领域的研究人员必须对谐波问题进行更为有效研究。 因此,谐波治理已经成为电气工程领域迫切需要解决的问题。 1.3抑制谐波方法 随着工业、农业和人民生活水平的不断提高,除了需要电能成倍的增长,对供电质量及供电可靠性的要求也越来越多,电能质量受到人们的日益重视。于是各国纷纷出台措施,制定相关标准。目前滤波是治理电网污染的有效方法,滤波就是将信号中特定的波段频率滤除的操作,是抑制和防止干扰的一项重要措施。它分为无源滤波和有源滤波。(1) 无源滤波

相关主题
文本预览
相关文档 最新文档