当前位置:文档之家› TM 2.6.15C Corrosion, Flux

TM 2.6.15C Corrosion, Flux

TM 2.6.15C Corrosion, Flux
TM 2.6.15C Corrosion, Flux

1Scope This test method is designed to determine the corrosive properties of flux residues under extreme environ-mental conditions.A pellet of solder is melted in contact with the test flux on a sheet metal test piece.The solder is then exposed to prescribed conditions of humidity and the result-ing corrosion,if any,is assessed visually.

2Applicable Documents

IPC J-STD-004Requirements for Soldering Fluxes

IPC-TM-650Test Methods Manual

2.3.34Solids Content,Flux for Fluxes for Soft Soldering IEC61189-5Test Methods for Electrical Materials,Intercon-

nection Structures and Assemblies-Part5:Test Methods for Printed Board Assemblies

3Test Specimen At least0.035g of flux solids,0.3g sol-der paste,1g wire,or1g preform with an equivalent amount of solids.Flux solids are defined as the residue described in IPC-TM-650,Test Method2.3.34,Solids Content,Fluxes.All solvent must have been evaporated from the specimen in a chemical fume hood.

4Apparatus and Reagents

4.1Apparatus

4.1.1Solder pot.

4.1.2Humidity chamber capable of achieving40±3°C [104±

5.4°F]and93±5%relative humidity.

4.1.3Air circulating drying oven.

4.1.4Microscope having20X minimum.

4.1.5Analytical balance capable of weighing0.001g.

4.1.6Three50mm x50mm x0.5mm[1.969in x1.969in x0.00197in]99%pure copper sheets.

4.1.719mm[0.748in]steel ball(approximate).

4.1.8Laboratory press.4.1.9Tongs.

4.2Reagents All chemicals must be reagent grade and water must be deionized(2megohm-cm minimum resistivity recommended).

4,2,1Ammonium persulphate.

4.2.2Sulfuric acid,relative density1.84.

4.2.3Degreasing agent:acetone,or petroleum ether.

5Procedures

5.1Chemicals

5.1.1Ammonium persulphate(25%m/v in0.5%v/v sulfuric acid).Dissolve250g of ammonium persulphate in water and add cautiously5ml of5%sulfuric acid(relative density1.84). Mix,cool,dilute to1liter and mix.This solution should be freshly prepared.

5.1.2Sulfuric acid(5%v/v).To400ml of water cautiously add50ml of sulfuric acid(relative density1.84).Mix,cool, dilute to1liter and mix.

5.2Test Panel

5.2.1Form a3.0mm[0.018in](approximate)deep circular depression in the center of the copper test panel by forcing a 19.0mm[0.018in]steel ball into a25(approximate)mm hole to form a cup.

5.2.2Bend one corner of the test panel up to facilitate sub-sequent handling with tongs.

5.3Test Panel Pretreatment

5.3.1Immediately before performing test,pretreat as follows using clean tongs for handling.

5.3.2Degrease with a suitable neutral organic solvent such as acetone,or petroleum ether.

Material in this Test Methods Manual was voluntarily established by Technical Committees of IPC.This material is advisory only

and its use or adaptation is entirely voluntary.IPC disclaims all liability of any kind as to the use,application,or adaptation of this

https://www.doczj.com/doc/0e2887153.html,ers are also wholly responsible for protecting themselves against all claims or liabilities for patent infringement.

Equipment referenced is for the convenience of the user and does not imply endorsement by IPC.

Page1of3

5.3.3Immerse in5%sulfuric acid(by volume)at65±5°C [149±9°F]for one minute to remove the tarnish film.

5.3.4Immerse in a solution of25%m/v ammonium persul-phate(in0.5%v/v sulfuric acid)at23±2°C[73.4±3.6°F] for one minute to etch the surface uniformly.

5.3.5Wash in running tap water for five seconds.Immerse in5%sulfuric acid(by volume)at23±2°C[73.4±3.6°F]for one minute.

5.3.6Wash for five seconds in running tap water,then rinse thoroughly in deionized water.

5.3.7Rinse with acetone.

5.3.8Allow to dry in clean air.

Note:Use the test piece as soon as possible or store up to one hour in a closed container.

5.4Solder for Liquid or Paste Flux Test

5.4.1Weigh a1.00±0.05gram specimen of solid solder.

5.4.2Degrease the solder specimen with a suitable neutral organic solvent such as acetone,or petroleum ether.

5.4.3Solder may be in the form of pellets or tight spirals of solid solder wire.

5.5Test

5.5.1Heat solder pot so that solder bath stabilizes at235±5°C[455±9°F].

5.5.2Liquid or Paste Flux

5.5.2.1Place0.035g of flux solids into the depression in the test panel.Add the solid solder pellets or spirals.

5.5.2.2Using tongs,lower the test panel onto the surface of the molten solder.

5.5.2.3Allow the test panel to remain in contact with the bath until the solder specimen in the depression of the test panel melts.Maintain this position for5±1seconds before removing the test panel from the bath.Cool the test panel to room temperature.5.5.3Cored Wire or Cored Preform

5.5.3.1Place1gram of flux cored wire or perform into the depression in the test panel.

5.5.3.2Using tongs,lower the test panel onto the surface of the molten solder.

5.5.3.3Allow the test panel to remain in contact with the bath until the solder specimen in the depression of the test panel melts.Maintain this position for5±1seconds before removing the test panel from the bath.Cool the test panel to room temperature.

5.5.4Solder Paste

5.5.4.1Place0.3g of solder paste into the depression in the test panel.

5.5.4.2Allow the test panels to remain in contact with the bath until the solder specimen in the depression of the test panel melts.Maintain this position for60±5seconds before removing the test panel from the bath.Cool the test panel to room temperature.

5.5.4.3Alternately,process the panels through a reflow sol-dering process using the temperature profile recommended by the vendor.

5.6Humidity Exposure

5.6.1Carefully examine the test specimen at20X magnifica-tion for subsequent comparison after humidity exposure. Record observations,especially any discoloration(see8.2).

5.6.2Preheat test panel to40±1°C[104±1.8°F]for30±2minutes.

5.6.3Humidity Soak

5.6.3.1Place the test specimen vertically in a preset humid-ity chamber at40±1°C[104±1.8°F]and93±2%relative humidity.

5.6.3.2Alternately,the specimen may be placed in a tem-perature humidity chamber and heated to40°C[1.8°F]and

Revision

C

Page2of3

held for30minutes.The humidity should then be increased to 93%RH.

5.6.3.3Expose specimen to the above environment for240 hours(10days).M and H fluxes may be tested in the cleaned, as well as uncleaned,condition.Specimens shall be cleaned per the manufacturers instructions.

5.7Evaluation

5.7.1After the exposure period,remove test specimens from humidity chamber,examine at20X magnification and compare with observations noted in

6.5(see8.2).

5.7.2For purposes of this test method,the following defini-tion of corrosion shall prevail:‘‘A chemical reaction between the copper,the solder,and the constituents of the flux resi-dues,which occurs after soldering and during exposure to the above environmental conditions.‘‘Corrosion for this test is classified as follows:

5.7.2.1Minor Corrosion Any initial change of color,which may develop when the test panel is heated during soldering,is disregarded.Discrete white or colored spots in the flux resi-dues or a color change to green-blue without pitting of the copper or formation of excrescences is regarded as minor corrosion.

5.7.2.2Major Corrosion Any initial change of color which may develop when the test panel is heated during soldering is disregarded.Subsequent development of green-blue discol-oration with observation of pitting of the copper panel or excrescences at the interfaces of the flux residue and copper boundary,is regarded as major corrosion.

6Notes

6.1Questionable results may be confirmed by analyzing the suspected corrosion via Energy Dispersive X-ray Spectros-copy(EDS)for the presence of copper.

6.2Color photos before and after the test are valuable tools in identifying and documenting corrosion.

6.3Safety Observe all appropriate precautions on MSDS for chemicals involved in this test method.

Revision

C

Page3of3

外径千分尺使用说明

外径千分尺使用说明

外径千分尺产品资料 千分尺产品明细:外径千分尺、测微头、螺纹千分尺、公法线千分尺、内径千 分尺、深度千分尺、杠杆千分尺、板厚千分尺、壁厚千分尺、尖头千分尺、小测头千分尺、电子数显外径千分尺 一、外径千分尺(三级产品分类) 1、产品简介:外径千分尺是利用螺旋副原理对弧形尺架上两测量面间分割的距离进行读数,适用于工件的外尺寸测量的工具。 2、购买列参数:见表 3、产品特性: ●适用于工件的外尺寸测量,可测量工件精度在IT6-IT10。 ●外径千分尺按分度值可分为0.01mm和0.001mm,根据所测工件精度要求选 择相应的产品。 ●测微螺杆采用优质合金钢制造,经淬火后精密磨削,变形小,耐用度高。●测量范围≤300mm的外径千分尺测量面镶硬质合金,使用寿命长。 ●测力装置采用双棘轮结构,测力稳定。 ●外径千分尺符合国家标准 GB/T1216-2004。 ●测量范围(25-300)mm外径千分尺附有校对量杆1支;测量范围(300-1000) mm外径千分尺附有校对量杆2支;测量范围(1000-3000)mm外径千分尺 附有校对柱2支,校对量杆4支,具体尺寸详见参数列表。 ●1000-3000mm管结构外径千分尺是由外径千分尺和百分表组成的通用外尺 寸测量器具。 ●1000-3000mm管结构外径千分尺适用于重型机械或矿山机械等加工大尺寸 零件的测量,通过活动测砧、量杆、校对柱及测微头来实现每种规格量程为500mm的尺寸测量。用校对柱、测微头及量杆做尺寸的调整,用百分表进行比较测量,百分表量程为 10mm,读数更直观、方便。 ●1000-3000mm管结构外径千分尺符合 JB/T 10007-2012。 ?测力装置注意事项:转动测力装置渐进量面,听见“卡卡”声,表明量面与 工件已接触上,测力装置卸荷有效,即可读数。 ?校对量杆的使用方法和作用:校对量杆用于测量范围大于25mm的外径千分 尺校对“0”位。把校对量杆当做被测工件进行测量,如果千分尺上的读数与校对量杆实际尺寸相同,表明“0”位正确。如果不符,则表明“0”位不

同步电机数学模型地建立和仿真

同步电机数学模型的建立和仿真 :包邻淋 专业:控制工程 学号:1402094

摘要 (3) 1同步电机数学模型的建立 (4) 1.1模型的导出思路 (4) 1.2变量置换用的表达式 (5) 1.4电机实用模型 (6) 1.5电机实用模型的状态空间表达式 (8) 1.6电机模型参数的确定 (10) 2 同步电机数学模型的仿真 (13) 2.1同步发电机仿真模型 (13) 2.2不同阶次模型的仿真分析 (14) 参考文献 (17)

摘要 一般发电机存在临诸多问题,建立精确地描述同步发电机的数学模型是十分必要的[1]。电力系统数字仿真因具有不受原型系统规模和结构复杂性限制,能保证被研究系统的安全性,且具有良好的经济性、方便性等优点。 常用的同步发电机数学模型由同步发电机电路方程及转子运动方程两部分组成。同步发电机电路方程又分为基本方程和导出模型两类[4]。对于不同的假设条件,同步发电机模型可作不同程度的简化,因此同步发电机的导出模型也有不同的形式。同一假设条件下,不同的同步发电机数学模型,其主要区别在于电机的转子绕组数,有d,q,f,D,Q5个绕组的电压方程和磁链方程,外加2个转子运动方程,则称之为转子7阶模型[5]。如果转子绕组数减少,则发电机方程组的阶数也相应减少。 本文通过MATLAB/simulink进行仿真计算,比较采用不同的同步发电机模型时,对系统的稳定性分析的影响。在此基础上提出在不同情况下进行电力系统仿真计算选取同步发电机数学模型的方法。

1同步电机数学模型的建立 1.1模型的导出思路 由于定转子间的相对运动,基于空间静止不动的三相坐标系所建立的原始方程,磁链方程式中会出现变系数,这对方程组的求解和模型的建立造成了很大的困难。现在通用的方法是对原始方程做d q变换(又称为派克变换),将原方程从a b c三相静止不动坐标系变为与转子相对静止的d q坐标系。 基本方程中有d,q,f,D,Q5个绕组的电压方程和磁链方程,外加2个转子运动方程,若设,则原方程为5阶,若转子运动方程为,;所含变量为,。。在化为实用模型时 和保留,用取代,再用5个磁链方程消去3个转子电流,以及2个定子磁链,而 则用实用变量代替。 经过上述思路导出的实用模型,除了以及引入的等效实用变量之外方程中系数都是同步电机技术参数中的电抗和时间

外径千分尺使用说明

外径千分尺产品资料 千分尺产品明细:外径千分尺、测微头、螺纹千分尺、公法线千分尺、内径千分尺、深度千分尺、杠杆千分尺、板厚千分尺、壁厚千分尺、尖头千分尺、小测头千分尺、电子数显外径千分尺 一、外径千分尺(三级产品分类) 1、产品简介:外径千分尺是利用螺旋副原理对弧形尺架上两测量面间分割的距离进行读数,适用于工件的外尺寸测量的工具。 2、购买列参数:见表 3、产品特性: ●适用于工件的外尺寸测量,可测量工件精度在IT6-IT10。 ●外径千分尺按分度值可分为0.01mm和0.001mm,根据所测工件精度要求选 择相应的产品。 ●测微螺杆采用优质合金钢制造,经淬火后精密磨削,变形小,耐用度高。 ●测量范围≤300mm的外径千分尺测量面镶硬质合金,使用寿命长。 ●测力装置采用双棘轮结构,测力稳定。 ●外径千分尺符合国家标准GB/T1216-2004。 ●测量范围(25-300)mm外径千分尺附有校对量杆1支;测量范围(300- 1000)mm外径千分尺附有校对量杆2支;测量范围(1000-3000)mm外径千分尺附有校对柱2支,校对量杆4支,具体尺寸详见参数列表。 ●1000-3000mm管结构外径千分尺是由外径千分尺和百分表组成的通用外 尺寸测量器具。 ●1000-3000mm管结构外径千分尺适用于重型机械或矿山机械等加工大尺 寸零件的测量,通过活动测砧、量杆、校对柱及测微头来实现每种规格量程为500mm的尺寸测量。用校对柱、测微头及量杆做尺寸的调整,用百分表进行比较测量,百分表量程为10mm,读数更直观、方便。 ●1000-3000mm管结构外径千分尺符合JB/T 10007-2012。

(各电机设计软件对比)电磁场软件对比优势

Infolytica软件与同类软件的区别 Infolytica与Ansys、Ansoft、Flux软件对比如下:

●这里主要介绍下Infolytica与Ansoft、Flux对比中的优势: ?建模方面:Infolytica应用于任何二维、三维结构建模,可导入、导出其他格 式,如SA T、Pro/E、Catia、STEP、IGES、Investor等,模型识别能力较强。 Ansoft Maxwell、Flux模型识别能力方面不好,导出的cad模型dxf图纸不能直接标注。 ?剖分功能:Infolytica具有网格自适应剖分功能和求解阶次自适应功能,具备 市场唯一的二维1~4阶和三维1~3阶求解能力,可以在保证精度的情况下,快速求解2D/3D问题。而Ansoft网格剖分技术只适合于低端或二维领域,也只有在二维领域才能跟Infolytica相提并论,在处理三维大型复杂问题时则明显不足。 ?3D电磁分析中:速度和精度上Infolytica软件高于Ansoft和Flux软件。 ?二次开发方面:Infolytica具有丰富的脚本和操作过程详细而简洁的函数记 录,非常方便使用者二次开发。而Ansoft、Flux 操作记录非常复杂, 给二次开发带来困难。Ansoft通过宏来实现,对用户的编程能力要求太高。 ?不同之处:Infolytica具有市场上唯一支持六自由度和多运动部件瞬态运动求 解器,而Ansoft、Flux不具备这两种功能。 ?多参数和多目标优化:Infolytica强大的参数化功能,结合优化模块OptiNet 可以进行多参数和多目标的优化,Flux这个功能较好,Ansoft有这个功能,但没有温度功能,更不能对磁热耦合结果进行优化。 ?全球5大领先优势:磁场MagNet和电场ElecNet的耦合,应用粒子加速、 CRT电子轨迹和电弧研究;磁场MagNet和温度场ThermNet双向耦合分析; 电场ElecNet和温度场ThermNet双向耦合分析;优化模块OptiNet可以优化磁场MagNet 和温度场ThermNet耦合结果、电场ElecNet和温度场ThermNet 耦合结果;电磁场的六自由度、多运动体的独家分析能力。

带锯床使用手册

第一章操作安全须知 1.开机前检查是否有漏电等不安全隐患。 2.锯床运转时严禁开启两侧锯轮防护罩。 3.绝对不允许用手触摸运转中的带锯条。 4.严禁在带锯条运转的下方触摸工件。 5.折叠拆取带锯条要戴防护眼镜,手套。 6. 更换带锯条一定要将机器的电源切断。 第二章双金属带锯条简介 双金属带锯条是采用高性能高速钢齿部材料和优质弹簧钢带体材料,通过电子束真空焊接和特殊工艺加工制造而成。锯齿具有良好的红硬性,可切割各类黑色金属和有色金属,是一种节省原材料和降低能源消耗的新型锯削工具。

图一 如图一所示:齿尖刃部硬质材料高度仅1.2mm。 最常见的锯齿分齿为斜向分齿

图二 锯齿横向分齿,一个向左,一个向右,一个不分。 第三章双金属带锯条简要使用说明 为了达到最佳切削性能,锯齿的大小及切削刃形状的选择十分重要。要求所选齿形、齿距应与被锯切工件相匹配,实心材料选用有前倾角的带锯条;厚度在8毫米以下的型材、管材选用零度角的锯条(推荐选用PRO梯形齿);锯切实心铝材及不锈钢使用有前倾角的带锯条。 一.带锯条的安装 1.双金属带锯条带体柔软不易断裂,安装锯条后必须检查锯条的张紧度,若锯条张不紧易产生锯斜。检查方法:当导向支架调整锁紧后,将大拇指放到两支架内侧锯条的中间部位,用力推动锯条,锯条有一定的弹力就可以了。(双金属带锯条的最佳张力值在300N/mm2左右)

2.锯条安装完毕,开机观察锯条背部与锯轮边缘的间隙,最佳间隙为1mm左右为宜,锯条背部如磨擦到锯轮边缘会严重损坏锯条。 二.新锯条的磨合 1.新锯条使用必须进行磨合,这关系到锯条的使用寿命。未经磨合的锯条使用寿命达不到锯条正常使用寿命的一半。 2.第一刀要慢慢进给,切入材料20mm后,无异常状况后逐渐调整至正常切削率的50%左右,再逐步进入正常的锯切状态。(锯切速度请参照本书第16页《锯切参数选择》) 三.带锯条的巧用 充分磨合好的锯条,锯切面积达到4-5m2后,应逐渐递减进给量,这样能够延长锯条的使用寿命,还能增加切断面积呢。 四.带锯条的保护 锯带安装完,点动开关使锯带慢慢转动,观察锯带齿尖是否有擦伤及其它异常的摩擦。

GZ4230数控带锯床使用说明

XIELI GZ4230 数控带锯床电脑控制系统 用户手册 浙江协力机械工具有限公司

GZ4230 全自动数控带锯床 一、机床的主要用途 “协力”牌GZ4230卧式数控带锯床经我公司多年来的研发,集国内外同类产品之精华,结构合理,技术性能稳定,操作方便,主要用于大型钢铁集团、石油管道、水电机械、重型锻造、模具钢板等大型材料的锯切加工,具有锯口窄,省料节能、锯削精度高,生产效率高优点。本机通过锯条线速的无级变速,锯条线速度的自由变换特别适用于锯切大型材料的功效,节省锯条的使用成本。 二、机床的主要特征 1、人机界面取代传统控制面板模式,锯切参数数字设定,PLC可 编程控制器,灵活设定、转变锯切模式。 2、机床设置参数完成后, 通过机械、电气、液压,具有自动夹 紧、自动进刀、切割完毕自动快速上升(即退刀),自动送料 的功能,无需人工操作。 3、机床的切削进给,在给定的范围内,可进行无级调速。 4、工作进给采用液压送料,送料定位采用光栅尺控制,定位误差< 5、锯架的上升与下降运动采用镀硬铬圆柱,精度高。 6、锯带的线速度无级调速。

三、机床的主要技术参数 四、机床使用的主要配件说明 1、PLC可编程控制器采用世界名牌台达产品,性能稳定可靠。 2、主传动采用蜗轮减速机,由诸暨蜗轮箱厂生产,十多年来一直为锯床厂家配套。 3、液压件采用台湾朝田或上海朝田公司产品,该产品动作性能可靠,挤污染力强,价格性能较高。 4、电器元件选用西门子及德力西正泰等名牌产品。 5、锯条选用规格34××4210可根据材料选择齿型。 6、液压油的选用:石油基油——相当于ISO VG46的油液。工作油温范围:-17~70度,推荐用户使用海联46号抗磨液压油。 人机界面概述 本人机界面为目前世界先进的人机对话平台,具有操作简单,界面友好,外观美观,高速响应等优点。配合可编程逻辑控制器(PLC),光栅尺为您提供目前国内最先进的金属带锯床自动化控制系统。 一、启始画面

对转式永磁无刷直流电机的建模与仿真_李延升

第44卷 2011年 第4期 4月 M ICR OM OTOR S V ol 44.N o 4 A pr 2011 收稿日期:2010-04-07 基金项目:西北工业大学研究生创业种子基金项目 作者简介:李延升(1983),男,博士研究生,研究方向为电机与电器。E-m a i:l liyanchao mm@yahoo .co https://www.doczj.com/doc/0e2887153.html, 窦满峰(1967),男,教授,博导,研究方向为电机与电器。 对转式永磁无刷直流电机的建模与仿真 李延升,窦满峰,雷金莉 (西北工业大学,西安 710072) 摘 要:该文根据对转式与普通永磁无刷直流电机区别,建立了对转永磁无刷直流电机的数学模型,采用M atlab /S i m u li nk 仿真软件建立了电机的仿真模型,并对电机带螺旋桨负载进行仿真分析。仿真结果表明:仿真波形与理论分析基本一致,验证该模型的有效性,为对转式永磁无刷直流电机的控制算法研究提供了工具。关键词:对转式;无刷直流电机;建模;仿真 中图分类号:TM 36+1 文献标志码:A 文章编号:1001-6848(2011)04-0019-04 M odeli ng and Si m ul ati on of the Contra -rotati ng BLDC M otor Control Syste m LI Yansheng ,DOU M anfeng ,LE I Jinli (N ort h w estern P oly technical University ,X i an 710072,China ) Abst ract :Contra -rotati n g per m anentm agnet br ush less DC m otor uses per m anentm agnet as the ou ter rotor , the ar m ature w inding as the i n ner rotor ,both inner and outer rotor i n teracts on the reverse ro tation by m eans of t h e m agne tic force .Based on the ana l y sis of the m athe m atica lm odel o f contra -rotating BLCDM,the mode l of BLDC M w as estab lished by the m odu lar design in M atlab /S i m ulink ,and the si m ulati o n experi m ent w as acco m p li s hed w ith a pr ope ller loads .The si m ulati o n resu lts are consistentw ith t h e theory analysis ,and the m ethod is va li d .The para m eter of th ism ethod is suitable for verif y ing the reasonability o f other contr o l algo -rit h m s and provides a ne w w ay fo r further research o f the con tra -rotati n g BLDC M.K ey w ords :contra -rotati n g ;BLCDM;m odeli n g ;si m u lati o n 0 引 言 对转式无刷直流电机直接驱动对转螺旋桨,在水下航行器中广泛应用 [1] 。它与普通永磁无刷直流 电机比较,除永磁体部分可以旋转,电枢部分也相对静止部分旋转,即电磁转矩驱动两个转子朝相反的方向旋转。以电枢部分为参照系来观察永磁体部分的旋转行为,可以发现对转式永磁无刷直流电机与普通的永磁无刷直流电动机的电流方程、电压平衡方程一致,数学模型中仅仅多了一个运动方程 [2] 。 根据这一思路,本文根据对转永磁无刷直流电机的数学模型,在S i m u li n k 软件中建立仿真模型,并对其进行仿真分析。 1 对转式BLDC M 数学模型 无刷直流电机的基本物理量有电磁转矩、电枢电流、反电动势和转速等 [3] ,这些物理量的计算与 电机的气隙磁场分布、绕组形式有十分密切的关系。 对于稀土永磁无刷直流电动机,其气隙磁场波形可以为方波也可以为正弦波或梯形波,这与选用电机的磁路结构和永磁体的形状有关。本文研究的对转式永磁无刷直流电机,其气隙磁场波形为方波,绕组中感应电动势为梯形波,采用方波电流驱动。在分析和仿真控制系统时,可直接利用电机原有的相变量来建立数学模型,既方便,又能获得准确结果。 假定永磁无刷直流电机工作在二相导通星形三相六状态下,工作过程中磁路不饱和,不计涡流和磁滞损耗,三相绕组完全对称,那么三相绕组的电压平衡方程式为:U a U b U c =R 000R 000R i a i b i c +L -M 000L -M 00 L -M d i a d t d i b d t d i c d t +e a e b e c (1)

基于proteus的步进电机电机仿真

基于proteus的步进电机电机仿真 摘要:步进电机广泛应用在生产实践的各个领域。它最大的应用是在数控机床的制造中,因为步进电机不需要A/D转换,能够直接将数字脉冲信号转化成为角位移,所以被认为是理想的数控机床的执行元件。本设计利用proteus仿真软件进行电路仿真,系统通过设置四个按键分别控制不进电机的起止、圈数、方向、不进速度,使用1602液晶显示以上参数。整个系统具有稳定性好,实用性强,操作界面友好等优点。 关键词:proteus 仿真不进电机拍数 一、Proteus简介 Proteus ISIS是英国Labcenter公司开发的电路分析与实物仿真软件。它运行于Windows操作系统上,可以仿真、分析(SPICE)各种模拟器件和集成电路,该软件的特点是: ①实现了单片机仿真和SPICE电路仿真相结合。具有模拟电路仿真、数字电路仿真、单片机及其外围电路组成的系统的仿真、RS232动态仿真、I2C调试器、SPI调试器、键盘和LCD系统仿真的功能;有各种虚拟仪器,如示波器、逻辑分析仪、信号发生器等。 ②支持主流单片机系统的仿真。目前支持的单片机类型有:68000系列、8051系列、AVR系列、PIC12系列、PIC16系列、PIC18系列、Z80系列、HC11系列以及各种外围芯片。 ③提供软件调试功能。在硬件仿真系统中具有全速、单步、设置断点等调试功能,同时可以观察各个变量、寄存器等的当前状态,因此在该软件仿真系统中,也必须具有这些功能;同时支持第三方的软件编译和调试环境,如Keil C51uVision2等软件。 ④具有强大的原理图绘制功能。总之,该软件是一款集单片机和SPICE分析于一身的仿真软件,功能极其强大。 二、整体电路分析 如下图,整个设计以STC89C51单片机为中心,由复位电路,时钟电路,电机驱动,步进电机,显示电路等组成,硬件模块如图2-1所示: 图1 硬件模块图

千分表的使用方法

百分表和千分表的使用方法 一百分表的结构 百分表和千分表,都是用来校正零件或夹具的安装位置检验零件的形状精度或相互位置精度的。它们的结构原理没有什么大的不同,就是千分表的读数精度比较高,即千分表的读数值为0.001mm,而百分表的读数值为0.01mm。车间里经常使用的是百分表,因此,本节主要是介绍百分表。 百分表的外形如图5-1所示。8为测量杆,6为指针,表盘3上刻有100个等分格,其刻度值(即读数值)为0.01mm。当指针转 一圈时,小指针即转动一小格,转数指示 盘5的刻度值为1mm。用手转动表圈4时, 表盘3也跟着转动,可使指针对准任一刻 线。测量杆8是沿着套筒7上下移动的, 套筒8可作为安装百分表用。9是测量头, 2是手提测量杆用的圆头。 图5-2是百分表内部机构的示意图。 带有齿条的测量杆1的直线移动,通过齿 轮传动(Z1 、Z2 、Z3),转变为指针2的回转 运动。齿轮Z4和弹簧3使齿轮传动的间隙图5-1 百分表 始终在一个方向,起着稳定指针位置的作 用。弹簧4是控制百分表的测量压力的。 百分表内的齿轮传动机构,使测量杆直线

移动1mm时,指针正好回转一圈。 由于百分表和千分表的测量杆是作直 线移动的,可用来测量长度尺寸,所以它 们也是长度测量工具。目前,国产百分表 的测量范围(即测量杆的最大移动量),有 0~3mm;0~5mm; 0~10mm的三种。读数 值为0,001mm的千分表,测量范围为0~1mm。图5-2 百分表的内部结构 二百分表和千分表的使用方法 由于千分表的读数精度比百分表高,所以百分表适用于尺寸精度为IT6~IT8级零件的校正和检验;千分表则适用于尺寸精度为IT5~IT7级零件的校正和检验。百分表和千分表按其制造精度,可分为0、1和2级三种,0级精度较高。使用时,应按照零件的形状和精度要求,选用合适的百分表或千分表的精度等级和测量范围。 使用百分表和千分表时,必须注意以下几点; 1 使用前,应检查测量杆活动的灵活性。即轻轻推动测量杆时,测量杆在套筒内的移动要灵活,没有任何轧卡现象,且每次放松后,指针能回复到原来的刻度位置。 2 使用百分表或千分表时,必须把它固定在可靠的夹持架上(如固定在万能表架或磁性表座上,图5-3所示),夹持架要安放平稳,免使测量结果不准确或摔坏百分表。 用夹持百分表的套筒来固定百分表时,夹紧力不要过大,以免因套筒变形而使测量杆活动不灵活。 图5-3 安装在专用夹持架上的百分表 1用百分表或千分表测量零件时,测量杆必须垂直于被测量表面。图5-4所示。 即使测量杆的轴线与被测量尺寸的方向一致,

电磁仿真软件flux教程

电磁场仿真软件教程 随着电磁场和微波电路领域数值计算方法的发展,在最近几年出现了大量的电磁场和微波电路仿真软件。在这些软件中,多数软件都属于准3维或称为2.5维电磁仿真软件。例如,Agilent 公司的ADS(Advanced Design System)、AWR公司的Microwave Office、Ansoft公司的Esemble、Serenade和CST公司的CST Design Studio等。目前,真正意义上的三维电磁场仿真软件只有Ansoft公司的HFSS、CST公司的Mafia、CST Microwave Studio、Zeland公司的Fidelity和IMST GmbH公司的EMPIRE。从理论上讲,这些软件都能仿真任意三维结构的电磁性能。其中,HFSS (HFSS是英文高频结构仿真器(High Frequency Structure Simulator)的缩写)是一种最早出现在商业市场的电磁场三维仿真软件。因此,这一软件在全世界有比较大的用户群体。由于HFSS进入中国市场较早,所以目前国内的电磁场仿真方面HFSS的使用者众多,特别是在各大通信技术研究单位、公司、高校非常普及。 德国CST公司的MicroWave Studio(微波工作室)是最近几年该公司在Mafia软件基础上推出的三维高频电磁场仿真软件。它吸收了Mafia软件计算速度快的优点,同时又对软件的人机界面和前、后处理做了根本性的改变。就目前发行的版本而言,CST的MWS的前后处理界面及操作界面比HFSS好。Ansoft也意识到了自己的缺点,在刚刚推出的新版本HFSS (定名为Ansoft HFSS V9.0)中,人机界面及操作都得到了极大的改善。在这方面完全可以和CST媲美。在性能方面,两个软件各有所长。在速度和计算的精度方面CST和ANSOFT 成绩相差不多。值得注意的是,MWS采用的理论基础是FIT(有限积分技术)。与FDTD(时域有限差分法)类似,它是直接从Maxwell方程导出解。因此,MWS可以计算时域解。对于诸如滤波器,耦合器等主要关心带内参数的问题设计就非常适合;而HFSS采用的理论基础是有限元方法(FEM),这是一种微分方程法,其解是频域的。所以,HFSS如果想获得频域的解,它必须通过频域转换到时域。由于,HFSS是用的是微分方法,所以它对复杂结构的计算具有一定的优势。 另外,在高频微波波段的电磁场仿真方面也应当提及另一个软件:ANSYS 。ANSYS是一个基于有限元法(FEM)的多功能软件。该软件可以计算工程力学、材料力学、热力学和电磁场等方面的问题。它也可以用于高频电磁场分析(应用例如:微波辐射和散射分析、电磁兼容、电磁场干扰仿真等)。其功能与HFSS和CST MWS类似。但由于该软件在建模和网格划分过程中需要对该软件的使用规则有详细的了解,因此,对一般的工程技术人员来讲使用该软件有一定困难。对于高频微波波段通信、天线、器件封装、电磁干扰及光电子设计中涉

三相异步电机的建模与仿真

电气与电子信息工程学院 《计算机仿真及应用B》题目 学号: 姓名: 班级: 任课老师:

三相异步电动机的建模与仿真 一.实验题目三相异步电动机的建模与仿真 二.实验原理 三相异步电动机也被称作感应电机,当其定子侧通入电流后,部分磁通将穿过短路环,并在短路环内产生感应电流。短路环内的电流阻碍磁通的变化,致使有短路环部分和没有短路环部分产生的磁通有相位差,从而形成旋转磁场。转子绕组因与磁场间存在着相对运动而产生感应电动势和感应电流,即旋转磁场与转子存在相对转速,并与磁场相互作用产生电磁转矩,使转子转起来,从而实现能量转换。 三相异步电动机具有结构简单,成本较低,制造,使用和维护方便,运行可靠以及质量 较小等优点,从而被广泛应用于家用电器,电动缝纫机,食品加工机以及各种电动工具,小型电机设备中,因此,研究三相异步电动机的建模与仿真。 三.实验步骤 1. 选择模块 首先建立一个新的simulink 模型窗口,然后根据系统的描述选择合适的模块添加至模型窗口中。建立模型所需模块如下: 1) 选择simPowerSystems 模块库的Machines 子模块库下的Asynchronous Machine SI Units 模块作为交流异步电机。 2) 选择simPowerSystems 模块库的Electrical Sources 子模块库下的Three-Phase Programmable Voltage Source 模块作为三相交流电源。 3) 选择simPowerSystems 模块库的Three-Phase Library 子模块库下的Three-Phase Series RLC Load 模块作为串联RLC 负载。 4) 选择simPowerSystems 模块库的Elements 子模块库下的Three-Phase Breaker 模块作为 三相断路器,Ground 模块作为接地。 5) 选择SimPowerSystems 模块库的Measurements 子模块库下的Voltage Measurement 模块 作为电压测量。 6) 选择Sources 模块库下的Constant 模块作为负载输入。 7) 选择Signals Rounting 模块库下的Bus Selector 模块作为直流电动机输出信号选择器。 8) 选择Sinks 模块库下的Scope 模块。 9) 选择SimPowerSystems 模块库的Measurements 子模块库下的Three-phase V-I Measurements 用于创建子系统。 2. 搭建模块将所需模块放置合适位置,再将模块从输入端至输出端进行相连,搭建完的串电阻起 动simulink 模型如图 1 所示

外径千分尺的使用方法及保养

千分尺使用方法 量具名称:千分尺 千分尺的分类: ①①按测量部位:内径 ②②精确程度:直接读数 ③③读数方式:读数估读 ④数显量程范围:0-25mm、25-50mm、50-75mm、75-100mm、100-125mm、125-150mm、 150-175mm、175-200mm ⑤操作步骤: ⑥①将被测物体放在表面平整的平面上,选择合适量程的千分尺。 ⑦②当千分尺的两个测量面与被测表面快接触时,就停止旋转微分筒,而改旋转测力装 置,使两接触面与被测面相接触,等到发出“咔咔”的三声后,即可进行读数。 ⑧③千分尺测量轴的中心线要与工件被测长度方向相一致,不要歪斜。 ⑨④将千分尺固定开始读数。 ⑩读数时注意: ?外径:Ⅰ0-25mm、25-50mm、50-75mm、75-100mm千分尺 ?①读出固定套筒上露出刻度线的毫米数和半毫米数。一格为0.5mm,如果读数在 18.5-19mm之间,切记读数后面的0.5mm,将读数记下来,这是第一个读数; ?②读出活动套筒上与固定套筒上基准线对齐的读数,并估读不足半毫米的数字,这是第二个读数; ?③固定套筒上侧有十条横刻度线,活动套筒的刻度线和固定套筒上侧刻度线对齐的那条刻度线即为第三个读数; ?④把三个读数加起来即为测得的尺寸。 ?Ⅱ100-125mm、125-150mm、150-175mm、175-200mm千分尺 ?125-150mm千分尺主尺从25mm开始读完数加100mm ?150-175mm千分尺主尺从50mm开始读完数加100mm ?175-200mm千分尺主尺从75mm开始读完数加100mm ?这三种卡尺都精确到小数点后第二位,第三位为估读。 21外径:Ⅰ100-125mm、125-150mm、150-175mm、175-200mm千分尺 22①同0-25mm、25-50mm千分尺读数①; 23②同0-25mm、25-50mm千分尺读数②; 24③当固定套上的刻度线与活动套筒刻度线对齐时,则第三位读数为0,若固定套上的刻度线在活动套筒两刻度线之间时,则第三位读数估读; 25④将三个读数相加再加上100mm即为测得的尺寸。内径:测量方法同外径测量方法,最终测量尺寸直接显示在屏幕上,读出结果即可。 26千分尺的校验:校验步骤同千分尺读数操作步骤。 27若千分尺不精确用标准块校验时固定套上的刻度线与活动套筒上的“0”刻度线不齐。 则用校正工具将两条线对齐。切记:校正时不要用力过度,防止精密测微螺杆变形。28量程为25-50mm外径读数千分尺(精确到0.001) 29量程为25-50mm内径数显千分尺(精确到0.001) 30三爪千分尺精确度:0.005mm 如果处于0.005-0.010mm刻度之间则第三位读数为估读。量程:11-14mm、14-17mm、17-20mm 31读数注意:

经典-同步电机模型的MATLAB仿真h

安徽工业大学工商学院课程设计(论文)同步电机模型的MATLAB仿真 学生姓名:李春笋 学号:111842161 专业班级:气1142 指导教师:范国伟 2013年12月20日

摘要 采用电力电子变频装置实现电压频率协调控制,改变了同步电机历来的恒速运行不能调速的面貌,使它和异步电机一样成为调速电机大家庭的一员。本文针对同步电机中具有代表性的凸极机,在忽略了一部分对误差影响较小而使算法复杂度大大增加的因素(如谐波磁势等),对其内部电流、电压、磁通、磁链及转矩的相互关系进行了一系列定量分析,建立了简化的基于abc三相变量上的数学模型,并将其进行派克变换,转换成易于计算机控制的d/q坐标下的模型。再使用MATLAB中用于仿真模拟系统的SIMULINK 对系统的各个部分进行封装及连接,系统总体分为电源、abc/dq转换器、电机内部模拟、控制反馈四个主要部分,并为其设计了专用的模块,同时对其中的一系列参数进行了配置。系统启动仿真后,在经历了一开始的振荡后,各输出相对于输出时间的响应较稳定。关键词:同步电机 d/q模型 MATLAB SIMULINK 仿真。 The Simulation Platform of Synchronous Machine by MATLAB Abstract: The utilization of transducer realizes the control of voltage’s frequency. It changes the situation that Synchronous Machine is always running with constant speed. Just like Asynchronous Machine, Synchronous machine can also be viewed as a member of the timing machine. This thesis intends to aim at the typical salient pole machine in Synchronous Machine. Some quantitative analysis are made on relations of salient pole machine among current, voltage, flux, flux linkage and torque, under the condition that some factors such as harmonic electric potential are ignored. These factors have less influence on error but greatly increase complexity of arithmetic. Thus, simplified mathematic model is established on the basis of a, b, c three phase variables. By the Park transformation, this model is transformed to d, q model which, is easy to be controlled by computer. Simulink is used to masking and linking all the parts of the system. The system can be divided into four main parts, namely power system, abc/dq transformation, simulation model of the machine and feedback control. Special blocks are designed for the four parts and a series of parameters in these parts are configured. The results of simulation show that each output has a satisfactory response when there is disturbance. Key Words: Synchronous Machine Simulation d/q Model MATLAB SIMULINK

外径千分尺使用方法及注意事项

外径千分尺使用方法及注意事项 外径千分尺常简称为千分尺,它是比游标卡尺更精密的长度测量仪器,常用规格为0-25mm 25-50mm等,每25mm一个等级。精度是毫米。外径千分尺的结构由固定的尺架、测砧、测微螺杆、固定套管、微分筒、测力装置、锁紧装置等组成。固定套管上有一条水平线,这条线上、下各有一列间距为1毫米的刻度线,上面的刻度线恰好在下面二相邻刻度线中间。微分筒上的刻度线是将圆周分为50等分的水平线,它是旋转运动的。 根据螺旋运动原理,当微分筒(又称可动刻度筒)旋转一周时,测微螺杆前进或后退一个螺距——毫米。这样,当微分筒旋转一个分度后,它转过了1/50周,这时螺杆沿轴线移动了1/50×毫米=毫米,因此,使用千分尺可以准确读出毫米的数值。 外径千分尺的零位校准 使用千分尺时先要检查其零位是否校准,因此先松开锁紧装置,清除油污,特别是测砧与测微螺杆间接触面要清洗干净。检查微分筒的端面是否与固定套管上的零刻度线重合,若不重合应先旋转旋钮,直至螺杆要接近测砧时,旋转测力装置,当螺杆刚好与测砧接触时会听到喀喀声,这时停止转动。如两零线仍不重合(两零线重合的标志是:微分筒的端面与固定刻度的零线重合,且可动刻度的零线与固定刻度的水平横线重合),可将固定套管上的小螺丝松动,用专用扳手调节套管的位置,使两零线对齐,再把小螺丝拧紧。不同厂家生产的千分尺的调零方法不一样,这里仅是其中一种调零的方法。 检查千分尺零位是否校准时,要使螺杆和测砧接触,偶而会发生向后旋转测力装置两者不分离的情形。这时可用左手手心用力顶住尺架上测砧的左侧,右手手心顶住测力装置,再用手指沿逆时针方向旋转旋钮,可以使螺杆和测砧分开。 千分尺的组成结构 螺旋测微器又称千分尺,是比游标卡尺更精密的测长仪器,准确度可在之间。常用于测量细丝和小球的直径以及薄片的厚度等。 外径千分尺的使用方法 使用外径千分尺测量物体长度时,要先将测微螺杆退开,将待测物体放在的两个测量面之间。外径千分尺的尾端有棘轮旋柄,转动可使测杆移动,当测杆与被测物(或砧台)相接后的压力达到某一数值时,棘轮将滑动并产生喀、喀的响声,活动套管不再转动,测杆也停止前进,此时即可读数。读数时,从主尺上读取以上的部分,从微分筒上读取余下尾数部分[估计到最小分度值的十分之一,即(1/1000)],然后两者相加,如图1-6(a)的读数为,(b)的读数为。

ANSYS与ansoft电机仿真步骤

A N S O F T建模 1、在ANSOFT软件中建立电机模型 第一步、在ANSOFT绘制电机模型 第二步、选择“Modeler”菜单下的“Export”项会出现下面的窗口 选择保存为“step”格式的文件。这时可以退出ANSOFT软件。 ANSYS仿真 一、稳态温度仿真 第一步创建稳态温度仿真模型 第二步、添加材料及属性,属性主要为“导热系数” 选择“Engineering data”→”Edit” 开始添加材料 第三步、添加完材料后,导入在ANSOFT下创建的电机模型,选择“Geometry”按下面选项选择 选择ANSOFT下保存的“step”格式的电机模型 第四步、导入模型后,给模型添加材料。选择“Model”→”Edit” 进入下面的窗口,按下面的步骤给电机的各个部分选择对应的材料。 第五步、添加完材料后,返回主窗口,更新修改后的工程文件 如果没有问题, 会变为 第六步、添加热载荷 首先添加自由度,在温度场分析中选择为温度,按下面窗口选择。 接下来,编辑温度,并选择应用区域,这儿定义整个模型的初始温度相同。 下面添加热载荷,按下面的窗口选择,这里选择“热生成率”。 编辑添加的热生成率数值,并选择应用区域,这儿选择所有的绕组。 添加完载荷后,更新一下工程文件,通过后,可以选择“Solve”进行求解。 如果求解成功后,左边的窗口会变成右边的窗口。 第七步、查看仿真结果。按下面的窗口选择观察变量。 二、瞬态温度仿真 第一步、建立瞬态温度分析模型 第二步、添加材料及属性,方法与稳态时相同。但材料的属性不同,这里需要添加材料的“密度”、“导热系数“、“比热容”。“Toolbar”窗口如下。 按照各个选项添加数据。 除了添加载荷不同,接下来的步骤与稳态时相同。 设置仿真步数为多步。 按下窗口设置载荷数据,设置为“阶梯数据”。 1 / 1

异步电动机动态数学模型的建模与仿真.docx

目录 1 设计意义及要求 (3) 1.1设计意义 (3) 1.2设计要求 (3) 2 异步电动机动态数学模型 (4) 2. 1 异步电动机动态数学模型的性质 (4) 2. 2 异步电动机的三相数学模型 (5) 2.3坐标变换 (7) 2. 3.1坐标变换的基本思路 (7) 2. 3.2三相 - 两相变换( 3 / 2 变换) (7) 2. 3.3静止两相 - 旋转正交变换( 2 s / 2 r 变换) ...................................... 2.4状态方程 (10) 3 模型建立 (12) 3. 1 ACMo t o r 模块 (12) 3.2坐标变换模块 (13) 3. 2.1 3/ 2 t r a n s f o r m 模块 (13) 3. 2.22s/2rtransform 模块 (13) 3. 2.32r / 2s t r an s f or m 模块 (14) 3. 2.4 2/ 3 t r a n s f o r m 模块 (15) 3. 2.5 3/ 2 r t r a ns f o r m 模块 (16) 3.3仿真原理图 (17) 4 仿真结果及分析 (20) 5 结论 ........................................................ 参考文献..................................................... 摘要 对一个物理对象的数学模型,在不改变控制对象物理特性的前提下采用一定的变换手段,可以获得相对简单的数学描述,以简化对控制对象的控制。对异步电机的数学分析也不例外,在分析异步电机的数学模型时主要用到的是坐标变换。

G4025-1B型卧式带锯床说明书

G4025-1B型卧式带锯床说明书 G4025-1B型 卧式带锯床 (连封页共21页) 保定向阳航空精密机械有限公司 共21页第 2 页使用说明书 G4025-1B 图一, G4025-1B卧式带锯床外形图 共21页第 3 页使用说明书 G4025-1B 前言 1、用户在安装、使用前必须认真熟悉使用说明书的有关内容,如有疑问, 请与我厂联系; 2、用户在遵守机床的运输、保管规程的前提下,开箱时如发现所供产品与 装箱单不符,请与我厂联系; 3、本机床应放在无明显震源的环境下验收和使用; 4、环境空气温度:5,40?; 5、相对湿度:30,,95,; 6、海拔高度:1000m以下; 7、用户在使用前必须将连接床身与锯头的连接板(图一中2)拆除,将固 定滑杆的内六角螺钉(图一中1)松开,以免影响机床的性能; 8、产品在生产过程中有技术参数变更,恕不通知,请谅解。 共21页第 4 页使用说明书 G4025-1B 目录

, 主要用途 5 , 主要参数和性能 5 , 运输和安装 5 , 主要部件和用途 7 , 传动系统 9 , 液压系统 11, 电气控制系统 11 , 润滑及冷却 18 , 机床的调整 19 , 操作步骤及安全注意事项 20 共21页第 5 页使用说明书 G4025-1B 一、主要用途 G4025-1B型金属带锯床是我厂系列锯割设备之一,主要用于锯切碳素结构钢、低合金钢、高合金钢和不锈钢等各种金属材料。更换适当的锯带还可以锯切有色金属、非金属材料以及HRC45以下的金属材料。二、主要参数和性能 1.主要技术参数 锯切最大直径: ,250 mm 锯带长度(长*宽*厚): 3505*27*0.95 mm 锯轮直径: ,400 mm 锯带速度: 27、40、54、68、80 (m/min) 进给速度:液压无机调整 电机功率:主电机 2.2 KW 油泵电机 0.55 KW 冷却泵 0.040 KW 机床主机外形尺寸(长*宽*高):1820*1110*1225 mm 2.性能 本机床是一种适合切断各种金属材料的下料设备。具有下料精度高、生产效率高、材料消耗省和能源消耗低等显著优点。 三、运输和安装

相关主题
文本预览
相关文档 最新文档