当前位置:文档之家› 铸造缺陷分析

铸造缺陷分析

铸造缺陷分析
铸造缺陷分析

发动机铸件汽缸体(汽缸盖)缺陷分析

概述

改革开放后近十年来,我国的汽车制造工业得到了飞速发展,许多高端汽车品牌,几乎与发达国家同步推出面世,与之相适应的汽车发运机制造业也得到了迅猛发展,其中发动机铸造的水平也得到了极大的提高,无论铸造产量还是铸件技术要求及铸件质量,都有基本上满足了现代汽车发动机日益提高的要求。

以中小型乘用发动机主要铸件汽缸体(汽缸盖)生产为例,众多汽车发动机铸造企业都有采用了粘土砂高压造型(少数为自硬树脂砂造型),制芯则普遍采用覆膜砂热芯或冷芯工艺,而在熔炼方面大都采用双联熔炼或电炉熔炼,所生产的发动机均为高强度薄壁铁件。许多厂家为满足高强度薄壁铸铁件的工艺要求,纷纷引进先进的工艺技术装备,如高效混砂机,高压造型线,高度自动化的制芯中心,强力抛丸设备,大多采用整体浸涂,烘干,并且自动下芯。在过程质量控制方面,许多企业实现了在线检测与控制,如配备了型砂性能在线检测,热分析法铁水质量检测与判断装置,真空直读光谱议快速检测。清洁度检查的工业内窥镜等。相当一部分企业还在产品开发方面应用了计算机模式拟技术。可以毫不夸张地说,就硬件配件而言,我国发动机铸造水平丝毫不亚于当今世界上工业发达国家,一句话,具备了现代铸造生产条件。(为叙述方便,以下称上述框架内容的生产条件为现代生产条件。)

然而应该承认,在发动机铸造企业的经济效益与产品质量以及铸件所能达到的技术要求方面,我们与世界发达国家还有较大的差距。

提高生产质量,减少废品损失,是缩小与发达国家差距,发挥引进设备效能,提高企业效益的重要途径。本文试图就我国铸造企业在现代铸造条件下,中小型乘用车发动机灰铸铁汽缸体(汽缸盖)铸件生产中常见的铸造缺陷与对策,与广大业界同仁作一交流。

1气孔

气孔通常是汽缸体铸件最常见缺陷,往往占铸件废品的首位。如何防止气孔,是铸造工作者一个永久的课题。

汽缸体的气孔多见于上型面的水套区域对应的外表面(含缸盖面周边),例如出气针底部(这时冒起的气针较短)或凸起的筋条部。以及缸筒加工后的内表面。严重时由于型芯的发气量大而又未能充分排气,使上型面产生呛火现象,导致大面积孔洞与无规律的砂眼。在现代生产条件下,反应性气孔与析出性气孔较为少见,较为多见的是侵入性气孔。现对侵入性气孔分析出如下:

1.1原因

1.1.1 型腔排气不充分,排气系统总载面积偏小。

1.1.2浇注温度较低。

1.1.3浇注速度太慢;,铁液充型不平稳,有气体卷入。

1.1.4型砂水份偏高;砂型内灰分含量高,砂型透气性差。

1.1.5对于干式气缸套结构的发动机,水套砂芯工艺不当(如未设置排气系统或排气系统不完善;或因密封不严,使浇注时铁水钻入排气通

道而堵死排气道;砂芯砂粒偏细,透气不良;上涂料后未充分干燥;砂芯砂与涂料发气量太大,或发气速度不当,涂料的屏蔽性差……).经验证明,干式缸套的缸体的气孔缺陷,很大程度上与水套工艺因素相关连。

1.1.6孕育剂未经干燥且粒度不当;铁液未充分除渣,浇注时未挡渣,由此引起渣气孔。

1.1.7浇注时未及时引火

1.2对策

1.2.1模型上较高部位设置数量足够,截面恰当的出气针或排气片;而芯头部位设置排气空腔.上述排气系统均应将气体引至型外。通常排气截面为应内浇道总截面积1.5~1.8倍左右。

1.2.2浇注系统按半开放半封闭原则设置为宜,且须具有一定的拦渣功能,这样铁液充型时比较平稳,不会充击铸型或产生飞测或卷入气体.而浇注系统的截面大小以8~10kg/S的浇注速度来计算较为适宜。1.2.3铁液的熔炼温度应不低于1500°C,而手工浇注时末箱的浇注温度应控制在1400°C左右(视铸件大小与壁厚可适当调整).最好能采用自动工浇注,浇注温度误差应在20°C以内。

1.2.4一个好的适于高压造型的砂处理系统,型砂水分应在控制在2.8-3.2%,其实的紧实率应在36~42之间,而湿压强度应达180~220kpa(均指在造型机处取样检测).为达这些指标,需监控型砂的灰份,辅助材料的添加量,合适的原砂粒度,循环砂的温度及混砂效率。

1. 2.5注意做好铁液去渣,浇注时挡渣引火以及孕育剂的干燥等工作。

1.2.6对于干式气缸套结构的发动机缸体,至关重要的是要有非常完善到位的水套砂芯工艺:

a 、水套坭芯用砂的平均细度较之其他砂芯要粗一些,以求有良好的透气性。

b、设置充分的互相连通的排气孔网并使之能排出型外,这些孔网尽可能在制芯时生成,亦可在成型后钻加工形成。对于前者要定期监控检查孔网是否畅通(当心部芯砂固化不良时易将孔网堵塞)。

c、对砂芯砂性能要综合考虑,不能片面追求强度。当强度太高时,势必要增大树脂用量,从面使芯砂发气量太高;而当水套芯的结构比较复杂纤薄砂厚不均匀,且以能开出排气孔网时,就要求砂芯有较高的强度,即使发气量大些也无防。

d、当水套芯有排气孔网时,涂料要有较好的屏蔽性;当水套芯截面不便设置排气孔网时,涂料要有较好的透气性,这时砂的粒度也应更粗些。

e、当水套芯布有排气孔网时,且使用屏蔽性涂料时,在浸涂时要防止涂料液进入排气孔网,更要注意封火措施(可使用封火垫片材料),以免浇注时铁水进入排气孔网,把排气道堵死;

f、涂料的发气量要低,且施涂后一定要充分干燥。

一个成熟的水套芯工艺,可以将缸筒加工后内表面的气孔废品率控制在0.3%,甚至更低。

2砂眼

砂眼也是气缸体(气缸盖)铸件的常见缺陷,多见于铸件的上型面,也有在缸筒的内表面经加工后暴露出来的。

2.1原因

2.1.1浇注系统设计不合理。

2.1.2型砂系列化统管理不善,型砂性能欠佳。

2.1.3型腔不洁净。

2.1.4砂芯表面状况不良或是施涂与干燥不当。

2.2对策

2.2.1就浇注系统设置方面来说,为避免或减少砂眼缺陷,应注意以下事项;

a、要有合理的浇注速度。截面太小,则浇注速度太慢,铁液上升速度太慢,上型受铁液高温烘烤时间长,容易使型砂爆裂,严重时会造成片状脱落。浇注系统的比例,应使铁液能平稳注入,不得形成紊流或喷射。

b、尽量使铁液流经的整个通道在砂芯内生成,通常坭芯砂(热法覆膜砂或冷芯砂)较之外模粘土砂更耐高温铁液冲刷。而直浇道难以避免设置在外模的粘土砂砂型中通过,这时可在直浇口与横浇口搭接处设置过滤器(最好是泡沫陶瓷质),可以将铁液在直浇道内可能冲刷下来散砂和铁液夹渣加以过滤,从而可减少砂眼和渣眼。

c、浇道是变截面的,因此变截面处应尽可能圆滑光洁,避免形成易被铁液冲垮的尖角砂。

d、浇道的截面比例宜采用半封闭半开放型式,以降低铁液进入型腔时的流速与冲击,而内浇道位置应尽可能避免直接冲击型壁和型芯,且呈扩张形为好。

2.2.2为防止铸件的砂眼缺陷,型砂方面的主要措施是

a、是控制型砂中的微粉含量,型砂在反复使用中,微粉含量会越来越高,这会降低型砂的湿压强度,水份及紧实率则会提高,使型砂发脆。

b、浇注时砂芯溃散后混入旧砂,未燃尽的残留树脂膜,会使型砂的韧性变差,产生砂眼的可能性也增大。为此需要改善型砂的表面稳定性,降低脆性,提高韧性,方法是应在型砂中增加适当的a-淀粉,均可取得良好的效果,也可以在型腔表面施表面安定剂(喷洒)。

2.2.3 在造型、翻箱,特别是下芯、合箱等各环节容易将砂粒掉入型腔,而又未能清理干净,极易造成铸件砂眼缺陷。为此,一是要选取恰当的芯头间隙和斜度并保证下芯和合箱的工装精度,以免破坏砂型或损坏型芯而将砂粒散落在型腔内;二是合箱前清理干净型内可能掉入的砂粒(抽吸法好于吹出法)。

2.2.4 不能忽视的是,砂芯的飞边毛刺要清理干净,上涂烘干后待用的砂芯表面的砂粒灰尘也要吹净,否则容易被铁水冲刷并富集在铸件某处形成砂眼。同时,需要强调的是,砂芯上涂不能太厚,优其是当工艺要求个别砂芯的个别部位或全部两次浸渗涂料时,涂料不能太厚,且须等第一次上涂料干燥到一定程度后才能上涂第二次,否则浇注时过厚的涂料会爆裂而形成夹砂(渣)。

3 脉纹(飞翔)

通常在铸件的内表面或热节部位,如缸体缸盖的水套腔内,或是进排气道内,由于浇注时高温铁液的作用,使砂芯硅砂发生相变膨胀引起砂芯表面产生裂缝,液体金属渗入其中,从而导致铸件形成飞翔状凸起的缺陷,即"脉纹"。脉纹一旦出现,难以清理,当水套腔内有脉纹时,轻者会影响内腔的清洁度,重者会影响冷却水的流量,从而降低对发动机的冷却效果,甚会引起"烧缸","拉缸"严重后果;当气道内出现脉纹时,会影响气道涡流特性,最终影响发动机的整机工作性能。生产实残证明,冷芯工艺产生脉纹的倾向要稍大于壳芯产生脉纹的倾向。

3.1 原因

3.1.1 如上所述,产生脉纹的根本原因是高温铁液作用于砂芯引起硅砂的膨胀裂纹。

3.1.2 砂芯材料不具备低膨胀的性能,或者其自身不能吸收这种受热产生的膨胀。

3.1.3 砂芯的韧性或高温强度不足以克服膨胀应力导致产生裂纹.

3.1.4 所用材料不能低御砂芯在高温下产生膨胀裂纹。

3.1.5 铁液未能在砂芯产生裂纹前凝固结壳,从而预防脉纹产生。3.2 对策

针对3.1所列产生脉纹的原因(或者说脉纹形成的机理)。显然应采取以下措施;

3.2.1 在保证能得到健全铸件而不产生气孔等缺陷的铁液充型温度

下,尽可能采取较低的浇注温度以减轻砂芯受热膨胀的程度;同时采用较快的浇注速度,以避免砂芯长时间受到高温烘烤可能产生的膨胀裂纹。

3.2.2 用于易产生脉纹砂芯(如水套芯,进排气道芯)的芯砂原砂预先进行消除相变膨胀处理,或者在砂芯材料中添加一些辅助材料,降低砂芯材料的热膨胀率;再就是原砂的颗粒组成以三筛或四筛级配,以求砂芯材料能自身吸收膨胀变型。

3.2.3 必要时,在砂芯材料中使用一定比例的非石英系列砂(如橄槛石砂,锆英砂等),第一它们的膨胀率极小,第二其导热性能好,使铁液结壳时间早于砂芯相变膨胀开裂时间。

3.2.4 提高砂芯材料的韧性和高温强度。

3.2.5 使用强度、韧性优良,且导热性能极好的烧结型涂料,以增强砂芯表面抗膨胀裂纹的能力。

以上这些措施使用于冷芯砂,也使用于热法覆模砂(壳型砂)。由此看出,预防或减少脉纹缺陷的主要措施是改善砂芯膨胀性能。

4 清洁度

现代发动机对清洁度的要求非常苛刻,对气缸体(气缸盖)铸件而言,水腔、油腔、挺杆室等到部位允许残留的砂粒和异物,仅限为数克(g)以内,许多企业尽管采取了二次抛丸、强力抛丸,甚至引进了先进的抛丸设备,如鼠笼或机械手抛丸,要完全达到内腔清洁度要求,仍然较为困难,无论是壳芯或是冷芯,情形均一样。

4.1 原因

清洁度达不到要求,从根本上来说是由于铸件结构方面的原因,上述各腔在抛丸时,因为出砂孔眼少而小,铁丸所能投射进去的量有限,所以内腔的光洁度与清洁程度均不及铸件的外表面,也不及曲轴箱和缸筒面等部位。在不能改变铸件结构的情况下,只能查找影响清洁度其他方面的原因。

4.1.1 砂芯表面状况不良,如充填不紧实;砂芯表面粗糙;粘膜等。

4.1.2 施涂不当,如涂料性能差,玻美度不合适,涂层厚度不够等。

4.1.3 现有强力抛丸装置对铸件大部分内外表层都能清理得很干净,但对狭窄复杂的水腔、油腔仍显不足。

4.2 对策

4.2.1 改善和提高砂芯表面的质量状况,如选用流动性好的制芯材料(安息角<29°);合理设置排气塞并加以维护使其畅通;施用品质好的脱模剂防止粘膜等,这些措施的目的是得到表面紧实致密的砂芯。4.2.2 通常都要对坭芯施以涂料层。涂料玻美度要合适;涂料要有较强的渗透性;涂料要有一定的厚度(一般要达0.2mm),涂层干燥后不能显见砂粒为宜;选用的涂料防粘砂性能优良,在浇注温度下能在铸件表面形成一低熔点的烧结层,而且在铸件冷却过程中因收缩率的不同能自动剥离下来。

4.2.3 如3.0所述,要努力避免防止脉纹缺陷的产生。一旦出现脉纹,铸件的内腔清洁度情况就更加恶化。有关措施参见3.2。

4.2.4 对铸件内腔清理,国内外的主流工艺方法是采用强力机械抛丸的方式,其形式有鼠笼抛丸,机械手夹持抛丸等。对这类抛丸设备,

要维护达到额外电流值,要调整最佳抛射角度,对后一种抛丸方式,还可对难以清理的内腔将程序设置在最佳入射角度时适当延长抛射时间。

此外还有以下几种改善和提高内腔清洁度的手段:

a、电液压清理,其原因是将待清理铸件置于水池中,在高能量放电过程中,所产生的高压冲击波将粘附在铸件上的砂粒振击脱落,理论上说水能浸入的孔腔内,其粘砂均能清理干净,但这种方法占地面积大,耗能高,流程长(尚要倒空内腔积水并烘干水迹)、维护量大,也有一定的安全问题。

b、先将铸件置于炉内焙烧,再进行抛丸。这种方式提高铸件清洁度的效果还是很明显的,但同样是能耗较高、周期长,如以煤炭作加热炉燃料,则作业环境较差。

c、有的厂家除采用强力抛丸以外,还针对水道腔或油道腔进行喷丸清理。这种方式对提高内腔清洁度最有效,所能达到的清洁度水平最高,但目前仅有此类通用单机产品,尚需人工握持喷丸头伸进密封的工作室对准有关砂孔喷射,劳动强度大,环境恶劣,期待着专用的自动喷丸设备在气缸体(气缸盖)清理生产线上应用。

5 渗漏

渗漏是指气缸体(汽缸盖)在压力试验(水压/气压)时的渗漏现象,多发生在汽缸体(或汽缸盖)的水套腔或是油道腔。

引起渗漏的原因有夹杂和疏松两大类(机械损伤或铸件裂纹引起的曲轴箱渗漏的情况极少,在此不加论述)。

5.1 夹杂引起的渗漏

5.1.1 原因

(1) 砂芯在修芯时未清除飞边、毛刺,或砂芯上有松散粘附的大小不一的砂粒、砂团未清除干净,致使浇注时被铁液冲刷下来并飘浮富集在水套壁或油道壁,形成夹砂(砂眼)。使腔壁贯通渗漏。

(2) 组合好的砂芯被粉尘砂粒污染或型腔内不慎掉入散砂,没有清理干净,也会形成砂眼使腔壁贯通而渗漏。

(3) 铁液不纯净,而浇道内又无过滤措施或拦渣效果差,使铁液中的夹渣进入型腔,使水腔或油腔的腔壁形成贯通性的渣孔而渗漏。

5.1.2 对策

(1) 认真清除砂芯的飞边毛刺,并清除坭芯上附着的砂粒砂团,避免在水腔/油腔壁上可能形成的砂眼。

(2) 吹净砂粒与粉尘污染的组合好的砂芯组,清理掉入型腔的砂粒。

(3) 直浇道设置高效的过滤器,横浇道应有良好的拦渣功能,并做好铁液净化工作(造渣,除渣),以防腔壁上产生渣眼。

5.2 缩松引起的渗漏

这种渗漏常发生在水腔(油腔)或喷油嘴等热节部位。

5.2.1 原因

(1)铁液成分不恰当。Si/C过高,石墨片粗大,组织疏松。

(2)孕育过量,致使共晶团数量过多,微晶间隙难以补缩致密。5.2.2 对策

(1)在规定的碳当量保持不变的前提下,限制Si/C在0.5~0.6之间。

(2) 不得孕育过量,较有效的措施是采用SISr(含锶)孕育剂,其石墨化能力级强,用量仅FeSi孕育剂的50%,即可充分孕育消除截面敏感性,以可避免产生过多数量的共晶团.

(3)在易产生缩松的热节部位,局部刷除碲粉醇基涂料,增加该部位的冷却能力,防止产生缩松.有报道称,含pb量达0.0008%,即可造成缩松渗漏,须注意使用的炉料中有否镀pb材料,或须先行除去镀层.此外影响缩松渗漏的微量元素还有Ti,AL等,它们都会增加铁液的收缩倾向,严格控制.

6材质性能方面的缺陷

纵观国内外发动机技术发展趋势,都在追求减薄铸件壁厚,从而减轻铸件乃至整机重量,达到降低油耗的目的,目前发动机单位功率的缸体缸盖重量达到1.8gk/kw左右,相应的铸件主要壁厚仅3.5mm左右,这就对铸件的材质性能提出了很高的要求.概括起来说,主要为:

a干型单铸试棒的抗拉强度qb≥250Mpa,指定本体部位的抗拉强度Qb≥250Mpa;

b,铸件指定部位的硬度在180HB以上;铸件厚薄断面的硬度差在30HB以下;

c铸件本体的主要部位珠光体含量在90%以上,石墨型态应在大部分为A型,充充表面有少量B,D型,石墨最大长度液压在250um以下。

尽管我国大多数专业发动机铸件生产厂家,通过技术改造和技术引进,达到了现代生产条件,但也常出现达不到上述材质要求方面的缺

陷。

6.1原因

6.1.1铁液熔炼温度偏低,过冷度小,使得后续的孕育强化效果差.

6.1.2炉料(金属炉料与非金属炉料)质量差,微量元素及非金属夹杂物含量高.

6.1.3合金化措施不当或(或合金元素选择不当,或合金加入量不当,或合金化方法不当).

6.1.4孕育措施不当(孕育剂成分,孕育剂形态,孕育量,孕育方法等). 6.1.5在保温炉内处置不当(如频繁且大幅度调整化学成分,使铁液在炉内保温时间过长,元素变化大),成份控制精度差.

6.2对策

6.2.1提高熔炼温度提高铁液的稳定性,增加其过冷倾向,消除原材料的"遗传性);并保证出铁温度大于1480°C,以确初始浇注温度达到1450°C,而终了浇注温度达1400°C.

6.2.2加强冲天炉控制,使之炉况稳定,从而保证进入保温电炉的铁液成分稳定(减少成分烧损的波动)这样可减少电炉内成分调整所需的时间, 以免增加铁液的收缩倾向和白口倾向.

6.2.3保温电炉内不得已需要增C操作时,一定要选择吸收率高的增碳剂,二要保证有充分电磁搅拌和充分吸收的时间,否则所取铁水样不能反应整个熔体真实含C量,导致实际碳当量发生偏差.

6.2.4减少碳当量的波动,提高成分控制精度,要求△CE≤0.05%,△Si≤0.1%。

6.2.5对于形状复杂,薄壁高强度的缸体,缸盖类铸件的铁液,即要有高强度,也要有良好的铸造性能,为此通常其成分设计为高强当量(3.9-4.1%).使其具有良好的铸造性能,而为了达到较高力学性能则采用低合金化措施.

a根据我国资源情况以及多数企业的经验与习惯,多采用Cr,Cu等合金元素.有利于增加并细化和稳定珠光体,改善石墨状态,从而得到较高的力学性能.

b合金的加入量必须加以控制.Cr是一种促进形成并稳定珠光体的元素,且能细化珠光体,因而能显著提高灰铸铁的强度,然而Cr与C又有较强的亲和力,是一种强碳化物元素,这就会增加铁液的白口倾向;同时Cr元素还会降低铸铁的共晶凝固温度,使铁液的凝固温度范围扩大,因此加大了灰铸铁的缩松,缩孔倾向,降低铸件的致密性,这就可能影响Cr对灰铁的强化作用.当Cr是在0.2-0.3%范围时,则能避害趣利. 同样,CU也是促进稳定和细化珠光体的元素,Cu又是促进石墨化的元素,这就可以抵消Cr增大白口倾向的不利影响.CU的适宜加入量为0.4-0.5%.

由此,推荐Cr与Cu组合使用,会取得更好的效果,即保证了良好的铸造性能,又提高了铸件的力学性能.

这里需要指出的是由于Cr,CU元素的作用,增加珠光体并稳定和细化珠光体成片间距很小的层片状组织,改善石墨状态(呈A型),分布于大小,因此缸体,缸盖在热交变应力作用下抵抗热疲劳产生裂纹的能力也得到提出高(即具有好的热稳定性)[3]

6.2.6采用恰当的孕育处理,可以提高缸体,缸盖铸件的材质强度,特别是提出高其硬度和显微组织的均匀性,改善厚薄截面的敏感性,使得硬度差在30HB以内,并具有良好的切削加工性,这里恰当的孕育处理包括:

a选用合适的孕育剂,在众多孕育剂中,含Ba.Ca.Sr(锶)等元素的孕育剂,不仅有很好的抗孕育衰退作用,且具有强烈的石墨化作用,可显著改善铸件截面敏感性,避免铸件在最小壁厚处的白口倾向,且显微组织也更加均匀。

b合适的孕育方法。在包内孕育,喂丝孕育,型内孕育,随流孕育等方法中,以随流孕育为简便,最适宜于大批量流水生产,效果也最好。推荐粒度为0.5-1.0mm,加入量为0.1-0.2%.

c,需要指出的是,BaSi孕育剂会使铸件硬度偏低,可加入微量Sn(0.04-0.06%)或Sb(锑)(0.02%),可称补硬度偏低的不足.

6.2.7严格控制炉料,标准是(1)微量元素低;(2)洁净;(3)严禁混入合金元素.

7收缩

汽缸体(汽缸盖)铸件结构复杂,壁厚差别较大.园弧曲面凸起的厚大部位,大批量水生产时,工艺上又不便采取冒口补缩之类的措施,当其它工艺处置不当时,这些厚大热节处往往会产生集中收缩,严重时会产生较深的缩裂缺陷.

7.1原因

7.1.1上述部位的根部,时有造型充填不紧实,该部位铸型硬度/钢度

不足的情形.当铁液凝固石墨化膨胀时,发生型壁位移.

7.1.2浇注温度偏高

7.1.3铸液收缩倾向较大

7.2对策

7.2.1提高型砂的流动性,控制合适的型砂紧实率,对气冲造型或气流预紧实的造型方法,模型相应部位增加排气塞,采取这些措施后,可提高缺陷发生部位的铸型硬度∕刚度,使高碳当量铁液凝固时不会因为石墨化膨胀产生型壁位移,从而能实现无冒口自补缩.

7.2.2在满足充型要求,不得产生气孔等缺陷的情况下,切勿盲目提高浇注温度,(浇注温度太高,还会引起跑火漏箱和粒砂等到缺陷).

7.2.3保证铁液有良好的铸造成性能,尤其要防止铁液的白口倾向收缩倾向.

a)要精确控制碳当量(3.9-4.1%),低于下限时,则铁液的收缩倾向加大,在前述部位出现缩孔缺陷的可能性就越大.

b)对高碳当量铁液低合金化处理时,要控制可能由此引起收缩增大的倾向,一些增大灰铁白口倾向,收缩倾向的合金元素,要严格用量.如前述Cr,会降低共晶温度扩大凝固温度区间,其用量不得超过0.035%等.

c)电炉内采用增碳剂调整碳当量(碳量)时,一定要有充分吸收增c的时间,否则会出现增碳假象.这样的铁水浇注的产品.往往会出现收缩. d)要控制原铁水中非合金化带来的一些有害元素的含量,如P,Ti,V等到也会增加铁液的收缩倾向.

8加工性能

切削加工性能差是我国发动机铸件普遍存在一个问题,也是与国外铸件质量最在的差距所在.即使国产铸件与进口KD件的化学成份,基体金相组织乃至硬度值相近,但国产铸件的切削加工性能仍远不及进口KD件,有时刀具消耗相差一倍以上.

8.1原因

8.1.1来自原材料的微量元素的影响

a,铁中微量元素超标,如Ti,V,pb,Be,B等,这些微元素含量较高时,有的呈游离碳化物,氮化物等硬质点形式存在(碳化钛,氮化钛等),有的使硬质相索氏体数量明显增加(如V等).

b,废铁中混入合金钢(如Ti,V等),或使用了带有镀层的废铁。如镀Pb 废钢板。

C,有的元素(如pb,Be)增加铸件的白口倾向。

8.1.2熔炼工艺不当,如在电炉中熔炼时间过长,铁液白口化倾向加大.

8.1.3孕育等工艺不当,即所选用的孕育剂或孕育工艺未能消除铸件断面的敏感性,尤其未能消除5mm薄壁处的显微组织硬质相.

8.2对策

8.2.1选用恰当的生铁,控制生铁中微量元素的含量,Ti<.05%,V≤0.01%,采用低碳钢废钢,严禁废钢中混入合金钢.

8.2.2避免合金化过程中产生过多的且分布不均匀的硬质相显微组织.通常为保证良好的铸造性能和达成到较高的力学性能,一般都采用高碳当量辅以合金化措施.合金化的目的是增加珠光体量,并细化和稳定珠光体,但要避免产生白口化倾向,避免产生偏析,避免硬质相显微

组织出现,这就合理选择并组合合金化元素.并最好采用孕育方式加入.

8.2.3改善切削加工性能十分重要的一环是;采取有效的孕育工艺.一般选用含Ca,Ba的孕育剂要优于传统的75SiFe孕育剂,二是采用随流孕育处理,这样的孕育工艺可获得均匀的组织以及均匀的显微硬度,尤其是对壁厚差较大的汽缸体(汽缸盖)铸件,其最小壁厚5mm处的显微组织与性能更趋均匀.

以上是根据我国铸造企业近年来取得较大技术进步,铸造材料供应也有较大改观,总体水平有了较大提出升的情况,对中小型乘用车发动机灰铸铁汽缸体(汽缸盖)铸件生产中常见的,较为普遍遇到的铸造缺陷及其对策所作的一个肤浅的分析,由于技术进步,一些不常见到,不常发生或是所占比例很小的铸造缺陷,如机械损伤,尺寸偏差,粒砂等,这里不再涉及.

常见铸件缺陷分析

常见铸件缺陷分析缺陷种类,缺陷名称生产原因 多肉类飞翅(飞边) 1.砂型表面不光洁,分型面不增整 2.合理操作xx准确 3.砂箱未固紧 4.未放压铁,或过早除去压铁 5.芯头与芯座间有空隙 6.压射前机器调整、操作不正确 7.模具镶块、活块已磨损或损坏,锁紧元件失效8.模具强度不够,发生变形 9.铸件投影面积过大,锁模力不够 10.型壳内层有裂隙,涂料层太薄 毛刺 1.合型操作不准确 2.砂箱未固紧 3.芯头与芯座间有空隙 4.分型面加工精度不够 5.参考飞翅内容 抬箱 1.砂箱未固紧

2.压铁质量不够,或过早除去压铁 胀砂 1.砂型紧实度低: 壳型强度低 2.砂型表面硬度低 3.金属液压头过高 冲砂 1.砂型紧实度不够,型壳强度不够 2.浇注系统设计不合理 3.金属流速过快,充型不稳定 4.压射压力过高,压射速度过快 5.金属液头过高 掉砂 1.合型操作不正确 2.型砂紧实度不够 3.型壳强度不够,发生破裂 铸件缺陷分析 缺陷种类缺陷名称产生原因 多肉类外渗物(外渗豆)内渗物(内渗豆) 1.铸型、型号、型芯发气最大,透气性低,排气不畅2.合金液有偏析倾向

3.凝固温度范围宽或凝固速度过慢 xx类气孔、针孔 1.铸件结构设计不正确,热节过多、过大 2.铸型、型壳、型芯、涂料等发气量大,透气性低,排气不畅 3.凝固温度范围宽,凝固速度数低 4.合金液含气量高,氧化夹杂物多 5.凝固时外压低 6.冷铁表面未清理干净,未挂涂料或涂料烘透 7.铜合金脱氧不彻底 8.浇注温度过高,浇注速度过快 缩孔 1.铸件结构设计不合理,壁厚悬殊,过渡外圆角太小: 热节过多、过大 2.浇注系统、冷铁、冒口安放不合理,不利于定向凝固 3.冒口补缩效率低 4.浇注温度过高 5.压射建压时间长,增压不起作用撮终补压压力不足,或压室的充满度不合理 6.比压太小,余料饼术薄,补压不起作用 7.内浇道厚度过小,溢流槽容量不够 8.熔模的模组分布不合理,造成局部散热困难

铸铝转子铸造缺陷及原因

1.转子断条 产生断条的原因: 1)转子铁芯压装过紧,铸铝转子铁芯涨开,有过大的拉力加在铝条上,将铝条拉断。2)铸铝后脱模过早,铝水未凝固好,铝条由铁芯涨力而断裂。 3)铸铝前,转子铁芯槽内有杂物。 4)铝条中有气孔,或清渣不好,铝水中有杂物。 5)单冲时转子冲片各别槽孔漏冲。 6)浇注时中间停顿。因为铝水极易氧化,先后浇入的铝水因氧化而结合不到一起,出现“冷隔”。 转子断条对电机性能的影响是: 如果转子断条,则转子电阻很大,所以起动转矩很小; 转子电阻增大,转子耗损增大,效率降低,升温高,转差率大。 2.转子细条 产生细条的原因: 1)离心机转速过高,离心力太大,使槽底部导条没有铸满(抛空)。 2)转子槽孔过小,铝水流动困难(遇此情况应适当提高铁芯预热温度)。 3)转子错片,槽斜线不成一直线,阻碍铝水流动。 4)铁芯预热温度低,铝水浇入后流动性变差。 转子细条使转子电阻增大,效率降低,温升高,转差率大。 3.转子气孔 产生气孔的主要原因: 1)铝水清化处理不好,铝水中含气严重,浇注速度太快或排气槽过小时,模型中气体来不及排出(压力铸铝尤为严重)。 2)铁芯预热温度过低,油渍没有烧尽即进行铸铝,油渍挥发在工件中形成气孔。 3)在低压铸铝时,如果升液管漏气严重,则通入坩埚的压缩空气会进入升液管,与铝水一起跑入转子里而形成气孔。 转子气孔使转子电阻增大,效率降低,温升高,转差率大。 4.浇不满

产生浇不满的主要原因: 1)铝水温度过低,铝水流动性差。 2)铁芯、模具预热温度过低,铝水浇入后迅速降温,流动性变差。 3)离心机转速太低,离心力过小,铝水充填不上去。 4)浇入铝水量不够。 5)铸铝模内浇口截面积过小,铝水过早凝固堵住铝水通道。 浇不满使转子电阻增大,效率降低,温升高,转差率大。 5.缩孔 产生缩孔的主要原因: 1)铝水、模具、铁芯温度搭配不适当,达不到顺序凝固和合理补缩的目的。如果上模预热温度过低,铁芯预热温度上下端不均匀,使浇门处铝水先凝固,上端环铝水凝固时得不到铝水补充,造成上端环缩孔。因为缩孔总是产生在铝水最后凝固的地方。 2)模具结构不合理,如内浇口截面积过小或分流器过高,使铝水在内浇口处通道增长,内浇口处铝水先凝固,造成补缩不良,会使上端环出现缩孔。又如模具密封不好或安装不当造成漏铝,则使得浇门处铝水量过少。无法起到补缩作用也容易造成缩孔。 缩孔使转子电阻增大,效率降低,温升高,转差率大。 6.裂纹 产生裂纹的主要原因: 1)工业纯铝中杂质含量不合理。工业纯铝中常有的杂质是铁和硅,大量实验分析证实,硅铁含量比对裂纹的影响很大,即硅铁比在1.5~10之间时容易出现裂纹。 2)铝水温度过高(超过800℃)时铝的晶粒变粗,伸长率降低,受不住在冷凝过程中产生的收缩力而形成裂纹。 3)转子端环尺寸设计不合理(厚度和宽度之比小于0.4)。 4)风叶、平衡柱和端环连接处圆角过小,因应力集中产生裂纹。

消失模铸造的优缺点分析

消失模铸造的优缺点分析 优点:一、提高铸件质量,降低废品率 1.铸件尺寸形状精确,重复性好,具有精密铸造的特点;2.铸件的表面光洁度高;3.取消了砂芯和制芯工部,根除了由于制芯、下芯造成的铸造缺陷和废品; 4.不合箱、不取模,大大简化了造型工艺,消除了因取模、合箱引起的铸造缺陷和废品; 5.采用无粘结剂、无水分、无任何添加物的干砂造型,根除了由于水分、添加物和粘结剂引起的各种铸造缺陷和废品;6.可在理想位置设置合理形状的浇冒口,不受分型、取模等传统因素的制约,减少了铸件的内部缺陷;7.负压浇注,更有利于液体金属的充型和补缩,提高了铸件的组织致密度;8.易于实现机械化自动流水线生产,生产线弹性大,可在一条生产线上实现不同合金、不同形状、不同大小铸件的生产;9.可以取消拔模斜度; 二、降低生产成本 1.可减轻铸件重量;2.降低了生产成本; 3.消失模铸造工艺可以实现微震状态下浇注,促进特殊要求的金相组织的形成,有利于提高铸件的内在质量;4.在干砂中组合浇注,脱砂容易,温度同步,因此可以利用余热进行热处理。特别是高锰钢铸件的水刃处理和耐热铸钢件的固溶处理,效果非常理想,能够节约大量能源,缩短了加工周期; 三、减少资源成本 1.落砂极其容易,大大降低了落砂的工作量和劳动强度;2.铸件无飞边毛刺,使清理打磨工作量减少50%以上;3.组合浇注,一箱多件,大大提高了铸件的工艺出品率和生产效率;4.使用的金属模具寿命可达10万次以上,降低了模具的维护费用;5.减少了粉尘、烟尘和噪音污染,大大改善了铸造工人的劳动环境,降低了劳动强度,以男工为主的行业可以变成以女工为主的行业;6.简化了工艺操作,对工人的技术熟练程度要求大大降低; 四、用途广泛 1.零件的形状不受传统的铸造工艺的限制,解放了机械设计工作者,使其根据零件的使用性能,可以自由地设计最理想的铸件形状; 2.消失模铸造工艺应用广泛,不仅适用于铸钢、铸铁,更适用于铸铜、铸铝等;3.消失模铸造工艺不仅适用于几何形状简单的铸件,更适合于普通铸造难以下手的多开边、多芯子、几何形状复杂的铸件;4.利用消失模铸造工艺,可以根据熔化能力,完成任意大小的铸件;5.消失模铸造适合群铸,干砂埋型脱砂容易,在某些材质的铸件还可以根据用途进行余热处理。

铝合金压铸件所有缺陷及对策大全

铝合金压铸件所有缺陷及对策大全 一、化学成份不合格 主要合金元素或杂质含量与技术要求不符,在对试样作化学分析或光谱分析时发现。 1、配料计算不正确,元素烧损量考虑太少,配料计算有误等; 2、原材料、回炉料的成分不准确或未作分析就投入使用; 3、配料时称量不准; 4、加料中出现问题,少加或多加及遗漏料等; 5、材料保管混乱,产生混料; 6、熔炼操作未按工艺操作,温度过高或熔炼时间过长,幸免于难烧损严重; 7、化学分析不准确。 对策: 1)、对氧化烧损严重的金属,在配料中应按技术标准的上限或经验烧损值上限配料计算;配料后并经过较核; 2)、检查称重和化学分析、光谱分析是否正确; 3)、定期校准衡器,不准确的禁用; 4)、配料所需原料分开标注存放,按顺序排列使用; 5)、加强原材料保管,标识清晰,存放有序; 6)、合金液禁止过热或熔炼时间过长; 7)、使用前经炉前分析,分析不合格应立即调整成分,补加炉料或冲淡; 8)、熔炼沉渣及二级以上废料经重新精炼后掺加使用,比例不宜过高; 9)、注意废料或使用过程中,有砂粒、石灰、油漆混入。 二、气孔 铸件表面或内部出现的大或小的孔洞,形状比较规则;有分散的和比较集中的两类;在对铸件作X光透视或机械加工后可发现。 1、炉料带水气,使熔炉内水蒸气浓度增加; 2、熔炉大、中修后未烘干或烘干不透; 3、合金液过热,氧化吸气严重; 4、熔炉、浇包工具氧等未烘干; 5、脱模剂中喷涂过重或含发气量大; 6、模具排气能力差; 7、煤、煤气及油中的含水量超标。 对策: 1)、严禁把带有水气的炉料装入炉中,装炉前要在炉边烘干; 2)、炉子、坩埚及工具未烘干禁止使用; 3)、注意铝液过热问题,停机时间要把炉调至保温状态;

压铸件的缺陷分析及检验

压铸件的缺陷分析及检验 一、流痕 ( 条纹 )( 抛光法去除 )A. 、模温低于 180( 铝合金 )b 、填充速度太高 c 、涂料过量 D 。金属流不同步。对 a 采取措施:调整内浇口面积 二、冷接: A 料温低或模温低, B ,合金成份不符,流动性差。 C ,浇口不合理,流程太长 D 。填充速度低 E 。排气不良。 F 、比压偏低。 三、。擦伤(扣模、粘模、拉痕、拉伤): A 型芯铸造斜度太小。 B ,型芯型壁有压伤痕。 C ,合金粘附模具。 D ,铸件顶出偏斜,或型芯轴线偏斜。 E ,型壁表面粗糙。 F ,脱模水不够。 G ,铝合金含铁量低于 0 。 6 %。措施:修模,增加含铁量。 四、凹陷(缩凹,缩陷,憋气,塌边) A .铸件设计不合理,有局部厚实现象,产生节热。 B ,合金收缩量大。 C ,内浇口面积太小。 D ,比压低。 E ,模温高 五、,气泡(皮下): A ,模温高。 B ,填充速度高。 C ,脱模水发气量大。 D ,排气不畅。 E ,开模过早。 F ,料温高。 六、气孔: A ,浇口位置和导流形状不当。 B ,浇道形状设计不良。 C ,压室充满度不够。 D ,内浇口速度太高,产生湍流。 E ,排气不畅。 F ,模具型腔位置太深。 G ,脱模水过多。 H ,料不纯。 七、缩孔: A ,料温高。 B ,铸件结构不均匀。 C ,比压太低。 D ,溢口太薄。 E ,局部模温偏高 八、花纹: A ,填充速度快。 B ,脱模水量太多。 C ,模具温度低。 九、裂纹: A ,铸件结构不合理,铸造圆角小等。 B ,抽芯及顶出装置在工作中受力不均匀,偏斜。 C ,模温低。 D ,开模时间长。 E ,合金成份不符。(铅锡镉铁偏高:锌合金,铝合金:锌铜铁高,镁合金:铝硅铁高 十、欠铸 A ,合金流动不良引起。 B ,浇注系统不良 C ,排气条件不良 十一、印痕(镶块或活动块及顶针痕等) 十二、网状毛刺: A ,模具龟裂。 B ,料温高。 C ,模温低。 D ,模腔表面不光滑。 E ,模具材料不当或热处理工艺不当。 F ,注射速度太高。

铸造缺陷分析

发动机铸件汽缸体(汽缸盖)缺陷分析 概述 改革开放后近十年来,我国的汽车制造工业得到了飞速发展,许多高端汽车品牌,几乎与发达国家同步推出面世,与之相适应的汽车发运机制造业也得到了迅猛发展,其中发动机铸造的水平也得到了极大的提高,无论铸造产量还是铸件技术要求及铸件质量,都有基本上满足了现代汽车发动机日益提高的要求。 以中小型乘用发动机主要铸件汽缸体(汽缸盖)生产为例,众多汽车发动机铸造企业都有采用了粘土砂高压造型(少数为自硬树脂砂造型),制芯则普遍采用覆膜砂热芯或冷芯工艺,而在熔炼方面大都采用双联熔炼或电炉熔炼,所生产的发动机均为高强度薄壁铁件。许多厂家为满足高强度薄壁铸铁件的工艺要求,纷纷引进先进的工艺技术装备,如高效混砂机,高压造型线,高度自动化的制芯中心,强力抛丸设备,大多采用整体浸涂,烘干,并且自动下芯。在过程质量控制方面,许多企业实现了在线检测与控制,如配备了型砂性能在线检测,热分析法铁水质量检测与判断装置,真空直读光谱议快速检测。清洁度检查的工业内窥镜等。相当一部分企业还在产品开发方面应用了计算机模式拟技术。可以毫不夸张地说,就硬件配件而言,我国发动机铸造水平丝毫不亚于当今世界上工业发达国家,一句话,具备了现代铸造生产条件。(为叙述方便,以下称上述框架内容的生产条件为现代生产条件。)

然而应该承认,在发动机铸造企业的经济效益与产品质量以及铸件所能达到的技术要求方面,我们与世界发达国家还有较大的差距。 提高生产质量,减少废品损失,是缩小与发达国家差距,发挥引进设备效能,提高企业效益的重要途径。本文试图就我国铸造企业在现代铸造条件下,中小型乘用车发动机灰铸铁汽缸体(汽缸盖)铸件生产中常见的铸造缺陷与对策,与广大业界同仁作一交流。 1气孔 气孔通常是汽缸体铸件最常见缺陷,往往占铸件废品的首位。如何防止气孔,是铸造工作者一个永久的课题。 汽缸体的气孔多见于上型面的水套区域对应的外表面(含缸盖面周边),例如出气针底部(这时冒起的气针较短)或凸起的筋条部。以及缸筒加工后的内表面。严重时由于型芯的发气量大而又未能充分排气,使上型面产生呛火现象,导致大面积孔洞与无规律的砂眼。在现代生产条件下,反应性气孔与析出性气孔较为少见,较为多见的是侵入性气孔。现对侵入性气孔分析出如下: 1.1原因 1.1.1 型腔排气不充分,排气系统总载面积偏小。 1.1.2浇注温度较低。 1.1.3浇注速度太慢;,铁液充型不平稳,有气体卷入。 1.1.4型砂水份偏高;砂型内灰分含量高,砂型透气性差。 1.1.5对于干式气缸套结构的发动机,水套砂芯工艺不当(如未设置排气系统或排气系统不完善;或因密封不严,使浇注时铁水钻入排气通

▲铸钢件缺陷原因分析

铸钢件缺陷产生的原因分析 铸钢阀门由于其成本的经济性和设计的灵活性,因而得到广泛的运用。由于阀门铸件的基本结构属于中空结构,形状比较复杂,铸造工艺受到铸件尺寸、壁厚、气候、原材料和施工操作的种种制约,因此,铸钢件常常会出现砂眼、气孔、裂纹、缩松、缩孔和夹杂物等各种铸造缺陷, 生产控制有一定难度,尤以砂型铸造的合金钢铸件为多。因为钢中合金元素越多钢液的流动性越差,铸造缺陷就更容易产生。 一、铸钢的铸造工艺特点 铸钢的熔点较高,钢液易氧化、钢水的流动性差、收缩性大,其体收缩率为10~14%,线收缩为1.8~2.5%。为防止铸钢件产生浇不足、冷隔、缩孔和缩松、裂纹及粘砂等缺陷,必须采取较为复杂的工艺措施: 1、由于钢液的流动性差,为防止铸钢件产生冷隔和浇不足,铸钢件的壁厚不能小于8mm;浇注系统的结构力求简单;采用干铸型或热铸型;适当提高浇注温度,一般为1520°~1600℃,因为浇注温度高,钢水的过热度大、保持液态的时间长,流动性可得到改善。但是浇温过高,会引起晶粒粗大、热裂、气孔和粘砂等缺陷。因此一般小型、薄壁及形状复杂的铸件,其浇注温度约为钢的熔点温度+150℃;大型、厚壁铸件的浇注温度比其熔点高出100℃左右。 2、由于铸钢的收缩量较大,为防止铸件出现缩孔、缩松缺陷,在铸造工艺上大都采用冒口、冷铁和补贴等措施,以实现顺序凝固。

3、为防止铸钢件产生缩孔、缩松、气孔和裂纹缺陷,应使其壁厚均匀、避免尖角和直角结构、在铸型用型砂中加锯末、在型芯中加焦炭、以及采用空心型芯和油砂芯等来改善砂型或型芯的退让性和透气性。 4、铸钢的熔点高,相应的其浇注温度也高。高温下钢水与铸型材料相互作用,极易产生粘砂缺陷。因此,应采用耐火度较高的人造石英砂做铸型,并在铸型表面刷由石英粉或锆砂粉制得的涂料。为减少气体来源、提高钢水流动性及铸型强度,大多铸钢件用干型或快干型来铸造,如采用CO2硬化的水玻璃石英砂型。 二、铸钢件常见的铸造缺陷 铸钢件在生产过程中经常会发生各种不同的铸造缺陷,常见的缺陷形式有:砂眼、粘砂、气孔、缩孔、缩松、夹砂、结疤、裂纹等。 A )砂眼缺陷 砂眼是由于金属液从砂型型腔表面冲下来的砂粒(块),或者在造型、合箱操作中落入型腔中的砂粒(块)来不及浮入浇冒系统,留在铸件内部或表面而造成的。砂眼缺陷处内部或表面有充塞着型(芯)砂的小孔,是一种常见的铸造缺陷。 B)粘砂缺陷 在铸件表面上,全部或部分覆盖着一层金属(或金属氧化物)与砂(或涂料)的混(化)合物或一层烧结构的型砂,致使铸件表面粗糙,难于清理。粘砂多发生在型、芯表面受热作用强烈的部位,分机械粘砂和化学粘砂两种。机械粘砂是由金属液渗入铸型表面的微孔中形成的,当渗入深度小于砂粒半径时,铸件不形成粘砂,只是表面粗糙,当渗入深度

铸造件问题原因及措施

铸件缺陷 铸件表面的砂孔和渣孔通常合称为“砂眼”。 翻砂过程中,气体或杂质在铸件内部或表面形成的小孔,是铸件的一种缺陷。 例:铸件外轮廓精加工后,不得有气孔等铸造缺陷。砂(渣)眼在铸件表面上出现分布不均匀的小空洞,通常呈现不规整,深浅不一且内部较不光洁,无冷口现象。它主要是由于铁水不干净,浇注时夹渣混入,滤渣片下放时铲砂。铸型中残余小砂粒随铁水冲入型腔。合模时,铸型之间或铸型与砂芯之间挤压造成砂粒脱落。铸型砂性能不良(如:水分低,强度低等)方案设计时入水太快易造成冲砂。 铸造砂眼产生的原因 主要原因:1:型腔内沙粒没清净。2:浇注前从浇道或冒口等开放处侵入了沙粒。3:砂型强度不够,受外力作用引起脱落。4:浇注不连续或浇注速度太慢导致型腔内沙粒不能顺利漂浮到冒口上,而滞留在温度较低的地方。5:温度太高、浇注速度太快冲刷浇道卷入沙粒。 砂型铸造中为什么会出现多肉或缺肉 1、当型腔中某一部位的型砂由于各种原因而脱落时,便会留下一个凹坑,当金属液充满型 腔时,凹坑就变成了一块凸出的多肉。砂眼与多肉是一对相辅相成的缺陷。当铸型掉砂时,掉砂的地方便形成多肉,掉下的砂则形成砂眼或缺肉。 2、多肉的另一种可能是涨箱;砂眼与掉下的砂没有明确关系 铸造黑皮 在钢铁铸件外表面形成的一层氧化皮,俗称黑皮。可以采用喷砂的方法去除,当然也可以用机加工手段去除,不方便的地方可以用酸洗的方法去除。有这层氧化皮后,由于这层氧化皮可能脱落,外观变得不好看,不易采取油漆电镀等防腐措施,如果浸在液体中使液体出现杂质。应该讲没有多少正面作用。 1、提高浇铸温度,采用保温冐口,铁水防氧化保护。适当增加加工余量 2、有可能是加工时刀具磨损过度导致刀具和零件产生摩擦产生的。请检查更换刀具。 3、适当增加加工余量

铝合金铸造常见缺陷与对策

铝铸件常见缺陷及整改办法 铝铸件常见缺陷及整改办法 1、欠铸(浇不足、轮廓不清、边角残缺): 形成原因: (1)铝液流动性不强,液中含气量高,氧化皮较多。 (2)浇铸系统不良原因。内浇口截面太小。 (3)排气条件不良原因。排气不畅,涂料过多,模温过高导致型腔内气压高使气体不易排出。 防止办法: (1)提高铝液流动性,尤其是精炼和扒渣。适当提高浇温和模温。提高浇铸速度。改进铸件结构,调整厚度余量,设辅助筋通道等。 (2)增大内浇口截面积。 (3)改善排气条件,增设液流槽和排气线,深凹型腔处开设排气塞。使涂料薄而均匀,并待干燥后再合模。 2、裂纹: 特征:毛坯被破坏或断开,形成细长裂缝,呈不规则线状,有穿透和不穿透二种,在外力作用下呈发展趋势。冷、热裂的区别:冷裂缝处金属未被氧化,热裂缝处被氧化。 形成原因: (1)铸件结构欠合理,收缩受阻铸造圆角太小。 (2)顶出装置发生偏斜,受力不匀。

(3)模温过低或过高,严重拉伤而开裂。 (4)合金中有害元素超标,伸长率下降。 防止方法: (1)改进铸件结构,减小壁厚差,增大圆角和圆弧R,设置工艺筋使截面变化平缓。 (2)修正模具。 (3)调整模温到工作温度,去除倒斜度和不平整现象,避免拉裂。 (4)控制好铝涂成份,成其是有害元素成份。 3、冷隔: 特征:液流对接或搭接处有痕迹,其交接边缘圆滑,在外力作用下有继续发展趋势。 形成原因: (1)液流流动性差。 (2)液流分股填充融合不良或流程太长。 (3)填充温充太低或排气不良。 (4)充型压力不足。 防止方法: (1)适当提高铝液温度和模具温度,检查调整合金成份。(2)使充填充分,合理布置溢流槽。 (3)提高浇铸速度,改善排气。 (4)增大充型压力。

铸件常见缺陷的判定及形成原因

铸件常见缺陷的判定及形成原因 一、毛刺: 缺陷判定 (1)铸件大部分或局部有圆形小疙瘩。 (2)浇口附近有圆形小疙瘩。(面层用的锆浆质量) 原因分析: 1.1浆的粘度太低(粘浆越厚、越稠利于控制,不过过厚、过稠又不利于干燥) 1.2滴浆时间太长,浆变的稀薄。 1.3配将搅拌不充分。(锆浆+硅溶胶,面层要求40+2s) 1.4锆浆老化:浆用的时间太长,出现胶凝(一般25天更换一次)超出有效期,强度变小。 1.5锆砂粒太粗,淋沙高度太高。 1.6化学粘砂:金属液与面层浆发生反应(Cro的含量多少)锆粉耐火度不够;浇注温度和培烧温度太高;局部过热。 1.7搅拌设备生锈(L型搅拌器)锆粉含铁磁性高。 1.8浇口附近有热点(一般浇口高15mm) 1.9涂料对蜡膜的浸润性差。 即:控制毛刺的关键在于控制面层质量(锆浆质量)。 二、跑火: 缺陷判定 型壳在浇注时金属液穿透铸件形成不规则的金属凸起,铸件内腔,凹槽内有多余金属称外炮火。 原因分析: (1)型壳在空洞或狭缝处的强度太低。 1.1结构不合理(盲孔、细孔,高度/直径>时应无事)(5、5层型壳) 1.2涂挂不良,欲湿、浮砂未清干净。 1.3干燥不良(物理硬化) 1.4浆粘度太低。 (2)型壳整体强度太低(层数不够) 2.1层数不够,一般大于4、5层或7、5层最大到10、5层。 2.2粘度太低。 (3)脱蜡裂(腊膨胀裂) (4)机械损伤。 (5)耐火材料热稳定性不好,高温强度低。 总论:跑火是因为所用型壳强度不够,或浇注时对型壳冲击力过大,或型壳急冷急热性差,或操作和运输过程中性壳撞击出现裂纹,在浇注时型壳开裂,钢液顺裂口外流造成。 内腔跑火则是由于内腔和凹槽等处局部未涂上涂料;涂料带气;未撒上砂使型壳存在孔隙,浇注时金属液进入空隙或穿透有缺陷的型壳形成。 三、剥落: 缺陷判定:铸件表面上有大小不等的,形状不规则的疤片状凸起物。 原因分析:

消失模铸造详情

消失模铸造详情 消失模铸造(又称实型铸造)是将与铸件尺寸形状相似的石蜡或泡沫模型粘结组合成模型簇,刷涂耐火涂料并烘干后,埋在干石英砂中振动造型,在负压下浇注,使模型气化,液体金属占据模型位置,凝固冷却后形成铸件的新型铸造方法。 1958年,美国的H.F.shroyer发明了用可发性泡沫塑料模样制造金属铸件的专利技术并取得了专利(专利号USP2830343)。最初所用的模样是采用聚苯乙烯(EPS)板材加工制成的.采用粘土砂造型,用来生产艺术品铸件。采用这种方法,造型后泡沫塑料模样不必起出,而是在浇入液态金属后聚苯乙烯在高温下分子裂解而让出空间充满金属液,凝固后形成铸件。1961年德国的Grunzweig和Harrtmann公司购买了这一专利技术加以开发,并在1962年在工业上得到应用。采用无粘结剂干砂生产铸件的技术由德国的H.Nellen和美国的T.R.Smith于1964年申请了专利。由于无粘结剂的干砂在浇注过程中经常发生坍塌的现象,所以1967年德国的A.Wittemoser采用了可以被磁化的铁丸来代替硅砂作为造型材料,用磁力场作为"粘结剂"。这就是所谓"磁型铸造"。1971年,日本的Nagano发明了V法(真空铸造法),受此启发,今天的消失模铸造在很多地方也采用抽真空的办法来固定型砂。在1980年以前使用无粘结剂的干砂工艺必须得到美国"实型铸造工艺公司"(Full Mold Process,Inc)"的批准。在此以后,该专

利就无效了。因此,近20年来消失模铸造技术在全世界范围内得到了迅速的发展。 消失模铸造工艺的特点 消失模工艺的砂... 1.铸件精度高:消失模铸造是一种近无余量、精确成型的新工艺,该工艺无需取模、无分型面、无砂芯,因而铸件没有飞边、毛刺和拔模斜度,并减少了由于型芯组合而造成的尺寸误差。铸件表面粗糙度可达Ra3.2至1 2.5μm;铸件尺寸精度可达CT7至9;加工余量最多为1.5至2mm,可大大减少机械加工的费用,和传统砂型铸造方法相比,可以减少40%至50%的机械加工间。 2.设计灵活:为铸件结构设计提供了充分的自由度。可以通过泡沫塑料模片组合铸造出高度复杂的铸件。 3.无传统铸造中的砂芯因此不会出现传统砂型铸造中因砂芯尺寸不准或下芯位置不准确造成铸件壁厚不均。 4.清洁生产型砂中无化学粘结剂,低温下泡沫塑料对环境无害,旧砂回收率95%以上。 5.降低投资和生产成本减轻铸件毛坯的重量,机械加工余量小。 消失模铸造工艺与其他铸造工艺一样,有它的缺点和局限性,并非所有的铸件都适合采用消失模工艺来生产,要进行具体分析。主要根据以下一些因素来考虑是否采用这种工艺。1.铸件的批量

铝合金挤压型材几种常见缺陷解析

挤压铝型材表面颗粒状毛刺的形成原因与对策 在铝型材的挤压生产中,型材表面不同程度的存在一些小颗粒吸附在型材表面上,这种的缺陷,仅有轻微手感,不仔细观察或手摸较难发现。但它严重影响氧化、电泳涂漆及喷涂型材的表面美观,降低了生产效率和成品率,更是高档装饰型材的致命缺陷。因此,对其形成机理进行分析,同时在挤压生产实践中不断地观察分析,总结其成因,及时采取措施,是减少或杜绝这种缺陷的出现的有效手段。 一、颗粒吸附成因分析 1、挤压型材表面出现的颗粒状毛刺分为四种: 1)空气尘埃吸附,燃煤铝棒加热炉产生的灰尘、铝屑、油污及水份凝结成颗粒附着在热的型材表面。 2)铝棒中的杂质,如:精炼不充分遗留的金属夹杂物和非金属夹杂物。 3)时效炉内的灰尘附着。 4)铝棒中的缺陷及成分中的β相AlFeSi在高温下析出,使金属塑性降低,抗拉强度降低,产生颗粒状毛刺。 “吸附颗粒”的形成 2、原因 1)铝棒质量的影响 由于高温铸造,铸造速度快,冷却强度大,造成合金中的β相AlFeSi不能及时转变为球状α相AlFeSi,由于β相AlFeSi在合金中呈现针状组织,硬度高、塑性差,抗拉强度很低,在高温挤压时不仅会诱发挤压裂纹,而且会产生颗粒状毛刺,这种毛刺不易清理,手感强烈,颗粒附近常伴随有蝌蚪状拖尾,在金相显微镜下观察,呈现灰褐色,成分中富含铁元素。 铝棒中的杂质影响,铝棒在熔铸过程中,精炼不充分,泥土、精炼剂、覆盖剂以及粉末涂料和氧化膜夹杂等混入棒中,这些物质在挤压过程中,使金属的塑性和抗拉强度显著降低,极易产生颗粒状毛刺。 棒的组织缺陷常见的有疏松、晶粒粗大、偏析、光亮晶粒等,所有这些铸棒缺陷有一个共同点,就是与铸棒基体焊合不好,造成了基体流动的不连续性,在挤压过程中,夹渣极易从基体中分离出来,通过模具的工作带时,粘附在入口端,形成粘铝,并不断被流动的金属拉出,极易产生颗粒状毛刺。 2)模具的影响 在挤压生产中,模具是在高温高压的状态下工作的,受压力和温度的影响,模具产生弹性变形。模具工作带由开始平行于挤压方向,受到压力后,工作带变形成为喇叭状,只有工作带的刃口部分接触型材形成的粘铝,类似于车刀的刀屑瘤。在粘铝的形成过程中,不断有颗粒被型材带出,粘附在型材表面上,造成了"吸附颗粒"。随着粘铝的不断增大,模具产生瞬间回弹,就会形成咬痕缺陷。若粘铝堆积较多,不能被型材拉出,模具瞬间回弹时粘铝不脱落,就会形成型材的表面粗糙、亮条、型材撕裂、堵模等问题。模具的粘铝现象见图1。我们现在使用的挤压模具基本是平面模,在铸棒不剥皮的情况下,铸棒表面及内在的杂质堆积在模具内金属流动的死区,随着挤压铸棒的推进及挤压根数的增多,死区的杂质也在不断的变化,有一部分被正常流动的金属带出,堆积在工作带变形后的空间内。 有的被型材拉脱,形成了颗粒状毛刺。因此,模具是造成颗粒状毛刺的关键因素。

消失模铸件塌箱缺陷产生的原因分析

消失模铸件塌箱缺陷产生的原因分析 消失模铸造中,塌箱缺陷是一类较为常见的消失模铸件缺陷,该缺陷往往发生在大件(大平台件更突出)或者是内腔封闭、半封闭件的生产中,从整个消失模铸造流程角度来看,该缺陷一般多发生在浇注或者凝固环节。 塌箱缺陷有时也被称为塌型缺陷或者铸型溃散,随着消失模铸造工艺应用的日趋成熟,有关塌箱缺陷的产生原因和防治办法已经有了相对详尽的研究结果,研究结果证实,塌箱缺陷的产生原因并非单方面的,下面就塌箱缺陷的产生原因做出以下总结: a. 在浇注过程中,消失模模样分解产生的气体量太多且急,铸型排气速度赶不上,加上真空泵吸气不足,容易导致铸型溃散、坍塌; b. 金属液“闪流”是造成塌型缺陷产生的原因之一,所谓金属液“闪流”就是在浇注中,部分已经流入填充消失模模样位置的金属液在受到外界作用的情况下改流到其他部位,使得原来置换出来的位置无金属液或者金属充填占据。该类问题多发生在顶注、铸件存在大平面、一型多模样这几种情况; c. 如果金属液的浮力过大,会使铸型上部型砂容易变形,可能导致局部溃散;一般情况下,铸型顶部吃砂量小,负压度不够,可能造成铸件成型不良,甚至不能成型; d. 涂料的耐火度、高温强度不够,极容易产生消失模铸件塌箱缺陷。消失模模样在浇注过程中有缓冲金属液充型和降温的作用,同时可减弱金属液冲刷铸型。当金属液置换消失模模样而充型腔后,干砂主要就依靠涂料涂层支撑,当涂层强度不够或者耐火度不够时,局部铸型会发生溃散、坍塌,特别是大件内浇道上方极容易发生坍塌。 以上为消失模铸件塌箱缺陷产生的各种原因,生产中企业可以参考上述原因并结合自身相关操作分析出消失模铸件塌箱缺陷产生的真正原因,并及时做出调整工作。

常见铸造缺陷产生的原因及防止方法

常见铸造缺陷产生的原因及防止方法 铸件缺陷种类繁多,产生缺陷的原因也十分复杂。它不仅与铸型工艺有关,而且还与铸造合金的性制、合金的熔炼、造型材料的性能等一系列因素有关。因此,分析铸件缺陷产生的原因时,要从具体情况出发,根据缺陷的特征、位置、采用的工艺和所用型砂等因素,进行综合分析,然后采取相应的技术措施,防止和消除缺陷。 一、浇不到 1、特征 铸件局部有残缺、常出现在薄壁部位、离浇道最远部位或铸件上部。残缺的边角圆滑光亮不粘砂。 2、产生原因 (1)浇注温度低、浇注速度太慢或断续浇注; (2)横浇道、内浇道截面积小; (3)铁水成分中碳、硅含量过低; (4)型砂中水分、煤粉含量过多,发气量大,或含泥量太高,透气性不良;] (5)上砂型高度不够,铁水压力不足。 3、防止方法 (1)提高浇注温度、加快浇注速度,防止断续浇注; (2)加大横浇道和内浇道的截面积; (3)调整炉后配料,适当提高碳、硅含量; (4)铸型中加强排气,减少型砂中的煤粉,有机物加入量; (5)增加上砂箱高度。 二、未浇满 1、特征 铸件上部残缺,直浇道中铁水的水平面与铸件的铁水水平面相平,边部略呈圆形。 2、产生原因 (1)浇包中铁水量不够; (2)浇道狭小,浇注速度又过快,当铁水从浇口杯外溢时,操作者误认为铸型已经充满,停浇过早。

3、防止方法 (1)正确估计浇包中的铁水量; (2)对浇道狭小的铸型,适当放慢浇注速度,保证铸型充满。 三、损伤 1、特征 铸件损伤断缺。 2、产生原因 (1)铸件落砂过于剧烈,或在搬运过程中铸件受到冲撞而损坏; (2)滚筒清理时,铸件装料不当,铸件的薄弱部分在翻滚时被碰断; (3)冒口、冒口颈截面尺寸过大;冒口颈没有做出敲断面(凹槽)。或敲除浇冒口的方法不正确,使铸件本体损伤缺肉。 3、防止方法 (1)铸件在落砂清理和搬运时,注意避免各种形式的过度冲撞、振击,避免不合理的丢放; (2)滚筒清理时严格按工艺规程和要求进行操作; (3)修改冒口和冒口颈尺寸,做出冒口颈敲断面,正确掌握打浇冒口的方向。 四、粘砂和表面粗糙 1、特征 粘砂是一种铸件表面缺陷,表现为铸件表面粘附着难以清除的砂粒;如铸件经清除砂粒后出现凹凸不平的不光滑表面,称表面粗糙。 2、产生原因 (1)砂粒太粗、砂型紧实度不够; (2)型砂中水分太高,使型砂不易紧实; (3)浇注速度太快、压力过大、温度过高; (4)型砂中煤粉太少; (5)模板烘温过高,导致表面型砂干枯;或模板烘温过低,型砂粘附在模板上。 3、防止方法 (1)在透气性足够的情况下,使用较细原砂,并适当提高型砂紧实度;

铝合金压铸件主要缺陷特征(内容清晰)

铝合金压铸件主要缺陷特征、形成原因及防止、补救方法 缺陷名称缺陷特 征及发 现方法 形成原因防止办法及补救措施 1、化学成份不合格主要合 金元素 或杂质 含量与 技术要 求不符, 在对试 样作化 学分析 或光谱 分析时 发现。 1、配料计算不正确,元素烧损量考虑太少, 配料计算有误等;2、原材料、回炉料的成 分不准确或未作分析就投入使用; 3、配料时称量不准; 4、加料中出现问题,少加或多加及遗漏料 等; 5、材料保管混乱,产生混料; 6、熔炼操作未按工艺操作,温度过高或熔 炼时间过长,幸免于难烧损严重; 7、化学分析不准 确。 1、对氧化烧损严重的金 属,在配料中应按技术标 准的上限或经验烧损值上 限配料计算;配料后并经 过较核; 2、检查称重和化学分析、 光谱分析是否正确; 3、定期校准衡器,不准确 的禁用; 4、配料所需原料分开标注 存放,按顺序排列使用; 5、加强原材料保管,标识 清晰,存放有序; 6、合金液禁止过热或熔炼 时间过长; 7、使用前经炉前分析,分 析不合格应立即调整成 分,补加炉料或冲淡; 8、熔炼沉渣及二级以上废 料经重新精炼后掺加使 用,比例不宜过高; 9、注意废料或使用过程 中,有砂粒、石灰、油漆 混入。 2、气孔铸件表 面或内 部出现 的大或 小的孔1、炉料带水气,使熔炉内水蒸气浓度增加; 2、熔炉大、中修后未烘干或烘干不透; 3、合金液过热,氧化吸气严重; 4、熔炉、浇包工具氧等未烘干; 5、脱模剂中喷涂过重或含发气量大; 1、严禁把带有水气的炉料 装入炉中,装炉前要在炉 边烘干; 2、炉子、坩埚及工具未烘 干禁止使用;

比较规则;有分散的和比较集中的两类;在对铸件作X 光透视或机械加工后可发现。7、煤、煤气及油中的含水量超标。机时间要把炉调至保温状 态; 4、精炼剂、除渣剂等未烘 干禁止使用,使用时禁止 对合金液激烈搅拌; 5、严格控制钙的含量; 6、选用挥发性气体量小的 脱模剂,并注意配比和喷 涂量要低; 7、未经干燥的氯气等气体 和未经烘干的氯盐等固体 不得使用。 3、涡流孔铸件内 部的细 小孔洞 或合金 液流汇 处的大 孔洞。在 机械加 工或X光 透视时 可现。 1、合金液导入型腔的方向不正确,冲刷型 腔壁或型芯,产生涡流,包住了空气; 2、压射速度太快,由浇料口卷入了气体; 3、内浇口过薄,合金液运动速度太大,产 生喷射、飞溅现象,过早的堵住了排气槽; 4、模具的排气槽位置不对,或出口截面太 小,使模具的排气能力差,型腔的气垫反 压大; 5、模具内型腔位置太深,而排气槽位置不 当或太少; 6、冲头与压室间的间隙太小,冲头返回太 快时形成真空,回抽尚未冷凝的合金液形 成气孔;或冲头返回太快; 7、压室容量大而浇注的合金液量太少。 1、改变合金液注入型腔的 方向或位置,使合金液先 进入型腔的深高部位或底 层宽大部位,将其部位的 型腔空气压入排气槽中, 在合金液充满型腔之前, 不能堵住排气槽; 2、调试压射速度和快压位 置,在能充实的前提下, 尽可能缩短二速距离; 3、在保证不产生飞溅、喷 射并能充满型腔的情况 下,加大内浇口的进口厚 度; 4、加强型腔的排气能力: (1)安放排气槽的位置应 考虑不会被先进入的合金 液所堵死;(2)增设溢流 槽,注意溢流槽与工件件 衔接处不宜过厚,否则过 早堵住而周边产生气孔; (3)采用镶拼块结构,把

挤压铸造原理及缺陷分析正式样本

文件编号:TP-AR-L4314 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 挤压铸造原理及缺陷分 析正式样本

挤压铸造原理及缺陷分析正式样本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 挤压铸造技术与传统金属型重力铸造相比区别较大,对于某些铸件的生产有独特优势,然而实际生产中出现的一些铸造缺陷,成因也不同于传统铸造,本文试图从原理和生产实际出发,分析挤压铸造的原理和流程参数,及其铸造常见缺陷,利用技术上的经验和实践提出改进方法,已达到推进该项铸造技术的推广,减少损失。 挤压铸造原理及特点 1.1.基本原理 挤压铸造又可称为液态模锻,是将金属或合金升温至熔融态,不加处理注入到敞口模具中,立即闭合

模具,让液态金属充分流动以充填模具,初步到达制件外部形状,随后施以高压,使温度下降已凝固的外部金属产生塑性变形,而内部的未凝固金属承受等静压,同步发生高压凝固,最后获得制件或毛坯的方法。由于高压凝固和塑性变形同时存在,制件无缩孔、缩松等缺陷,组织细密,力学性能高于铸造方法,接近或相当锻造方法;无需冒口补缩和最后清理,因而液态金属或合金利用率高,工序简化,为一具有潜在应用前景的新型金属加工工艺。 1.2.挤压铸造的特点 挤压铸造的工艺对铸造设备有特殊的要求,并且目前只对部分铸件有较好的效果。首先,挤压铸造设备,需要提供低速但流量较大的液态金属填充能力,速度约为0.5~3m/s,流量可达1~5kg/s,这样熔融态金属才能平稳地将铸型内气体排出,并填充铸型,随

铸造铸件常见缺陷分析报告文案

铸造铸件常见缺陷分析 铸造工艺过程复杂,影响铸件质量的因素很多,常见的铸件缺陷名称、特征和产生的原因,见表。 常见铸件缺陷及产生原因 .学习帮手.

缺陷名称特征产生的主要原因 气孔 在铸件部或表 面有大小不等 的光滑孔洞①炉料不干或含氧化物、杂质多;②浇注工具或炉前添加剂未烘干;③型砂含水过多或起模和修型时刷水过多;④型芯烘干不充分或型芯通气孔被堵塞;⑤春砂过紧,型砂透气性差;⑥浇注温度过低或浇注速度太快等 缩孔与缩松缩孔多分布在 铸件厚断面 处,形状不规 则,孔粗糙①铸件结构设计不合理,如壁厚相差过大,厚壁处未放冒口或冷铁;②浇注系统和冒口的位置不对; ③浇注温度太高;④合金化学成分不合格,收缩率过大,冒口太小或太少 砂眼在铸件部或表 面有型砂充塞 的孔眼①型砂强度太低或砂型和型芯的紧实度不够,故型砂被金属液冲入型腔;②合箱时砂型局部损坏;③浇注系统不合理,浇口方向不对,金属液冲坏了砂 .学习帮手.

型;④合箱时型腔或浇口散砂未清理干净 粘砂铸件表面粗 糙,粘有一层 砂粒①原砂耐火度低或颗粒度太大;②型砂含泥量过高,耐火度下降;③浇注温度太高;④湿型铸造时型砂中煤粉含量太少;⑤干型铸造时铸型未刷涂斜或涂料太薄 夹砂铸件表面产生 的金属片状突 起物,在金属 片状突起物与 铸件之间夹有 一层型砂①型砂热湿拉强度低,型腔表面受热烘烤而膨胀开裂;②砂型局部紧实度过高,水分过多,水分烘干后型腔表面开裂;③浇注位置选择不当,型腔表面长时间受高温铁水烘烤而膨胀开裂;④浇注温度过高,浇注速度太慢 错型铸件沿分型面 有相对位置错①模样的上半模和下半模未对准;②合箱时,上下砂箱错位;③上下砂箱未夹紧或上箱未加足够压 .学习帮手.

消失模铸件质量评定标准附检验方法

GB/T xxxx-200x 1. 主题内容与适用范围 本标准规定了300kg以下消失模铸造的铸铁件、铸钢件的质量分级、评定方法、检验方法,以及检验规则、标志、包装、运输和储存。个人收集整理勿做商业用途 本标准适用于消失模铸造生产企业、铸件用户对消失模铸件生产、使用的质量分级、评定和检验。 2. 引用标准 GB5612 铸铁牌号表示方法 GB5613-85 铸钢牌号表示方法 GB6414-86 铸件尺寸公差 GB/T1135-89铸件质(重)量公差 GB6060.1-85铸件表面粗糙度比较样块 3. 技术要求 3.1 消失模铸件外观质量评定 3.1.1 铸件形状外观 铸件外形轮廓、圆角等按其正确、美观程度分为5级。 1级:外观轮廓清晰,圆角尺寸正确且过渡平滑美观; 2级:外观轮廓30%以下欠清晰,圆角过渡不够平滑; 3级:外观轮廓50%以下欠清晰,圆角50%以下未制作出; 4级:外观轮廓70%以下欠清晰,圆角未制作出; 5级:外观轮廓不清晰,铸造圆角未制作出,粘结线(面)凹凸不平。 3.1.2 铸件表面缺陷 3.1.2.1 表面夹杂物(夹砂、夹渣等) 由于脱落型砂、涂料、金属渣及模型分解产生的固液相产物等,进入铸件,残存于铸件表面,形成了铸件表面夹杂物缺陷。个人收集整理勿做商业用途 根据铸件最坏部位100mm×60mm的面积内存在大的夹杂物的大小、数量,将其分为无级(参见图1)。 1级:缺陷3点以下,直径2mm深度≤1mm(图1a); 2级:缺陷5点以下,直径3mm深度≤1.5mm(图1b);

3级:缺陷5点以下,直径5mm深度≤2mm(图1c); 4级:缺陷8点以下,直径7mm深度≤3mm(图1d); 5级:缺陷严重(图1e)。 (a) (b) (e) 图1表面夹杂物(夹砂、夹渣等) 一般情况下,消失模铸件表面夹杂物缺陷应控制在二级以内,有特殊要求情况下要达到一级和特级(无任何夹杂物)。个人收集整理勿做商业用途 3.1.2.2 表面气孔 由于泡沫塑料模型分解产生气体及浇注时裹入气体或涂层未干水气化形成的气体等残留在铸件表面形成表面气孔(或气坑)缺陷。个人收集整理勿做商业用途

铸造铝合金缺陷及分析

铸造铝合金缺陷及分析 一氧化夹渣 缺陷特征:氧化夹渣多分布在铸件的上表面,在铸型不通气的转角部位。断口多呈灰白色或黄色,经x光透视或在机械加工时发现,也可在碱洗、酸洗或阳极化时发现 产生原因: 1.炉料不清洁,回炉料使用量过多 2.浇注系统设计不良 3.合金液中的熔渣未清除干净 4.浇注操作不当,带入夹渣 5.精炼变质处理后静置时间不够 防止方法: 1.炉料应经过吹砂,回炉料的使用量适当降低 2.改进浇注系统设计,提高其挡渣能力 3.采用适当的熔剂去渣 4.浇注时应当平稳并应注意挡渣 5.精炼后浇注前合金液应静置一定时间 二气孔气泡 缺陷特征:三铸件壁内气孔一般呈圆形或椭圆形,具有光滑的表面,一般是发亮的氧化皮,有时呈油黄色。表面气孔、气泡可通过喷砂发现,内部气孔气泡可通过X光透视或机械加工发现气孔气泡在X光底片上呈黑色 产生原因: 1.浇注合金不平稳,卷入气体 2.型(芯)砂中混入有机杂质(如煤屑、草根马粪等) 3.铸型和砂芯通气不良 4.冷铁表面有缩孔 5.浇注系统设计不良 防止方法: 1.正确掌握浇注速度,避免卷入气体。 2.型(芯)砂中不得混入有机杂质以减少造型材料的发气量 3.改善(芯)砂的排气能力 4.正确选用及处理冷铁 5.改进浇注系统设计 三缩松 缺陷特征:铝铸件缩松一般产生在内浇道附近飞冒口根部厚大部位、壁的厚薄转接处和具有大平面的薄壁处。在铸态时断口为灰色,浅黄色经热处理后为灰白浅黄或灰黑色在x光底片上呈云雾状严重的呈丝状缩松可通过X光、荧光低倍断口等检查方法发现
产生原因: 1.冒口补缩作用差 2.炉料含气量太多 3.内浇道附近过热 4.砂型水分过多,砂芯未烘干 5.合金晶粒粗大

相关主题
文本预览
相关文档 最新文档