当前位置:文档之家› 开关电源变压器共模电感设计方案注意事项

开关电源变压器共模电感设计方案注意事项

开关电源变压器共模电感设计方案注意事项
开关电源变压器共模电感设计方案注意事项

开关电源变压器共模电感设计注意事项

在电源变压器的设计过程中,工程师们需要严格的计算并完成共模电感设计和数值选取,这直接关系到开关电源变压器的运行精度。在今天的文章中,我们将会就开关电源变压器的共模电感设计展开简要分析,看在电源变压器共模电感设计和计算过程中,都应该注意哪些问题。

在电源变压器的设计和制作过程中,工程师所要进行的共模电感设计,其所需要的基本参数主要有三个,分别是输入电流,阻抗及频率,磁芯选取。先来看输入电流。这一参数值直接决定了绕组所需的线径。在线径的计算和选取时,电流密度通常取值为400A/cm³, 但此取值须随电感温升的变化。通常情况下,绕组使用单根导线作业,这样可削减高频噪声及趋肤效应损失。

在计算过程中,开关电源变压器共模电感的阻抗在所给的频率条件下,一般规定为最小值。串联的线性阻抗可提供一般要求的噪声衰减。但实际上,线性阻抗问题往往是最容易被人忽视的,因此设计人员经常以50W线性阻抗稳定网络仪来测试共模电感,并渐渐成为一种标准测试共模电感性能的方法。但所得的结果与实际通常有相当大的差别。实际上,共模电感在正常时角频首先会产生每八音度增加-6dB 衰减(角频是共模电感产生-3dB)的频率此角频通常很低,以便感抗能

够提供阻抗。因此,电感可以用这一公式来表达,即:Ls=Xx/2 n f

这里还有一个问题需要工程师需要注意,那就是在进行共模电感设计时须注意磁芯材料和所需的圈数问题。首先来看磁芯型号的选取问题,此时如果有规定电感空间,我们就按此空间来选取合适的磁芯型号,如没有规定,通常磁芯型号的随意选取。

在确定了电源变压器的磁芯型号之后,接下来的工作就是计算磁芯所能绕最大圈数。通常来说,共模电感有两绕组,一般为单层,且每绕组分布在磁芯的每一边,两绕组中间须隔开一定的距离。双层及堆积绕组亦有偶尔使用,但此种作法会提高绕组的分布电容及降低电感的高频性能。由于铜线的线径已由线性电流的大小所决定,内圆周长可以由磁芯的内圆半径减去铜线半径计算得来。故最大圈数的就可以铜线加绝缘的线径及每个绕组所占据的圆周来计算。

详细解析电源滤波电容的选取与计算

电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率。 采用电容滤波设计需要考虑参数: ESR ESL 耐压值 谐振频率

开关电源中的电子变压器有何作用

开关电源中的电子变压器有何作用 电子变压器,具有将市电的交变电压转变为直流后再通过半导体开关器件以及电子元件和高频变压器绕组构成一种高频交流电压输出的电子装置,也是在电子学理论中所讲述的一种交直交逆变电路。无论是直流电源还是交流电源,都要使用由软磁磁芯制成的电子变压器(软磁电磁元件)。 1、起改变输出频率作用的倍频或分频变压器; 2、起储能作用的储能电感器,起帮助半导体开关换向作用的换向电感器; 3、起变换电压、电流或脉冲检测信号的电压互感器、电流互感器、脉冲互感器、直流互感器、零磁通互感器、弱电互感器、零序电流互感器、霍尔电流电压检测器; 4、起电压和功率变换作用的电源变压器,功率变压器,整流变压器,逆变变压器,开关变压器,脉冲功率变压器; 5、起交流和直流滤波作用的滤波电感器; 6、起调节电感作用的可控电感器和饱和电感器;

7、起传递脉冲、驱动和触发信号作用的脉冲变压器,驱动变压器,触发变压器; 8、起吸收浪涌电流作用的吸收电感器,起减缓电流变化速率的缓冲电感器; 9、起原边和副边绝缘隔离作用的隔离变压器,起屏蔽作用的屏蔽变压器; 10、起开关作用的磁性开关电感器和变压器; 11、起传递宽带、声频、中周功率和信号作用的宽带变压器,声频变压器,中周变压器; 12、起稳定输出电压或电流作用的稳压变压器(包括恒压变压器)或稳流变压器,起调节输出电压作用的调压变压器; 13、起单相变三相或三相变单相作用的相数变换变压器,起改变输出相位作用的相位变换变压器(移相器); 14、起抑制电磁干扰作用的电磁干扰滤波电感器,起抑制噪声作用的噪声滤波电感器; 15、起改变输出阻抗与负载阻抗相匹配作用的匹配变压器。

20170425-开关电源中的电感面积积设计公式(一)

开关电源中的电感面积积设计公式(一) 普高(杭州)科技开发有限公司 张兴柱 博士 A :直流滤波电感的面积积设计公式: (t i L t I I 图1: 一般化的直流滤波电感和其电流波形 图1是开关电源中的一个一般化的直流滤波电感和其电流波形。当该电感的电感量和电流已知时,我们可以通过适当的推导,得到上述一般化直流滤波电感的面积积设计公式。具体推导如下: 由电感的磁链公式,可得:m c L m L Lpeak B A N N LI =Φ= 所以有: m L Lpeak c B N LI A = (1) 其中:m B 为电感电流峰值所对应的磁密,其选取须保证sat m B B <。在电感采用(H ),电流采用(A ),磁密采用(Gass ),截面积采用2)(cm 这一单位制时,上式中要加一个系数,如下所示: 28)(10cm B N LI A m L Lpeak c ×= (2) 根据窗口方程: a Lrms L KW J I N = (3) 其中:J 为绕组的电流密度,K 为窗口系数,a W 为铁芯的窗口面积,所以有: KJ I N W Lrms L a = (4) 在电流采用(A ),电流密度采用2)/(mm A ,窗口面积采用2)(cm 这一单位制时,上式中要

加一个系数,如下所示: 22)(10cm KJ I N W Lrms L a ?×= (5) 从式(2)和式(5),可以得到: 46)(10cm KJ B I LI A W m Lpeak Lrms c a ××= × (6) 其中:Lrms I 为图1中电感电流的有效值,当电感电流的纹波较小时,L Lrms I I ≈;在电感电流纹波较大时,可通过计算获得该有效值电流。 B :交流滤波电感的面积积设计公式: (t i L 图2: 一般化的交流滤波电感和其电流波形 图2是开关电源中的一个一般化的交流滤波电感和其电流波形。它与直流滤波电感中的电流波形之区别在于:交流滤波电感电流中有两个频率分量,一个是开关频率分量,一个是输出低频分量,图中的峰值电感电流指的是包含开关纹波后的峰值电流值。当该电感的电感量和电流波形已知时,通过推导可获得交流滤波电感的面积积设计公式同样为(6)式,只是其有效值电流可用电流波形中的低频分量有效值近似。

开关电源变压器参数设计步骤详解

开关电源高频变压器设计步骤 步骤1确定开关电源的基本参数 1交流输入电压最小值u min 2交流输入电压最大值u max 3电网频率F l开关频率f 4输出电压V O(V):已知 5输出功率P O(W):已知 6电源效率η:一般取80% 7损耗分配系数Z:Z表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级,Z=1表示发生在次级。一般取Z=0.5 步骤2根据输出要求,选择反馈电路的类型以及反馈电压V FB 步骤3根据u,P O值确定输入滤波电容C IN、直流输入电压最小值V Imin 1令整流桥的响应时间tc=3ms 2根据u,查处C IN值 3得到V imin 确定C IN,V Imin值 u(V)P O(W)比例系数(μF/W)C IN(μF)V Imin(V) 固定输 已知2~3(2~3)×P O≥90 入:100/115 步骤4根据u,确通用输入:85~265已知2~3(2~3)×P O≥90 定V OR、V B 固定输入:230±35已知1P O≥240 1根据u由表查出V OR、V B值

2 由V B 值来选择TVS 步骤5根据Vimin 和V OR 来确定最大占空比 Dmax V OR Dmax= ×100% V OR +V Imin -V DS(ON) 1设定MOSFET 的导通电压V DS(ON) 2 应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小 步骤6确定初级纹波电流I R 与初级峰值电流I P 的比值K RP ,K RP =I R /I P u(V) K RP 最小值(连续模式)最大值(不连续模式) 固定输入:100/1150.41通用输入:85~2650.441固定输入:230±35 0.6 1 步骤7确定初级波形的参数 ①输入电流的平均值I AVG P O I A VG= ηV Imin ②初级峰值电流I P I A VG I P = (1-0.5K RP )×Dmax ③初级脉动电流I R u(V) 初级感应电压V OR (V)钳位二极管反向击穿电压V B (V) 固定输入:100/115 6090通用输入:85~265135200固定输入:230±35 135 200

开关电源变压器设计

开关电源变压器设计 1. 前言 2. 变压器设计原则 3. 系统输入规格 4. 变压器设计步骤 4.1选择开关管和输出整流二极管 4.2计算变压器匝比 4.3确定最低输入电压和最大占空比 4.4反激变换器的工作过程分析 4.5计算初级临界电流均值和峰值 4.6计算变压器初级电感量 4.7选择变压器磁芯 4.8计算变压器初级匝数、次级匝数和气隙长度 4.9满载时峰值电流 4.10 最大工作磁芯密度Bmax 4.11 计算变压器初级电流、副边电流的有效值 4.12 计算原边绕组、副边绕组的线径,估算窗口占有率 4.13 计算绕组的铜损 4.14 变压器绕线结构及工艺 5. 实例设计—12WFlyback变压器设计 1. 前言 ◆反激变换器优点: 电路结构简单 成本低廉 容易得到多路输出 应用广泛,比较适合100W以下的小功率电源 ◆设计难点 变压器的工作模式随着输入电压及负载的变化而变化 低输入电压,满载条件下变压器工作在连续电流模式( CCM ) 高输入电压,轻载条件下变压器工作在非连续电流模式( DCM ) 2. 变压器设计原则 ◆温升 安规对变压器温升有严格的规定。Class A的绝对温度不超过90°C; Class B不能超过110°C。因此,温升在规定范围内,是我们设计变压器必须遵循的准则。 ◆成本

开关电源设计中,成本是主要的考虑因素,而变压器又是电源系统的重要组成部分,因此如何将变压器的价格,体积和品质最优化,是开关电源设计者努力的方向。 3. 系统输入规格 输入电压:Vacmin~ Vacmax 输入频率:f L 输出电压:V o 输出电流:I o 工作频率:f S 输出功率:P o 预估效率:η 最大温升:40℃ 4.0变压器设计步骤 4.1选择开关管和输出整流二极管 开关管MOSFET:耐压值为V mos 输出二极管:肖特基二极管 最大反向电压V D 正向导通压降为V F 4.2计算变压器匝比 考虑开关器件电压应力的余量(Typ.=20%) 开关ON:0.8·V D > V in max / N+V o 开关OFF :0.8·V MOS > N·(V o+V F) + V in max 匝比:N min < N < N max 4.3确定最低输入电压和最大占空比

浅谈开关电源输出电感的设计

――DC/DC 电路中电感的选择 原文:Fairchild Semiconductor AB-12:Insight into Inductor Current 下载 翻译:frm (注:只有充分理解电感在DC/DC电路中发挥的作用,才能更优的设计DC/DC电路。本文还包括对同步DC/DC及异步DC/DC概念的解释。) 本文PDF文档下载 简介 在开关电源的设计中电感的设计为工程师带来的许多的挑战。工程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注于解释:电感上的DC电流效应。这也会为选择合适的电感提供必要的信息。 理解电感的功能 电感常常被理解为开关电源输出端中的LC滤波电路中的L(C是其中的输出电容)。虽然这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。 在降压转换中(Fairchild典型的开关控制器),电感的一端是连接到DC输出电压。另一端通过开关频率切换连接到输入电压或GND。 在状态1过程中,电感会通过(高边“high-side”)MOSFET连接到输入电压。在状态2过程中,电感连接到GND。由于使用了这类的控制器,可以采用两种方式实现电感接地:通过二极管接地或通过(低边“low-side”)MOSFET接地。如果是后一种方式,转换器就称为“同步(synchronus)”方式。 现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态1过程中,电感的一端连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。相反,在状态2过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。 我们利用电感上电压计算公式: V=L(dI/dt) 因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时(状态2),电感上的电流就会减小。通过电感的电流如图2所示: 通过上图我们可以看到,流过电感的最大电流为DC电流加开关峰峰电流的一半。上图也称为纹波电流。根据上述的公式,我们可以计算出峰值电流:

变压器开关电源致命原理

变压器开关电源致命原理 在Toff期间,控制开关K关断,流过变压器初级线圈的电流突然为0。由于变压器初级线圈回路中的电流产生突变,而变压器铁心中的磁通量不能突变,因此,必须要求流过变压器次级线圈回路的电流也跟着突变,以抵消变压器初级线圈电流突变的影响,要么,在变压器初级线圈回路中将出现非常高的反电动势电压,把控制开关或变压器击穿。 如果变压器铁心中的磁通ф产生突变,变压器的初、次级线圈就会产生无限高的反电动势,反电动势又会产生无限大的电流,而电流在线圈中产生的磁力线又会抵制磁通的变化,因此,变压器铁心中的磁通变化,最终还是要受到变压器初、次级线圈中的电流来约束的。 因此,在控制开关K关断的Toff期间,变压器铁心中的磁通主要由变压器次级线圈回路中的电流来决定,即: e2 =-N2*dф/dt =-L2*di2/dt = i2R —— K关断期间 (1-64) 式中负号表示反电动势e2的极性与(1-62)式中的符号相反,即:K接通与关断时变压器次级线圈产生的感应电动势的极性正好相反。对(1-64)式阶微分方程求解得: 式中C为常数,把初始条件代入上式,就很容易求出C,由于控制开关K由接通状态突然转为关断时,变压器初级线圈回路中的电流突然为0,而变压器铁心中的磁通量不能突变,因此,变压器次级线圈回路中的电流i2一定正好等于控制开关K接通期间的电流i2(Ton+),与变压器初级线圈回路中励磁电流被折算到变压器次级线圈回路电流之和。所以(1-65)式可以写为: (1-66)式中,括弧中的第一项表示变压器次级线圈回路中的电流,第二项表示变压器初级线圈回路中励磁电流被折算到变压器次级线圈回路的电流。 图1-16-a单激式变压器开关电源输出电压uo等于: (1-68)式中的Up-就是反击式输出电压的峰值,或输出电压最大值。由此可知,在控制开关K关断瞬间,当变压器次级线圈回路负载开路时,变压器次级线圈回路会产生非常高的反电动势。理论上需要时间t等于无限大时,变压器次级线圈回路输出电压才为0,但这种情况一般不会发生,因为控制开关K的关断时间等不了那么长。 从(1-63)和(1-67)式可以看出,开关电源变压器的工作原理与普通变压器的工作原理是不一样的。当开关电源工作于正激时,开关电源变压器的工作原理与普通变压器的工作原理基本相同;当开关电源工作于反激时,开关电源变压器的工作原理相当于一个储能电感。 如果我们把输出电压uo的正、负半波分别用平均值Upa、Upa-来表示,则有: 分别对(1-71)和(1-72)两式进行积分得: 由此我们可以求得,单激式变压器开关电源输出电压正半波的面积与负半波的面积完全相等,即: Upa×Ton = Upa-×Toff —— 一个周期内单激式输出 (1-75) (1-75)式就是用来计算单激式变压器开关电源输出电压半波平均值Upa和Upa-的表达式。

开关电源中变压器的八种检测方法

开关电源中变压器的八种检测方法 1、通过观察变压器的外貌来检查其是否有明显异常现象。如线圈引线是否断裂、脱焊、绝缘材料是否有烧焦痕迹、铁心紧固螺杆是否有松动、硅钢片有 无锈蚀、绕组线圈是否有外露等。 2、绝缘性测试。用万用表R×10k挡分别测量铁心与初级,初级与各次级、铁心与各次级、静电屏蔽层与衩次级、次级各绕组间的电阻值,万用表指针均 应指在无穷大位置不动。否则,说明变压器绝缘性能不良。 3、线圈通断的检测。将万用表置于R×1挡,测试中,若某个绕组的电阻 值为无穷大,则说明此绕组有断路性故障。 4、判别初、次级线圈。电源变压器初级引脚和次级引脚一般都是分别从两侧引出的,并且初级绕组多标有220V字样,次级绕组则标出额定电压值,如 15V、24V、35V等。再根据这些标记进行识别。 5、空载电流的检测。 a、直接测量法。将次级所有绕组全部开路,把万用表置于交流电流挡 (500mA,串入初级绕组。当初级绕组的插头插入220V交流市电时,万用表所指示的便是空载电流值。此值不应大于变压器满载电流的10%~20%。一般常见电 子设备电源变压器的正常空载电流应在100mA左右。如果超出太多,则说明变 压器有短路性故障。 b、间接测量法。在变压器的初级绕组中串联一个10?/5W的电阻,次级仍全部空载。把万用表拨至交流电压挡。加电后,用两表笔测出电阻R两端的电 压降U,然后用欧姆定律算出空载电流I空,即I空=U/R。F?空载电压的检测。将电源变压器的初级接220V市电,用万用表交流电压接依次测出各绕组的空载电压值(U21、U22、U23、U24)应符合要求值,允许误差范围一般为:高压绕组 ≤±10%,低压绕组≤±5%,带中心抽头的两组对称绕组的电压差应≤±2%。 6、一般小功率电源变压器允许温升为40℃~50℃,如果所用绝缘材料质 量较好,允许温升还可提高。 7、检测判别各绕组的同名端。在使用电源变压器时,有时为了得到所需的次级电压,可将两个或多个次级绕组串联起来使用。采用串联法使用电源变压

(整理)反激式开关电源变压器设计原理.

反激式开关电源变压器设计原理 (Flyback Transformer Design Theory) 第一节. 概述. 反激式(Flyback)转换器又称单端反激式或"Buck-Boost"转换器.因其输出端在原边绕组断开电源时获得能量故而得名.离线型反激式转换器原理图如图. 一、反激式转换器的优点有: 1. 电路简单,能高效提供多路直流输出,因此适合多组输出要求. 2. 转换效率高,损失小. 3. 变压器匝数比值较小. 4. 输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实现交流输入在 85~265V间.无需切换而达到稳定输出的要求. 二、反激式转换器的缺点有: 1. 输出电压中存在较大的纹波,负载调整精度不高,因此输出功率受到限制,通常应用于150W以下. 2. 转换变压器在电流连续(CCM)模式下工作时,有较大的直流分量,易导致磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大. 3. 变压器有直流电流成份,且同时会工作于CCM / DCM两种模式,故变压器在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂. 第二节. 工作原理 在图1所示隔离反驰式转换器(The isolated flyback converter)中, 变压器" T "有隔离与扼流之双重作用.因此" T "又称为Transformer- choke.电路的工作原理如下: 当开关晶体管 Tr ton时,变压器初级Np有电流 Ip,并将能量储存于其中(E = LpIp / 2).由于Np与Ns极性相反,此时二极管D反向偏压而截止,无能量传送到负载.当开关Tr off 时,由楞次定律 : (e = -N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通.反激式转换器之稳态波形如图2. 由图可知,导通时间 ton的大小将决定Ip、Vce的幅值: Vce max = VIN / 1-Dmax VIN: 输入直流电压 ; Dmax : 最大工作周期 Dmax = ton / T 由此可知,想要得到低的集电极电压,必须保持低的Dmax,也就是Dmax<0.5,在实际应用中通常取Dmax = 0.4,以限制Vcemax ≦ 2.2VIN. 开关管Tr on时的集电极工作电流Ie,也就是原边峰值电流Ip 为: Ic = Ip = IL / n. 因IL = Io,故当Io一定时,匝比 n的大小即决定了Ic 的大小,上式是按功率守恒原则,原副边安匝数相等 NpIp = NsIs而导出. Ip 亦可用下列方法表示: Ic = Ip = 2Po / (η*VIN*Dmax) η: 转换器的效率 公式导出如下: 输出功率 : Po = LIp2η / 2T

最有效的开关电源纹波计算方法

对滤波效果而言,电容的ESL和ESR参数都很重要,电感会阻止电流的突变,电阻则限制了电流的变化率,这些影响对电容的充放电显然都不利。优质的电容在设计及制造时都采取了必要的手段来降低ESL和ESR,故而横向比较起来,同样的容量滤波效果却不同。

漏电流小,ESR小,一般都是认为要选择低ESR的系列,不过也与负载有关,负载越大,ESR不变时,纹波电流变大,纹波电压也变大。我们从公式上来看看,dV=C*di*dt;dv就是纹波,di是电感上电流的值,dt是持续的时间。一般的开关电源书籍都会讲到怎么算纹波,大题分解为:滤波电容对电压的积分+滤波电容的ESR+滤波电容的ESL+noise,如下图: 一般对纹波的计算通常是估算 有关开关电源纹波的计算,原则上比较复杂,要将输入的矩形波进行傅立叶展开成各次谐波的级数,计算每个谐波的衰减,再求和。最后的结果不仅与滤波电感、滤波电容有关,而且与负载电阻有关。当然,计算时是将滤波电感和滤波电容看成理想元件,若考虑电感的直流电阻以及电容的ESR,那就更复杂了。所以,通常都是估算,再留出一定余量,以满足设计要求。对样机需要实际测试,若不能满足设计要求,则需要更改滤波元件参数。 以Buck电路为例,电感中电流连续和断续,开关电源的传递函数完全不同。电流连续时环路稳定,电流断续时未必稳定。而电感中电流是否连续,除与电感量等有关外,还与负载有关。更严重的是,电流是否连续还与占空比有关,而占空比是由反馈电路控制的。不仅Buck,其它如Boost以及由基本拓扑衍生出来的正激、反激等也是一样。 若要求所有可能产生的工作状态下都稳定,通常要加假负载以保证Buck电路电感电流总是连续(对Buck/Boost或反激则保证不会在连续断续之间转变),或者把反馈环路时间常数设计得非常大(这会在很大程度上降低开关电源的响应速度)。对输出电压可调整的开关电源(例如实验室用的0~30V输出电源),环路稳定的难度更大。对这类电源,往往要在开关电源之后再加一级线性调整。 电解电容的选择很重要 在输出端采用高频性能好、ESR低的电容,高频下ESR阻抗低,允许纹波电流大。可以在高频下使用,如采用普通的铝电解电容作输出电容,无法在高频(100kHz以上的频率)下工作,即使电容量也无效,因为超过10kHz时,它已成电感特性了。

正激式变压器开关电源工作原理

正激式变压器开关电源工作原理 正激式变压器开关电源输出电压的瞬态控制特性和输出电压负载特性,相对来说比较好,因此,工作比较稳定,输出电压不容易产生抖动,在一些对输出电压参数要求比较高的场合,经常使用。 1-6-1.正激式变压器开关电源工作原理 所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器的次级线圈正好有功率输出。 图1-17是正激式变压器开关电源的简单工作原理图,图1-17中Ui是开关电源的输入电压,T是开关变压器,K是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,R 是负载电阻。 在图1-17中,需要特别注意的是开关变压器初、次级线圈的同名端。如果把开关变压器初线圈或次级线圈的同名端弄反,图1-17就不再是正激式变压器开关电源了。 我们从(1-76)和(1-77)两式可知,改变控制开关K的占空比D,只能改变输出电压(图1-16-b中正半周)的平均值Ua ,而输出电压的幅值Up不变。因此,正激式变压器开关电源用于稳压电源,只能采用电压平均值输出方式。 图1-17中,储能滤波电感L和储能滤波电容C,还有续流二极管D2,就是电压平均值输出滤波电路。其工作原理与图1-2的串联式开关电源电压滤波输出电路完全相同,这里不再赘述。关于电压平均值输出滤波电路的详细工作原理,请参看“1-2.串联式开关电源”部分中的“串联式开关电源电压滤波输出电路”内容。 正激式变压器开关电源有一个最大的缺点,就是在控制开关K关断的瞬间开关电源变压器的初、次线圈绕组都会产生很高的反电动势,这个反电动势是由流过变压器初线圈绕组的励磁电流存储的磁能量产生的。因此,在图1-17中,为了防止在控制开关K关断瞬间产生反电动势击穿开关器件,在开关电源变压器中增加一个反电动势能量吸收反馈线圈N3绕组,以及增加了一个削反峰二极管D3。 反馈线圈N3绕组和削反峰二极管D3对于正激式变压器开关电源是十分必要的,一方面,反馈线圈N3绕组产生的感应电动势通过二极管D3可以对反电动势进行限幅,并把限幅能量返回给电源,对电源进行充

变压器的设计实例

摘要:详细介绍了一个带有中间抽头高频大功率变压器设计过程和计算方法,以及要注意问题。根据开关电源变换器性能指标设计出变压器经过在实际电路中测试和验证,效率高、干扰小,表现了优良电气特性。关键词:开关电源变压器;磁芯选择;磁感应强度;趋肤效应;中间抽头 0 引言 随着电子技术和信息技术飞速发展,开关电源SMPS(switch mode power supply)作为各种电子设备、信息设备电源部分,更加要求效率高、成本小、体积小、重量轻、具有可移动性和能够模块化。变压器作为开关电源必不可少磁性元件,对其进行合理优化设计显得非常重要。在高频开关电源设计中,真止难以把握是磁路部分设计,开关电源变压器作为磁路部分核心元件,不但需要满足上述要求,还要求它性能高,对外界干扰小。由于它复杂性,对其设计一、两次往往不容易成功,一般需要多次计算和反复试验。因此,要提高设计效果,设汁者必须有较高理论知识和丰富实践经验。 1 开关电源变换器性能指标 开关电源变换器部分原理图如图1所示。 PCbfans提示请看下图: 其主要技术参数如下: 电路形式半桥式; 整流形式全波整流; 工作频率f=38kHz; 变换器输入直流电压Ui=310V; 1

变换器输出直流电压Ub=14.7V; 输出电流Io=25A; 工作脉冲占空度D=0.25~O.85; 转换效率η≥85%; 变压器允许温升△τ=50℃; 变换器散热方式风冷; 工作环境温度t=45℃~85℃。 2 变压器磁芯选择以及工作磁感应强度确定 2.1 变压器磁芯选择 目前,高频开关电源变压器所用磁芯材料一般有铁氧体、坡莫合金材料、非晶合金和超微晶材料。这些材料中,坡莫合金价格最高,从降低电源产品成本方面来考虑不宜采用。非晶合金和超微晶材料饱和磁感应强度虽然高,但在假定测试频率和整个磁通密度测试范围内,它们呈现铁损最高,因此,受到高功率密度和高效率制约,它们也不宜采用。虽然铁氧体材料损耗比坡莫合金大些,饱和磁感应强度也比非晶合金和超微晶材料低,但铁氧体材料价格便宜,可以做成多种几何形状铁芯。对于大功率、低漏磁变压器设计,用E-E型铁氧体铁芯制成变压器是最符合其要求,而且E-E型铁芯很容易用铁氧体材料制作。所以,综合来考虑,变换器变压器磁芯选择功率铁氧体材料,E-E型。 2.2 工作磁感应强度确定 工作磁感应强度Bm是开关电源变压器设计中一个重要指标,它与磁芯结构形式、材料性能、工作频率及输出功率因素有关关。若工作磁感应强度选择太低,则变压器体积重量增加,匝数增加,分布参数性能恶化;若工作磁感应强度选择过高,则变压器温升高,磁芯容易饱和,工作状态不稳定。一般情况下,开关电源变压器Bm值应选在比饱和磁通密度Bs低一些,对于铁氧体材料,工作磁感应强度选取一般在0.16T 到0.3T之间。在本设计中,根据特定工作频率、温升、工作环境等因素,把工作磁感应强度定在0.2 T。 3 变压器主要设计参数计算 3.1 变压器计算功率 开关电源变压器工作时对磁芯所需功率容量即为变压器计算功率,其大小取决于变压器输出功率和整流电路形式。变换器输出电路为全波整流,因此 2

开关电源中电感的设计

开关电源中电感的设计 在开关电源的设计中电感的设计为工程师带来的许多的挑战。工程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注于解释:电感上的DC 电流效应。这也会为选择合适的电感提供必要的信息。 理解电感的功能 电感常常被理解为开关电源输出端中的LC 滤波电路中的L(C 是其中的输出电容)。虽然这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。 在降压转换中(Fairchild典型的开关控制器),电感的一端是连接到DC 输出电压。另一端通过开关频率切换连接到输入电压或GND。 在状态1 过程中,电感会通过(高边“high-side”)MOSFET连接到输入电压。在状态2 过程中,电感连接到GND。由于使用了这类的控制器,可以采用两种方式 实现电感接地:通过二极管接地或通过(低边“low-side”)MOSFET接地。如果是后 一种方式,转换器就称为“同步(synchronus)”方式。 现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态1 过程中,电感的一端连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。相反,在状态2 过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。 我们利用电感上电压计算公式: V=L(dI/dt) 因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时(状态2),电感上的电流就会减小。通过电感的电流如图2 所示:

通过上图我们可以看到,流过电感的最大电流为DC 电流加开关峰峰电流的一半。上图也称为纹波电流。根据上述的公式,我们可以计算出峰值电流: 其中,ton 是状态1 的时间,T 是开关周期(开关频率的倒数),DC 为状态1 的占空比。 警告:上面的计算是假设各元器件(MOSFET上的导通压降,电感的导通压降或异步电路中肖特基二极管的正向压降)上的压降对比输入和输出电压是可以忽略的。 如果,器件的下降不可忽略,就要用下列公式作精确计算: 同步转换电路: 异步转换电路:其中,Rs 为感应电阻阻抗加电感绕线电阻的阻。Vf 是肖特基二极管的正向压降。R 是Rs加MOSFET 导通电阻,R=Rs+Rm。

(整理)开关电源变压器测试标准

开关电源变压器测试标准 正常的试验大气条件(除有规定条件除外,均应在正常试验条件下进行试验): 温 度: 15~35℃ 相对湿度: 45%~75% 气 压: 86~106kPa 一、直流铜阻 目的:保证每一绕组使用正确的漆包线规格。 仪器:TH2511低直流电阻测试仪。 方法:变压器各绕组在温度为20℃时的直流电阻,应符合产品规格书的标准。 若测量环境温度不等于20℃时,应按下面的公式换算 R 20=θ +5.2345 .254R θ 式中: R 20——温度为20时的直流电阻,Ω; R θ——温度为θ时测得的直流电阻,Ω; θ——测量时的环境温度,℃。 二、电感量 目的:确保使用正确的磁性材料及绕组圈数的正确性。 仪器:WK3255B 电桥。 方法:对变压器测试端施加额定条件的电桥,测试电感量。见图1 图1 开 路

三、直流叠加 目的:检验磁芯的磁饱和特性或实际工作条件下的磁芯特性。 仪器:WK3255B 电桥;FJ1772A 直流磁化电源。 方法:对变压器测试端施加规定的直流电流,用电桥测试电感量。见图2 图2 图中I 0 —— 在测试端N1绕组施加的直流电流 四、漏感 目的:保证绕组处于骨架上正确的位置以及磁性材料的气隙大小的正确性。 仪器:WK3255B 电桥。 方法:将所测变压器次级端短路,在初级端施加额定条件的电桥测试电感量。 见图3 图3 五、绝缘电阻 目的:保证每一绕组对磁芯、静电屏蔽及各绕组间绝缘电阻性能满足所需的 技术指标。 仪器:2679绝缘电阻测试仪。 方法:用绝缘电阻测试仪对变压器的初次级绕组间或绕组和磁芯、静电屏蔽 短 路

推挽式变压器开关电源储能滤波电容参数的计算

储能滤波电感和储能滤波电容参数的计算,与图1-2的串联式开关电源中储能滤波电感和储能滤波电容参数的计算方法很相似。根据图1-33和图1-34,我们把整流输出电压uo和LC滤波电路的电压uc、电流iL画出如图1-35,以便用来计算推挽式变压器开关电源储能滤波电感、电容的参数。 图1-35-a)是整流输出电压uo的波形图。实线表示控制开关K1接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形;虚线表示控制开关K2接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形。Up表示整流输出峰值电压(正激输出电压),Up-表示整流输出最低电压(反激输出电压),Ua表示整流输出电压的平均值。 图1-35-b)是滤波电容器两端电压的波形图,或滤波电路输出电压的波形图。Uo表示输出电压,或滤波电容器两端电压的平均值;ΔUc表示电容充电电压增量,2ΔUc等于输出电压纹波。 1-8-1-3-1.推挽式变压器开关电源储能滤波电感参数的计算 在图1-33中,当控制开关K1接通时,输入电压Ui通过控制开关K1加到开关变压器线圈N1绕组的两端,在控制开关K1接通Ton期间,开关变压器线圈N3绕组输出一个幅度为Up(半波平均值)的正激电压uo,然后加到储能滤波电感L 和储能滤波电容C组成的滤波电路上,在此期间储能滤波电感L两端的电压eL

为: eL = Ldi/dt = Up – Uo —— K1接通期间(1-136) 式中:Ui为输入电压,Uo为直流输出电压,即:Uo为滤波电容两端电压uc的平均值。 在此顺便说明:由于电容两端的电压变化增量ΔU相对于输出电压Uo来说非常小,为了简单,我们这里把Uo当成常量来处理。 对(1-136)式进行积分得: 式中i(0)为初始电流(t = 0时刻流过电感L的电流),即:控制开关K1刚接通瞬间,流过电感L的电流,或称流过电感L的初始电流。从图1-35中可以看出i(0)= Ix 。 当控制开关K由接通期间Ton突然转换到关断期间Toff的瞬间,流过电感L的电流iL达到最大值: (1-139)和(1-140)式就是计算推挽式变压器开关电源输出电压的表达式。式中,Uo为推挽式变压器开关电源输出电压,Ui为推挽式变压器开关电源输入电压,Up为推挽式变压器开关电源开关变压器次级线圈N3绕组的正激输出电压,Up-为推挽式变压器开关电源开关变压器次级线圈N3绕组的反激输出电压,n为开关电源次级线圈N3绕组与初级线圈N1绕组或N2绕组的匝数比。

开关电源变压器基础知识

开关电源变压器基础知识 开关电源变压器现代电子设备对电源的工作效率、体积 以及安全要求等技术性能指标越来越高,在开关电源中决定这些技术性能指标的诸多因素中,基本上都与开关变压器的技术指标有关。开关电源变压器是开关电源中的关键器件,因此,在这一节中我们将非常详细地对与开关电源变压器相关的诸多技术参数进行理论分析。在分析开关变压器的工作原理的时候,必然会涉及磁场强度H和磁感应强度B以及磁 通量等概念,为此,这里我们首先简单介绍它们的定义和概念。在自然界中无处不存在电场和磁场,在带电物体的周围必然会存在电场,在电场的作用下,周围的物体都会感应带电;同样在带磁物体的周围必然会存在磁场,在磁场的作用 ,周围的物体也都会被感应产生磁通。现代磁学研究表明: 切磁现象都起源于电流。磁性材料或磁感应也不例外,铁磁现象的起源是由于材料内部原子核外电子运动形成的微电流,亦称分子电流,这些微电流的集合效应使得材料对外呈现各种各样的宏观磁特性。因为每一个微电流都产生磁效应,所以把一个单位微电流称为一个磁偶极子。因此,磁场强度的大小与磁偶极子的分布有关。在宏观条件下,磁场强度可以定义为空间某处磁场的大小。我们知道,电场强度的概念是用单位电荷在电场中所产生的作用力来定义的,而在

磁场中就很难找到一个类似于“单位电荷”或“单位磁场”的带磁物质来定义磁场强度,为此,电场强度的定义只好借用流过单位长度导体电流的概念来定义磁场强度,但这个概念本应该是用来定义电磁感应强度的,因为电磁场是可以互相产生感应的。幸好,电磁感应强度不但与流过单位长度导体的电流大小相关,而且还与介质的属性有关。所以,电磁感应强度可以在磁场强度的基础上再乘以一个代表介质属性的系数来表示。这个代表介质属性的系数人们把它称为导磁率。 在电磁场理论中,磁场强度H 的定义为:在真空中垂直于磁场方向的通电直导线,受到的磁场的作用力F 跟电流I 和导线长度的乘积I 的比值,称为通电直导线所在处的磁场强度。或:在真空中垂直于磁场方向的1 米长的导线,通过1 安培的电流,受到磁场的作用力为1 牛顿时,通过导线所在处的磁场强度就是1 奥斯特(Oersted) 。电磁感应强度一般也称为磁感应强度。由于在真空中磁感应强度与磁场强度在数

反激开关电源原理

星期一, 05/11/2009 - 09:42 —陶显芳 1-7.反激式变压器开关电源 反激式变压器开关电源工作原理比较简单,输出电压控制范围比较大,因此,在一般电器设备中应用最广泛。 1-7-1.反激式变压器开关电源工作原理 所谓反激式变压器开关电源,是指当变压器的初级线圈正好被直流电压激励时,变压器的次级线圈没有向负载提供功率输出,而仅在变压器初级线圈的激励电压被关断后才向负载提供功率输出,这种变压器开关电源称为反激式开关电源。 图1-19-a是反激式变压器开关电源的简单工作原理图,图1-19-a中,Ui是开关电源的输入电压,T是开关变压器,K是控制开关,C是储能滤波电容,R是负载电阻。图1-19-b是反激式变压器开关电源的电压输出波形。 把图1-19-a与图1-16-a进行比较,如果我们把图1-16-a中开关变压器次级线圈的同名端对调一下,原来变压器输出电压的正、负极性就会完全颠倒过来,图1-19-b所示的电压输出波形基本上就是从图1-16-b的波形颠倒过来的。不过,因为图1-16-b的波形对应的是纯电阻负载,而图1-19-b的负载是一个储能滤波电容和一个电阻并联。由于储能滤波电容的容量很大,其两端电压基本不变,变压器次级线圈输出电压uo相当于被整流二极管和输出电压Uo进行限幅,因此,图1-16-b中输出电压uo的脉冲尖峰完全被削除,被限幅后的剩余电压幅值正好等于输出电压Uo的最大值Up,同时也等于变压器次级线圈输出电压uo的半波平均值Upa。

下面我们来详细分析反激式变压器开关电源的工作过程(参考图1-20)。 图1-19-a中,在控制开关K接通的Ton期间,输入电源Ui对变压器初级线圈N1绕组加电,初级线圈N1绕组有电流i1流过,在N1两端产生自感电动势的同时,在变压器次级线圈N2绕组的两端也同时产生感应电动势,但由于整流二极管的作用,没有产生回路电流。相当于变压器次级线圈开路,变压器次级线圈相当于一个电感。因此,流过变压器初级线圈N1绕组的电流就是变压器的励磁电流,变压器初级线圈N1绕组两端产生自感电动势可由下式表示: e1 = L1di/dt = Ui —— K接通期间(1-98) 或 e1 = N1dф/dt = Ui —— K接通期间(1-99) 上式中,e1为变压器初级线圈N1绕组产生的自感电动势,L1是变压器初级线圈N1绕组的电感,N1为变压器初级线圈N1绕组线圈绕组的匝数,ф为变压器铁心中的磁通。对(1-98)和(1-99)式进行积分,由此可求得: i1 =Ui*t/L1 +i(0) —— K接通期间(1-100) ф=Ui*t/N1 +ф (0) —— K关断瞬间(1-101) 上式中,i1是流过变压器初级线圈N1绕组的电流,ф为变压器铁心中的磁通;i1(0)为变压器初级线圈中的初始电流,即:控制开关刚接通瞬间流过变压器初级线圈N1绕组的电流;ф(0)为初始磁通,即:控制开关刚接通瞬间变压器铁心中的磁通。当开关电源工作于输出临界连续电流状态时,这里的i1(0)正好0,而ф(0)正好等于剩磁通S?Br。当控制开关K将要关断,且开关电源工作于输出电流临界连续状态时,i1和均达到最大值: i1m =Ui*Ton/L1 —— K关断瞬间(1-102)

串联式开关电源储能滤波电感的计算

?串联式开关电源储能滤波电感的计算 ?串联式开关电源储能滤波电容的计算 串联式开关电源储能滤波电感的计算 从上面分析可知,串联式开关电源输出电压Uo与控制开关的占空比D有关,还与储能电感L的大小有关,因为储能电感L决定电流的上升率(di/dt),即输出电流的大小。因此,正确选择储能电感的参数相当重要。 串联式开关电源最好工作于临界连续电流状态,或连续电流状态。串联式开关电源工作于临界连续电流状态时,滤波输出电压Uo正好是滤波输入电压uo的平均值Ua,此时,开关电源输出电压的调整率为最好,且输出电压Uo的纹波也不大。因此,我们可以从临界连续电流状态着手进行分析。我们先看(1-6)式: 当串联式开关电源工作于临界连续电流状态时,即D = 0.5时,i(0) = 0,iLm = 2 Io,因此,(1-6)式可以改写为: 式中Io为流过负载的电流(平均电流),当D = 0.5时,其大小正好等于流过储能电感L最大电流iLm的二分之一;T为开关电源的工作周期,T正好等于2倍Ton。 由此求得: 或: (1-13)和(1-14)式,就是计算串联式开关电源储能滤波电感L的公式(D = 0.5时)。(1-13)和(1-14)式的计算结果,只给出了计算串联式开关电源储能滤波电感L的中间值,或平均值,对于极端情况可以在平均值的计算结果上再乘以一个大于1的系数。 如果增大储能滤波电感L的电感量,滤波输出电压Uo将小于滤波输入电压uo的平均值Ua,因此,在保证滤波输出电压Uo为一定值的情况下,势必要增大控制开关K的占空比D,以保持输出电压Uo的稳定;而

控制开关K的占空比D增大,又将会使流过储能滤波电感L的电流iL不连续的时间缩短,或由电流不连续变成电流连续,从而使输出电压Uo的电压纹波ΔUP-P进一步会减小,输出电压更稳定。 如果储能滤波电感L的值小于(1-13)式的值,串联式开关电源滤波输出的电压Uo将大于滤波输入电压uo的平均值Ua,在保证滤波输出电压Uo为一定值的情况下,势必要减小控制开关K的占空比D,以保持输出电压Uo的值不变;控制开关K的占空比D减小,将会使流过滤波电感L的电流iL出现不连续,从而使输出电压Uo的电压纹波ΔUP-P增大,造成输出电压不稳定。 由此可知,调整串联式开关电源滤波输出电压Uo的大小,实际上就是同时调整流过滤波电感L和控制开关K占空比D的大小。 由图1-4可以看出:当控制开关K的占空比D小于0.5时,流过滤波电感L的电流iL出现不连续,输出电流Io小于流过滤波电感L最大电流iLm的二分之一,滤波输出电压Uo的电压纹波ΔUP-P将显著增大。因此,串联式开关电源最好不要工作于图1-4的电流不连续状态,而最好工作于图1-3和图1-5表示的临界连续电流和连续电流状态。 串联式开关电源工作于临界连续电流状态,输出电压Uo等于输入电压Ui的二分之一,等于滤波输入电压uo的平均值Ua;且输出电流Io也等于流过滤波电感L最大电流iLm的二分之一。 串联式开关电源工作于连续电流状态,输出电压Uo大于输入电压Ui的二分之一,大于滤波输入电压uo的平均值Ua;且输出电流Io也大于流过滤波电感L最大电流iLm的二分之一。 串联式开关电源储能滤波电容的计算 我们同样从流过储能电感的电流为临界连续电流状态着手,对储能滤波电容C的充、放电过程进行分析,然后再对储能滤波电容C的数值进行计算。 图1-6是串联式开关电源工作于临界连续电流状态时,串联式开关电源电路中各点电压和电流的波形。图1-6中,Ui为电源的输入电压,uo为控制开关K的输出电压,Uo为电源滤波输出电压,iL为流过储能滤波电感电流,Io为流过负载的电流。图1-6-a)是控制开关K输出电压的波形;图1-6-b)是储能滤波电容C的充、放电曲线图;图1-6-c)是流过储能滤波电感电流iL的波形。当串联式开关电源工作于临界连续电流状态时,控制开关K的占空比D等于0.5,流过负载的电流Io等于流过储能滤波电感最大电流iLm的二分之一。 在Ton期间,控制开关K接通,输入电压Ui通过控制开关K输出电压uo ,在输出电压uo作用下,流过储能滤波电感L的电流开始增大。当作用时间t大于二分之一Ton的时候,流过储能滤波电感L的电流iL 开始大于流过负载的电流Io ,所以流过储能滤波电感L的电流iL有一部分开始对储能滤波电容C进行充电,储能滤波电容C两端电压开始上升。 当作用时间t等于Ton的时候,流过储能滤波电感L的电流iL为最大,但储能滤波电容C的两端电压并没有达到最大值,此时,储能滤波电容C的两端电压还在继续上升,因为,流过储能滤波电感L的电流iL 还大于流过负载的电流Io ;当作用时间t等于二分之一Toff的时候,流过储能滤波电感L的电流iL正好等于负载电流Io,储能滤波电容C的两端电压达到最大值,电容停止充电,并开始从充电转为放电。

相关主题
文本预览
相关文档 最新文档