当前位置:文档之家› 第2章 第5讲-函数、导数及其应用

第2章 第5讲-函数、导数及其应用

第2章 第5讲-函数、导数及其应用
第2章 第5讲-函数、导数及其应用

课时达标 第5讲函数、导数及其应用

一、选择题

1.下列四个函数中,在(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1

x +1

D .f (x )=-|x |

C 解析 当x ∈(0,+∞)时,f (x )=3-x 为减函数.当x ∈????0,3

2时,f (x )=x 2-3x 为减函数;当x ∈????32,+∞时,f (x )=x 2-3x 为增函数.当x ∈(0,+∞)时,f (x )=-1

x +1为增函数.当x ∈(0,+∞)时,f (x )=-|x |为减函数.

2.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2]

D .[2,+∞)

A 解析 由于f (x )=|x -2|x =?

????

x 2-2x ,x ≥2,

-x 2

+2x ,x <2,结合图象可知函数的单调减区间是

[1,2].

3.(2019·烟台九中期末)若函数f (x )=x 2-2x +m 在[3,+∞)上的最小值为1,则实数m 的值为( )

A .-3

B .-2

C .-1

D .1

B 解析 因为f (x )=(x -1)2+m -1在[3,+∞)上为单调增函数,且f (x )在[3,+∞)上的最小值为1,所以f (3)=1,即m =-2.

4.(2019·南昌二中月考)已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是( )

A.????0,3

4 B.????0,3

4 C.???

?0,34 D.???

?0,34 D 解析 当a =0时,f (x )=-12x +5,在(-∞,3)上是减函数;当a ≠0时,由

???

a >0,-4(a -3)4a ≥3

得0<a ≤3

4

.综上,a 的取值范围是????0,34. 5.(2019·黄石二中期中)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a

A .-1

B .1

C .6

D .12

C 解析 由已知得,当-2≤x ≤1时,f (x )=x -2;当1

6.(2018·全国卷Ⅰ)设函数f (x )=?

???

?

2-

x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是

( )

A .(-∞,-1]

B .(0,+∞)

C .(-1,0)

D .(-∞,0)

D 解析 因为f (x )=?????

2-x

,x ≤0,

1,x >0,

所以函数f (x )的图象如图所示.由图可知,当x +

1≤0且2x ≤0时,函数f (x )为减函数,故f (x +1)<f (2x )转化为x +1>2x ,此时x ≤-1;当2x <0且x +1>0时,f (2x )>1,f (x +1)=1,满足f (x +1)<f (2x ),此时-1<x <0.综上,不等式f (x +1)<f (2x )的解集为(-∞,-1]∪(-1,0)=(-∞,0).故选D.

二、填空题

7.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是1

3,则a +b =________.

解析 易知f (x )在[a ,b ]上为减函数,

所以?????

f (a )=1,

f (b )=13,即?????

1

a -1

=1,1b -1

=13

,所以?????

a =2,

b =4,

所以a +b =6.

答案 6

8.已知函数f (x )=x 2-2x -3,则该函数的单调增区间为________.

解析 设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3.所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数在(-∞,-1]上单调递减,在[3,+∞)上单调递增.又因为y =t 在[0,+∞)上单调递增,所以函数f (x )的增区间为[3,+∞).

答案 [3,+∞)

9.已知函数f (x )=log 12 (x 2-ax +3a )在[1,+∞)上单调递减,则实数a 的取值范围是

________.

解析 令t =g (x )=x 2-ax +3a ,易知f (t )=log 12 t 在其定义域上单调递减,要使f (x )=log 12

(x 2-ax +3a )在[1,+∞)上单调递减,则t =g (x )=x 2-ax +3a 在[1,+∞)上单调递增,且t =g (x )=x 2-ax +3a >0,即????? a 2≤1,g (1)>0,所以?

????

a ≤2,a >-12,即-1

2

2,2 三、解答题

10.已知函数f (x )=x +2x .

(1)写出函数f (x )的定义域和值域;

(2)证明:函数f (x )在(0,+∞)上为单调递减函数,并求f (x )在x ∈[2,8]上的最大值和最小值.

解析 (1)定义域为{x |x ≠0}.又f (x )=1+2

x ,所以值域为{y |y ≠1}.

(2)证明:设0

则f (x 1)-f (x 2)=????1+2x 1-????1+2x 2=2x 1-2x 2=2(x 2-x 1)x 1x 2.

又00,x 2-x 1>0, 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),

所以函数f (x )在(0,+∞)上为单调递减函数,在x ∈[2,8]上,f (x )的最大值为f (2)=2,最小值为f (8)=5

4

.

11.(2019·福州一中期中)已知f (x )=x

x -a (x ≠a ).

(1)若a =-2,试证明f (x )在(-∞,-2)上单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解析 (1)证明:任取x 1<x 2<-2,则作差可得f (x 1)-f (x 2)=

x 1x 1+2-x 2

x 2+2=2(x 1-x 2)(x 1+2)(x 2+2)

.因为(x 1+2)(x 2+2)>0,x 1-x 2<0,所以f (x 1)<f (x 2),所以f (x )在(-∞,-2)上单调递增.

(2)任取1<x 1<x 2,则f (x 1)-f (x 2)=

x 1x 1-a -x 2

x 2-a =a (x 2-x 1)(x 1-a )(x 2-a )

.因为a >0,x 2-x 1>0,所以要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,所以a ≤1.综上所述,a 的取值范围是(0,1].

12.已知f (x )=x 2+2x +a

x

,x ∈[1,+∞).

(1)当a =1

2时,用定义证明函数的单调性并求函数f (x )的最小值;

(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.

解析 (1)当a =12时,f (x )=x +1

2x +2,任取1≤x 1

2x 1x 2

.

因为1≤x 11,所以2x 1x 2-1>0.

又x 1-x 2<0,所以f (x 1)

2

.

(2)因为在区间[1,+∞)上,f (x )=x 2+2x +a

x

>0恒成立,

则???

x 2+2x +a >0,x ≥1??????

a >-(x 2+2x ),

x ≥1,

等价于a 大于函数φ(x )=-(x 2+2x )在[1,+∞)上的最大值.

因为φ(x )=-(x +1)2+1在[1,+∞)上单调递减,所以当x =1时,φ(x )取最大值为φ(1)=-3,所以a >-3,故实数a 的取值范围是(-3,+∞).

13.[选做题]已知定义在区间(0,+∞)上的函数f (x )满足f ????x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.

(1)求f (1)的值;

(2)证明:f (x )为单调递减函数;

(3)若f (3)=-1,求f (x )在[2,9]上的最小值.

解析 (1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.

(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1

x 2

>1,由于当x >1时,f (x )<0,所以

f ????x 1x 2

<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减

函数.

(3)因为f (x )在(0,+∞)上是单调递减函数.所以f (x )在[2,9]上的最小值为f (9).由f ????

x 1x 2

f (x 1)-f (x 2)得f ????93=f (9)-f (3),而f (3)=-1,所以f (9)=-2.所以f (x )在[2,9]上的最小值为-2.

第13讲 函数与导数之导数及其应用(学生版)

第13讲 函数与导数之导数及其应用 一. 基础知识回顾 1.函数的平均变化率:一般地,已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx =x 1-x 0,Δy =y 1-y 0=f (x 1)-f (x 0)=f (x 0+Δx )-f (x 0),则当Δx ≠0时,商 =Δy Δx 称作函数y =f (x )在区间[x 0,x 0+Δx ](或[x 0+Δx ,x 0])的平均变化率. 2.函数y =f (x )在x =x 0处的导数:(1)定义:函数y =f (x)在点x 0处的瞬时变化率 通 常称为f (x )在x =x 0处的导数,并记作f ′(x 0),即 . (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是过曲线y =f (x )上点(x 0,f (x 0)) 的 .导函数y =f ′(x )的值域即为 . 3.函数f (x )的导函数:如果函数y =f (x )在开区间(a ,b )内每一点都是可导的,就说f (x )在开 区间(a ,b )内可导,其导数也是开区间(a ,b )内的函数,又称作f (x )的导函数,记作 . 4.基本初等函数的导数公式表(右表) 5.导数运算法则 (1)[f (x )±g (x )]′= ; (2)[f (x )g (x )]′= ; (3)????f (x )g (x )′= [g (x )≠0]. 5.导数和函数单调性的关系:(1)若f ′(x )>0在(a ,b )上恒成立,则f (x )在(a ,b )上是 函数,f ′(x )>0的解集与定义域的交集的对应区间为 区间;(2)若f ′(x )<0在(a ,b )上恒成立,则f (x )在(a , b )上是 函数,f ′(x )<0的解集与定义域的交集的对应区间为 区间(3)若在(a ,b )上, f ′(x )≥0,且f ′(x )在(a ,b )的任何子区间内都不恒等于零?f (x )在(a ,b )上为 函数,若在 (a ,b )上,f ′(x )≤0,且f ′(x )在(a ,b )的任何子区间内都不恒等于零?f (x )在(a ,b )上为 函 数. 6.函数的极值:(1)判断f (x 0)是极值的方法:一般地,当函数f (x )在点x 0处连续时,①如果 在x 0附近的左侧 ,右侧 ,那么f (x 0)是极大值;②如果在x 0附近的左侧 , 右侧 ,那么f (x 0)是极小值.(2)求可导函数极值的步骤①求f ′(x );②求方程 的根;③检查f ′(x )在方程 的根左右值的符号.如果左正右负,那么f (x )在这个根处 取得 ;如果左负右正,那么f (x )在这个根处取得 . 7.函数的最值:(1)函数f (x )在[a ,b ]上必有最值的条件如果函数y =f (x )的图象在区间[a ,b ] 上 ,那么它必有最大值和最小值.(2)求函数y =f (x )在[a ,b ]上的最大值与最小值的步 骤:①求函数y =f (x )在(a ,b )内的 ;②将函数y =f (x )的各极值与 比较,其中最大 的一个是最大值,最小的一个是最小值. 二.典例精析 探究点一:导数的运算 例1:求下列函数的导数: (1)y =(1-x )? ???1+1x ; (2)y =ln x x ;(3)y =x e x ; (4)y =tan x .

(完整word版)第一章导数及其应用测试题(含答案)

第一章导数及其应用测试题 一、 选择题 1.设x x y sin 12-=,则='y ( ). A .x x x x x 22sin cos )1(sin 2--- B .x x x x x 2 2sin cos )1(sin 2-+- C .x x x x sin )1(sin 22-+- D .x x x x sin ) 1(sin 22--- 2.设1ln )(2+=x x f ,则=)2('f ( ) . A . 54 B .52 C .51 D .5 3 3.已知2)3(',2)3(-==f f ,则3 ) (32lim 3--→x x f x x 的值为( ). A .4- B .0 C .8 D .不存在 4.曲线3 x y =在点)8,2(处的切线方程为( ). A .126-=x y B .1612-=x y C .108+=x y D .322-=x y 5.已知函数d cx bx ax x f +++=2 3)(的图象与x 轴有三个不同交点)0,(),0,0(1x , )0,(2x ,且)(x f 在1=x ,2=x 时取得极值,则21x x ?的值为( ) A .4 B .5 C .6 D .不确定 6.在R 上的可导函数c bx ax x x f +++=22 131)(2 3, 当)1,0(∈x 取得极大值,当)2,1(∈x 取得极小值,则 1 2 --a b 的取值范围是( ). A .)1,4 1( B .)1,2 1( C .)4 1,21(- D .)2 1,21(- 7.函数)cos (sin 21)(x x e x f x += 在区间]2 ,0[π 的值域为( ). A .]21,21[2π e B .)2 1 ,21(2πe C .],1[2πe D .),1(2π e 8.积分 =-? -a a dx x a 22( ).

高中数学选修1-1第三章《导数及其应用》知识点归纳及单元测试[1]

第三章《导数及其应用》单元测试题 一、 选择题(本大题共10小题,共50分,只有一个答案正确) 1.函数()2 2)(x x f π=的导数是( ) (A)x x f π4)(=' (B)x x f 2 4)(π=' (C) x x f 28)(π=' (D)x x f π16)(=' 2.函数x e x x f -?=)(的一个单调递增区间是( ) (A)[]0,1- (B)[]8,2 (C)[]2,1 (D)[]2,0 3.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时, ()0()0f x g x ''>>,,则0x <时( ) A .()0()0f x g x ''>>, B .()0()0f x g x ''><, C .()0()0f x g x ''<>, D .()0()0f x g x ''<<, 4.若函数b bx x x f 33)(3 +-=在()1,0内有极小值,则( ) (A ) 10<b (D )2 1< b 5.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 6.曲线x y e =在点2 (2)e ,处的切线与坐标轴所围三角形的面积为( ) A.294 e B.22e C.2 e D.22e 7.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( ) 8.已知二次函数2 ()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有 ()0f x ≥,则 (1)'(0)f f 的最小值为( )A .3 B .52 C .2 D .3 2 9.设2 :()e ln 21x p f x x x mx =++++在(0)+∞, 内单调递增,:5q m -≥,则p 是q 的

第三章导数及其应用单元测试(带答案)

第三章导数及其应用单元测试 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后 的括号内(本大题共12个小题,每小题5分,共60分)。 1.函数y=x+2cosx在[0,]上取得最大值时,x的值为()A.0 B.C.D. 2.函数的单调递减区间是() A.B.C.D. 3.若函数的图象的顶点在第四象限,则函数的图象是 () 4.点P在曲线 上移动,设 点P处切线倾斜角为α, 则α的取值范围是 () | A.[0,] B.0,∪[,π C.[,πD.(, 5.已知(m为常数)在上有最大值3,那么此函数在 上的最小值为() A.B.C.D. 6.函数的单调递增区间是()A. B.(0,3) C.(1,4) D. 7.已知函数时,则()

A.B. , C.D. 8.设函数的导函数,则数列的前n项和是 () A.B.C.D. 9.设f(x)=x3+ax2+5x+6在区间[1,3]上为单调函数,则实数a的取值范围为()A.[-,+∞] B.(-∞,-3) C.(-∞,-3)∪[-,+∞] D.[-,] 10.函数f(x)在定义域R内可导,若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)<0,设a=f(0),b= f(),c= f(3),则() A .a<b<c B.c<a<b C.c<b<a D.b<c<a 11.曲线在点处的切线与坐标轴围成的三角形面积为()! A.B.C.D. 12.如图所示的是函数的大致图象,则等于() A.B.

C.D. 第Ⅱ卷 二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共16分)。 , 13.设是偶函数,若曲线在点处的切线的斜率为1,则该曲线在处的切线的斜率为_________. 14.已知曲线交于点P,过P点的两条切线与x轴分别交于A,B两点,则△ABP的面积为; 15.函数在定义域内可导,其图象如图,记的导函数为, 则不等式的解集为_____________ 16.若函数f(x)=(a>0)在[1,+∞)上的最大值为,则a的值为 三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6个大题,共74分)。 17.(12分)已知函数f(x)=x3-2ax2+3x(x∈R). (1)若a=1,点P为曲线y=f(x)上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程; (2)若函数y=f(x)在(0,+∞)上为单调增函数,试求满足条件的最大整数a. 。

高三数学专题复习 函数的零点与导数的应用关系

高三数学专题复习 函数的零点与导数的应用关系 21、(本题满分14分) 已知函数1()ln ,()f x a x a R x =-∈其中 (1)设()(),h x f x x =+讨论()h x 的单调性。 (2)若函数()f x 有唯一的零点,求a 取值范围。 21.解:(1)1()ln h x a x x x =-+,定义域为(0,)+∞………………1分 22211()1a ax x h x x x x ++'=++=………………2分 令22()1,4g x x ax a =++?=- 当0?≤,即22a -≤≤时()0g x ≥,()0h x '≥此时()h x 在(0,)+∞上单调递增。………………4分 当0?>即2a <-或2a >时,由()0g x =得1x =,2x = ………………5分 若2a >则10x <又1210x x =>所以20x < 故()0h x '>在(0,)+∞上恒成立 所以()h x 在(0,)+∞单调递增……………………6分 若2a <-则20x >又1210x x =>所以20x > 此时当1(0,)x x ∈时()0h x '>;当12(,)x x x ∈时()0h x '<当2(,)x x ∈+∞时()0h x '> 故()h x 在1(0,)x ,2(,)x +∞上单调递增,在12(,)x x 单调递减……………………7分 综上,当2a ≥-时()h x 在(0,)+∞上单调递增 当2a <-时()h x 在1(0,)x ,2(,)x +∞单调递增,在12(,)x x 单调递减……………8分 (2)方法1:问题等价于1ln a x x = 有唯一实根 显然0a ≠则关于x 的方程1ln x x a =有唯一实根……………10分 构造函数()ln x x x ?=,则()1ln x x ?'=+ 由0ln 1'=+=x ?,得e x 1=

数学人教A版选修2-2讲义:第一章导数及其应用1.1 1.1.1~1.1.2

1.1.1~1.1.2 变化率问题 导数的概念 1.平均变化率 函数f (x )从x 1到x 2的平均变化率Δy Δx =□ 01f (x 2)-f (x 1)x 2-x 1 . 若函数y =f (x )在点x =x 0及其附近有定义,则函数y =f (x )在x 0到x 0+Δx 之间的平均变化率是Δy Δx =□ 02f (x 0+Δx )-f (x 0)Δx . 2.瞬时变化率 设函数y =f (x )在x 0附近有定义,当自变量在x =x 0附近改变Δx 时,函数值的改变量Δy =□ 03f (x 0+Δx )-f (x 0). 如果当Δx 趋近于0时,平均变化率Δy Δx 趋近于一个常数L ,则常数L 称为函数f (x )在x 0的瞬时变化率,记作□ 04lim Δx →0 f (x 0+Δx )-f (x 0)Δx =L . 3.函数y =f (x )在x =x 0处的导数 一般地,函数y =f (x )在点x 0处的瞬时变化率是lim Δx →0 Δy Δx =□ 05lim Δx →0 f (x 0+Δx )-f (x 0) Δx ,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或□ 06y ′| x =x 0.即f ′(x 0)=□ 07lim Δx →0 f (x 0+Δx )-f (x 0)Δx . 简言之,函数y =f (x )在x =x 0处的导数就是y =f (x )在x =x 0处的□ 08瞬时变化率.

导数概念的理解 (1)Δx→0是指Δx从0的左右两侧分别趋向于0,但永远不会为0. (2)若f′(x0)=lim Δx→0Δy Δx存在,则称f(x)在x=x0处可导并且导数即为极限值. (3)令x=x0+Δx,得Δx=x-x0, 于是f′(x0)=lim x→x0f(x)-f(x0) x-x0 与概念中的f′(x0)=lim Δx→0 f(x0+Δx)-f(x0) Δx意 义相同. 1.判一判(正确的打“√”,错误的打“×”) (1)函数y=f(x)在x=x0处的导数值与Δx值的正、负无关.() (2)瞬时变化率是刻画某函数值在区间[x1,x2]上变化快慢的物理量.() (3)在导数的定义中,Δx,Δy都不可能为零.() 答案(1)√(2)×(3)× 2.做一做 (1)自变量x从1变到2时,函数f(x)=2x+1的函数值的增量与相应自变量的增量之比是________. (2)函数f(x)=x2在x=1处的瞬时变化率是________. (3)函数y=f(x)=1 x在x=-1处的导数可表示为________. 答案(1)2(2)2(3)f′(-1)或y′|x =-1 探究1求函数的平均变化率 例1求函数y=f(x)=3x2+2在区间[x0,x0+Δx]上的平均变化率,并求当x0=2,Δx=0.1时平均变化率的值. [解]函数y=f(x)=3x2+2在区间[x0,x0+Δx]上的平均变化率为 f(x0+Δx)-f(x0) (x0+Δx)-x0= [3(x0+Δx)2+2]-(3x20+2) Δx =6x0·Δx+3(Δx)2 Δx=6x0+3Δx. 当x0=2,Δx=0.1时,函数y=3x2+2在区间[2,2.1]上的平均变化率为6×2+3×0.1=12.3.

函数导数及其应用

函数、导数及其应用 第一节 函数及其表示 考纲要求:1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用. [基础真题体验] 考查角度[求函数的定义域] 1.(2014·山东高考)函数f (x )=1 log 2x -1的定义域为( ) A .(0,2) B .(0,2] C .(2,+∞) D .[2,+∞) 【解析】 要使函数有意义,则?? ? x >0, log 2x -1>0, 解得x >2. 【答案】 C 2.(2012·广东高考)函数y =x +1 x 的定义域为______. 【解析】 要使函数有意义,需????? x +1≥0,x ≠0.解得????? x ≥-1, x ≠0. ∴原函数的定义域为{x |x ≥-1且x ≠0}. 【答案】 {x |x ≥-1且x ≠0} 考查角度[函数的表示方法] 3.(2013·安徽高考)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________. 【解析】 设-1≤x ≤0,则0≤x +1≤1,所以f (x +1)=(x +1)[1-(x +1)]=-x (x +1).又因为f (x

+1)=2f (x ),所以f (x )=f (x +1)2=-x (x +1) 2. 【答案】 -x (x +1) 2 考查角度[分段函数] 4.(2013·福建高考)已知函数f (x )=??? 2x 3,x <0,-tan x ,0≤x <π2 ,则f ? ???? f ? ????π4=________. 【解析】 ∵π4∈??????0,π2,∴f ? ?? ??π4=-tan π 4=-1, ∴f ? ?? ?? f ? ????π4=f (-1)=2×(-1)3=-2. 【答案】 -2 [命题规律预测]

高中数学选修22:第一章导数及其应用单元测试题.doc

数学选修 2-2 第一章 单元测试题 一、选择题 ( 本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数f ( x) 的定义域为开区间 ( a,b) ,导函数f′(x) 在( a,b) 内的图像如图所示,则函数 f ( x)在开区间( a,b)内有极小值点() A.1 个B.2 个 C.3 个D.4 个 1 1 2.在区间[ 2,2] 上,函数 f ( x)=x2+px+q 与g( x)=2x+x2在 1 同一点处取得相同的最小值,那么f(x)在[2,2]上的最大值是() C.8D.4 2 3.点P在曲线y=x3-x+3上移动,设点P处的切线的倾斜角为α,则α 的取值范围是( ) ππ3 A.[0 ,2 ] B.[0 ,2 ] ∪[ 4π,π) 3 π 3 C.[ 4π,π ) D.[ 2,4π] 1 4.已知函数f ( x) =2x4-2x3+3m,x∈R,若f ( x) +9≥0恒成立,则实数 m的取值范围是()

3 3 A.m≥2 B.m>2 3 3 C.m≤2 D.m<2 x 2 2 5.函数f ( x) =cos x-2cos 2的一个单调增区间是 () f x 0+3 -f x 0 Δx 6.设f ( x) 在x=x0 处可导,且lim Δx =1, Δx→0 则 f ′(x0)等于( ) A.1 B.0 C.3 x+9 7.经过原点且与曲线y=x+5相切的切线方程为() A.x+y=0 B.x+25y=0 C.x+y= 0 或x+25y=0 D.以上皆非 8.函数f ( x) =x3+ax2+bx+c,其中a,b,c为实数,当a2- 3b<0 时,f ( x) 是() A.增函数 B.减函数 C.常数 D.既不是增函数也不是减函数

2019高考数学二轮复习第二编专题二函数与导数第2讲导数及其应用配套作业文

第2讲导数及其应用 配套作业 一、选择题 1.(2018·成都模拟)已知函数f (x )=x 3 -3ax +14 ,若x 轴为曲线y =f (x )的切线,则a 的值为() A.12B .-12 C .-34D. 14 答案 D 解析 f ′(x )=3x 2 -3a ,设切点坐标为(x 0,0),则 ??? ?? x30-3ax0+14=0,3x2 0-3a =0,解得????? x0=1 2,a =1 4, 故选D. 2.(2018·赣州一模)函数f (x )=12 x 2 -ln x 的递减区间为() A .(-∞,1) B .(0,1) C .(1,+∞) D.(0,+∞) 答案 B 解析 f (x )的定义域是(0,+∞), f ′(x )=x -1 x = x2-1 x , 令f ′(x )<0,解得0<x <1, 故函数f (x )在(0,1)上递减.故选B. 3.(2018·安徽示范高中二模)已知f (x )=ln x x ,则() A .f (2)>f (e)>f (3) B .f (3)>f (e)>f (2) C .f (3)>f (2)>f (e) D .f (e )>f (3)>f (2) 答案 D 解析 f (x )的定义域是(0,+∞), 因为f ′(x )=1-ln x x2 ,所以x ∈(0,e),f ′(x )>0; x ∈(e ,+∞),f ′(x )<0, 故x =e 时,f (x )max =f (e), 而f (2)=ln 22=ln 86,f (3)=ln 33=ln 9 6 , f (e)>f (3)>f (2).故选D. 4.(2018·安徽芜湖模拟)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1

导数及其应用教材分析

第三章导数教材分析 一、内容安排 本章大体上分为导数的初步知识、导数的应用、微积分建立的时代背景和历史意义部分. 导数的初步知识.关键是导数概念的建立.这部分首先以光滑曲线的斜率与非匀速直线运动的瞬时速度为背景,引出导数的概念,给出按定义求导数的方法,说明导数的几何意义.然后讲述初等函数的求导方法,先根据导数的定义求出几种常见函数的导数、导数的四则运算法则,再进一步给出指数函数和对数函数的导数. 这部分的末尾安排了两篇阅读材料,一篇是结合导数概念的“变化率举例”,另一篇是介绍导数应用的“近似计算”. 导数的应用,这部分首先在高一学过的函数单调性的基础上,给出判定可导函数增减性的方法.然后讨论函数的极值,由极值的意义,结合图象,得到利用导数判别可导函数极值的方法*最后在可以确定函数极值的前提下,给出求可导函数的最大值与最小值的方法. 微积分是数学的重要分支,导数是微积分的一个重要的组成部分.一方面,不但数学的许多分支以及物理、化学、计算机、机械、建筑等领域将微积分视为基本数学工具,而且,在社会、经济等领域中也得到越来越广泛的应用.另一方面,微积分所反映的数学思想也是日常生活与工作中认识问题、研究问题所难以或缺的. 本章共9小节,教学课时约需18节(仅供参考) 3. 1导数的概念 ............. 约3课时 3. 2几种常见函数的导数........... 约1课时 3. 3函数的和、差、积、商的导数...... 约2课时 3. 4复合函数的导数............. 约2课时 3. 5对数函数与指数函数的导数....... 约2课时 3. 6函数的单调性............. 约1课时 3. 7函数的极值 ............. 约2课时 3. 8函数的最大值与最小值......... 约2课时 3. 9微积分建立的时代背景和历史意义....约1课时 小结与复习.............. 约2课时 二、教学目标 1?了解导数概念的某些实际背景(例如瞬时速度,加速度,光滑曲线的切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式:

第一章导数及其应用练习题

第一章导数及其应用练习题 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

第一章导数及其应用 1.1 变化率与导数 1.1.1 变化率问题1.1.2 导数的概念 1.已知函数f(x>=2x2-4的图象上一点(1,-2>及邻近一点(1+Δx,-2+Δy>,则错误!等于( >.b5E2RGbCAP A.4B.4xC.4+2ΔxD.4+2(Δx>2 2.如果质点M按规律s=3+t2运动,则在一小段时间[2,2.1]中相应的平均速度是( >. A.4 B.4.1 C.0.41 D.3 3.如果某物体的运动方程为s=2(1-t2>(s的单位为m,t的单位为s>,那么其在1.2 s末的瞬时速度为( >.p1EanqFDPw A.-4.8 m/s B.-0.88 m/sC.0.88 m/s D.4.8 m/s 4.已知函数y=2+错误!,当x由1变到2时,函数的增量Δy=________. 5.已知函数y=错误!,当x由2变到1.5时,函数的增量Δy=________. 6.利用导数的定义,求函数y=错误!+2在点x=1处的导数.7.已知函数y=f(x>=x2+1,则在x=2,Δx=0.1时,Δy的值为( >. A.0.40 B.0.41 C.0.43 D.0.44 8.设函数f(x>可导,则错误!错误!等于( >.DXDiTa9E3d A.f′(1> B.3f′(1> C.错误!f′(1> D.f′(3>

9.一做直线运动的物体,其位移s与时间t的关系是s=3t-t2,则物体的初速度是________. 10.某物体作匀速运动,其运动方程是s=vt,则该物体在运动过程中其平均速度与任何时刻的瞬时速度的关系是________.RTCrpUDGiT 11.子弹在枪筒中的运动可以看作是匀变速运动,如果它的加速度是a=5×105 m/s2,子弹从枪口射出时所用的时间为t0= 1.6×10-3s,求子弹射出枪口时的瞬时速度.5PCzVD7HxA 12.(创新拓展>已知f(x>=x2,g(x>=x3,求满足f′(x>+2=g′(x>的x的值. 1.1.3导数的几何意义 1.已知曲线y=错误!x2-2上一点P错误!,则过点P的切线的倾斜角为( >.jLBHrnAILg A.30° B.45° C.135° D.165° 2.已知曲线y=2x3上一点A(1,2>,则A处的切线斜率等于( >. A.2 B.4C.6+6Δx+2(Δx>2D.6 3.设y=f(x>存在导函数,且满足错误!错误!=-1,则曲线y=f(x>上点(1,f(1>>处的切线斜率为( >.xHAQX74J0X A.2 B.-1 C.1 D.-2 4.曲线y=2x-x3在点(1,1>处的切线方程为________.

第三章导数及其应用

第三章 导数及其应用 考点1 导数的概念及计算 1.(2014·陕西,10)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为( ) A .y =12x 3-1 2x 2-x B .y =12x 3+1 2x 2-3x C .y =1 4 x 3-x D .y =14x 3+1 2 x 2-2x 1.解析 法一 由题意可知,该三次函数满足以下条件:过点(0,0),(2,0),在(0,0)处的切线方程为y =-x ,在(2,0)处的切线方程为y =3x -6,以此对选项进行检验.A 选项, y =12x 3-12x 2-x ,显然过两个定点,又y ′=3 2x 2-x -1,则y ′|x =0=-1,y ′|x =2=3,故条件都满足,由选择题的特点知应选A. 法二 设该三次函数为f (x )=ax 3+bx 2+cx +d ,则f ′(x )=3ax 2+2bx +c , 由题设有?????f (0)=0?d =0, f (2)=0?8a +4b +2c +d =0,f ′(0)=-1?c =-1, f ′(2)=3?12a +4b +c =3,解得a =12,b =-1 2,c =-1,d =0. 故该函数的解析式为y =12x 3-1 2x 2-x ,选A. 答案 A 2.(2016·新课标全国Ⅲ,16)已知f (x )为偶函数,当x ≤0时,f (x )=-x-1 e -x ,则曲线y =f (x ) 在

点(1,2)处的切线方程是________. 2.解析设x>0,则-x<0,f(-x)=e x-1+x, 因为f(x)为偶函数,所以f(x)=e x-1+x,f′(x)=e x-1+1,f′(1)=2, y-2=2(x-1),即y=2x. 答案y=2x 3.(2015·新课标全国Ⅰ,14)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=________. 3.解析f′(x)=3ax2+1,f′(1)=1+3a,f(1)=a+2. 点(1,f(1))处的切线方程为y-(a+2)=(1+3a)(x-1). 将(2,7)代入切线方程,得7-(a+2)=(1+3a), 解得a=1. 答案1 4.(2015·新课标全国Ⅱ,16)已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=________. 4.解析由y=x+ln x,得y′=1+1 x,得曲线在点(1,1)的切线的斜率为k=y′|x=1=2,所以切 线方程为y-1=2(x-1),即y=2x-1,此切线与曲线y=ax2+(a+2)x+1相切,消去y得ax2+ax+2=0,得a≠0且Δ=a2-8a=0,解得a=8. 答案8 5.(2015·天津,11)已知函数f(x)=a ax ln,x∈(0,+∞),其中a为实数,f′(x)为f(x)的导函数.若f′(1)=3,则a的值为________. 5.解析f′(x)=x a ln+ax·1x=a(ln x+1),由f′(1)=3得,a(ln 1+1)=3,解得a=3.

(完整版)导数知识点总结及应用

《导数及其应用》知识点总结 一、导数的概念和几何意义 1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为: 2121 ()() f x f x x x --。 2. 导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ?无限趋近于0时,比值00()()f x x f x y x x +?-?=??无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。 3. 求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ?=+?-;(2)求平均变化率:00()()f x x f x x +?-?;(3)取极限,当x ?无限趋近与0时,00()() f x x f x x +?-?无限趋近与一个常数A ,则 0()f x A '=. 4. 导数的几何意义: 函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。由此,可以利用导数求曲线的切线方程,具体求法分两步: (1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。 当点00(,)P x y 不在()y f x =上时,求经过点P 的()y f x =的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P 点的坐标代入确定切点。特别地,如果曲线()y f x =在点00(,())x f x 处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为0x x =。 5. 导数的物理意义: 质点做直线运动的位移S 是时间t 的函数()S t ,则()V S t '=表示瞬时速度,()a v t '=表示瞬时加速度。 二、导数的运算 1. 常见函数的导数: (1)()kx b k '+=(k , b 为常数); (2)0C '=(C 为常数); (3)()1x '=; (4)2()2x x '=; (5)32()3x x '=; (6)211()x x '=-; (7 )'; (8)1()ααx αx -'=(α为常数);

《第一章导数及其应用》教材分析与教学建议(精)

《第一章 导数及其应用》教材分析与教学建议 广州市黄埔区教育局教研室 肖凌戆 导数是微积分的核心概念之一,它有极其丰富的实际背景和广泛的应用,任何事物的变化率都可以用导数来描述,其基本思想是以直代曲。导数是研究函数和解决实际生活中优化问题的重要工具. 在普通高中数学课程标准中,规定导数及其应用的教学内容有: (1)导数概念及其几何意义; (2)导数的运算; (3)导数在研究函数中的应用; (4)生活中的优化问题举例(导数在解决实际问题中的应用); (5)定积分与微积分基本定理.(文科数学不做要求) 本章内容在普通高中数学课程标准实验教材中的相应位置是:人教A 版选修1-1第三章,人教A 版选修2-2第一章. 一、课标要求 导数及其应用的基本教学要求是: 1.通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵;通过函数图象直观地理解导数的几何意义. 2.能根据导数定义,求函数2,,y c y x y x ===,3,y x =1y x =,y =只要求求函数2,,y c y x y x ===, 1y x =的导数);能利用给出的基本初等函数的导数公式及导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如()f ax b +的导数(文科数学不做要求);会使用导数公式表. 3.结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间. 4.结合函数的图象,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及在给定区间上不超过三次的多项式函数的最大值、最小值. 5.通过使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 6.通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念.(文科数学不做要求) 7.通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义.(文科数学不做要求) 8.体会微积分的建立在人类文化发展中的意义和价值. 二、课时安排 1.本章理科教学时间约需24课时,具体分配如下: 变化率与导数 约3课时

3第三讲导数与微分法研究

泰山学院信息科学技术学院教案 数值分析教研室 通过教学使学生掌握导数的定义,导数的几何意义及微分的概念,熟练掌 握导数的各 种求导方法。 第三讲导数与微分法研究 、基本概念 1?导数及其变形 2?分段函数的导数通过左右导数来求 3. 导数的几何意义 4. 微分的定义 二、求导方法 1 .求导公式及其应用 2. 复合函数求导法 3 ?隐函数的导数求法 4.参数方程确定的函数的导数求法 5?极坐标方程表示的的函数的导数求法 6 .形如y = f(x)g(X) 的函数的导数求法一一取对 数求导法 7?分段函数的导数 8?变动上线的积分表示的函数的导数 课程名称 高等数学研究 授课对象 授课题目 第三讲导数与微分法研究 课时数 教学 目的 重 点 难 占 八\、 1. 2. 3. 隐函数的导数求法 参数方程确定的函数的导数求法 形如y = f (X) g(X) 的函数的导数求法一一取对数求导法 变动上线的积分表示的函数的导数

教学过程与内容 教学 后记 第三讲导数与微分法研究 元函数的导数与微分是微积分的基础,经常出选择题与填空题,可作为求极限、 求驻点、求拐点、求多元函数的偏导数与全微分等问题的基础。重点掌握分段函数的导 数、隐函数的导数、参数(极坐标)方程确定的函数的导数。变动上限的积分表示的函 数的导数每年都考。 一、基本概念 1 .导数及其变形 ,f(X)-f(X 0), lim = lim f X - x 0 4° 例1:设f (X)在x 0可导,求 f(X 0 —3h)-f(X 0) (1) lim h T f(X o 中心 X)— f(X o ) _ lim f (X o +h)- f(X o ) -h m o h 1 ⑶ lim n[ f(X 0 +-) - f (X o - T n f(X0+2h)-f(X0-2h) ⑵h m o 丄)] 2n 2 .分段函数的导数通过左右导数来求 例2:设f(X)斗X - a I ?(x),护(X)在X = a 连续,文在什么条件下 f (x)在x = a 可 导? 【解】lim f(X ^f(a ^ lim -?(x) = -?(a) X —a lim fg-f (a) = lim 畀(X)=护(a) T X — a X T 〒 当—q)(a)=W (a),即 W (a) =0时,f (x)在 x = a 可导。 2 【讨论】f(x)=|x|, f(x)=x|x|, f(x) =x(x +1)(X -1) I X -1 I 分别有几个不可导 点。 例3:已知函数f(x) =? ” 2 x l ax + b X A 1 X ^1处处可导,试确定 a 、b 的值。 【解】(1)欲使f (x)在X =1处可导,必先在X = 1处连续, 故有 lim f(X)= limf (x) = f(1),即 a + ^1 x —! — H 十 (2)又f (x)在X=1处的左、右导数分别为 2 5= 十斗 ad + 也 x)+b —1 「5、 .. a(1+也 x)+b —1 r a 也X f Q=J x s + 纵 二四盂=a 故a = 2,从而b = -1,所以,当a = 2 , b = —1时f (x)处处可导。

高中数学导数及其应用

高中数学导数及其应用一、知识网络 二、高考考点 1、导数定义的认知与应用; 2、求导公式与运算法则的运用; 3、导数的几何意义; 4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。 三、知识要点 (一)导数 1、导数的概念 (1)导数的定义

(Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可 正可负),则函数y相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如果 时,有极限,则说函数在点处可导,并把这个极限叫做在点 处的导数(或变化率),记作,即 。 (Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间() 内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数, 这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间() 内的导函数(简称导数),记作或,即 。 认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数 是一个数值;在点处的导数是的导函数当时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量; ②求平均变化率;

③求极限 上述三部曲可简记为一差、二比、三极限。 (2)导数的几何意义: 函数在点处的导数,是曲线在点处的切线的斜率。 (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别: (Ⅰ)若函数在点处可导,则在点处连续; 若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。 事实上,若函数在点处可导,则有此时, 记 ,则有即在点处连续。 (Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。 反例:在点处连续,但在点处无导数。 事实上,在点处的增量

数学选修2-2第一章导数及其应用练习题汇编

第一章导数及其应用 1.1变化率与导数 1.1.1变化率问题1.1.2导数的概念 1.已知函数f(x)=2x2-4的图象上一点(1,-2)及邻近一点(1+Δx,-2+Δy), 则Δy Δx等于(). A.4 B.4x C.4+2Δx D.4+2(Δx)2 2.如果质点M按规律s=3+t2运动,则在一小段时间[2,2.1]中相应的平均速度是(). A.4 B.4.1 C.0.41 D.3 3.如果某物体的运动方程为s=2(1-t2)(s的单位为m,t的单位为s),那么其在 1.2 s末的瞬时速度为(). A.-4.8 m/s B.-0.88 m/s C.0.88 m/s D.4.8 m/s 4.已知函数y=2+1 x,当x由1变到2时,函数的增量Δy=________. 5.已知函数y=2 x,当x由2变到1.5时,函数的增量Δy=________. 6.利用导数的定义,求函数y=1 x2+2在点x=1处的导数. 7.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为().A.0.40 B.0.41 C.0.43 D.0.44

8.设函数f(x)可导,则lim Δx→0f(1+Δx)-f(1) 3Δx等于(). A.f′(1) B.3f′(1) C.1 3f′(1) D.f′(3) 9.一做直线运动的物体,其位移s与时间t的关系是s=3t-t2,则物体的初速度是________. 10.某物体作匀速运动,其运动方程是s=v t,则该物体在运动过程中其平均速度与任何时刻的瞬时速度的关系是________. 11.子弹在枪筒中的运动可以看作是匀变速运动,如果它的加速度是a=5×105 m/s2,子弹从枪口射出时所用的时间为t0=1.6×10-3s,求子弹射出枪口时的瞬时速度. 12.(创新拓展)已知f(x)=x2,g(x)=x3,求满足f′(x)+2=g′(x)的x的值.

第三章 导数及其应用

第三章 导数及其应用 第一节导数的概念及运算、定积分 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数:函数y =f (x )在x =x 0处的瞬时变化率li m Δx →0 Δy Δx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx ? 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′x =x 0,即f ′(x 0)=li m Δx →0 Δy Δx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx . 函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”. (2)导数的几何意义:函数f (x )在x =x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)?处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0). ?曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线. (3)函数f (x )的导函数:称函数f ′(x )=li m Δx →0 f (x +Δx )-f (x ) Δx 为f (x )的导函数. (4)f ′(x )是一个函数,f ′(x 0)是函数f ′(x )在x 0处的函数值(常数),[f ′(x 0)]′=0. 2.基本初等函数的导数公式

相关主题
文本预览
相关文档 最新文档