当前位置:文档之家› 光模块基本原理

光模块基本原理

光模块基本原理
光模块基本原理

光模块基本原理

RF无线收发模块设计

无线收发模块的设计 一、设计方案 为了能实现数据通过无线方式进行传输的目的,采用hopeRF公司的无线单片收发IC RF12完成无线收发功能。为了能对RF12进行控制,采用ATMEL公司单片机A VRMEGA48对RF12进行控制,为了与PC机连接方便,采用了沁恒公司的USB转串口电路CH340与单片机相连。系统结构示意图如下: 二、电路设计 2.1 RF12电路设计 2.1.1 RF12功能简介 RF12是通用ISM频段的FSK发送接收集成单片电路,低功耗,多通道,可以工作在免许可的433,868和915MHz频段。RF12首发电路为需要外部很少器件的集成电路,具有低成本,柔韧性好的高度集成的解决方案。芯片集成所有射频要求功能,完整的模拟射频部分和数字基带收发部分,多频段PLL频率合成器,射频功率放大器PA,低噪声放大器LNA。正交(I/Q)下变频混频器,基带滤波器和基带放大器,和正交(I/Q)解调器。唯一需要的外部器件就是外部晶振和带同滤波器。 RF12具有一个全集成的PLL,便于射频设计,它的快速设定时间可以用于快速调频,对于多路径衰落信道可以获得强健的无线连接。PLL的高分辨率允许在任一频段进行多信道应用。接收部分的基带滤波带宽(BW)是可编程的,以可以包纳各种偏差,数据速率和晶振偏差的要求。接收部分应用了零中频方法,该方法采用了正交解调技术。同样在大多数应用中不需要外部器件(除了晶振和耦合电路)。 RF12通过集成的数字信号处理特性:数字滤波,时钟恢复,数字判决,集成的FIFO 和发送数据寄存器(TX data register),显著的减小了微处理器的负担。自动频率控制特性允许使用低精度(低成本)晶振。 对于低功耗应用,RF12支持基于内部唤醒定时器的小占空比的周期工作模式。

TiO2光催化原理及应用

TiO2光催化原理及应用 一.前言 在世界人口持续增加以及广泛工业化的过程中,饮用水源的污染问题日趋严重。根据世界卫生组织的估计,地球上22% 的居民日常生活中的饮用水不符合世界卫生组织建议的饮用水标准。长期摄入不干净饮用水将会对人的身体健康造成严重危害, 世界围每年大概有200 万人由于水传播疾病死亡。水中的污染物呈现出多样化的趋势,常见的污染物包括有毒重金属、自然毒素、药物、有机污染物等。常规的饮用水净化技术有氯气、臭氧和紫外线消毒以及过滤、吸附、静置等,但是这些方法对新生的污物往往不是非常有效,并且可能导致二次污染。包括我国在世界围广泛应用的氯气消毒法,可能在水中生成对人类健康有害的高氯酸盐。臭氧消毒是比较安全的消毒方法,但是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常的维护都需要专业的技术人员;吸附法一般需要消耗大量的吸附剂,使用过的吸附剂一般需要额外的处理。这些缺点限制了它们的应用围,迫切需要发展一种高效、绿色、简单的净化水技术。 自然界中,植物、藻类和某些细菌能在太的照射下,利用光合色素将二氧化碳(或硫化氧)和水转化为有机物,并释放出氧气(或氢气)。这种光合作用是一系列复杂代反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。光化学反应的过程与植物的光合作用很相似。光化学反应一般可以分为直接光解和间接光解两类。直接光解为物质吸收能量达到激发态,吸收的能量使反应物的电子在轨道间的转移,当强度够大时,可造成化学键的断裂,产生其它物质。直接光解是光化学反应中最简单的形式,但这类反应产率一般较低。间接光解则为反应系统中某一物质吸收光能后,再诱使另一种物质发生化学反应。 半导体在光的照射下,能将光能转化为化学能,促使化合物的合成或使化合物(有机物、无机物)分解的过程称之为半导体光催化。半导体光催化是光化学反应的一个前沿研究领域,它能使许多通常情况下难以实现或不可能进行的反应在比较温和的条件下顺利进行。与传统技术相比,光催化技术具有两个最显著的特征:第一,光催化是低温深度反应技术。光催化氧化可在室温下将水、空气和土壤中有机污染物等完全氧化二氧化碳和水等产物。第二,光催化可利用紫外光或太作为光源来活化光催化剂,驱动氧化-还原反应,达到净化目的,对净化受无机重金属离子污染的废水及回收贵金属亦有显著效果。 二.TiO2的性质及光催化原理 许多半导体材料(如TiO2,ZnO,Fe2O3,ZnS,CdS等)具有合适的能带结构可以作为光催化剂。但是,由于某些化合物本身具有一定的毒性,而且有的半导体在光照下不稳定,存在不同程度的光腐蚀现象。在众多半导体光催化材料中,TiO2以其化学性质稳定、氧化-还原性强、抗腐蚀、无毒及成本低而成为目前最为广泛使用的半导体光催化剂。 TiO2属于一种n型半导体材料,它有三种晶型——锐钛矿相、金红石相和板钛矿相,板

光纤 收发器的工作原理及使用方法

按网管来分,可以分为网管型光纤收发器和非网管型光纤收发器。随着网络向着可运营可管理的方向发展,大多数运营商都希望自己网络中的所有设备均能做到可远程网管的程度,光纤收发器产品与交换机、路由器一样也逐步向这个方向发展。对于可网管的光纤收发器还可以细分为局端可网管和用户端可网管。局端可网管的光纤收发器主要是机架式产品,多采用主从式的管理结构,即一个主网管模块可串联N个从网管模块,每个从网管模块定期轮询它所在子架上所有光纤收发器的状态信息,向主网管模块提交。主网管模块一方面需要轮询自己机架上的网管信息,另一方面还需收集所有从子架上的信息,然后汇总并提交给网管服务器。如武汉烽火网络所提供的OL200系列网管型光纤收发器产品支持1(主)+9(从)的网管结构,一次性最多可管理150个光纤收发器。 用户端网管主要可以分为三种方式:第一种是在局端和客户端设备之间运行特定的协议,协议负责向局端发送客户端的状态信息,通过局端设备的CPU来处理这些状态信息,并提交给网管服务器;第二种是局端的光纤收发器可以检测到光口上的光功率,因此当光路上出现问题时可根据光功率来判断是光纤上的问题还是用户端设备的故障;第三种是在用户端的光纤收发器上加装主控CPU,这样网管系统一方面可以监控到用户端设备的工作状态,另外还可以实现远程配置和远程重启。在这三种用户端网管方式中,前两种严格来说只是对用户端设备进行远程监控,而第三种才是真正的远程网管。但由于第三种方式在用户端添加了CPU,从而也增加了用户端设备的成本,因此在价格方面前两种方式会更具优势一些。目前大多数厂商的网管系统都是基于SNMP网络协议上开发的,支持包括Web、Telnet、CLI等多种管理方式。管理内容多包括配置光纤收发器的工作模式,监视光纤收发器的模块类型、工作状态、机箱温度、电源状态、输出电压和输出光功率等等。随着运营商对设备网管的需求愈来愈多,相信光纤收发器的网管将日趋实用和智能。 ·按电源分类: 内置电源光纤收发器:内置开关电源为电信级电源 外置电源光纤收发器:外置变压器电源多使用在民用设备上 按电源来分,可以分为内置电源和外置电源两种。其中内置开关电源为电信级电源,而外置变压器电源多使用在民用设备上。前者的优势在于能支持超宽的电源电压,更好地实现稳压、滤波和设备电源保护,减少机械式接触造成的外置故障点;后者的优势在于设备体积小巧和价格便宜。

无线通讯模块介绍

cc1100/RF1100SE、NRF905、NRF903、nRF24L01无线收发模块开发指南简介 cc1100/RF1100SE微功率无线数传模块 基本特点: (1) 工作电压:~,推荐接近,但是不超过(推荐) (2) 315、433、868、915MHz的ISM 和SRD频段 (3) 最高工作速率500Kbps,支持2-FSK、GFSK和MSK调制方式 (4) 可软件修改波特率参数,更好地满足客户在不同条件下的使用要求高波特率:更快的数据传输速率 低波特率:更强的抗干扰性和穿透能力,更远的传输距离 (5) 高灵敏度(下-110dBm,1%数据包误码率) (6) 内置硬件CRC 检错和点对多点通信地址控制 (7) 较低的电流消耗(RX中,,,433MHz) (8) 可编程控制的输出功率,对所有的支持频率可达+10dBm (9) 无线唤醒功能,支持低功率电磁波激活功能,无线唤醒低功耗睡眠状态的设备 (10) 支持传输前自动清理信道访问(CCA),即载波侦听系统 (11) 快速频率变动合成器带来的合适的频率跳跃系统 (12) 模块可软件设地址,软件编程非常方便 (13) 标准DIP间距接口,便于嵌入式应用 (14) 单独的64字节RX和TX数据FIFO (15) 传输距离:开阔地传输300~500米(视具体环境和通信波特率设定情况等而定) (16) 模块尺寸:29mm *12mm( 上述尺寸不含天线,标配4.5CM长柱状天线) cc1100/RF1100SE微功率无线数传模块应用领域:极低功率UHF无线收发器,315/433/868/915MHz的ISM/SRD波段系统, AMR-自动仪表读数,电子消费产品,远程遥控控制,低功率遥感勘测,住宅和建筑自动控制,无线警报和安全系统, 工业监测和控制,无线传感器网络,无线唤醒功能,低功耗手持终端产品等 详细的cc1100/RF1100SE模块开发文档可到下载 NRF905无线收发模块 基本特点: (1) 433Mhz 开放 ISM 频段免许可证使用 (2) 接收发送功能合一,收发完成中断标志 (3) 170个频道,可满足多点通讯和跳频通讯需求,实现组网通讯,TDMA-CDMA-FDMA (4) 内置硬件8/16位CRC校验,开发更简单,数据传输可靠稳定 (5) 工作电压,低功耗,待机模式仅 (6) 接收灵敏度达-100dBm (7) 收发模式切换时间 < 650us

光催化原理、应用

广州和风环境技术有限公司 https://www.doczj.com/doc/107350701.html,/ 光催化原理、应用及常见问题 更多有关废气处理核心技术,请百度:和风环境技术。接下来和风带领大家认识一下。 随着全球工业化进程的加速,环境污染问题日益严重,环境治理已受到世界各国的广泛重视,其中政府在环境治理方面投入了巨大的人力、物力和财力对环境净化材料和环境净化技术的研究和产业化提供支持,其中,光催化材料和光催化技术占有重要的地位。TiO2是一种常用的光催化材料,具有活性高、稳定性好,几乎可以无选择地将有机物进行氧化,不产生二次污染,对人体无害,价格便宜等诸多优点,成为最受重视和具有广阔应用前景的光催化材料。 光催化材料在紫外光或太阳光的作用下,激发价带上的电子(e-)跃迁到导带,在价带上产生相应的空穴(h+),光生空穴与光催化材料表面的水反应,生成羟基自由基,而光生电子与光催化剂表面的氧反应,生成超氧负离子。羟基自由基和超氧负离子具有较强的氧化还原电位,可将挥发性有机物氧化分解成无害的CO2和H2O,达到净化空气、分解挥发性有机物的目的。二氧化钛光催化材料在光照下能一直持续释放自由基,对挥发性有机物进行氧化分解,而自己不发生变化,具有长期活性。

广州和风环境技术有限公司 https://www.doczj.com/doc/107350701.html,/ 1、光催化反应原理 羟基自由基和超氧负离子是除氟之外,最强的氧化剂,但是氟对人体和环境有着巨大的危害,在很多场合不再使用。 2、常温催化材料 光催化材料是一种常温催化材料,可在室温及稍高温度下进行反应(通常低于65℃)。提高光催化材料性能的途径有三个:一个是降低纳米催化材料粒子的粒径,目的在于提高光催化材料的比表面积;二是通过金属掺杂、过渡金属掺杂和非金属离子掺杂改变半导体催化剂的性质来提高光催化性能;三是通过表面修饰和敏化,改变半导体催化剂的表面的形貌和结构,而引起表面性能的优化。 3、光催化材料应用中的影响因素 湿度的影响:光催化反应中,羟基自由基来源于水,所以必须保持有一定的湿度才能持续产生羟基自由基;在闭环的光催化反应中,已经证实随着水的不断消耗,光催化性能在不断的下降。 氧分量的影响:光催化反应中,超氧负离子来源于氧,所以在21%含量的

光接收机的结构及原理

第三部分光接收机的结构及原理 在有线电视HFC网络中,光接收机通常位于光纤接点和有线电视的前端位置,它的主要功能是把光信号转变为RF信号,前面已经详细讲述了光探测器、光接收组件的原理及应用。光探测器是实现光/电转换的关键部件,其质量的优劣决定了光接收机的性能指标与档次,光接收组件是光探测器与前置放大器的组合,在光接收机中,无论是分离组件还是一体组件,该部分的成本比重都比较大,与光发射机的激光器一样,不仅决定了光接收机的性能指标,还将决定光接收机的价格。光接收的整机组成主要由光接收组件、功率放大模块及其附属功能电路组成,除光接收组件外,功率放大模块是光接收机的第二大核心元件。即使是采用相同的组件,由于采用不同档次、不同价位的放大模块组合,整机也会有显著不同。有线电视技术发展到今天,光接收机采用分离元件制作放大模块已不多见,基本上全采用集成一体化组件结构。该结构模块大多属于厚膜集成电路,它是用丝网印刷和烧结等工艺在同一陶瓷基片上制作无源网源,并在其上组装分立的半导体芯片或单片集成电路、放大三极管管芯等,另外再外加塑料密封,防止潮气、杂质的进入。 一、光接收机常用的放大模块介绍 能用于光接收机的模块有众多型号,排除品牌命名的差异,根据放大模块的增益划分有14dB、18dB、20dB、22dB、27dB等,用于单模块放大器的34dB的放大模块在光接收机中少有应用,当然也不排除低档光接收机应用的可能。根据放大模块具体放大电路结构的

不同划分:有推挽放大模块、功率倍增放大模块两种,而根据放大元件工艺的不同,放大模块又分为硅放大工艺、砷化镓工艺两种,在光接收机中采用的模块的命名,一般以推挽和功率倍增为主要区分,同时附加增益的差异与器件工艺,如果不说是砷化镓工艺模块则所说的放大模块一般都是指硅工艺。 1.推挽放大模块的原理及结构。在实用的放大电路中,三极管的集电极并非总有电流流过,根据集中极电流导通时间的长短,通常把放大器分成甲类、乙类、丙类等。在输入信号的整个周期中都有电流流过集电极的放大器称为甲类放大器;只有在输入信号的半个周期内有集中极电流的放大器称为乙类放大器;在小于输入信号半个周期内有集中极电流的放大器称为丙类放大器。在许多实用的放大电路中,为了提高放大效率通常都需要把工作点移到截止区,即采用半周导通的乙类工作状态,这时若仍采用一个晶体管,输出信号中将只出现一半波形,将发生严重的截止失真。为了解决这个问题,可采用两只特性完全相同的晶体管,使其中一只晶体管在正半周导通,另一晶体管在负半周导通,最后在负载上合成完整波形,这就是推挽放大电路。下图是推挽放大电路的结构示意图: 输入信号经过高频传输变压器B1,反相加在晶体管VT1和V T2上,被放大后各自在半个周期内产生半个波,在变压器B2上反相叠加,重新合成完整波形输出,由于输出信号反相叠加,其中的直流分量和非线性失真中的偶次谐波互相抵消。降低了直流工作点,使变压器中流过电流减少,从而体积可以做得较小,进一步提高了放大器

无线模块通讯原理及硬件概要

3.1无线通信模块工作原理及硬件设计(此工作方式正测试没有完成) 无线通信模块的发射与接收主要采用nRF401作为主工作核心, nRF401是工作在433MHz ISM频段的单片无线收发芯片。nRF401最大传输速率为20kbps,可以和各种单片机和微控制器连接,控制简单方便。配合简单的通信协议,就可以使用nRF401实现无线数据传输。采用点对多点半双工通信机制,设计一个简单有效的通信协议,实现对所采集到的数据进行有效传送。最简单的多机通信方式就是使用串行通信,所以使用单片机串行口配合nRF401芯片,就可以实现简单有效的点对多点通信。其工作原理图如图3-3-1所示 图3-3-1 无线通信原理图 常用的点对多点通信方式有星状和链状两种。 如图.3-3-2系统由一台中央监控设备CMS (Central Monitoring System)和多台远程终端设备MRTU(Multiple Remote Termial Unit)构成点对多点多任务无线通信系统。在中央监控设备CMS 与远程终端RTU(Remote Termial Unit)之间用多台中转设备Tran作为中转站,以便起到暂存数据和延伸距离的作用。中转站之间,以单向通信方式进行传递数据。 如图 3-3--3系统由一台中央监控设备CMS和多台远程终端设备MRTU构成点对多点多任务无线通信系统。在中央监控设备CMS 与每一台远程终端RTU(Remote Termial Unit)都以双向通信方式进行传递数据。特别适用于数据量大,对时间要求较高的场合。 所以采用星状点对多点通信方式,以一台主机为中心,多台分机各自独立的方法,即使其中一台分机不能正常工作,也不会影响其它分机,不像链状点对多

光催化原理及应用

姓学号:0903032038 合肥学院 化学与材料工程系 固 体 物 理 姓名:杜鑫鑫 班级:09无机非二班 学号:0903032038 课题名称:光催化原理及应用 指导教师:韩成良

光催化原理及应用 引言:目前,全球性环境污染问题受到广泛重视。光催化反应可对污水中的农 药、染料等污染物进行降解,还能够处理多种有害气体;光催化还可应用于贵金属回收、化学合成、卫生保健等方面。光催化反应在化工、能源及环境等领域都有广阔的应用前景。本文论述了主要光催化剂类型及光催化技术的应用研究成果。 关键词:光催化、应用、发展、环境、处理 光催化机理: 半导体材料在紫外及可见光照射下,将光能转化为化学能,并促进有机物的合成与分解,这一过程称为光催化。当光能等于或超过半导体材料的带隙能量时,电子从价带(VB)激发到导带(CB)形成光生载流子(电子-空穴对)。 在缺乏合适的电子或空穴捕获剂时,吸收的光能因为载流子复合而以热的形式耗散。价带空穴是强氧化剂,而导带电子是强还原剂。大多数有机光降解是直接或间接利用了空穴的强氧化能力。 例如TiO 2 是一种半导体氧化物,化学稳定性好(耐酸碱和光化学腐蚀), 无毒,廉价,原料来源丰富。 TiO 2 在紫外光激发会产生电子-空穴对,锐钛 型TiO 2 激发需要3.2 eV的能量,对应于380 nm左右的波长。光催化活性高(吸收紫外光性能强;能隙大,光生电子的还原性和和空穴的氧化性强)。因此其广泛应用于水纯化,废水处理,有毒污水控制,空气净化,杀菌消毒等领域。 主要的光催化剂类型: 1.1 金属氧化物或硫化物光催化剂 常见的金属氧化物或硫化物光催化剂有TiO,、ZnO、WO 3、Fe 2 O 3 、ZnS、CdS 和PbS等。其中,CdS的禁带宽度较小,与太阳光谱中的近紫外光段有较好的匹配性,可以很好地利用自然光源,但容易发生光腐蚀,使用寿命有限。TiO,具

无线、射频收发模块大全

无线收发模块大全 本文中着重通过几种实用的无线收发模块的剖析为你逐步揭开无线收发的原理,应用和结构,希望对你有所裨益! 无线数据传输广泛地运用在车辆监控、遥控、遥测、小型无线网络、无线抄表、门禁系统、小区传呼、工业数据采集系统、无线标签、身份识别、非接触RF智能卡、小型无线数据终端、安全防火系统、无线遥控系统、生物信号采集、水文气象监控、机器人控制、无线232 数据通信、无线485/422数据通信、数字音频、数字图像传输等领域中。

这是DF发射模块,体积:19x19x8毫米,右边是等效的电路原理图 主要技术指标: 1。通讯方式:调幅AM 2。工作频率:315MHZ (可以提供433MHZ,购货时请特别注明) 3。频率稳定度:±75KHZ 4。发射功率:≤500MW 5。静态电流:≤0.1UA 6。发射电流:3~50MA 7。工作电压:DC 3~12V DF数据发射模块的工作频率为315M,采用声表谐振器SAW稳频,频率稳定度极高,当环境温度在-25~+85度之间变化时,频飘仅为3ppm/度。特别适合多发一收无线遥控及数据传输系统。声表谐振器的频率稳定度仅次于晶体,而一般的LC振荡器频率稳定度及一致性较差,即使采用高品质微调电容,温差变化及振动也很难保证已调好的频

点不会发生偏移。 DF发射模块未设编码集成电路,而增加了一只数据调制三极管Q1,这种结构使得它可以方便地和其它固定编码电路、滚动码电路及单片机接口,而不必考虑编码电路的工作电压和输出幅度信号值的大小。比如用PT2262等编码集成电路配接时,直接将它们的数据输出端第17脚接至DF数据模块的输入端即可。 DF数据模块具有较宽的工作电压范围3~12V,当电压变化时发射频率基本不变,和发射模块配套的接收模块无需任何调整就能稳定地接收。当发射电压为3V时,空旷地传输距离约20~50米,发射功率较小,当电压5V时约100~200米,当电压9V时约300~500米,当发射电压为12V时,为最佳工作电压,具有较好的发射效果,发射电流约60毫安,空旷地传输距离700~800米,发射功率约500毫瓦。当电压大于l2V时功耗增大,有效发射功率不再明显提高。这套模块的特点是发射功率比较大,传输距离比较远,比较适合恶劣条件下进行通讯。天线最好选用25厘米长的导线,远距离传输时最好能够竖立起来,因为无线电信号传输时收很多因素的影响,所以一般实用距离只有标称距离的20%甚至更少,这点需要在开发时注意考虑。 DF数据模块采用ASK方式调制,以降低功耗,当数据信号停止时发射电流降为零,数据信号与DF发射模块输入端可以用电阻或者直接连接而不能用电容耦合,否则DF发射模块将不能正常工作。数据电平

经典无线收发模块

10套起卖发射板主要参数 工作频率:315M Hz 工作电压:DC5V 编码IC:PT2262 脚位说明: GND VCC 10 11 12 13 GND为- VCC为+ 10 11 12 13 为信号输入 接收板主要参数 工作频率:315M 工作电压:DC5V 工作电流:≤3mA(5.0VDC) 编码芯片:SC2272-T4(自锁)

脚位说明:GND VCC D0 D1 D2 D3 VT 灵敏度:优于-105dBm(50Ω) 遥控距离:50-1000米(开阔地) 接收模块的七根引脚分别为VT.D3、D2、D1、D0、VCC,GND,其中VCC为DC5V的供电端,GND 为接地端,VT端为解码有效输出端,只要发射器的数据码有输出,VT都能同步输出高电平;D3、D2、D1、D0是2272解码芯片的四位数据输出端,有信号时能输出5V左右的高电平,驱动电流约2mA,与发射器的四位数据码输出一一对应。接收模块不焊天线也能接收信号,为提高接收灵敏度,可以用一根长度约为23厘米的软导线直接焊接到天线孔处,图中RC 所指的是振荡电阻,接收模块和发射器的震荡电阻需要匹配才能工作,发射器可以用我店固定码四键遥控器或者带编码四路发射模块,如与其他发射器配套,则必须提供发射器相关参数。 下图是带解码的超再生接收模块等效电路图

固定编码接收模块测试图(此图为原理图,以模块上的管脚位置为准,10、11、12、13即为上图中的D3、D2、D1、D0引脚) 编码解码芯片PT2262/PT2272芯片原理

PT2262/2272是台湾普城公司生产的一种CMOS工艺制造的低功耗低价位通用编解码电路,PT2262/2272最多可有12位(A0-A11)三态地址端管脚(悬空,接高电平,接低电平),任意组合可提供531441地址码,PT2262最多可有6位(D0-D5)数据端管脚,设定的地址码和数据码从17脚串行输出,可用于无线遥控发射电路。 编码芯片PT2262发出的编码信号由:地址码、数据码、同步码组成一个完整的码字,解码芯片PT2272接收到信号后,其地址码经过两次比较核对后,VT脚才输出高电平,与此同时相应的数据脚也输出高电平,如果发送端一直按住按键,编码芯片也会连续发射。当发射机没有按键按下时,PT2262不接通电源,其17脚为低电平,所以315MHz的高频发射电路不工作,当有按键按下时,PT2262得电工作,其第17脚输出经调制的串行数据信号,当17脚为高电平期间315MHz的高频发射电路起振并发射等幅高频信号,当17脚为低平期间315MHz的高频发射电路停止振荡,所以高频发射电路完全收控于PT2262的17脚输出的数字信号,从而对高频电路完成幅度键控(ASK调制)相当于调制度为100%的调幅。

无线DMX512控制器收发模块

无线DMX512收发模块 简介: 无线DMX512收发模块以无线的方式传输标准的DMX512数据,也可传输灯具与灯具间的联机数据。该产品彻底解决了灯光控制台与灯,灯与灯之间数据的无线传输,完全去掉长期以来所依赖的双绞线。在数据的传输过程中做到无时延,数据实时可靠! 该产品采用2.4G全球开放ISM频段,免许可证使用.高效GFSK调制,32频道自由选择,抗干扰能力强. 该模块历经多次改进最终成熟,以低廉的价格直接提供用户,使用成熟易用的接口,将以往难以驾驭的协议栈开发过程简化为串口与IO 口的简单操作,详细严谨的技术参数保证用户完全掌控网络性能,帮助客户实现“稳定高效,直接上手,一天做项目”。 模块为全速单向收发,发射模块只发不收,接收模块只收不发,在通信范围内可以一发多收,理论上接收模块数量不受限制。 适合领域: DMX512舞台灯光产品的升级换代 产品外观: 发送模块接收模块 产品性能指标 1.产品名称: 2.4G无线DMX512收发模板 2.体积小巧,便于嵌入灯具内部使用 3.传输标准的DMX512控台数据,也可传输灯具与灯具间的联机数据 4.32组ID编码可设置,用户可在一个地方使用独立的32组无线网络而互不干扰.

5.输入电压: DC3V-DC3.6V 6.工作频段:2400-2483.5 MHz 7.输出功率: -10 dBm -- 22.5 dBm(实测符合标称) 8.接收灵敏度: -97 dBm(实测符合标称) 9.信号改善:6dB(实测符合标称) 10.接收电流:25Ma 11.149mA(@ 19 dBm) 12.信号接口: CPU串行口AURT 产品优势 1.本模块体积小,信号好,比同类产品都高5dB以上! 2.产品稳定可靠,性能卓越。超大规模网络实际组网经验,多个工程实践的组网方案,常年运行未出故障! 3.从工程出发细致入微的细节控制。可选独特的拨码设置地址方式,极大方便大规模网络工程实施! 与灯具DMX接口联接示意图: 设计建议: 尽可能让模板的5V供电电源与灯具的其电路板5V供电分开

光催化材料的基本原理

二,光催化材料的基本原理 半导体在光激发下,电子从价带跃迁到导带位置,以此,在导带形成光生电子,在价带形成光生空穴。利用光生电子-空穴对的还原氧化性能,可以降解周围环境中的有机污染物以及光解水制备H2和O2。 高效光催化剂必须满足如下几个条件:(1)半导体适当的导带和价带位置,在净化污染物应用中价带电位必须有足够的氧化性能,在光解水应用中,电位必须满足产H2和产O2的要求。(2)高效的电子-空穴分离能力,降低它们的复合几率。(3)可见光响应特性:低于420nm左右的紫外光能量大概只占太阳光能的4%,如何利用可见光乃至红外光能量,是决定光催化材料能否在得以大规模实际应用的先决条件。常规anatase-type TiO2 只能在紫外光响应,虽然通过搀杂改性,其吸收边得以红移,但效果还不够理想。因此,开发可见光响应的高效光催化材料是该领域的研究热点。只是,现在的研究状况还不尽人意。 三,光催化材料体系的研究概况 从目前的资料来看,光催化材料体系主要可以分为氧化物,硫化物,氮化物以及磷化物 氧化物:最典型的主要是TiO2及其改性材料。目前,绝大部分氧化物主要集中在元素周期表中的d区,研究的比较多的是含Ti,Nb,

Ta的氧化物或复合氧化物。其他的含W,Cr,Fe,Co,Ni,Zr等金属氧化物也见报道。个人感觉,d区过渡族金属元素氧化物经过炒菜式的狂轰乱炸后,开发所谓的新体系光催化已经没有多大潜力。目前,以日本学者J. Sato为代表的研究人员,已经把目光锁定在p区元素氧化物上,如含有Ga,Ge,Sb,In,Sn,Bi元素的氧化物。 硫化物:硫化物虽然有较小的禁带宽度,但容易发生光腐蚀现象,较氧化物而言,稳定性较差。主要有ZnS,CdS等 氮化物:也有较低的带系宽度,研究得不多。有Ta/N,Nb/N等体系 磷化物:研究很少,如GaP 按照晶体/颗粒形貌分类: (1)层状结构 **半导体微粒柱撑于石墨及天然/人工合成的层状硅酸盐 **层状单元金属氧化物半导体如:V2O5,MoO3,WO3等 **钛酸,铌酸,钛铌酸及其合成的碱(土)金属离子可交换层状结构和半导体微粒柱撑于层间的结构 **含Bi层状结构材料,(Bi2O2)2+(An-1BnO3n+1)2- (A=Ba,Bi,Pb;B=Ti,Nb,W),钙钛矿层(An-1BnO3n+1)2-夹在(Bi2O2)2+层之间。典型的有:Bi2WO6,Bi2W2O9,Bi3TiNbO9

无线收发模块原理-详解教程文件

无线收发模块原理-详 解

用途DF无线数据收发模块 无线数据传输广泛地运用在车辆监控、遥控、遥测、小型无线网络、无线抄表、门禁系统、小区传呼、工业数据采集系统、无线标签、身份识别、非接触RF智能卡、小型无线数据终端、安全防火系统、无线遥控系统、生物信号采集、水文气象监控、机器人控制、无线232数据通信、无线485/422数据通信、数字音频、数字图像传输等领域中。 1.With my own ears I clearly heard the heart beat of the nuclear bomb. 我亲耳清楚地听到原子弹的心脏的跳动。 2.Next year the bearded bear will bear a dear baby in the rear. 3.明年,长胡子的熊将在后方产一头可爱的小崽. 4. 3. Early I searched through the earth for earth ware so as to research in earthquake. 早先我在泥土中搜寻陶器以研究地震.

这是DF发射模块,体积:19x19x8毫米,右边是等效的电路原理图主要技术指标:

1。通讯方式:调幅AM 2。工作频率:315MHZ (可以提供433MHZ,购货时请特别注明)3。频率稳定度:±75KHZ 4。发射功率:≤500MW 5。静态电流:≤0.1UA 6。发射电流:3~50MA 7。工作电压:DC 3~12V 315MHZ发射模块 8元一个433MHZ发射模块 8元一个DF数据发射模块的工作频率为315M,采用声表谐振器SAW稳频,频率稳定度极高,当环境温度在-25~+85度之间变化时,频飘仅为3ppm/度。特别适合多发一收无线遥控及数据传输系统。声表谐振器的频率稳定度仅次于晶体,而一般的LC振荡器频率稳定度及一致性较差,即使采用高品质微调电容,温差变化及振动也很难保证已调好的频点不会发生偏移。 DF发射模块未设编码集成电路,而增加了一只数据调制三极管Q1,这种结构使得它可以方便地和其它固定编码电路、滚动码电路及单片机接口,而不必考虑编码电路的工作电压和输出幅度信

无线遥控模块PT2262控制原理

无线电遥控,就是利用无线电波对被控对象进行远距离控制,在工业控制、航空航天、家电领域应用广泛。 一、无线遥控模块的构成: 由发射部分和接收部分组成。 发射部分由,按键,编码芯片,315M调制器,功率放大电路等构成 其中编码部分电路由PT2262编码IC来组成,具体电路见图所示。 编码电路原理图

接收部分由无线信号接收电路,解码芯片构成 D0,D1,D2,D3 为按键状态输出端,当某个按键按下后,相应的数据端口就输出高电平,在这几个端口加一级放大就可以驱动继电器,功率三极管,进行负载遥控开关控制。也可以直接连到单片机的I/O脚上,通过单片机采集数据端口状态,然后进行外部控制。 二、编码解码芯片PT2262/PT2272 PT2262/2272是一对带地址、数据编码功能的无线遥控发射/接 收芯片。其中发射芯片PT2262-IR将载波振荡器、编码器和发射单 元集成于一身,使发射电路变得非常简洁。 接收芯片PT2272的数据输出位根据其后缀不同而不同,数据输出具有“暂存”和“锁存”两种方式,方便用户使用。后缀为“M”为“暂存型”,后缀为“L”为“锁存型”,其数据输出又分为0、2、4、6不同的输出,例如:PT2272-M4则表示数据输出为4位的暂存型无线遥控接收芯

片。 在通常使用中,我们一般采用8位地址码和4位数据码,这时编码芯片PT2262和解码芯片PT2272的第1~8脚为地址设定脚,有三种状

态可供选择:悬空、接正电源、接地三种状态,地址编码不重复度为38=6561组,只有发射端PT2262和接收端PT2272的地址编码完全相同,才能配对使用,遥控模块的生产厂家为了便于生产管理,出厂时遥控模块的PT2262和PT2272的八位地址编码端全部悬空,这样用户可以很方便选择各种编码状态,用户如果想改变地址编码,只要将PT2262和PT2272的1~8脚设置相同即可,例如将发射机的PT2262的第2脚接地,第3脚接正电源,其它引脚悬空,那么接收机的PT2272只要也第2脚接地,第3脚接正电源,其它引脚悬空就能实现配对接收。地址设置跳线如图7所示,用户可以在PCB板上直接将地址引脚(PCB板中间8个过孔焊盘)与L(低电平)或H(高电平)相连,从而实现地址设置。PT2262与PT2272地址设置要完全一样。当两者地址编码完全一致时,接收机对应的D1~D4端输出约4V互锁高电平控制信号,同时VT端也输出解码有效高电平信号。

光接收机的结构及原理(精)

第三部分光接收机的结构及原理 在有线电视 HFC 网络中, 光接收机通常位于光纤接点和有线电视的前端位置,它的主要功能是把光信号转变为 RF 信号,前面已经详细讲述了光探测器、光接收组件的原理及应用。光探测器是实现光 /电转换的关键部件,其质量的优劣决定了光接收机的性能指标与档次,光接收组件是光探测器与前置放大器的组合,在光接收机中, 无论是分离组件还是一体组件, 该部分的成本比重都比较大, 与光发射机的激光器一样, 不仅决定了光接收机的性能指标, 还将决定光接收机的价格。光接收的整机组成主要由光接收组件、功率放大模块及其附属功能电路组成, 除光接收组件外, 功率放大模块是光接收机的第二大核心元件。即使是采用相同的组件,由于采用不同档次、不同价位的放大模块组合, 整机也会有显著不同。有线电视技术发展到今天, 光接收机采用分离元件制作放大模块已不多见, 基本上全采用集成一体化组件结构。该结构模块大多属于厚膜集成电路, 它是用丝网印刷和烧结等工艺在同一陶瓷基片上制作无源网源, 并在其上组装分立的半导体芯片或单片集成电路、放大三极管管芯等, 另外再外加塑料密封,防止潮气、杂质的进入。 一、光接收机常用的放大模块介绍 能用于光接收机的模块有众多型号,排除品牌命名的差异,根据放大模块的增益划分有 14dB 、 18dB 、 20dB 、 22dB 、 27dB 等,用于单模块放大器的 34dB 的放大模块在光接收机中少有应用,当然也不排除低档光接收机应用的可能。根据放大模块具体放大电路结构的 不同划分:有推挽放大模块、功率倍增放大模块两种,而根据放大元件工艺的不同,放大模块又分为硅放大工艺、砷化镓工艺两种,在光接收机中采用的模块的命名, 一般以推挽和功率倍增为主要区分, 同时附加增益的差异与器件工艺, 如果不说是砷化镓工艺模块则所说的放大模块一般都是指硅工艺。 1.推挽放大模块的原理及结构。在实用的放大电路中,三极管的集电极并非总有电流流过, 根据集中极电流导通时间的长短, 通常把放大器分成甲类、乙类、丙类等。在输入信号的整个周期中都有电流流过集电极的放大器称为甲类放大器; 只

使用无线收发模块的3种方法

使用无线收发模块的3种方法 无线收发模块在智能家居中也经常接触到,那么到底有哪些无线收发模块呢,如何正确安装使用呢?下面小编具体给大家讲解下无线收发模块的相关知识。 无线收发模块的工作频率为315MHz或者433MHz(也有其他的特殊频率),采用声表谐振器SAW稳频,频率稳定度极高,当环境温度在-25~+85度之间变化时,频飘仅为3ppm/度。特别适合多发一收无线遥控及数据传输系统。声表谐振器的频率稳定度仅次于晶体,而一般的LC振荡器频率稳定度及一致性较差,即使采用高品质微调电容,温差变化及振动也很难保证已调好的频点不会发生偏移。 无线收发模块采用ASK方式调制,以降低功耗,当数据信号停止时发射电流降为零,数据信号与发射模块输入端可以用电阻或者直接连接而不能用电容耦合,否则发射模块将不能正常工作。数据电平应接近数据模块的实际工作电压,以获得较高的调制效果。 正确使用无线收发模块的3种方法 无线收发模块的工作频率为315MHz或者433MHz(也有其他的特殊频率),采用声表谐振器SAW稳频,频率稳定度极高,当环境温度在-25~+85度之间变化时,频飘仅为3ppm/度。特别适合多发一收无线遥控及数据传输系统。声表谐振器的频率稳定度仅次于晶体,而一般的LC振荡器频率稳定度及一致性较差,即使采用高品质微调电容,温差变化及振动也很难保证已调好的频点不会发生偏移。那么如何正确使用无线收发模块呢?下面小编给大家介绍下3种方法。 1、用于组建星型拓扑结构的无线通讯网络。并且必需是多点的星型拓扑结构,某些非凡场所需要无线通讯。一方面这种发射和接收模块的价格低廉,构成星型拓扑结构的费用相对较低;另一方面这种发射和接收模块可采用模块化设计,体积小、使用方便、易于集成。对于通讯速度要求不太高、距离较近的无线网络来说,这种发射和接收模块十分实用。 2、用于无线多通道(并行)控制。如复杂的遥控机器人等,某些场所需要多通道(并行)

基于51单片机315MHz无线收发模块调试程序

315Mhz 无线通信程序原理: 第一块单片机p1.0 口输出脉冲方波提供给无线发射模块,无线发射模块将信号以电磁波的形式传到无线接收模块。 无线接收模块会根据这个电磁波还原出脉冲方波提供给第二块单片机,第二块单片机进行进一步的解算处理。 通信协议: 根据这个原理和315模块的特性。 我决定以900us 高电平和2000us 底电平表示1; 450us 高电平和2000us 低电平表示0。 而8个1或0组成一个字节。为了防止误码, 所以在每个字节的前面加一个2ms 高电平和2ms 低电平的起始码。 每个5S 发送一个字符,一个字符发送20 遍

*******************************/ /**************************** 315Mhz 无线通信程序 发送程序11.0592M 晶振 1 机器周期=1.0851us 定时器产生2MS 定时 TH0=0XF8;TL0=0XCD; 900us 定时 TH0=0XFC;TL0=0XC3; 450us 定时 TH0=0XFE;TL0=0X61; *******************************/ #include #include "intrins.h" #define uint unsigned int #define uchar unsigned char sbit WXSEND=P1^0; uchar timedata[8]={0xfe,0x61,0xfc,0xc3,0xf8,0xcd,0xea,0x66};// 450us, 900us,2MS,6ms /************************************* 11.0592MHZ 下500 毫秒延时,还准 ***************************************/

光催化的原理

光催化原理 光催化净化是基于光催化剂在紫外线照射下具有的氧化还原能力而净化污染物。 光催化原理 半导体光催化剂大多是n型半导体材料(当前以为TiO2使用最广泛)都具有区别于金属或绝缘物质的特别的能带结构,即在价带(ValenceBand,VB)和导带(ConductionBand,CB)之间存在一个禁带(ForbiddenBand,BandGap)。由于半导体的光吸收阈值与带隙具有式K=1240/Eg(eV)的关系,因此常用的宽带隙半导体的吸收波长阈值大都在紫外区域。当光子能量高于半导体吸收阈值的光照射半导体时,半导体的价带电子发生带间跃迁,即从价带跃迁到导带,从而产生光生电子(e-)和空穴(h+)。此时吸附在纳米颗粒表面的溶解氧俘获电子形成超氧负离子,而空穴将吸附在催化剂表面的氢氧根离子和水氧化成氢氧自由基。而超氧负离子和氢氧自由基具有很强的氧化性,能将绝大多数的有机物氧化至最终产物CO2和H2O,甚至对一些无机物也能彻底分解。 光催化应用技术 利用光催化净化技术去除空气中的有机污染物具有以下特点: 1直接用空气中的氧气做氧化剂,反应条件温和(常温常压) 2可以将有机污染物分解为二氧化碳和水等无机小分子,净化效果彻底。 3半导体光催化剂化学性质稳定,氧化还原性强,成本低,不存在吸附饱和现象,使用寿命长。光催化净化技术具有室温深度氧,二次污染小,运行成本低和可望利用太阳光为反应光源等优点,所以光催化特别合适室内挥发有机物的净化,在深度净化方面显示出了巨大的应用潜力。 常见的光催化剂多为金属氧化物和硫化物,如TiO2, ZnO,CdS,WO3等,其中TiO2的综合性能最好,应用最广。自1972年Fujishima和Honda发现在受辐照的TiO2上可以持续发生水的氧化还原反应,并产生H2以来,人们对这一催化反应过程进行了大量研究。结果表明,TiO2具有良好的抗光腐蚀性和催化活性,而且性能稳定,价廉易得,无毒无害,是

光催化原理及应用

光催化原理及应用 起源 光触媒,就就是一个外来词,起源于日本,由于日本文字写成“光触媒”,所以中国人就直接把她命名为“光触媒”。其实日文“光触媒”翻译成中文应该叫“光催化剂”翻译成英文叫“photo catalyst”。光触媒于1967年被当时还就就是东京大学研究生得藤岛昭教授发现。在一次试验中对放入水中得氧化钛单结晶进行了光线照射,结果发现水被分解成了氧与氢。这一效果作为“ 本多· 藤岛效果” (Honda-Fujishima Effect)而闻名于世,该名称组合了藤岛教授与当时她得指导教师----东京工艺大学校长本多健一得名字。 这种现象相当于将光能转变为化学能,以当时正值石油危机得背景,世人对寻找新能源得期待甚为殷切, 因此这一技术作为从水中提取氢得划时代方法受到了瞩目,但由于很难在短时间内提取大量得氢气,所以利用于新能源得开发终究无法实现,因此在轰动一时后迅速降温。 1992年第一次二氧化钛光触媒国际研讨会在加拿大举行, 日本得研究机构发表许多关于光触媒得新观念,并提出应用于氮氧化物净化得研究成果。因此二氧化钛相关得专利数目亦最多,其它触媒关连技术则涵盖触媒调配得制程、触媒构造、触媒担体、触媒固定法、触媒性能测试等。以此为契机,光触媒应用于抗菌、防污、空气净化等领域得相关研究急剧增加,从1971年至2000年6月总共有10,717件光触媒得相关专利提出申请。二氧化钛TiO 2 光触媒得广泛应用,将为人们带来清洁得环境、健康得身体。 催化剂就就是加速化学反应得化学物质,其本身并不参加反应。典型得天然光催化剂就就就是我们常见得叶绿素,在植物得光合作用中促进空气中得二氧化碳与水合成为氧气与碳水化合物。 光触媒就就是一种纳米级得金属氧化物材料,它涂布于基材表面,在光线得作用下,产生强烈催化降解 功能:能有效地降解空气中有毒有害气体;能有效杀灭多种细菌,并能将细菌或真菌释放出得毒素分解及无害化处理;同时还具备除臭、抗污等功能。光催化就就是在光得辐照下使催化剂周围得氧气与水转化成极具活性得氧自由基,氧化力极强,几乎可以分解所有对人体或环境有害得有机物质总得来说纳米光触媒技术就就是一种纳米仿生技术,用于环境净化,自清洁材料,先进新能源,癌症医疗,高效率抗菌等多个前沿领域。 早在1839 年, Becquere 就发现了光电现象,然而未能对其进行理论解释。直到1955 年,Brattain 与Gareet才对光电现象进行了合理得解释, 标志着光电化学得诞生。1972年, 日本东京大学Fu jishmi a与H onda研究发现[ 3] ,利用二氧化钛单晶进行光催化反应可使水分解成氢与氧。这一开创性得工作标志着光电现象应用于光催化分解水制氢研究得全面启动。在过去30 年里, 人们在光催化材料开发与应用方面得研究取得了丰硕得成果。 以二氧化钛为例, 揭示了其晶体结构、表面羟基自由基以及氧缺陷对量子效率得影响机制; 采用元素掺杂、复合半导体以及光敏化等手段拓展其光催化活性至可见光响应范围; 通过在其表面沉积贵金属纳米颗粒可以提高电子- 空穴对得分离效率,提高其光催化活性。尽管人们对光催化现象得认知与应用取得了长足得进步, 然而受认知手段与认知水平得限制,目前对光催化作用机理得研究成果仍不足以指导光催化技术得大规模工业化应用, 亟待大力开展光催化基本原理研究工作以促进这一领域得发展。另一方面, 现有光催化材料得光响应范围窄, 量子转换效率低,太阳能利用率低, 依然就就是制约光催化材料应用得瓶颈。寻找与制备高量子效率光催化材料就就是实现光能转换得先决条件, 也就就是光催化材料研究者所需要解决得首要任务之一。 光催化机理: 半导体材料在紫外及可见光照射下,将光能转化为化学能,并促进有机物得合成与分解,这一过程称为光催化。当光能等于或超过半导体材料得带隙能量时,电子从价带(VB)激发到导带(CB)形成光生载流子(电子-空穴对)。在缺乏合适得电子或空穴捕获剂时,吸收得光能因为载流子复合而以热得形式

相关主题
文本预览
相关文档 最新文档