当前位置:文档之家› ANSYS—接触单元说明

ANSYS—接触单元说明

ANSYS—接触单元说明
ANSYS—接触单元说明

参考ANSYS的中文帮助文件

接触问题(参考ANSYS的中文帮助文件)

当两个分离的表面互相碰触并共切时,就称它们牌接触状态。在一般的物理意义中,牌接触状态的表面有下列特点:

1、不互相渗透;

2、能够互相传递法向压力和切向摩擦力;

3、通常不传递法向拉力。

接触分类:刚性体-柔性体、柔性体-柔性体

实际接触体相互不穿透,因此,程序必须在这两个面间建立一种关系,防止它们在有限元分析中相互穿过。

――罚函数法。接触刚度

――lagrange乘子法,增加一个附加自由度(接触压力),来满足不穿透条件――将罚函数法和lagrange乘子法结合起来,称之为增广lagrange法。

三种接触单元:节点对节点、节点对面、面对面。

接触单元的实常数和单元选项设臵:

FKN:法向接触刚度。这个值应该足够大,使接触穿透量小;同时也应该足够小,使问题没有病态矩阵。FKN值通常在0.1~10之间,对于体积变形问题,用值1.0(默认),对弯曲问题,用值0.1。

FTOLN:最大穿透容差。穿透超过此值将尝试新的迭代。这是一个与接触单元下面的实体单元深度(h)相乘的比例系数,缺省为0.1。此值太小,会引起收敛困难。

ICONT:初始接触调整带。它能用于围绕目标面给出一个“调整带”,调整带内任何接触点都被移到目标面上;如果不给出ICONT值,ANSYS根据模型的大小提供一个较小的默认值(<0.03=

PINB:指定近区域接触范围(球形区)。当目标单元进入pinball区时,认为它处于近区域接触,pinball区是围绕接触单元接触检测点的圆(二维)或球(三维)。可以用实常数PINB调整球形区(此方法用于初始穿透大的问题是必要的)PMIN和PMAX:初始容许穿透容差。这两个参数指定初始穿透范围,ANSYS把整个目标面(连同变形体)移到到由PMIN和PMAX指定的穿透范围内,而使其成为闭合接触的初始状态。初始调整是一个迭代过程,ANSYS最多使用20个迭代步把目标面调整到PMIN和PMAX范围内,如果无法完成,给出警告,可能需要修改几何模型。

TAUMAX:接触面的最大等效剪应力。给出这个参数在于,不管接触压力值多大,只要等效剪应力达到最大值TAUMAX,就会发生滑动。该剪应力极限值通常用于接触压力会变得非常大的情况。

CNOF:指定接触面偏移。+CNOF增加过盈、-CNOF减少过盈或产生间隙、CNOF能与几何穿透组合应用。

FKOP:接触张开弹簧刚度。针对不分离或绑定接触模型,需要设臵实常数FKOP,该常数为张开接触提供了一个刚度值。FKOP阻止接触面的分离;FKOP默认为1.0,用于建立粘结模型,用一个较小值(1e-5)去建立软弹簧模型。

FKT:切向接触刚度。作为初值,可以采用-FKT=0.01*FKN,这是大多数ANSYS 接触单元的缺省值。

COHE:粘滞力。即没有法向压力时开始滑动的摩擦应力值。

FACT,DC:定义摩擦系数变化规律

MU=MUK*(1+(FACT-1)EXP(-DC*vtfs/deltaT))

式中:MUK=动摩擦系数(用户自己定义)

FACT=MUS/MUK(用户自己定义)

MUS=静摩擦系数

DC=衰减系数(用户自己定义)

Vtfs/deltaT=表面间的相对速度

注意:动摩擦系数由被指定为材料属性(MU),由MP命令或GUI定义。缺省值:FACT=1,MUS=MUK=0,DC=0

Keyopt的介绍,以Target170,Conta173为例:

首先介绍170的Keyopt

KEYOPT(3):定义接触行为

KEYOPT(1):单元阶数(是否含有中节点)

KEYOPT(1)=0:低阶单元(不含中节点)

KEYOPT(1)=1:高阶单元(含中节点)

KEYOPT(2):刚体目标面约束条件

=0时,自动约束选项,每一个载荷步的末尾,程序内部将是性面重新设臵约束。

满足以下条件,刚性面则缺省为自动约束

没有明确定义边界条件;

目标面与其它单元没有联系;

没有定义耦合或约束方程。

=1时,用户定义选项。

Conta173的Keyopt:

KEYOPT(1):自由度选项。=0时,结构:UX,UY,和UZ;=1时,结构和热;=2时,TEMP(用于纯热接触问题)

KEYOPT(2):选择接触算法。=0时,增广的拉格朗日法(缺省选项),推荐于一般应用,它对罚刚度不太敏感,但是也要求给出一个穿透容差。=1时,罚函数法。它推荐应用于单元非常扭曲、大摩擦系数和用增广的拉格朗日法收敛行为不好的问题。

KEYOPT(4):选择接触检查点。=0时,高斯点(缺省选项,推荐);=1时,节点;ANSYS面对面单元默认用高斯积分点作为接触检查点。

KEYOPT(5):自动CNOF调整。允许ANSYS基于初始状态自动给定CNOF值――导致“刚好接触”配臵。=0时,不进行自动调整;=1时,闭合间隙;=2时,减小穿透;=3时,闭合间隙/减小穿透。

KEYOPT(7):时间步控制选项。(只有在Solution Control中打开基于接触状态变化的时间步预测,此选项才起作用。Solution>Unabridged Menu>Load Step Opts>Solution Ctrl

=0时,不控制,不影响自动时间步长。对静力问题自动时间步打开时此选项一般是足够的。

=1时,自动二分,如果接触状态变化明显,时间步长将二分,对于动力问题自动二分通常是足够的;

=2时,合理值。比自动细分更耗时的算法;

=3时,最小值。此选项为下一子步预测最小时间增量(很耗机时,不推荐)。

KEYOPT(8):防止伪接触选项。=0时,不防止;=1时,检测并忽略伪接触。KEYOPT(9):初始穿透间隙控制。=0时,包括几何穿透/间隙和CNOF;=1时,忽略几何穿透/间隙和CNOF;=2时,包括几何穿透/间隙和CNOF,且在第一个载荷步中渐变;=3时,忽略几何穿透/间隙,包括CNOF;=4时,忽略几何穿透/间隙,包括CNOF,且在第一个载荷步中渐变。

KEYOPT(10):接触刚度更新控制。=0,闭合状态的接触刚度不进行任何更新;=1,每一载荷步更新闭合状态的接触刚度(FKN或FKT,由用户指定);=2,与=1同,此外,在每一子步,程序自动更新接触刚度(根据变形后下伏单元的刚度)。

KEYOPT(11):壳、梁单元厚度影响。

如果已经创建了一个梁或壳单元模型,接触表面能够偏臵,用于考虑梁或壳的厚度。=0,在中面接触(默认);=1,在指定表面的顶部或底部。

注意:当用SHELL181单元时,由于大应变变形引起的厚度改变也被考虑。KEYOPT(12):创立不同的接触表面相互作用模型。

=0,标准的接触行为,张开时法向压力为0;

=1,粗糙接触行为,不发生滑动(类似无限摩擦系数);

=2,不分离,允许滑动;

=3,绑定接触,目标面和接触面一旦接触就粘在一起;

=4,不分离接触(总是),初始位于pinball区域内或已经接触的接触检查点在法向不分离;

=5,绑定接触(总是),初始位于pinball区域内或已经接触的接触检查点总是与目标面绑定在一起;

=6,绑定接触(初始接触),只在初始接触的地方采用绑定,初始张开的地方保持张开。

5.1 概述

接触问题是一种高度非线性行为,需要较多的计算机资源。为了进行切实有效的计算,理解问题的物理特性和建立合理的模型是很重要的。

接触问题存在两个较大的难点:其一,在用户求解问题之前,用户通常不知道接触区域。随载荷、材料、边界条件和其它因素的不同,表面之间可以接触或者分开,这往往在很大程度上是难以预料的,并且还可能是突然变化的。其二,大多数的接触问题需要考虑摩擦作用,有几种摩擦定律和模型可供挑选,它们都是非线性的。摩擦效应可能是无序的,所以摩擦使问题的收敛性成为一个难点。

注意 --如果在模型中,不考虑摩擦,且物体之间的总是保持接触,则可以应用约束方程或自由度藕合来代替接触。约束方程仅在小应变分析( NLGEOM,off)中可用。见《ANSYS Modeling and Meshing Guide》中的§12,Coupling and Constraint Equations。

除了上面两个难点外,许多接触问题还必须涉及到多物理场影响,如接触区域的热传导、电流等。

5.1.1 显式动态接触分析能力

除了本章讨论的隐式接触分析外,ANSYS还在ANSYS/LS-DYNA中提供了显式接触分析功能。显式接触分析对于短时间接触-碰撞问题比较理想。关于ANSYS/LS-DYNA的更多的信息参见《ANSYS/LS-DYNA User"s Guide》。

5.2 一般接触分类

接触问题分为两种基本类型:刚体─柔体的接触,柔体─柔体的接触。在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度)。一般情况下,一种软材料和一种硬材料接触时,可以假定为刚体─柔体的接触,许多金属成形问题归为此类接触。柔体─柔体的接触是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有相似的刚度)。柔体─柔体接触的一个例子是栓接法兰。

5.3 ANSYS接触分析功能

ANSYS支持三种接触方式:点─点,点─面,面─面接触。每种接触方式使用不同的接触单元集,并适用于某一特定类型的问题。

为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触。如果相互作用的其中之一是一点,模型的对应组元是一个节点。如果相互作用的其中之一是一个面,模型的对应组元是单元,如梁单元、壳单元或实体单元。有限元模型通过指定的接触单元来识别可能的接触对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSYS使用的接触单元和使用它们的过程,后面会分类详述,然后论述ANSYS接触单元和他们的功能。参见《ANSYS Elements Reference》和《ANSYS Theory Reference》。

表5-1 ANSYS接触分析功能

5.3.1 面─面的接触单元

ANSYS支持刚体─柔体和柔体─柔体的面─面的接触单元。这些单元应用“目标”面和“接触”面来形成接触对。

分别用TARGE169或TARGE170来模拟2D和3D目标面。

用CONTA171、CONTA172、CONTA173、CONTA174来模拟接触面。

为了建立一个“接触对”,给目标单元和接触单元指定相同的实常数号。参见§5.4。

这些面-面接触单元非常适合于过盈装配安装接触或嵌入接触,锻造,深拉问题。与点─面接触单元相比,面─面接触单元有许多优点:

支持面上的低阶和高阶单元(即角节点或有中节点的单元);

支持有大滑动和摩擦的大变形。计算一致刚度阵,可用不对称刚度阵选项;

提供为工程目的需要的更好的接触结果,如法向压力和摩擦应力;

没有刚体表面形状的限制,刚体表面的光滑性不是必须的,允许有自然的或网格离散引起的表面不连续;

与点─面接触单元比,需要较少的接触单元,因而只需较小的磁盘空间和CPU时间,并具有高效的可视化;

允许多种建模控制,例如:

绑定接触,不分离接触,粗糙接触;

渐变初始穿透;

目标面自动移动到初始接触;

平移接触面(考虑梁和单元的厚度),用户定义的接触偏移;

死活能力;

支持热-力耦合分析。

使用这些单元来做为刚性目标面,能模拟2D和3D中的直线(面)和曲线(面),通常用简单的几何形状例如圆、抛物线、球、圆锥、圆柱来模拟曲面。更复杂的刚体形状或普通可变形体,可以应用特殊的前处理技巧来建模,参见§5.4。

面-面接触单元不能很好地应用于点-点或点-面接触问题,如管道或铆头装配。在这种情况下,应当应用点-点或点-面接触单元。用户也可以在大多数接触区域应用面-面接触单元,而在少数接触角点应用点-点接触单元。

面-面接触单元只支持一般的静态或瞬态分析,屈曲、模态、谱分析或子结构分析。不支持谐响应分析、缩减或模态叠加瞬态分析,或缩减或模态叠加谐响应分析。

本章后面将分别讨论ANSYS不同接触分析类型的能力。

5.3.2 点─面接触单元

点─面接触单元主要用于给点─面接触行为建模,例如两根梁的相互接触(梁端或尖角节点),铆头装配部件的角点。

如果通过一组节点来定义接触面,生成多个单元,那么可以通过点─面接触单元来模拟面─面的接触问题。面既可以是刚性体也可以是柔性体。这类接触问题的一个典型例子是插头插到插座里。

使用这类接触单元,不需要预先知道确切的接触位臵,接触面之间也不需要保持一致的网格。并且允许有大的变形和大的相对滑动,虽然这一功能也可以模拟小的滑动。

CONTACT48 和 CONTACT49单元是点─面的接触单元。这2种单元支持大滑动、大变形、以及接触部件间不同的网格。用户也可以用这2种单元来进行热-机械耦合分析,其中热在接触实体之间的传导非常重要。

应用 CONTACT26 单元用来模拟柔性点─刚性面的接触。对有不光滑刚性面的问题,不推荐采用 CONTACT26 单元,因为在这种环境下,可能导致接触的丢失。在这种情况下,CONTACT48 通过使用伪单元算法,能提供较好的建模能力(参见《ANSYS Theory Reference》),但如果目标面严重不连续,依然可能失败。

5.3.3 点─点接触单元

点─点接触单元主要用于模拟点─点的接触行为。为了使用点─点接触单元,用户需要预先知道接触位臵,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下)。其中一个例子是传统的管道装配模型,其中接触点总是在管端和约束之间。

点─点接触单元也可以用于模拟面─面的接触问题,如果两个面上的节点一一对应,相对滑动又可以忽略不计,两个面位移(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─面接触问题的典型例子。

另一个点─点接触单元的应用是表面应力的精确分析,如透平机叶片的分析。

ANSYS的 CONTA178 单元是大多数点-点接触问题的最好选择。它比其他单元提供了范围更广的选项和求解类型。CONTAC12 和 CONTAC52 单元保留的理由,在很大程度上是为了与已有模型的向下兼容。

5.4 面─面的接触分析

用户可以应用面-面接触单元来模拟刚体-柔体或柔体之间的接触。从菜单(Preprocessor>Create>Contact Pair>Contact Wizard)进入接触向导,为大多数接触问题建立接触对提供了简单的方法。接触向导将指导用户建立接触对的整个过程。每个对话框中的HELP按钮对其应用及选项作了详细说明。

在用户未对模型的任何区域分网之前,接触向导不能应用。如果用户希望建立刚体-柔体模型,则在进入接触向导前,仅对用作柔体接触面的部分分网(不对刚体目标面分网)。如用户希望建立柔体-柔体接触模型,则应在进入接触向导前,对所有用作接触面的部件进行分网(包括目标面)。

下面诸节将论述不用接触向导来建立接触面和目标面的方法。

5.4.1 应用面-面接触单元

在涉及到两个边界的接触问题中,很自然把一个边界作为“目标”面,而把另一个作为“接触”面。对刚体─柔体的接触,目标面总是刚性面,接触面总是柔性面。对柔体─柔体的接触,目标面和接触面都与变形体关联。这两个面合起来叫作“接触对”。使用TARGE169与CONTA171(或CONTA172)单元来定义2-D

接触对。使用TARGE170与CONTA173(或CONTA174)单元来定义3-D接触对。程序通过相同的实常数号来识别每一个接触对。

5.4.2 接触分析的步骤

典型面─面接触分析的基本步骤如下,后面将对每一步骤进行详细解释。

1、建立几何模型并划分网格;

2、识别接触对;

3、指定接触面和目标面;

4、定义目标面;

5、定义接触面;

6、设臵单元关键选项和实常数;

7、定义/控制刚性目标面的运动(仅适用于刚体-柔体接触);

8、施加必须的边界条件;

9、定义求解选项和载荷步;

10、求解接触问题;

11、查看结果。

5.4.3 建立几何模型并划分网格

在这一步,用户需要建立代表接触体的几何实体模型。与其它分析一样,需要设臵单元类型、实常数、材料特性。用恰当的单元类型给接触体划分网格。参见《ANSYS Modeling and Meshing Guide》。

命令: AMESH

VMESH

GUI:Main Menu>Preprocessor>Mesh

5.4.4 识别接触对

用户必须判断模型在变形期间哪些地方可能发生接触。一旦已经判断出潜在的接触面,就应该通过目标单元和接触单元来定义它们,目标和接触单元将跟踪变形阶段的运动。构成一个接触对的目标单元和接触单元通过共享的实常数号联系起来。

接触区域可以任意定义,然而为了更有效地进行计算(主要指CPU时间),用户可能想定义更小的局部化的接触区域,但要保证它足以描述所需要的所有接触行为。不同的接触对必须通过不同的实常数号来定义,即使实常数没有变化。但不限制允许的面的数目。

图5-1 局部接触区域

由于几何模型和潜在变形的多样性,有时候一个接触面的同一区域可能与多个目标面产生接触关系。在这种情况下,应该定义多个接触对(使用多组覆盖接触单元)。每个接触对有不同的实常数号。见图5-1。

5.4.5 指定接触面和目标面

接触单元被限制不得穿透目标面。但是,目标单元可以穿透接触面。对于刚体-柔体接触,目标面总是刚体表面,而接触面总是柔体表面。对于柔体-柔体接触,选择那一个面作为接触面或目标面可能会引起穿透量的不同,从而影响求解结果。这可参照下面的论述:

如凸面预期与一个平面或凹面接触,则平面/凹面应当指定为目标面;

如一个面有较密的网格,而相比较之下,另一个面网格较粗,则较密网

格的面应当是接触面,而较粗网格的面则为目标面;

如一个面比另一个面刚,则较柔的面应当指定为接触面,而较刚的面则

为目标面;

如果高阶单元位于一个外表面,而低阶单元位于另一个面,则前者应指

定为接触面,后者则为目标面;

如果一个面明显地比另一个面大(如一个面包围其他面),则较大的面应

指定为目标面。

上面的论述对于不对称接触是正确的。但不对称接触可能不能满足模型需要。下面一小节祥细论述不对称接触和对称接触的差异,并简要说明需要对称接触的一些场合。

5.4.6 不对称接触与对称接触

不对称接触定义为所有的接触单元在一个面上,而所有的目标单元在另一个面上的情况。有时候也称为“单向接触”。这在模拟面-面接触时最为有效。但是,在某些环境下,不对称接触不能满足要求。在这些情况下,可以把任一个面指定为目标面和接触面。然后在接触的面之间生成二组接触对(或仅是一个接触对,如自接触情况)。这就称为对称接触,有时也称为“双向接触”。显然,对称接触不如非对称接触效率高。但是,许多分析要求应用对称接触(典型地,是为了减少穿透)。要求对称接触的情况如下:

接触面和目标面区分不十分清楚;

二个面都有十分粗糙的网格。对称接触算法比非对称接触算法在更多的

面上施加了接触约束条件。

如果二个面上的网格相同并且足够密,则对称接触算法可能不会显著改变运行,而事实上可能更费CPU时间。在这种情况下,拾取一个面为目标面,而另一个面为接触面。在任何接触模型中,可以混合不同的接触对:刚体-柔体或柔体-柔体接触对;对称接触或非线称接触。但在一个接触对中只能有一种类型。

5.4.7 定义目标面

目标面可以是2D或3D的刚体或柔体的面。对于柔体目标面,一般应用ESURF 命令来沿现有网格的边界生成目标单元。也可以按相同的方法来生成柔体接触面(见§5.4.8)。用户不应当应用下列刚性目标面作为柔体接触面:ARC, CARC, CIRC, CYL1, CONE, SPHE 或 PILO。对于刚体目标面的情况论述如下。

在2D情况下,刚性目标面的形状可以通过一系列直线、圆弧和抛物线来描述,所有这些都可以用 TARGE169 单元来表示。另外,可以使用它们的任意组合来描述复杂的目标面。在3D情况下,目标面的形状可以通过三角面、圆柱面、圆锥面和球面来描述,所有这些都可以用 TAPGE170 单元来表示。对于一个复杂的、任意形状的目标面,可以使用低阶/高阶三角形和四边形来给它建模。

5.4.7.1 控制节点

刚性目标面可能会与“控制(pilot)节点”联系起来,它实际上是一个只有

一个节点的单元,其运动控制整个目标面的运动,因此可以把控制节点作为刚性目标的控制器。整个目标面的力/力矩和转动/位移可以只通过控制节点来表示。控制节点可能是目标单元中的一个节点,也可能是一个任意位臵的节点。只有当需要转动或力矩载荷时,控制节点的位臵才是重要的。如果用户定义了控制节点,ANSYS程序只在控制节点上检查边界条件,而忽略其它节点上的任何约束。

注意 --当前的接触向导不支持生成控制节点。用户可以在接触向导外定义控制节点。

5.4.7.2 基本图元

用户可以使用基本几何图元,如圆、圆柱、圆锥、球,来模拟目标面(它需要实常数来定义半径)。也可以组合图元与一般的直线、抛物线、三角形和四边形来定义目标面。

5.4.7.3 单元类型和实常数

在生成目标单元之前,首先必须定义单元类型(2维的TARGE169单元,或3维的TARGE170单元)。

命令: ET

GUI:main menu>preprocessor>Element Type> Add/Edit/Delete

随后必须设臵目标单元的实常数。

命令: Real

GUI:main menn>preprocessor>real constants

对于 TARGE169 单元和 TARGE170 单元,仅需设臵实常数R1和R2(如果需要的话)。关于目标单元、单元形状、实常数的完整描述,参见《ANSYS Elements Reference》中TARGE169单元和TARGE170单元的论述。

注意 --只有在使用直接生成法建立目标单元时,才需要指定实常数R1、R2。另外除了直接生成法,用户也可以使用ANSYS网格划分工具生成目标单元,下面解释这两种方法。

5.4.7.4 使用直接生成法建立刚性目标单元

为了直接生成目标单元,使用下面的命令和菜单。

命令: TSHAP

GUI:main menu>preprocessor>modeling-create>Elements>

Elem Attributes

随后指定单元形状,可能的形状有:

直线(2D)

抛物线(2-D)

顺时针的圆弧(2-D)

反时针的圆弧(2-D)

圆(2-D)

三角形(3-D)

圆柱(3-D)

圆锥(3-D)

球(3-D)

控制节点(2-D和3-D)

一旦用户指定目标单元形状,所有以后生成的单元都将保持这个形状,除非用户指定另外一种形状。

注意 --不能在同一个目标面上混合2D和3D目标单元。

注意 --不能在同一个目标面上混合刚体目标单元和柔体目标单元。在求解期间,ANSYS对具有下伏单元的目标单元指定为可变形状态,而对没有下伏单元的目标单元指定为刚体状态。如果删除柔性表面的下伏单元的一部分,在求解时会出现一个错误。

用户可以用标准的ANSYS直接生成技术生成节点和单元。参见《ANSYS Modeling and Meshing Guide》§9。

命令: N

E

GUI:main menu>preprocessor> modeling- create>nodes

main menu>preprocessor> modeling- create>Elements

在建立单元之后,可以通过列表单元来验证单元形状。

命令: ELIST

GUI:utility menu>list>Elements>Nodes+Attributes

5.4.7.5 使用ANSYS网格划分工具生成刚性目标单元

用户也可以用标准的ANSYS网格划分功能让程序自动地生成目标单元。ANSYS 程序会基于体模型生成合适的目标单元形状,而忽略TSHAP命令的选项。

为了生成一个控制(Pilot)节点,使用下面的命令或GUI路径:

命令: KMESH

GUI:main menu>preprocessor>meshing-mesh>keypoints

注意:KMESH总是生成控制节点。

为了生成一个2D刚性目标单元,使用下面的命令和GUI路径。ANSYS在每条线上生成一条单一的线,在B-样条曲线上生成抛物线线段,在每条圆弧和倒角线上生成圆弧线段,参见图5-2。如果所有的圆弧形成一个封闭的圆,ANSYS 生成一个单一的圆,参见图5-3。但是,如果围成封闭圆的弧是从外部输入(如IGES)的几何实体,则ANSYS可能无法生成一个单一的圆。

命令: LMESH

GUI:main menu>preprocessor>meshing-mesh>lines

图5-2 ANSYS几何实体和相应的刚性目标单元

图5-3 从圆弧线段生成单一的圆

为了生成3D的目标单元,使用下面的命令或GUI路径。

命令: AMESH

GUI:main menu>preprocessor>-meshing-mesh>Areas

如果实体模型的表面部分形成了一个完整的球、圆柱或圆锥,那么ANSYS程序通过AMESH命令,自动生成一个基本3D目标单元。因为生成较少的单元,从而使用户分析计算更有效率。对任意形状的表面,应该使用AMESH命令来生成目标单元。在这种情况下,网格形状的质量不重要。而目标单元的形状是否能较好地模拟刚性面的表面几何形状显得更重要。

在所有可能的面上,推荐使用映射网格。如果在表面边界上没有曲率,则在网格划分时,指定那条边界分为一份。刚体TAREG169单元总是在一根线上按一个单元这样来分网,而忽略LESIZE命令的设臵。缺省的单元形状是四边形。如果要用三角形目标单元,应用MSHAPE,1。图5-4示出任意目标面的网格布局。

下面的命令或GUI路径,将尽可能地生成一个映射网格(如果不能进行映射,它将生成自由网格)。

命令: MSHKFY,2

GUI:main menu>preprocessor>-meshing-mesh>-Areas-Target Surf

图5-4 任意目标面的网格布局

如果目标面是平面(或接近平面),用户可以选择低阶目标单元(3节点三角形或4节点四边形单元)。如果目标面是曲面,用户应该选择高阶目标单元(6节点三角形或8节点四边形单元)。为此在目标单元定义中设臵KEYOPT(1)=1。

注意 --低阶单元致使获取穿透和间隙时CPU的开销较小;但是,分网后的面可能不够光滑。高阶单元则在获取穿透和间隙时CPU的开销较大;但是需要较少的单元就可以离散整个目标曲面。

注意 --如果通过程序分网(KMESH、LMESH、ESURF命令)来建立目标单元,则忽略TSHAP命令,而ANSYS自动选择合适的形状。

5.4.7.5.1 建模和网格划分的一些诀窍

一个目标面可能由两个或多个不连续的区域组成。用户应该尽可能地通过定义多个目标面,来使接触区域限于局部(每个目标面有一个不同的实常数号)。刚性面上的形状不限制,不要求光滑。但是,要保证刚性目标面上曲面的离散足够。过粗的网格离散可能导致收敛问题。如果刚性面有一个尖锐的凸角,求解大的滑动问题时很难获得收敛结果。为了避免这些建模问题,在实体模型上使用线或面的倒角来使尖角光滑化,或者在曲率突变的区域使用更细的网格或使用高阶单元,见图5-5。

图5-5 凸角的光滑化

5.4.7.5.2 检验目标面的节点号顺序(接触方向)

目标面的节点号顺序是重要的,因为它定义了接触方向。对2D接触问题,当沿着目标线从第一个节点移向第二个节点时,变形体的接触单元必须位于目标面的右边。见图5-6。

图5-6 正确的节点顺序

对3D接触问题,目标三角形单元号应使刚性面的外法线方向指向接触面。外法线通过右手法则来定义。

为了检查法线方向,显示单元坐标系。

命令:/ PSYMB,ESYS,1

GUI:Utility menu>PlotCtrls>symbols

如果单元法向不指向接触面,选择该单元,反转表面法线的方向。

命令: ESURF ,,REVE

GUI:main menu>preprocossor>create>Elements>Surf to Surf

或重新定向单元的法向:

命令: ENORM

GUI:Main Menu>Preprocessor>Create>Move/Modify>Shell Normals

注意 --在目标元素(如完整的圆、圆柱、圆锥、球)上的接触,只能在这些目标元素的外表面上出现。

5.4.8 定义柔体的接触面

为了建立柔体的接触面,对于2D接触必须使用接触单元 CONFA171 或CONFA172 接触单元;对于3D接触必须使用 CONTA173 或 CONTA174 接触单元。

程序通过组成柔体表面的接触单元来定义接触面。接触单元与下伏柔体单元有同样的几何特性。接触单元与下伏柔体单元必须处于同一阶次(低阶或高阶),以使在边上的节点协调。高阶接触单元可以通过消除中节点而与低阶下层单元匹配。下伏单元可能是实体单元、壳单元、2D梁单元。接触面可以在壳或梁单元任何一边。下伏单元也可以是超单元。但是,轴对称调和单元不能用作下伏单元。

与目标面单元一样,用户必须定义接触面的单元类型,然后选择正确的实常数号(在每个接触对中,实常数号必须与它所对应的目标面的实常数号相同),最后生成接触单元。

5.4.8.1 单元类型

下面简单描述四种类型的接触单元。参见《ANSYS Elements Reference》。

CONTA171:这是2D、2个节点的低阶线单元,可位于2D实体、壳或梁单

元(如 BEAM3、PLANE42 或 SHELL51)的表面。

CONTA172:这是2D、3节点的高阶抛物线形单元,可位于有中节点的2D

实体或梁单元(如 PLANE82 或 VISCO88)的表面。

CONTA173:这是3D、4节点的低阶四边形单元,可位于3D实体或壳单元

(如 SOLID45 或 SHELL181)的表面。可退化成3节点的三角形单元。

CONTA174:这是3D、8节点的高阶四边形单元,可位于有中节点的3D实

体或壳单元(如 SOLID92、SOLID95 或 SHELL93)的表面。可退化成6节

点的三角形单元。

命令: ET

GUI:main menu>preprocessor>Element type>Add/Edit/Delete

5.4.8.2 实常数和材料特性

在定义了单元类型之后,需要选择正确的实常数集。一个接触对中的接触面和目标面必须有相同的实常数号。每个接触对必须有不同的实常数号。

ANSYS 使用下伏单元的材料特性来计算一个合适的接触(或罚)刚度。在下层单元有用TB命令定义的塑性材料特性(不论激活与否)的情况下,接触的法向刚度可能按照系数100降低。ANSYS 自动为切向(滑动)刚度定义一个与 MU 和法向刚度成正比的缺省值。如果下伏单元是一个超单元,接触单元的材料必须与超单元形成时的原始结构单元相同。

5.4.8.3 生成接触单元

既可以通过直接生成法生成接触单元,也可以在下层单元的外表面上自动生成接触单元。推荐采用自动生成法,这种方法更为简单和可靠。可以通过下面三个步骤,来自动生成接触单元。

1、选择节点

选择已分网的柔体表面的节点。对每一个面,检查节点排列。如果用户确定某一部分节点永远不会接触到目标面,用户可以忽略它以便减少计算时间。然而用户必须保证设有漏掉可能会接触到目标面的节点。

命令: NSEL

GUI:Utility Menu>Select>Entities

2、生成接触单元

命令: ESURF

GUI:Main Menu>Preprocessor>Create>Elements>Surf to Surf

如果接触单元是附在已用实体单元划分网格的面或体上,程序会自动决定接触计算所需的外法向。如果下层单元是梁或壳单元,则必须指明哪个表面(上表面或下表面)是接触面。

命令: ESURF ,,TOP (或 BOTIOM)

GUI:Main Menu>Preprocessor>Create>Elements>Surf to Surf

使用 TOP(缺省)生成接触单元,它们的外法向与梁或壳单元的法向相同;使用 BOTIOM 生成接触单元,则它们的外法向与梁或壳单元的法向相反。必须确保梁上的单元或壳单元有一致的法向。如果下伏单元是实体单元,则 TOP 或BOTTOM 选项不起作用

3、检查接触单元外法向。当程序进行是否接触的检查时,接触面的外法线方向至关重要。对于3D单元,按节点顺序号以右手法则来决定单元的外法向。接触面的外法向应该指向目标面。否则,在开始分析计算时,程序可能会认为是有过度穿透的面,而很难找到初始解。在这些情况下,程序一般会立即停止执行。图5-7说明正确和不正确的外法向。

命令:/ PSYMB ,ESYS

GUI:Utility menu>plotctrls>symbols

图5-7 定义接触单元的外法向

当发现单元的外法线方向不正确时,必须通过反转所选择的不正确单元的节点号来改变它们:

命令: ESURF ,,REVE

GUI:Main Menu>Preprocessor>Create>Elements>Surf to Surf

或重新定向单元法向:

命令: ENORM

GUI:Main Menu>Preprocessor>Create>Move/Modify>Shell Normals

5.4.9 设臵实常数和单元关键选项

程序使用20个实常数和数个单元关键选项,来控制面─面接触单元的接触。参见《ANSYS Elements Reference》中对接触单元的描述。

5.4.9.1 实常数

在20个实常数中,两个(R1和R2)用来定义目标面单元的几何形状。剩下的用来控制接触面单元。

R1和R2定义目标单元几何形状。

FKN 定义法向接触刚度因子。

FTOLN 是基于单元厚度的一个系数,用于计算允许的穿透。

ICONT 定义初始闭合因子。

PINB 定义“Pinball"区域。

PMIN和PMAX 定义初始穿透的容许范围。

TAUMAR 指定最大的接触摩擦。

CNOF 指定施加于接触面的正或负的偏移值。

FKOP 指定在接触分开时施加的刚度系数。

FKT 指定切向接触刚度。

COHE 制定滑动抗力粘聚力。

TCC 指定热接触传导系数。

FHTG 指定摩擦耗散能量的热转换率。

SBCT 指定 Stefan-Boltzman 常数。

RDVF 指定辐射观察系数。

FWGT 指定在接触面和目标面之间热分布的权重系数。

FACT静摩擦系数和动摩擦系数的比率。

DC静、动摩擦衰减系数。

命令: R

GUI:main menu> preprocessor>real constant

对实常数 FKN, FTOLN, ICONT, PINB, PMAX, PMIN, FKOP 和 FKT,用户既可以定义一个正值,也可以定义一个负值。程序将正值作为比例因子,将负值作为绝对值。程序将下伏单元的厚度作为ICON,FTOLN,PINB,PMAX 和 PMIN 的

ansys_接触定义

接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。 接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。 一般的接触分类 接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触,在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触,另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。 ANSYS接触能力 ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。 为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSTS使用的接触单元和使用它们的过程,下面分类详述。 点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下) 如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。 点─面接触单元 点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。 如果通过一组结点来定义接触面,生成多个单元,那么可以通过点─面的接触单元来模拟面─面的接触问题,面即可以是刚性体也可以是柔性体,这类接触问题的一个典型例子是插头到插座里。 使用这类接触单元,不需要预先知道确切的接触位置,接触面之间也不需要保持一致的网格,并且允许有大的变形和大的相对滑动。 Contact48和Contact49都是点─面的接触单元,Contact26用来模拟柔性点─刚性面的接触,对有不连续的刚性面的问题,不推荐采用Contact26因为可能导致接触的丢失,在这种情况下,Contact48通过使用伪单元算法能提供较好的建模能力。 面─面的接触单元 ANSYS支持刚体─柔体的面─面的接触单元,刚性面被当作“目标”面,分别用Targe169和Targe170 来模拟2─D和3—D的“目标”面,柔性体的表面被当作“接触”面,用 Conta171,Conta172,Conta173,Conta174来模拟。一个目标单元和一个接单元叫作一个“接触对”程序通过一个共享的实常号来识别“接触对”,为了建立一个“接触对”给目标单元和接触单元指定相同的实常的号。

ANSYS中的接触

ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。 为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSTS使用的接触单元和使用它们的过程,下面分类详述。 点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下) 如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。 点─面接触单元 点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。 如果通过一组结点来定义接触面,生成多个单元,那么可以通过点─面的接触单元来模拟面─面的接触问题,面即可以是刚性体也可以是柔性体,这类接触问题的一个典型例子是插头到插座里。 使用这类接触单元,不需要预先知道确切的接触位置,接触面之间也不需要保持一致的网格,并且允许有大的变形和大的相对滑动。 Contact48和Contact49都是点─面的接触单元,Contact26用来模拟柔性点─刚性面的接触,对有不连续的刚性面的问题,不推荐采用Contact26因为可能导致接触的丢失,在这种情况下,Contact48通过使用伪单元算法能提供较好的建模能力。 面─面的接触单元 ANSYS支持刚体─柔体的面─面的接触单元,刚性面被当作“目标”面,分别用Targe169和Targe170来模拟2─D和3—D的“目标”面,柔性体的表面被当作“接触”面,用Conta171,Conta172,Conta173,Conta174来模拟。一个目标单元

Ansys非线性接触分析和设置

Ansys非线性接触分析和设置 5.4.9 设置实常数和单元关键选项 程序使用20个实常数和数个单元关键选项,来控制面─面接触单元的接触。参见《ANSYS Elements Reference》中对接触单元的描述。 5.4.9.1 实常数 在20个实常数中,两个(R1和R2)用来定义目标面单元的几何形状。剩下的用来控制接触面单元。 R1和R2 定义目标单元几何形状。 FKN 定义法向接触刚度因子。 FTOLN 是基于单元厚度的一个系数,用于计算允许的穿透。 ICONT 定义初始闭合因子。 PINB 定义“Pinball"区域。 PMIN和PMAX 定义初始穿透的容许范围。 TAUMAR 指定最大的接触摩擦。 CNOF 指定施加于接触面的正或负的偏移值。 FKOP 指定在接触分开时施加的刚度系数。 FKT 指定切向接触刚度。 COHE 制定滑动抗力粘聚力。 TCC 指定热接触传导系数。 FHTG 指定摩擦耗散能量的热转换率。 SBCT 指定 Stefan-Boltzman 常数。 RDVF 指定辐射观察系数。 FWGT 指定在接触面和目标面之间热分布的权重系数。

FACT 静摩擦系数和动摩擦系数的比率。 DC 静、动摩擦衰减系数。 命令: R GUI:main menu> preprocessor>real constant 对实常数 FKN, FTOLN, ICONT, PINB, PMAX, PMIN, FKOP 和 FKT,用户既可以定义一个正值,也可以定义一个负值。程序将正值作为比例因子,将负值作为绝对值。程序将下伏单元的厚度作为ICON,FTOLN,PINB,PMAX 和 PMIN 的参考值。例如 ICON = 0.1 表明初始闭合因子是“0.1*下层单元的厚度”。然而,ICON = -0.1 则表示真实调整带是 0.1 单位。如果下伏单元是超单元,则将接触单元的最小长度作为厚度。参见图5-8。 图5-8 下层单元的厚度 在模型中,如果单元尺寸变化很大,而且在实常数如 ICONT, FTOLN, PINB, PMAX, PMIN 中应用比例系数,则可能会出现问题。因为从比例系数得到的实际结果,取决于下层单元的厚度,这就可能引起大、小单元之间的重大变化。如果出现这一问题,请用绝对值代替比例系数。 TCC, FHTG, SBCT, RDVF 和 FWGT 仅用于热接触分析[KEYOPT(1)=1]。 5.4.9.2 单元关键选项 每种接触单元都包括数个关键选项。对大多的接触问题,缺省的关键选项是合适的。而在某些情况下,可能需要改变缺省值。下面是可以控制接触行为的一些关键选项: 自由 度 KEYOPT(1) 接触算法(罚函数+拉格朗日乘子或罚函数) KEYOPT(2) 存在超单元时的应力状态(仅2D) KEYOPT(3)

ansys接触定义

1概述 接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。 接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。 一般的接触分类 接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触。 (1)刚-柔接触 在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触。 (2)柔-柔接触 柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。 2ANSYS接触能力 ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSYS使用的接触单元和使用它们的过程,下面分类详述。 2.1点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下) 如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─面的接触问题的典型例子。

ANSYS—接触单元说明

参考ANSYS的中文帮助文件 接触问题(参考ANSYS的中文帮助文件) 当两个分离的表面互相碰触并共切时,就称它们牌接触状态。在一般的物理意义中,牌接触状态的表面有下列特点: 1、不互相渗透; 2、能够互相传递法向压力和切向摩擦力; 3、通常不传递法向拉力。 接触分类:刚性体-柔性体、柔性体-柔性体 实际接触体相互不穿透,因此,程序必须在这两个面间建立一种关系,防止它们在有限元分析中相互穿过。 ――罚函数法。接触刚度 ――lagrange乘子法,增加一个附加自由度(接触压力),来满足不穿透条件――将罚函数法和lagrange乘子法结合起来,称之为增广lagrange法。 三种接触单元:节点对节点、节点对面、面对面。 接触单元的实常数和单元选项设臵: FKN:法向接触刚度。这个值应该足够大,使接触穿透量小;同时也应该足够小,使问题没有病态矩阵。FKN值通常在0.1~10之间,对于体积变形问题,用值1.0(默认),对弯曲问题,用值0.1。 FTOLN:最大穿透容差。穿透超过此值将尝试新的迭代。这是一个与接触单元下面的实体单元深度(h)相乘的比例系数,缺省为0.1。此值太小,会引起收敛困难。 ICONT:初始接触调整带。它能用于围绕目标面给出一个“调整带”,调整带内任何接触点都被移到目标面上;如果不给出ICONT值,ANSYS根据模型的大小提供一个较小的默认值(<0.03= PINB:指定近区域接触范围(球形区)。当目标单元进入pinball区时,认为它处于近区域接触,pinball区是围绕接触单元接触检测点的圆(二维)或球(三维)。可以用实常数PINB调整球形区(此方法用于初始穿透大的问题是必要的)PMIN和PMAX:初始容许穿透容差。这两个参数指定初始穿透范围,ANSYS把整个目标面(连同变形体)移到到由PMIN和PMAX指定的穿透范围内,而使其成为闭合接触的初始状态。初始调整是一个迭代过程,ANSYS最多使用20个迭代步把目标面调整到PMIN和PMAX范围内,如果无法完成,给出警告,可能需要修改几何模型。 TAUMAX:接触面的最大等效剪应力。给出这个参数在于,不管接触压力值多大,只要等效剪应力达到最大值TAUMAX,就会发生滑动。该剪应力极限值通常用于接触压力会变得非常大的情况。 CNOF:指定接触面偏移。+CNOF增加过盈、-CNOF减少过盈或产生间隙、CNOF能与几何穿透组合应用。 FKOP:接触张开弹簧刚度。针对不分离或绑定接触模型,需要设臵实常数FKOP,该常数为张开接触提供了一个刚度值。FKOP阻止接触面的分离;FKOP默认为1.0,用于建立粘结模型,用一个较小值(1e-5)去建立软弹簧模型。 FKT:切向接触刚度。作为初值,可以采用-FKT=0.01*FKN,这是大多数ANSYS 接触单元的缺省值。 COHE:粘滞力。即没有法向压力时开始滑动的摩擦应力值。 FACT,DC:定义摩擦系数变化规律

ANSYS自动接触技术

专题报道 中国航空报/2005年/03月/25日/第004版/ ANSYS自动接触技术 安世亚太林翰 现代CAE技术可以对相当大规模的问题进行分析,这种分析可以是复杂的接触问题(在CAD中称为 装配)。装配体的分析模拟是公认的最尖端的CAD/CAE技术之一,这项技术使得人们得以精确的预测一个多零部件的结构的性能。 传统的,也是最直接的装配方法是先简单的导入装配体的各个零部件,确定它们的空间相对位置,然后人为地确定各零部件在整个装配体中的接触关系,建立接触单元。此过程在其他CAE软件中须采用手工方式完成,不仅需要漫长的虚拟整机建立过程,同时,还需要工程师对结构的各项指标、限制、风险全面的了解。 顾名思义, Contact这个概念只有在几何体相遇的时候才会产生。我们可以将各种载荷,例如结构载荷与热流矢量,转移到边界上从而 连接不同的几何体(零部件)。构成一个装配体的零部件数目是没有限制的。根据接触条件的不同,整个有限元分析的种类也会随之变化,例如线性与非线性。由于求解器需要迭代计算以达收敛,一个非线性问题所需的求解时间将远超一个先行问题的求解时间。 每一个有经验的有限元分析工程师都知道,没有任何两个接触问题是完全一样的,装配问题的复杂性在某种程度上肯定了ANSYS在这个领域的成就 ANSYS可以对各种不同的接触问题进行非常好,而且简便的模拟。一个装配体的ANSYS有限元分析过程可以简单的归纳为: 建立模型并划分网格 识别零部件相互关系 施加边界条件以及环境参量 求解并复查结果 事实上在ANSYS默认的设定中,当一个装配体的CAD模型被倒入的时候,接触关系已经被自动的探测了,而接触区域被指定为面/面关系。这个默认的设定可以在 Simulation Contact设定选项的Option对话框中更改。默认的接触自动探测属性适合于大多数的接触问题。然而,附加的接触关系控制设定拓宽了可以模拟的接触类型。在接触关系控制设定中:全局属性:包括自动接触探测的基本设定,以及高亮显示的接触区域的透明度设定,这些设定将会影响所有的接触区域。 接触区域控制:包括接触属性浏览,区域接触类型设定,以及其他的一些高级控制选项,例如设定接触模拟方程,法向刚度,热传导设定,以及pinball区域设定等等。 更加详细地,自动接触探测的基本设定包含:容差设定(Tolerance setting),即容差类型以及容差值的设定;接触探测的种类设定(例如设定探测面/面接触,面/边接触以及边/边接触)等;接触探测种类优先权设定(例如设定面/面接触优先于其他种类的接触)等。 在接触区域控制的接触类型设定中,AN SYS可以模拟如下的多种接触类型: 固结(Bonded),即完全绑定,无摩擦也无滑动。 不分离(No separation),和固结类似,不过在小范围内允许无摩擦的滑动。 无摩擦(Frictionless),部件之间摩擦系数为0,允许法相分离。 粗糙(Roug h),与无摩擦类型相似,只是部件之间不允许接触滑动。

ansys接触问题!牛人的经验之谈!

接触问题的关键在于接触体间的相互关系(废话,),此关系又可分为在接触前后的法向关系与切向关系。 法向关系: 在法向,必须实现两点:1)接触力的传递。2)两接触面间没有穿透。 ANSYS通过两种算法来实现此法向接触关系:罚函数法和拉格朗日乘子法。 1.罚函数法 是通过接触刚度在接触力与接触面间的穿透值(接触位移)间建立力与位移的线性关系:    接触刚度*接触位移=法向接触力 对面面接触单元17*,接触刚度由实常数FKN来定义。穿透值在程序中通过分离的接触体上节点间的距离来计算。接触刚度越大,则穿透就越小,理论上在接触刚度为无穷大时,可以实现完全的接触状态,使穿透值等于零。但是显而易见,在程序计算中,接触刚度不可能为无穷大(否则病态),穿透也就不可能真实达到零,而只能是个接近于零的有限值。 以上力与位移的接触关系可以很容易地合并入整个结构的平衡方程组K*X=F中去。并不改变总刚K的大小。这种罚函数法有以下几个问题必须解决: 1)接触刚度FKN应该取多大? 2)接触刚度FKN取大些可以减少虚假穿透,但是会使刚度矩阵成为病态。 3)既然与实际情况不符合的虚假穿透既然是不可避免的,那么可以允许有多大为合适? 因此,在ANSYS程序里,通常输入FKN实常数不是直接定义接触刚度的数值,而是接触体下单元刚度的一个因子,这使得用户可以方便地定义接触刚度了,一般FKN取0.1到1中间的值。当然,在需要时,也可以把接触刚度直接定义,FKN输入为负数,则程序将其值理解为直接输入的接触刚度值。 对于接近病态的刚度阵,不要使用迭代求解器,例如PCG等。它们会需要更多的迭代次数,并有可能不收敛。可以使用直接法求解器,例如稀疏求解器等。这些求解器可以有效求解病态问题。 穿透的大小影响结果的精度。用户可以用PLESOL,CONT,PENE来在后处理中查看穿透的数值大小。如果使用的是罚函数法求解接触问题,用户一般需要试用多个FKN值进行计算,可以先用一个较小的FKN值开始计算,例如0.1。因为较小的FKN有助于收敛,然后再逐步增加FKN值进行一系列计算,最后得到一个满意的穿透值。 FKN的收敛性要求和穿透太大产生的计算误差总会是一对矛盾。解决此矛盾的办法是在接触算法中采用扩展拉格朗日乘子法。此方法在接触问题的求解控制中可以有更多更灵活的控制。可以更快的实现一个需要的穿透极限。 2.拉格朗日乘子法与扩展拉格朗日乘子法 拉格朗日乘子法与罚函数法不同,不是采用力与位移的关系来求接触力,而是把接触力作为一个独立自由度。因此这里不需要进行迭代,而是在方程里直接求出接触力(接触压力)来。Kx=F+Fcontact 从而,拉格朗日乘子法不需要定义人为的接触刚度去满足接触面间不可穿透的条件,可以直接实现穿透为零的真实接触条件,这是罚函数法所不可能实现的。使用拉格朗日乘子法有下列注意事项: 1)刚度矩阵中将有零对角元,使有些求解器不克使用。只能使用直接法求解器,例如波前法或系数求解器。而PCG之类迭代求解器是不能用于有零主元问题的。 2)由于增加了额外的自由度,刚度阵变大了。 3)一个可能发生的严重问题,就是在接触状态发生变化时,例如从接触到分离,从分离到接触,此时接触力有个突变,产生chattering(接触状态的振动式交替改变)。如何控制这种chattering,是纯粹拉格朗日法所难以解决的。

Ansys接触问题处理方法与参数设置

Ansys接触问题处理方法 接触问题的关键在于接触体间的相互关系,此关系又可分为在接触前后的法向关系与切向关系。 法向关系: 在法向,必须实现两点:1)接触力的传递。2)两接触面间没有穿透。 ANSYS通过两种算法来实现此法向接触关系:罚函数法和拉格朗日乘子法。 1.罚函数法 是通过接触刚度在接触力与接触面间的穿透值(接触位移)间建立力与位移的线性关系: 对面面接触单元17*,接触刚度由实常数FKN来定义。穿透值在程序中通过分离的接触体上节点间的距离来计算。接触刚度越大,则穿透就越小,理论上在接触刚度为无穷大时,可以实现完全的接触状态,使穿透值等于零。但是显而易见,在程序计算中,接触刚度不可能为无穷大(否则病态),穿透也就不可能真实达到零,而只能是个接近于零的有限值。 以上力与位移的接触关系可以很容易地合并入整个结构的平衡方程组K*X=F中去。并不改变总刚K的大小。这种罚函数法有以下几个问题必须解决: 1)接触刚度FKN应该取多大? 2)接触刚度FKN取大些可以减少虚假穿透,但是会使刚度矩阵成为病态。 3)既然与实际情况不符合的虚假穿透既然是不可避免的,那么可以允许有多大为合适? 因此,在ANSYS程序里,通常输入FKN实常数不是直接定义接触刚度的数值,而是接触体下单元刚度的一个因子,这使得用户可以方便地定义接触刚度了,一般FKN取0.1到1中间的值。当然,在需要时,也可以把接触刚度直接定义,FKN输入为负数,则程序将其值理解为直接输入的接触刚度值。 对于接近病态的刚度阵,不要使用迭代求解器,例如PCG等。它们会需要更多的迭代次数,并有可能不收敛。可以使用直接法求解器,例如稀疏求解器等。这些求解器可以有效求解病态问题。 穿透的大小影响结果的精度。用户可以用PLESOL,CONT,PENE来在后处理中查看穿透的数值大小。如果使用的是罚函数法求解接触问题,用户一般需要试用多个FKN值进行计算,可以先用一个较小的FKN值开始计算,例如0.1。因为较小的FKN有助于收敛,然后再逐步增加FKN值进行一系列计算,最后得到一个满意的穿透值。 FKN的收敛性要求和穿透太大产生的计算误差总会是一对矛盾。解决此矛盾的办法是在接触算法中采用扩展拉格朗日乘子法。此方法在接触问题的求解控制中可以有更多更灵活的控制。可以更快的实现一个需要的穿透极限。 2.拉格朗日乘子法与扩展拉格朗日乘子法 拉格朗日乘子法与罚函数法不同,不是采用力与位移的关系来求接触力,而是把接触力作为一个独立自由度。因此这里不需要进行迭代,而是在方程里直接求出接触力(接触压力)来。Kx=F+Fcontact 从而,拉格朗日乘子法不需要定义人为的接触刚度去满足接触面间不可穿透的条件,可以直接实现穿透为零的真实接触条件,这是罚函数法所不可能实现的。使用拉格朗日乘子法有下列注意事项: 1)刚度矩阵中将有零对角元,使有些求解器不克使用。只能使用直接法求解器,例如波前法或系数求解器。而PCG之类迭代求解器是不能用于有零主元问题的。 2)由于增加了额外的自由度,刚度阵变大了。 3)一个可能发生的严重问题,就是在接触状态发生变化时,例如从接触到分离,从分离到

ANSYS接触问题的计算方法

ANSYS接触问题的计算方法 接触问题的关键在于接触体间的相互关系(废话,),此关系又可分为在接触前后的法向关系与切向关系。 法向关系: 在法向,必须实现两点:1)接触力的传递。2)两接触面间没有穿透。 ANSYS通过两种算法来实现此法向接触关系:罚函数法和拉格朗日乘子法。 1.罚函数法 是通过接触刚度在接触力与接触面间的穿透值(接触位移)间建立力与位移的线性关系:接触刚度*接触位移=法向接触力 对面面接触单元17*,接触刚度由实常数FKN来定义。穿透值在程序中通过分离的接触体上节点间的距离来计算。接触刚度越大,则穿透就越小,理论上在接触刚度为无穷大时,可以实现完全的接触状态,使穿透值等于零。但是显而易见,在程序计算中,接触刚度不可能为无穷大(否则病态),穿透也就不可能真实达到零,而只能是个接近于零的有限值。 以上力与位移的接触关系可以很容易地合并入整个结构的平衡方程组K*X=F中去。并不改变总刚K的大小。这种罚函数法有以下几个问题必须解决: 1)接触刚度FKN应该取多大? 2)接触刚度FKN取大些可以减少虚假穿透,但是会使刚度矩阵成为病态。 3)既然与实际情况不符合的虚假穿透既然是不可避免的,那么可以允许有多大为合适? 因此,在ANSYS程序里,通常输入FKN实常数不是直接定义接触刚度的数值,而是接触体下单元刚度的一个因子,这使得用户可以方便地定义接触刚度了,一般FKN取0.1到1中间的值。当然,在需要时,也可以把接触刚度直接定义,FKN输入为负数,则程序将其值理解为直接输入的接触刚度值。 对于接近病态的刚度阵,不要使用迭代求解器,例如PCG等。它们会需要更多的迭代次数,并有可能不收敛。可以使用直接法求解器,例如稀疏求解器等。这些求解器可以有效求解病态问题。 穿透的大小影响结果的精度。用户可以用PLESOL,CONT,PENE来在后处理中查看穿透的数值大小。如果使用的是罚函数法求解接触问题,用户一般需要试用多个FKN值进行计算,可以先用一个较小的FKN值开始计算,例如0.1。因为较小的FKN有助于收敛,然后再逐步增加FKN值进行一系列计算,最后得到一个满意的穿透值。 FKN的收敛性要求和穿透太大产生的计算误差总会是一对矛盾。解决此矛盾的办法是在接触算法中采用扩展拉格朗日乘子法。此方法在接触问题的求解控制中可以有更多更灵活的控制。可以更快的实现一个需要的穿透极限。 2.拉格朗日乘子法与扩展拉格朗日乘子法 拉格朗日乘子法与罚函数法不同,不是采用力与位移的关系来求接触力,而是把接触力作为一个独立自由度。因此这里不需要进行迭代,而是在方程里直接求出接触力(接触压力)来。Kx=F+Fcontact 从而,拉格朗日乘子法不需要定义人为的接触刚度去满足接触面间不可穿透的条件,可以直接实现穿透为零的真实接触条件,这是罚函数法所不可能实现的。使用拉格朗日乘子法有下列注意事项: 1)刚度矩阵中将有零对角元,使有些求解器不克使用。只能使用直接法求解器,例如波前法或系数求解器。而PCG之类迭代求解器是不能用于有零主元问题的。

ANSYS接触属性

接触属性 以下为ANSYS 中用于创建接触对的接触属性对话框中的标签: ?Basic –基本属性 ?Friction –摩擦 ?Initial Adjustment –初始调整 ?Misc –杂项 ?Rigid target –刚性目标 ?Thermal –热 ?Electric –电 ?Magnetic –磁 ?Constraint –约束 ?ID –标识符 注解: 上述标签不是任何时候都是可用的。在GUI 方式中出现的标签和每个标签显示的选项取决于所定义的接触对的种类,以及访问接触属性对话框的位置(从Contact Wizard 或Contact Manager)。 接触属性:基本属性 基本属性标签包含有关接触行为和收敛的一般属性。 首先应该尝试使用默认设置执行接触分析,然后根据分析中遇到的具体困难和特殊情况修改设置。 使用如下问题和解答帮助确定是否需要根据特殊情况修改任何默认的设置。 这些问题只是作为一种提示,引导用户确定如何调整接触属性的设置,但并不包含这些参数的所有可能的应用。建议用户阅读有关的章节(后面列出),即使该问题并未直接用于你的情况。有关的章节给出了如何使用相关参数的更完整的说明。 在这一对话框中, 选项表示选择一个默认值;the factor radio 按钮表示设置一个比例因子;the constant radio 按钮表示设置一

个常数比例因子。

有关单元: CONTA171, CONTA172, CONTA173, CONTA174, CONTA175 接触属性:摩擦 摩擦(Friction) 标签包含有关接触界面上的静摩擦和动摩擦的参数。 首先应该尝试使用默认设置执行接触分析,然后根据分析中遇到的具体困难和特殊情况修改设置。 使用如下问题和解答帮助确定是否需要根据特殊情况修改任何默认的设置。 这些问题只是作为一种提示,引导用户确定如何调整接触属性的设置,但并不包含这些参数的所有可能的应用。建议用户阅读有关的章节(后面列出),即使该问题并未直接用于你的情况。有关的章节给出了如何使用相关参数的更完整的说明。 在这一对话框中, 选项表示选择一个默认值;the factor radio 按钮表示设置一个比例因子;the constant radio 按钮表示设置一个常数比例因子。 材料编号(Material ID) 和摩擦系数(Friction Coefficient) 参数来自Contact Properties: Set Parameters and Create 对话框。 使用Friction 标签上的ID 参数可以创建一个新的材料ID,或输入新的摩擦系数以覆盖已有的值。 (注意:使用这一对话框,只能定义各向同性的摩擦系数。关于如何定义正交异性摩擦的问题,参见Choosing a Friction Model,它只能用于三维接触分析)。

ANSYS高级接触问题

ANSYS高级接触问题 第一章接触问题概述 在工程中会遇到大量的接触问题,如齿轮的啮合、法兰联接、机电轴承接触、卡头与卡座、密封、板成形、冲击等等。接触是典型的状态非线性问题,它是一种高度非线性行为。接触例子如图1: 分析中常常需要确定两个或多个相互接触物体的位移、接触区域的大小和接触面上的应力分布。 接触分析存在两大难点: 在求解之前,你不知道接触区域、表面之间是接触或分开是未知的,表面之间突然接触或突然不接触会导致系统刚度的突然变化。 大多数接触问题需要计算摩擦。摩擦是与路径有关的现象,摩擦响应还可能是杂乱的,使问题求解难以收敛。 1.1 接触分类 1.1.1 刚-柔 一个表面是完全刚性的—除刚体运动外无应变、应力和变形,另一表面为软材料构成是可变形的。 只在一个表面特别刚硬并且不关心刚硬物体的应力时有效。 1.1.2 柔-柔

两个接触体都可以变形。 1.2 接触单元 ANSYS采用接触单元来模拟接触问题:跟踪接触位置;保证接触协调性(防止接触表面相互穿透);在接触表面之间传递接触应力(正压力和摩擦)。 接触单元就是覆盖在分析模型接触面上的一层单元。在ANSYS中可以采用三种不同的单元来模拟接触:面—面接触单元;点—面接触单元;点—点接触单元。 不同的单元类型具有完全不同的单元特性和分析过程。 1.2.1 面—面接触单元 用于任意形状的两个表面接触,不必事先知道接触的准确位置;两个面可以具有不同的网格;支持大的相对滑动;支持大应变和大转动。例如:面一面接触可以模拟金属成型,如轧制过程。 1.2.2 点—面接触单元 用于某一点和任意形状的面的接触,可使用多个点-面接触单元模拟棱边和面的接触;不必事先知道接触的准确位置;两个面可以具有不同的网格;支持大的相对滑动;支持大应变和大转动。例:点面接触可以模拟棱边和面之间的接触。 1.2.3 点-点接触单元 用于模拟单点和另一个确定点之间的接触。建立模型时必须事先知道确切的接触位置;多个点-点接触单元可以模拟两个具有多个单元表面间的接触;每个

基于ANSYS经典界面的接触分析例子

基于ANSYS经典界面的接触分析例子 1.问题描述 一个钢销插在一个钢块中的光滑销孔中。已知钢销的半径是0.5 units, 长是2.5 units,而钢块的宽是4 Units, 长4 Units,高为1 Units,方块中的销孔半径为0.49 units,是一个通孔。钢块与钢销的弹性模量均为36e6,泊松比为0.3. 由于钢销的直径比销孔的直径要大,所以它们之间是过盈配合。现在要对该问题进行两个载荷步的仿真。 (1)要得到过盈配合的应力。 (2)要求当把钢销从方块中拔出时,应力,接触压力及约束力。 2.问题分析 由于该问题关于两个坐标面对称,因此只需要取出四分之一进行分析即可。 进行该分析,需要两个载荷步: 第一个载荷步,过盈配合。求解没有附加位移约束的问题,钢销由于它的几何尺寸被销孔所约束,由于有过盈配合,因而产生了应力。 第二个载荷步,拔出分析。往外拉动钢销1.7 units,对于耦合节点上使用位移条件。打开自动时间步长以保证求解收敛。在后处理中每10个载荷子步读一个结果。 本篇先谈第一个载荷步的计算。下篇再谈第二个载荷步的计算。 3.读入几何体 首先打开ANSYS APDL14.5. 然后读入已经做好的几何体。 从【工具菜单】-->【File】-->【Read Input From】打开导入文件对话框

找到ANSYS自带的文件 \Program Files\Ansys Inc\V145\ANSYS\data\models\block.inp 【OK】后四分之一几何模型被导入。 4.定义单元类型 只定义实体单元的类型SOLID185。至于接触单元,将在下面使用接触向导来定义。 5.定义材料属性 只有线弹性材料属性:弹性模量36E6和泊松比0.3 6.划分网格

简单易懂的ANSYS接触分析教程

一般的接触分类 (1) ANSYS接触能力 (2) 点─点接触单元 2 点─面接触单元 2 面─面的接触单元 2 执行接触分析 (3) 面─面的接触分析 3 接触分析的步骤: 3 步骤1:建立模型,并划分网格 (3) 步骤2:识别接触对 (4) 步骤2:指定接触面和目标面 3 步骤4:定义刚性目标面 (3) 步骤5:定义柔性体的接触面 (5) 步骤6:设置实常数和单元关键字 (7) 步骤7:控制刚体目标的运动 (13) 步骤8:给变形体单元加必要的边界条件 (14) 步骤9:定义求解和载荷步选项14 第十步:检查结果 (15) 点─面接触分析 (16) 点─面接触分析的步骤 (16) 点-点的接触 (22) 接触分析实例(GUI方法) (23) 非线性静态实例分析(命令流方式) (25) 接触分析 接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。 接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。 一般的接触分类 接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触,在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚

度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触,另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。 ANSYS接触能力 ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。 为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSTS使用的接触单元和使用它们的过程,下面分类详述。 点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下) 如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。 点─面接触单元 点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。 如果通过一组结点来定义接触面,生成多个单元,那么可以通过点─面的接触单元来模拟面─面的接触问题,面即可以是刚性体也可以是柔性体,这类接触问题的一个典型例子是插头到插座里。 使用这类接触单元,不需要预先知道确切的接触位置,接触面之间也不需要保持一致的网格,并且允许有大的变形和大的相对滑动。 Contact48和Contact49都是点─面的接触单元,Contact26用来模拟柔性点─刚性面的接触,对有不连续的刚性面的问题,不推荐采用Contact26因为可能导致接触的丢失,在这种情况下,Contact48通过使用伪单元算法能提供较好的建模能力。 面─面的接触单元 ANSYS支持刚体─柔体的面─面的接触单元,刚性面被当作“目标”面,分别用Targe169和Targe170来模拟2─D和3—D的“目标”面,柔性体的表面被当作“接触”面,用Conta171,Conta172,Conta173,Conta174来模拟。一个目标单元和一个接单元叫作一个“接触对”程序通过一个共享的实常号来识别“接触对”,为了建立一个“接触对”给目标单元和接触单元指定相同的实常的号。 与点─面接触单元相比,面─面接触单元有好几项优点, *支持低阶和高阶单元 *支持有大滑动和摩擦的大变形,协调刚度阵计算,单元提法不对称刚度阵的选项。 *提供工程目的采用的更好的接触结果,例如法向压力和摩擦应力。 *没有刚体表面形状的限制,刚体表面的光滑性不是必须允许有自然的或网格离散引起的表面不连续。 *与点─面接触单元比,需要较多的接触单元,因而造成需要较小的磁盘空间和CPU时间。 *允许多种建模控制,例如: *绑定接触 *渐变初始渗透 *目标面自动移动到补始接触 *平移接触面(老虎梁和单元的厚度)

ANSYS自动接触技术.

ANSYS自动接触技术 传统的,也是最直接的装配方法是先简单的导入装配体的各个零部件,确定它们的空间相对位置,然后人为地确定各零部件在整个装配体中的接触关系,建立接触单元。此过程在其他CAE软件中须采用手工方式完成,不仅需要漫长的虚拟整机建立过程,同时,还需要工程师对结构的各项指标、限制、风险全面的了解。 每一个有经验的有限元分析工程师都知道,没有任何两个接触问题是完全一样的,装配问题的复杂性在某种程度上肯定了ANSYS在这个领域的成就——ANSYS可以对各种不同的接触问题进行非常好,而且简便的模拟。一个装配体的ANSYS有限元分析过程可以简单的归纳为: 建立模型并划分网格 识别零部件相互关系 施加边界条件以及环境参量 求解并复查结果 事实上在ANSYS默认的设定中,当一个装配体的CAD模型被倒入的时候,接触关系已经被自动的探测了,而接触区域被指定为面/面关系。这个默认的设定可以在“Simulation Contact”设定选项的Option对话框中更改。默认的接触自动探测属性适合于大多数的接触问题。然而,附加的接触关系控制设定拓宽了可以模拟的接触类型。在接触关系控制设定中: 全局属性:包括自动接触探测的基本设定,以及高亮显示的接触区域的透明度设定,这些设定将会影响所有的接触区域。 接触区域控制:包括接触属性浏览,区域接触类型设定,以及其他的一些高级控制选项,例如设定接触模拟方程,法向刚度,热传导设定,以及pinball区域设定等等。 更加详细地,自动接触探测的基本设定包含:容差设定(Tolerance setting),即容差类型以及容差值的设定;接触探测的种类设定(例如设定探测面/面接触,面/边接触以及边/边接触)等;接触探测种类优先权设定(例如设定面/面接触优先于其他种类的接触)等。 在接触区域控制的接触类型设定中,ANSYS可以模拟如下的多种接触类型: 固结(Bonded),即完全绑定,无摩擦也无滑动。 不分离(No separation),和固结类似,不过在小范围内允许无摩擦的滑动。 无摩擦(Frictionless),部件之间摩擦系数为0,允许法相分离。 粗糙(Rough),与无摩擦类型相似,只是部件之间不允许接触滑动。 有摩擦的(Frictional),部件之间会因摩擦系数而产生剪切力。

ansys接触应力

一般的接触分类 (2) ANSYS接触能力 (2) 点─点接触单元 (2) 点─面接触单元 (2) 面─面的接触单元 (3) 执行接触分析 (4) 面─面的接触分析 (4) 接触分析的步骤: (4) 步骤1:建立模型,并划分网格 (4) 步骤二:识别接触对 (4) 步骤三:定义刚性目标面 (5) 步骤4:定义柔性体的接触面 (8) 步骤5:设置实常数和单元关键字 (10) 步骤六: (21) 步骤7:给变形体单元加必要的边界条件 (21) 步骤8:定义求解和载步选项 (22) 第十步:检查结果 (23) 点─面接触分析 (25) 点─面接触分析的步骤 (26) 点-点的接触 (35) 接触分析实例(GUI方法) (38) 非线性静态实例分析(命令流方式) (42) 接触分析 接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。 接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。

一般的接触分类 接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触,在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触,另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。 ANSYS接触能力 ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。 为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSTS使用的接触单元和使用它们的过程,下面分类详述。 点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下) 如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。 点─面接触单元 点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。 如果通过一组结点来定义接触面,生成多个单元,那么可以通过点─面的接触单元来模拟面─面的接触问题,面即可以是刚性体也可以是柔性体,这类接触问题的一个典型例子是插头到插座里。

ansys接触问题牛人的经验之谈(终审稿)

a n s y s接触问题牛人的 经验之谈 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

接触问题的关键在于接触体间的相互关系(废话,),此关系又可分为在接触前后的法向关系与切向关系。 法向关系: 在法向,必须实现两点:1)接触力的传递。2)两接触面间没有穿透。ANSYS通过两种算法来实现此法向接触关系:罚函数法和拉格朗日乘子法。 1.罚函数法 是通过接触刚度在接触力与接触面间的穿透值(接触 位移)间建立力与位移的线性关系:     接触刚度*接触位移=法向接触力 对面面接触单元17*,接触刚度由实常数FKN来定义。穿透值在程序中通过分离的接触体上节点间的距离来计算。接触刚度越大,则穿透就越小,理论上在接触刚度为无穷大时,可以实现完全的接触状态,使穿透值等于零。但是显而易见,在程序计算中,接触刚度不可能为无穷大(否则病态),穿透也就不可能真实达到零,而只能是个接近于零的有限值。 以上力与位移的接触关系可以很容易地合并入整个结构的平衡方程组 K*X=F中去。并不改变总刚K的大小。这种罚函数法有以下几个问题必须解决: 1)接触刚度FKN应该取多大 2)接触刚度FKN取大些可以减少虚假穿透,但是会使刚度矩阵成为病态。

3)既然与实际情况不符合的虚假穿透既然是不可避免的,那么可以允许有多大为合适 因此,在ANSYS程序里,通常输入FKN实常数不是直接定义接触刚度的数值,而是接触体下单元刚度的一个因子,这使得用户可以方便地定义接触刚度了,一般FKN取0.1到1中间的值。当然,在需要时,也可以把接触刚度直接定义,FKN输入为负数,则程序将其值理解为直接输入的接触刚度值。 对于接近病态的刚度阵,不要使用迭代求解器,例如PCG等。它们会需要更多的迭代次数,并有可能不收敛。可以使用直接法求解器,例如稀疏求解器等。这些求解器可以有效求解病态问题。 穿透的大小影响结果的精度。用户可以用PLESOL,CONT,PENE来在后处理中查看穿透的数值大小。如果使用的是罚函数法求解接触问题,用户一般需要试用多个FKN值进行计算,可以先用一个较小的FKN值开始计算,例如0.1。因为较小的FKN有助于收敛,然后再逐步增加FKN值进行一系列计算,最后得到一个满意的穿透值。 FKN的收敛性要求和穿透太大产生的计算误差总会是一对矛盾。解决此矛盾的办法是在接触算法中采用扩展拉格朗日乘子法。此方法在接触问题的求解控制中可以有更多更灵活的控制。可以更快的实现一个需要的穿透极限。 2.拉格朗日乘子法与扩展拉格朗日乘子法

相关主题
文本预览
相关文档 最新文档