当前位置:文档之家› 高等数学课后习题答案第九章

高等数学课后习题答案第九章

高等数学课后习题答案第九章
高等数学课后习题答案第九章

习题九

1. 求函数u=xy2+z3-xyz在点(1,1,2)处沿方向角为的方向导数。

解:

2. 求函数u=xyz在点(5,1,2)处沿从点A(5,1,2)到B(9,4,14)的方向导数。

解:

的方向余弦为

3. 求函数在点处沿曲线在这点的内法线方向的方向导数。

解:设x轴正向到椭圆内法线方向l的转角为φ,它是第三象限的角,因为

所以在点处切线斜率为

法线斜率为.

于是

4.研究下列函数的极值:

(1)z=x3+y3-3(x2+y2); (2)z=e2x(x+y2+2y);

(3)z=(6x-x2)(4y-y2); (4)z=(x2+y2);

(5)z=xy(a-x-y),a≠0.

解:(1)解方程组

得驻点为(0,0),(0,2),(2,0),(2,2).

z xx=6x-6, z xy=0, z yy=6y-6

在点(0,0)处,A=-6,B=0,C=-6,B2-AC=-36<0,且A<0,所以函数有极大值z(0,0)=0.在点(0,2)处,A=-6,B=0,C=6,B2-AC=36>0,所以(0,2)点不是极值点.

在点(2,0)处,A=6,B=0,C=-6,B2-AC=36>0,所以(2,0)点不是极值点.

在点(2,2)处,A=6,B=0,C=6,B2-AC=-36<0,且A>0,所以函数有极小值z(2,2)=-8.

(2)解方程组

得驻点为.

在点处,A=2e,B=0,C=2e,B2-AC=-4e2<0,又A>0,所以函数有极小值.

(3) 解方程组

得驻点为(3,2),(0,0),(0,4),(6,0),(6,4).

Z xx=-2(4y-y2),

Z xy=4(3-x)(2-y)

Z yy=-2(6x-x2)

在点(3,2)处,A=-8,B=0,C=-18,B2-AC=-8×18<0,且A<0,所以函数有极大值z(3,2)=36.在点(0,0)处,A=0,B=24,C=0,B2-AC>0,所以(0,0)点不是极值点.

在点(0,4)处,A=0,B=-24,C=0,B2-AC>0,所以(0,4)不是极值点.

在点(6,0)处,A=0,B=-24,C=0,B2-AC>0,所以(6,0)不是极值点.

在点(6,4)处,A=0,B=24,C=0,B2-AC>0,所以(6,4)不是极值点.

(4)解方程组

得驻点P0(0,0),及P(x0,y0),其中x02+y02=1,

在点P0处有z=0,而当(x,y)≠(0,0)时,恒有z>0,

故函数z在点P0处取得极小值z=0.

再讨论函数z=u e-u

由,令得u=1,

当u>1时,;当u<1时,,

由此可知,在满足x02+y02=1的点(x0,y0)的邻域内,不论是x2+y2>1或x2+y2<1,均有

.

故函数z在点(x0,y0)取得极大值z=e-1

(5)解方程组

得驻点为

z xx=-2y, z xy=a-2x-2y, z yy=-2x.

故z的黑塞矩阵为

于是

易知H(P1)不定,故P1不是z的极值点,

H(P2)当a<0时正定,故此时P2是z的极小值点,且,

H(P2)当a>0时负定,故此时P2是z的极大值点,且.

5. 设2x2+2y2+z2+8xz-z+8=0,确定函数z=z(x,y),研究其极值。

解:由已知方程分别对x,y求导,解得

令解得,

将它们代入原方程,解得.

从而得驻点.

在点(-2,0)处,B2-AC<0,因此函数有极小值z=1.

在点处,B2-AC<0,函数有极大值.

6. 在平面xOy上求一点,使它到x=0,y=0及x+2y-16=0三直线距离的平方之和为最小。

解:设所求点为P(x,y),P点到x=0的距离为|x|,到y=0的距离为|y|,到直线x+2y-16=0的距离为

距离的平方和为

得唯一驻点,因实际问题存在最小值,故点即为所求。

7. 求旋转抛物面z=x2+y2与平面x+y-z=1之间的最短距离。

解:设P(x,y,z)为抛物面上任一点.则点P到平面的距离的平方为,即求其在条件z= x2+y2下的最值。设F(x,y,z)=

解方程组

故所求最短距离为

8. 抛物面z=x2+y2被平面x+y+z=1截成一椭圆,求原点到这椭圆的最长与最短距离。

解:设椭圆上的点为P(x,y,z),则

|OP|2=x2+y2+z2.

因P点在抛物面及平面上,所以约束条件为

z=x2+y2,x+y+z=1

设F(x,y,z)= x2+y2+z2+λ1(z-x2-y2)+λ2(x+y+z-1)

解方程组

由题意知,距离|OP|有最大值和最小值,且

.

所以原点到椭圆的最长距离是,最短距离是.

9. 在第I卦限内作椭球面

的切平面,使切平面与三坐标面所围成的四面体体积最小,求切点坐标。

解:令

∴椭球面上任一点的切平面方程为

切平面在三个坐标轴上的截距分别为,因此切平面与三个坐标面所围的四面体的体积为

即求在约束条件下的最小值,也即求xyz的最大值问题。

设 ,

解方程组

得.

故切点为,此时最小体积为

*10. 设空间有n个点,坐标为,试在xOy面上找一点,使此点与这n个点的距离的平方和最小。

解:设所求点为P(x,y,0),则此点与n个点的距离的平方和为

解方程组

得驻点

又在点处

S xx=2n=A, S xy=0=B, S yy=2n=C

B2-AC=-4n2<0, 且A>0取得最小值.

故在点处,S取得最小值.

即所求点为.

11. 已知平面上分别带有质量m1,m2,m3的三个质点,问点的位置如何才能使该质点系对于p点的转动惯量为最小。

解:该质点系对于p点的转动惯量为

解上式得驻点

因驻点唯一,故转动惯量在点处取得最小值.

*12. 已知过去几年产量和利润的数据如下:

解:在直角坐标系下描点,从图可以看出,这些点大致接近一条直线,因此可设f(x)=ax+b,求的最小值,即求解方程组

把(x i,y i)代入方程组,得

解得a=, b=

即y=当x=120时,y=(千元).

13. 求下曲线在给定点的切线和法平面方程:

(1)x=a sin2t,y=b sin t cos t,z=c cos2t,点;

(2)x2+y2+z2=6,x+y+z=0,点M0(1,-2,1);

(3)y2=2mx,z2=m-x,点M0(x0,y0,z0).

解:

曲线在点的切向量为

当时,

切线方程为

.

法平面方程为

即 .

(2)联立方程组

它确定了函数y=y(x),z=z(x),方程组两边对x求导,得

解得

在点M0(1,-2,1)处,

所以切向量为{1,0,-1}.

故切线方程为

法平面方程为

1(x-1)+0(y+2)-1(z-1)=0

即x-z=0.

(3)将方程y2=2mx,z2=m-x两边分别对x求导,得

于是

曲线在点(x0,y0,z0)处的切向量为,故切线方程为

法平面方程为

.

14. t(0

解:,

在t处切向量为,

已知平面的法向量为.

且∥,故

解得,相应点的坐标为.且

故切线方程为

法平面方程为

即 .

15. 求下列曲面在给定点的切平面和法线方程:

(1)z=x2+y2,点M0(1,2,5);

(2)z=arctan,点M0(1,1,);

解:(1)

故曲面在点M0(1,2,5)的切平面方程为

z-5=2(x-1)+4(y-2).

即 2x+4y-z=5.

法线方程为

(2)

故曲面在点M0(1,1,)的切平面方程为

z-=-(x-1)+(y-1).

法线方程为

.

16.指出曲面z=xy上何处的法线垂直于平面x-2y+z=6,并求出该点的法线方程与切平面方程。

解:z x=y,z y=x.

曲面法向量为.

已知平面法向量为.

且∥,故有

解得x=2,y=-1,此时,z=-2.

即(2,-1,-2)处曲面的法线垂直于平面,且在该点处的法线方程为

.

切平面方程为

-1(x-2)+2(y+1)-(z+2)=0

即x-2y+z-2=0.

17. 证明:螺旋线x=acost,y=asint,z=bt的切线与z轴形成定角。

证明:

螺旋线的切向量为

.

与z轴同向的单位向量为

两向量的夹角余弦为

为一定值。

故螺旋线的切线与z轴形成定角。

18. 证明:曲面xyz=a3上任一点的切平面与坐标面围成的四面体体积一定。

证明:设F(x,y,z)=xyz-a3.

因为F x=yz,F y=xz,F z=xy,

所以曲面在任一点M0(x0,y0,z0)处的切平面方程为

y0z0(x-x0)+x0z0(y-y0)+x0y0(z-z0)=0.

切平面在x轴,y轴,z轴上的截距分别为3x0,3y0,3z0.因各坐标轴相互垂直,所以切平面与坐标面围成的四面体的体积为

它为一定值。

微积分课后题答案第九章习题详解

第9章 习题9-1 1. 判定下列级数的收敛性: (1) 11 5n n a ∞ =?∑(a >0); (2) ∑∞ =-+1 )1(n n n ; (3) ∑∞ =+13 1 n n ; (4) ∑∞ =-+12)1(2n n n ; (5) ∑∞ =+11ln n n n ; (6) ∑∞ =-12)1(n n ; (7) ∑∞ =+11 n n n ; (8) 0(1)21n n n n ∞ =-?+∑. 解:(1)该级数为等比级数,公比为 1a ,且0a >,故当1 ||1a <,即1a >时,级数收敛,当1 | |1a ≥即01a <≤时,级数发散. (2) Q n S =+++L 1= lim n n S →∞ =∞ ∴ 1 n ∞ =∑发散. (3)113 n n ∞ =+∑是调和级数11n n ∞=∑去掉前3项得到的级数,而调和级数11 n n ∞ =∑发散,故原 级数 11 3 n n ∞ =+∑发散. (4)Q 1112(1)1(1)22 2n n n n n n n ∞ ∞-==?? +--=+ ???∑∑ 而11 12n n ∞ -=∑,1(1)2m n n ∞ =-∑是公比分别为1 2的收敛的等比级数,所以由数项级数的基本性质

知111(1)2 2n n n n ∞ -=??-+ ???∑收敛,即原级数收敛. (5)Q ln ln ln(1)1 n n n n =-++ 于是(ln1ln 2)(ln 2ln 3)[ln ln(1)]n S n n =-+-+-+L ln1ln(1)ln(1)n n =-+=-+ 故lim n n S →∞ =-∞,所以级数 1 ln 1 n n n ∞ =+∑发散. (6)Q 2210,2n n S S +==- ∴ lim n n S →∞ 不存在,从而级数 1 (1) 2n n ∞ =-∑发散. (7)Q 1 lim lim 10n n n n U n →∞ →∞+==≠ ∴ 级数 1 1 n n n ∞ =+∑发散. (8)Q (1)(1)1 , lim 21212 n n n n n n U n n →∞--==++ ∴ lim 0n x U →∞≠,故级数1 (1)21n n n n ∞ =-+∑发散. 2. 判别下列级数的收敛性,若收敛则求其和: (1) ∑∞ =??? ??+13121n n n ; (2) ※ ∑∞ =++1)2)(1(1n n n n ; (3) ∑∞ =?1 2sin n n n π ; (4) 0πcos 2n n ∞ =∑. 解:Q (1)1111, 23n n n n ∞ ∞==∑∑都收敛,且其和分别为1和12,则1112 3n n n ∞ =?? + ???∑收敛,且其 和为1+ 12=3 2 . (2)Q 11121(1)(2)212n n n n n n ?? =-+ ?++++??

高等数学2第十一章答案

习题11-1 对弧长的曲线积分 1.计算下列对弧长的曲线积分: (1)22()n L x y ds +??,其中L 为圆周cos x a t =,sin y a t = (02)t π≤≤; (2)L xds ??,其中L 为由直线y x =及抛物线2 y x =所围成的区域的整个边界; (3)L ??,其中L 为圆周222x y a +=,直线y x =及x 轴在第一象限内所围成的 扇形的整个边界; (4) 2x yzds Γ ? ,其中Γ为折线ABCD ,这里A 、B 、C 、D 依次为点(0,0,0)、(0,0,2)、 (1,0,2)、(1,3,2); (5)2L y ds ? ,其中L 为摆线的一拱(sin )x a t t =-,(1cos )y a t =-(02)t π≤≤. 2.有一段铁丝成半圆形y =,其上任一点处的线密度的大小等于该点的纵坐标,求其质量。 解 曲线L 的参数方程为()cos ,sin 0x a y a ???π==≤≤ ds ad ??= = 依题意(),x y y ρ=,所求质量220 sin 2L M yds a d a π??= ==?? 习题11-2 对坐标的曲线积分 1.计算下列对坐标的曲线积分: (1)22()L x y dx -? ,其中L 是抛物线2y x =上从点(0,0)到点(2,4)的一段弧; (2)22 ()()L x y dx x y dy x y +--+??,其中L 为圆周222 x y a +=(按逆时针方向绕行);

(3)(1)xdx ydy x y dz Γ +++-? ,其中Γ是从点(1,1,1)到点(2,3,4)的一段直线; (4) dx dy ydz Γ -+??,其中Γ为有向闭折线ABCA ,这里A 、B 、C 依次为点(1,0,0)、 (0,1,0)、(0,0,1); 2.计算 ()()L x y dx y x dy ++-?,其中L 是: (1)抛物线2 y x =上从点(1,1)到点(4,2)的一段弧; (2)从点(1,1)到点(4,2)的直线段; (3)先沿直线从点(1,1)到点(1,2),然后再沿直线到(4,2)的折线; (4)曲线2 21x t t =++,2 1y t =+上从点(1,1)到点(4,2)的一段弧。 3.把对坐标的曲线积分 (,)(,)L P x y dx Q x y dy +? 化成对弧长的曲线积分,其中L 为: (1)在xOy 面内沿直线从点(0,0)到点(1,1); (2)沿抛物线2 y x =从点(0,0)到点(1,1); (3)沿上半圆周2 22x y x +=从点(0,0)到点(1,1). 4.设Γ为曲线x t =,2 y t =,3 z t =上相应于t 从0变到1的曲线弧,把对坐标的曲线积分 L Pdx Qdy Rdz ++? 化成对弧长的曲线积分。 习题11-3 格林公式及其应用 1. 利用曲线积分,求星形线3 cos x a t =,3 sin y a t =所围成的图形的面积。

郑州大学高等数学下课后习题答案解析

习题7.7 3.指出下列方程所表示的曲线. (1)???==++;3, 25222x z y x (2)???==++;1,3694222y z y x (3)???-==+-;3, 254222x z y x (4)???==+-+.4,08422y x z y 【解】 (1)表示平面3=x 上的圆周曲线1622=+z y ; (2)表示平面1=y 上的椭圆19 32322 2=+z x ; (3)表示平面3-=x 上的双曲线14 162 2=-y z ; (4)表示平面4=y 上的抛物线642-=x z . 4.求() () ?????=++=++Γ2, 21, :2 22 2 222Rz z y x R z y x 在三个坐标面上的投影曲线. 【解】 (一)(1)、(2)联立消去z 得 2224 3R y x = + 所以,Γ在xoy 面上的投影曲线为 ?????==+.0, 4 322 2z R y x (二)(1)、(2)联立消去y 得 R z 2 1 = 所以,Γ在zox 面上的投影曲线为 .23.0,21R x y R z ≤ ?? ? ??==

(三)(1)、(2)联立消去x 得 R z 21 = 所以,Γ在yoz 面上的投影曲线为 .23.0, 21R y x R z ≤ ????? == 6.求由球面224y x z --= ①和锥面() 223y x z += ②所围成的立体在xoy 面上的投影区域. 【解】联立①、②消去z 得 122=+y x 故Γ在xoy 面上的投影曲线为 ? ??==+.0, 122z y x 所以,球面和锥面所围成的立体在xoy 面上的投影区域为(){}1|,22≤+=y x y x D . 习题7.8 2.设空间曲线C 的向量函数为(){} t t t t t r 62,34,122--+=,R t ∈.求曲线C 在与 20=t 相应的点处的单位切向量. 【解】因(){}64,4,2-=t t t r ,故C 相应20=t 的点处的切向量为 (){}2,4,42='r . C 相应20=t 的点处的单位切向量为 (){}.31,32,322,4,4612? ?????±=± =' 3.求曲线32,,:t z t y t x ===Γ在点)1,1,1(0M 处的切线方程和法平面方程. 【解】0M 对应参数1=t .Γ在0M 点处的切线方向为

高数课后习题及答案 第二章 2.3

2.2)1 ()3,0 x f x x ==; 解: 11 lim 11 lim lim ()lim 3330 lim ()lim 333 x x x x x x x x x x f x f x - →--+ →++-∞ →→+∞ →→========+∞ 因为0 lim ()lim ()x x f x f x - + →→≠,所以3 lim ()x f x →-不存在。 3)2 11(),02x f x x - ?? == ? ?? ; 解: 2 10000 11lim ()lim ()lim ()lim 22x x x x x f x f x f x -+- -∞ →→→→?? ??=====+∞ ? ??? ?? 所以3 lim ()x f x →-不存在。 4)3,3 9)(2 -=+-= x x x x f ; 解:63 ) 3)(3(lim )(lim )(lim 3 3 3 -=+-+==+ + - -→-→-→x x x x f x f x x x 故极限6)(lim 3 -=-→x f x 2 2 2 2 2 5).lim ()224,lim ()3215, lim ()lim (),lim ()x x x x x f x f x f x f x f x -+-+→→→→→=?==?-=≠解:因为所以不存在。 ()0 6.lim ()lim 21,lim ()lim cos 12,lim ()lim (),lim ()x x x x x x x x f x f x x f x f x f x --++-+→→→→→→→===+=≠)解:因为所以不存在。 7)1()arctan ,0f x x x ==;

大学高等数学上习题(附答案)

《高数》习题1(上) 一.选择题 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? - + ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 10.设()f x 为连续函数,则()10 2f x dx '?等于( ). (A )()()20f f - (B )()()11102f f -????(C )()()1 202f f -??? ?(D )()()10f f - 二.填空题 1.设函数()21 00x e x f x x a x -?-≠? =??=? 在0x =处连续,则a = . 2.已知曲线()y f x =在2x =处的切线的倾斜角为5 6 π,则()2f '=. 3. ()21ln dx x x = +?. 三.计算 1.求极限 ①21lim x x x x →∞+?? ??? ②() 20sin 1 lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分x xe dx -?

高等数学第六版(同济大学)上册课后习题答案解析

高等数学第六版上册课后习题答案及解析 第一章 习题1-1 1. 设A =(-∞, -5)?(5, +∞), B =[-10, 3), 写出A ?B , A ?B , A \B 及A \(A \B )的表达式. 解 A ?B =(-∞, 3)?(5, +∞), A ? B =[-10, -5), A \ B =(-∞, -10)?(5, +∞), A \(A \B )=[-10, -5). 2. 设A 、B 是任意两个集合, 证明对偶律: (A ?B )C =A C ?B C . 证明 因为 x ∈(A ?B )C ?x ?A ?B ? x ?A 或x ?B ? x ∈A C 或x ∈B C ? x ∈A C ?B C , 所以 (A ?B )C =A C ?B C . 3. 设映射f : X →Y , A ?X , B ?X . 证明 (1)f (A ?B )=f (A )?f (B ); (2)f (A ?B )?f (A )?f (B ). 证明 因为 y ∈f (A ?B )??x ∈A ?B , 使f (x )=y ?(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B ) ? y ∈f (A )?f (B ), 所以 f (A ?B )=f (A )?f (B ). (2)因为 y ∈f (A ?B )??x ∈A ?B , 使f (x )=y ?(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )? y ∈ f (A )?f (B ), 所以 f (A ?B )?f (A )?f (B ). 4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g =ο, Y I g f =ο, 其中I X 、 I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1. 证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中

高等数学II练习册-第10章答案.

习题10-1 二重积分的概念与性质 1.根据二重积分的性质,比较下列积分的大小: (1)2()D x y d σ+??与3 ()D x y d σ+?? ,其中积分区域D 是圆周22(2)(1)2x y -+-=所围成; (2) ln()D x y d σ+??与2 [ln()]D x y d σ+??,其中D 是三角形闭区域,三顶点分别为(1,0), (1,1),(2,0); 2.利用二重积分的性质估计下列积分的值: (1)22 sin sin D I x yd σ= ??,其中{(,)|0,0}D x y x y ππ=≤≤≤≤; (2)22 (49)D I x y d σ= ++?? ,其中22{(,)|4}D x y x y =+≤ . (3) .D I = ,其中{(,)|01,02}D x y x y =≤≤≤≤ 解 () ,f x y = Q 2,在D 上(),f x y 的最大值

()1 4M x y = ==,最小值()11,25m x y ==== 故0.40.5I ≤≤ 习题10-2 二重积分的计算法 1.计算下列二重积分: (1) 22 ()D x y d σ+??,其中{(,)|||1,||1}D x y x y =≤≤; (2) cos()D x x y d σ+??,其中D 是顶点分别为(0,0),(,0)π和(,)ππ的三角形闭区域。 2.画出积分区域,并计算下列二重积分: (1) x y D e d σ+??,其中{(,)|||1}D x y x y =+≤

(2) 2 2()D x y x d σ+-??,其中D 是由直线2y =,y x =及2y x =所围成的闭区域。 3.化二重积分(,)D I f x y d σ= ??为二次积分(分别列出对两个变量先后次序不同的两个二次 积分),其中积分区域D 是: (1)由直线y x =及抛物线2 4y x =所围成的闭区域; (2)由直线y x =,2x =及双曲线1 (0)y x x = >所围成的闭区域。

中国人民大学出版社第四版高等数学一第6章课后习题详解

高等数学一第6章课后习题详解 课后习题全解 习题6-2 ★ 1.求由曲线 x y =与直线 x y =所围图形的面积。 知识点:平面图形的面积 思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解: 见图6-2-1 ∵所围区域D 表达为X-型:?? ?<<<

∵所围区域D 表达为X-型:?????<<< <1 sin 2 0y x x π, (或D 表达为Y-型:???<<<

∴所围区域D 表达为Y-型:?? ?-<<<<-2 2 422y x y y , ∴23 16 )32 4()4(2 2 32 222= -=--=- - ? y y dy y y S D (由于图形关于X 轴对称,所以也可以解为: 2316 )324(2)4(22 32 22=-=--=? y y dy y y S D ) ★★4.求由曲线 2x y =、24x y =、及直线1=y 所围图形的面积 知识点:平面图形面积 思路:所围图形关于Y 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-4 ∵第一象限所围区域1D 表达为Y-型:? ??<<<

高等数学课后习题及解答

高等数学课后习题及解答 1. 设u=a-b+2c,v=-a+3b-c.试用a,b,c 表示2u-3v. 解2u-3v=2(a-b+2c)-3(-a+3b-c) =5a-11b+7c. 2. 如果平面上一个四边形的对角线互相平分,试用向量证明它是平 行四边形. 证如图8-1 ,设四边形ABCD中AC 与BD 交于M ,已知AM = MC ,DM 故 MB . AB AM MB MC DM DC . 即AB // DC 且|AB |=| DC | ,因此四边形ABCD是平行四边形. 3. 把△ABC的BC边五等分,设分点依次为D1,D2,D3,D4,再把各 分点与点 A 连接.试以AB=c, BC=a 表向量 证如图8-2 ,根据题意知 1 D 1 A, 1 D 2 A, D 3 A, D A. 4 1 D3 D4 BD1 1 a, 5 a, D1D2 a, 5 5 1 D 2 D 3 a, 5 故D1 A=- (AB BD1)=- a- c 5

D 2 A =- ( AB D A =- ( AB BD 2 BD )=- )=- 2 a- c 5 3 a- c 3 =- ( AB 3 BD 4 )=- 5 4a- c. 5 4. 已知两点 M 1(0,1,2)和 M 2(1,-1,0) .试用坐标表示式表示 向量 M 1M 2 及-2 M 1M 2 . 解 M 1M 2 =(1-0, -1-1, 0-2)=( 1, -2, -2) . -2 M 1M 2 =-2( 1,-2,-2) =(-2, 4,4). 5. 求平行于向量 a =(6, 7, -6)的单位向量 . a 解 向量 a 的单位向量 为 ,故平行向量 a 的单位向量为 a a 1 = ( 6,7, -6)= 6 , 7 , 6 , a 11 11 11 11 其 中 a 6 2 72 ( 6)2 11. 6. 在空间直角坐标系中,指出下列各点在哪个卦限? A (1,-2,3), B ( 2, 3,-4), C (2,-3,-4), D (-2, -3, 1). 解 A 点在第四卦限, B 点在第五卦限, C 点在第八卦限, D 点在第三卦限 . 7. 在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置: A ( 3, 4, 0), B ( 0, 4,3), C ( 3,0,0), D ( 0, D A 4

高等数学练习答案1-10

习题1-10 1. 证明方程x 5-3x =1至少有一个根介于1和2之间. 证明 设f (x )=x 5-3x -1, 则f (x )是闭区间[1, 2]上的连续函数. 因为f (1)=-3, f (2)=25, f (1)f (2)<0, 所以由零点定理, 在(1, 2)内至少有一点ξ (1<ξ<2), 使f (ξ)=0, 即x =ξ 是方程x 5-3x =1的介于1和2之间的根. 因此方程x 5-3x =1至少有一个根介于1和2之间. 2. 证明方程x =a sin x +b , 其中a >0, b >0, 至少有一个正根, 并且它不超过a +b . 证明 设f (x )=a sin x +b -x , 则f (x )是[0, a +b ]上的连续函数. f (0)=b , f (a +b )=a sin (a +b )+b -(a +b )=a [sin(a +b )-1]≤0. 若f (a +b )=0, 则说明x =a +b 就是方程x =a sin x +b 的一个不超过a +b 的根; 若f (a +b )<0, 则f (0)f (a +b )<0, 由零点定理, 至少存在一点ξ∈(0, a +b ), 使f (ξ)=0, 这说明x =ξ 也是方程x =a sin x +b 的一个不超过a +b 的根. 总之, 方程x =a sin x +b 至少有一个正根, 并且它不超过a +b . 3. 设函数f (x )对于闭区间[a , b ]上的任意两点x 、y , 恒有|f (x )-f (y )|≤L |x -y |, 其中L 为正常数, 且f (a )?f (b )<0. 证明: 至少有一点ξ∈(a , b ), 使得f (ξ)=0. 证明 设x 0为(a , b )内任意一点. 因为 0||l i m |)()(|l i m 0000 0=-≤-≤→→x x L x f x f x x x x , 所以 0|)()(|lim 00 =-→x f x f x x , 即 )()(l i m 00 x f x f x x =→. 因此f (x )在(a , b )内连续. 同理可证f (x )在点a 处左连续, 在点b 处右连续, 所以f (x )在[a , b ]上连续. 因为f (x )在[a , b ]上连续, 且f (a )?f (b )<0, 由零点定理, 至少有一点ξ∈(a , b ), 使得f (ξ)=0. 4. 若f (x )在[a , b ]上连续, a

高等数学上复旦第三版 课后习题答案

283 高等数学上(修订版)(复旦出版社) 习题六 无穷数级 答案详解 1.写出下列级数的一般项: (1)111135 7 ++++ ; (2)2 2242462468x x x x x ++++?????? ; (3)3579 3579 a a a a -+-+ ; 解:(1)1 21 n U n =-; (2)()2 !! 2n n x U n = ; (3)() 21 1 121 n n n a U n ++=-+; 2.求下列级数的和: (1)()()() 11 11n x n x n x n ∞ =+-+++∑ ; (2) ( )1 221n n n n ∞ =+-++∑; (3)23 111 5 55+ ++ ; 解:(1)()()() ()()()()1 11111211n u x n x n x n x n x n x n x n = +-+++?? -= ?+-++++??

284 从而()()()()()()() ()()()()()()()1111 1211212231111111211n S x x x x x x x x x n x n x n x n x x x n x n ?-+-= +++++++?? ++ - ?+-++++? ?? -= ?++++?? 因此() 1lim 21n n S x x →∞ =+,故级数的和为 () 121x x + (2)因为()()211n U n n n n =-+-++- 从而()()()() ()()()()3243322154432112112 1 12 21 n S n n n n n n n n =-+-----+-++---+-++-=+-++-=+-+++ 所以lim 12n n S →∞ =-,即级数的和为12-. (3)因为2111 5551115511511145n n n n S =+ ++????-?? ???? ?=-????=-?? ????? 从而1lim 4 n n S →∞ =,即级数的和为14 . 3.判定下列级数的敛散性: (1) ( )1 1n n n ∞ =+-∑; (2) ()() 11111661111165451n n +++++???-+ ; (3) ()23133222213333 n n n --+-++- ;

微积分课后题答案习题详解

微积分课后题答案习题 详解 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第二章 习题2-1 1. 试利用本节定义5后面的注(3)证明:若lim n →∞ x n =a ,则对任何自然数k ,有lim n →∞ x n +k =a . 证:由lim n n x a →∞ =,知0ε?>,1N ?,当1n N >时,有 取1N N k =-,有0ε?>,N ?,设n N >时(此时1n k N +>)有 由数列极限的定义得 lim n k x x a +→∞ =. 2. 试利用不等式A B A B -≤-说明:若lim n →∞ x n =a ,则lim n →∞ ∣x n ∣=|a|.考察数列x n =(-1)n ,说明 上述结论反之不成立. 证: 而 n n x a x a -≤- 于是0ε?>,,使当时,有N n N ?> n n x a x a ε-≤-< 即 n x a ε-< 由数列极限的定义得 lim n n x a →∞ = 考察数列 (1)n n x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞ =, 所以前面所证结论反之不成立。 3. 利用夹逼定理证明: (1) lim n →∞ 2 22111(1) (2)n n n ??+++ ?+?? =0; (2) lim n →∞2!n n =0. 证:(1)因为 222 222111 112(1)(2)n n n n n n n n n n ++≤+++ ≤≤=+ 而且 21lim 0n n →∞=, 2lim 0n n →∞=, 所以由夹逼定理,得 22211 1lim 0(1)(2)n n n n →∞?? +++ = ?+? ? . (2)因为22222240!123 1n n n n n < =<-,而且4 lim 0n n →∞=,

高等数学同济第六版上册课后答案

2018年湖南省怀化市中考物理试卷 一、选择区 1. 下图中符合安全用电原则的是() A. 雷雨时在大树下躲雨 B. 在高压线下钓鱼 C. 在同一插座上同时使用多个大功率用电器 D. 发现有人触电时立即切断电源 【答案】D 【解析】A、雷雨时,不可以在大树下避雨,要注意防雷电,故A错误; B、高压线下钓鱼,鱼线很容易接触到高压线,容易发生触电事故,故B错误; C、在同一个插座上同时使用了多个大功率的用电器,由可得,会使干路中的电流过大,容易发生电路火灾,故C错误; D、当发现有人触电时,应该立即采取的措施是:迅速切断电源或用绝缘体挑开电线,因为人体是导体,不能用手拉开电线和触电的人,故D正确。 故选:D。 点睛:本题考查日常安全用电常识,关键是了解安全用电的基本原则“不接触低压带电体,不靠近高压带电体。” 2. 在北京8分钟的节目中,憨态可掬的大熊猫令人忍俊不禁。这只大熊猫是用一种特制的铝合金材料制成的,它的高度为2.35m,质量却只有10kg,它利用了铝合金的哪一种性质() A. 质量小 B. 密度小 C. 比热容小 D. 导热性能好 【答案】B 【解析】解:由题知,大熊猫是用一种特殊的铝合金材料制成的,它的高为2.35m,质量却只有10kg,也就是说它的体积很大,质量很小,根据ρ=可知,材料的体积相同时,质量越小,密度越小。所以它利用

了铝合金密度小的性质。故ACD错误,B正确。 故选:B。 点睛:密度是物质的一种特性,不同物质密度一般不同,常用密度来鉴别物质。解答本题时,要紧扣大熊猫高度大,质量小的特点进行分析。 3. 下列事例中不是利用大气压工作的是() A. 用塑料吸管吸饮料 B. 用抽水机抽水 C. 用注射器将药液注入病人体内 D. 钢笔吸墨水 【答案】C 【解析】解:A、用吸管吸饮料时,吸管内的气压小于外界大气压,饮料在外界大气压的作用下,被压入口腔内。利用了大气压。故A不合题意; B、抽水机抽水,通过活塞上移或叶轮转动使抽水机内水面上方的气压减小,水在外界大气压的作用下,被压上来,利用了大气压,故B不合题意。 C、用注射器将药液注入病人体内是利用人的压力将药液注入人体肌肉的,不是利用大气压来工作的,故C 符合题意。 D、用力一按橡皮囊,排出了里面的空气,当其恢复原状时,橡皮囊内部气压小于外界大气压,在外界大气压的作用下,墨水被压入钢笔内,利用了大气压。故D不合题意。 故选:C。 点睛:本题考查了大气压的应用,此类问题有一个共性:通过某种方法,使设备内部的气压小于外界大气压,在外界大气压的作用下出现了这种现象。 4. 自然界中有些能源一旦消耗就很难再生,因此我们要节约能源。在下列能源中,属于不可再生的能源的是 A. 水能 B. 风能 C. 太阳能 D. 煤炭 【答案】D D、煤炭属于化石燃料,不能短时期内从自然界得到补充,属于不可再生能源,故D符合题意。

大学《高等数学A》课后复习题及解析答案

大学数学A (1)课后复习题 第一章 一、选择题 1.下列各组函数中相等的是. …….. ……..…………………………………………………………………………………….( ) A .2 ln )(,ln 2)(x x g x x f == B .0 )(,1)(x x g x f == C .1)(,11)(2-=-?+= x x g x x x f D .2)(|,|)(x x g x x f == 2.下列函数中为奇函数的是. ……. …….. …………………………………………………………………………………….( ). A .)1ln()(2++=x x x f B .| |)(x e x f = C .x x f cos )(= D .1 sin )1()(2--= x x x x f 3.极限??? ? ?+++∞→22221lim n n n n n 的值为………………………………………………………………………..…….( ) A .0 B .1 C .2 1 D .∞ 4.极限x x x x sin lim +∞→的值为.. …….. ……..……………………………………………………………………………...…….( ) A .0 B .1 C .2 D .∞ 5.当0→x 时,下列各项中与 2 3 x 为等价无穷小的是…………………………………………………….( ) A .)1(3-x e x B .x cos 1- C .x x sin tan - D .)1ln(x + 6.设12)(-=x x f ,则当0→x 时,有…………………………………………………………………………..…….( ). A .)(x f 与x 是等价无穷小 B .)(x f 与x 同阶但非等价无穷小 C .)(x f 是比x 高阶的无穷小 D .)(x f 是比x 低阶的无穷小 7.函数)(x f 在点x 0可导是)(x f 在点x 0连续的____________条件. ………...………………....…..( ) A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要 8.设函数?? ? ??<≤--<≤≤≤-=01,110, 21,2)(2x x x x x x x f ,则下述结论正确的是……………………………………….( )

高等数学下-复旦大学出版-习题十答案详解

习题十 1. 根据二重积分性质,比较 ln()d D x y σ+?? 与2[ln()]d D x y σ+??的大小,其中: (1)D 表示以(0,1),(1,0),(1,1)为顶点的三角形; (2)D 表示矩形区域{(,)|35,02}x y x y ≤≤≤≤. 解:(1)区域D 如图10-1所示,由于区域D 夹在直线x +y =1与x +y =2之间,显然有 图10-1 12x y ≤+≤ < 从而 0ln()1x y ≤+< 故有 2 ln()[ln()]x y x y +≥+ 所以 2ln()d [ln()]d D D x y x y σσ+≥+?? ?? (2)区域D 如图10-2所示.显然,当(,)x y D ∈时,有3x y +≥. 图10-2 从而 ln(x +y )>1 故有 2 ln()[ln()]x y x y +<+ | 所以 2ln()d [ln()]d D D x y x y σσ +<+?? ?? 2. 根据二重积分性质,估计下列积分的值: (1)4d ,{(,)|02,02}I xy D x y x y σ=+=≤≤≤≤??; (2)22sin sin d ,{(,)|0π,0π}D I x y D x y x y σ= =≤≤≤≤?? ;

解:(1)因为当(,)x y D ∈时,有02x ≤≤, 02y ≤≤ 因而 04xy ≤≤. 从而 2≤≤》 故 2d D D σσσ≤≤?? ?? ?? 即2d d D D σσσ≤≤???? 而 d D σσ=?? (σ为区域D 的面积) ,由σ=4 得 8σ≤ ≤?? (2) 因为2 2 0sin 1,0sin 1x y ≤≤≤≤,从而 220sin sin 1x y ≤≤ 故 220d sin sin d 1d D D D x y σσσ≤≤?? ???? 即220sin sin d d D D x y σσσ≤ ≤=???? ~ 而2 πσ= 所以2220sin sin d πD x y σ≤ ≤?? (3)因为当(,)x y D ∈时,2 2 04x y ≤+≤所以 22229494()925x y x y ≤++≤++≤ 故 229d (49)d 25d D D D x y σσσ≤++≤?? ???? 即 229(49)d 25D x y σσσ≤ ++≤?? 而 2 π24πσ=?= 所以 2236π(49)d 100πD x y σ≤ ++≤?? … 3. 根据二重积分的几何意义,确定下列积分的值:

高数课后题答案及详解

2019年广西满分作文:毕业前的最后一堂课时光飞逝,白马过隙。2019高考如约而至,距离我的那年高考也已有二十岁的年份。烈日的阳光,斑驳的光影,仿佛又把我拉进了在宽窄巷子的学堂里最后冲刺的时光。 高中即将毕业,意味着每个人将为人生方向的开启选好时光的阀门,单纯的学历生涯即将告一段落。课堂上朗朗整齐的晨读和起立,行礼的流程将渐行远去。它是青春懵懂的里程,也是最为单纯的诗书礼仪,课桌黑板走廊都将记录这里每个人在经历人生的最后一课,无论是同学还是老师。 记得1999年炙热的炎夏,当年的二十八中还隐藏在老成都皇城宽窄巷子里面,距离高考还有一周,同学们已经不再像之前那样紧张忙碌的复习节奏,三三两两,甚至结伴到学校周围看看能不能捡到老皇城留下的一砖半瓦,为自己这里的高中学涯留点念想。 还记得是用过学校食堂的午餐,在最后一节考前动员课上完以后,大家就会各自回到家中,为最后到来的大考最最后的准备。课堂的气氛很是轻松,甚至我和我的同桌还在讨论中午学校食堂红椒肉丝的白糖是否搁多了,随着班主任走进教室,踏上讲台,一如既往地喊道:上课!接着就是值日生的“起立敬礼老师好”的三重奏,最后一节课的师生礼仪完毕后,班主任转身在黑板上用粉笔撰写了四个大字“勇往直前”,语重心长的寄语和感慨在此不表,大家彼此默契的拿出早已准备好的记事本开始彼此留言签名,数言珍语,寥寥几笔都赫然纸上。 人生最后一堂课,没有习题的讲解和紧张备考的威严氛围。三年同窗,彼此单纯的朝夕相处和课桌校园间的点滴生活早已让这个班级凝成了一片经脉。“聚是一团火,散是满天星,不求桃李满天下,只愿每人福满多。”班主任最后这句话至今印刻脑海。二十载已过,当时班主任的心境早已能够理解,也希望每年高考时,同学志愿看天下!

高数2试题及答案

模拟试卷一 ―――――――――――――――――――――――――――――――――― 注意:答案请写在考试专用答题纸上,写在试卷上无效。(本卷考试时间100分) 一、单项选择题(每题3分,共24分) 1、已知平面π:042=-+-z y x 与直线1 1 1231: -+= +=-z y x L 的位置关系是( ) (A )垂直 (B )平行但直线不在平面上 (C )不平行也不垂直 (D )直线在平面上 2、=-+→→1 123lim 0xy xy y x ( ) (A )不存在 (B )3 (C )6 (D )∞ 3、函数),(y x f z =的两个二阶混合偏导数y x z ???2及x y z ???2在区域D 内连续是这两个二阶混合 偏导数在D 内相等的( )条件. (A )必要条件 (B )充分条件 (C )充分必要条件 (D )非充分且非必要条件 4、设 ??≤+=a y x d 224πσ,这里0φa ,则a =( ) (A )4 (B )2 (C )1 (D )0 5、已知 ()()2 y x ydy dx ay x +++为某函数的全微分,则=a ( ) (A )-1 (B )0 (C )2 (D )1 6、曲线积分=++?L z y x ds 2 22( ),其中.110:222? ??==++z z y x L (A ) 5 π (B )52π (C )53π (D )54π 7、数项级数 ∑∞ =1 n n a 发散,则级数 ∑∞ =1 n n ka (k 为常数)( ) (A )发散 (B )可能收敛也可能发散 (C )收敛 (D )无界 8、微分方程y y x '=''的通解是( ) (A )21C x C y += (B )C x y +=2 (C )22 1C x C y += (D )C x y += 2 2 1 二、填空题(每空4分,共20分)

精品高数课后题答案及详解

高等数学习题及答案 一、填空题(每小题3分,共21分) 1.设b a by ax y x f ,,),(其中+=为常数,则=)),(,(y x f xy f .y b abx axy 2 ++ 2.函数2 2y x z +=在点)2,1(处,沿从点)2,1(到点)32,2(+的方向的 方向导数是 .321+ 3.设有向量场k xz j xy i y A ρρρρ++=2 ,则=A div ρ . x 2 4.二重积分??2 1 ),(x dy y x f dx 交换积分次序后为 .??1 1 ),(y dx y x f dy 5.幂级数∑∞ =-1 3)3(n n n n x 的收敛域为 . [0,6) 6.已知y x e z 2-=,而3 ,sin t y t x ==,则 =dt dz 3sin 22(cos 6)t t e t t -- 7.三重积分 =???Ω dv 3 , 其中Ω是由3,0,1,0,1,0======z z y y x x 所围成的立体. 二、计算题(一)(每小题7分,共21分) 1.设b a b a ρρρρ与,5,2==的夹角为π3 2 ,向量b a n b a m ρρρρρρ-=+=317与λ相互垂直,求λ. 解:由25173 2 cos 52)51(1217)51(3022?-???-+=-?-+=?=πλλλλb b a a n m ρρρρρρ 得.40=λ 2.求过点)1,2,1(-且与直线?? ?=--+=-+-0 4230 532z y x z y x 垂直的平面方程.

解:直线的方向向量为{}11,7,52 13132 =--=k j i s ρρρρ 取平面的法向量为s n ρ ρ=,则平面方程为0)1(11)2(7)1(5=++-+-z y x 即.081175=-++z y x 3.曲面32=xyz 上哪一点处的法线平行于向量}1,8,2{=S ρ ?并求出此法线方程. 解:设曲面在点),,(z y x M 处的法线平行于s ρ ,令32-=xyz F 则在点),,(z y x M 处曲面的法向量为.1 82,}.,,{},,{xy xz yz s n xy xz yz F F F n z y x ====故有 由于ρ ρρ由此解得 y z y x 8,4==,代入曲面方程,解得),,(z y x M 的坐标为)8,1,4(,用点向式即得所求法线 方程为1 8 8124-= -=-z y x 三、计算题(二)(每小题7分,共21分) 1.设)(x y xF xy z +=,其中)(u F 为可导函数,求.y z y x z x ??+?? 解: ),()(u F x y u F y x z '-+=?? )(u F x y z '+=?? xy z xF xy y z y x z x +=+=??+??2 2.将函数??? ? ??-=x e dx d x f x 1)(展成x 的幂级数,并求∑∞ =+1)!1(n n n 的和. 解:???++???++=--1! 1 !2111n x x n x x e

相关主题
文本预览
相关文档 最新文档