当前位置:文档之家› Toll样受体研究进展

Toll样受体研究进展

Toll样受体研究进展
Toll样受体研究进展

Toll样受体信号通路的研究进展

Toll样受体信号通路的研究进展 摘要Toll样受体(Toll-like receptor,TLR)是近年来发现的一类模式识别受体,通过识别病原相关分子模式(pathogen-associated molecular pattern,PAMP)激活天然免疫。而髓样分化因子(myeloid differentiation factor 88,MyD88)是TLR信号通路中的一个关键接头分子,在传递上游信息和疾病发生发展中具有重要的作用。本文对Toll样受体、髓样分化因子88的分子结构和基本功能,及Toll样受体的信号传导通路进行了综述。 关键词Toll样受体;髓样分化因子88;信号通路;负调控机制 免疫系统识别“非我”和“自我”的过程是依赖于不同的受体来完成的,作为先天性免疫系统的重要组成部分及连接获得性免疫与先天性免疫的“桥梁”, TLRs 是生物的一种模式识别受体(pattern recognition receptor, PRR),它主要通过识别病原相关分子模式PAMPs来启动免疫反应。而MyD88是Toll受体信号通路中的一个关键接头分子,是第一个被鉴定的含TIR结构域的接头蛋白分子,在传递上游信息和疾病发生发展中具有重要的作用。 1TLR的结构与基本功能 Toll样受体一词来自对果蝇的研究,是决定果蝇背腹分化的基因所编码的一种跨膜受体蛋白,同时还参与果蝇的免疫反应,具有介导抗真菌感染信号转导的功能[1]。后来在哺乳动物也发现有与Toll受体同源的受体分子,统称为称为Toll 样受体TLRs。 TLRs是广泛分布在免疫细胞尤其非特异免疫细胞以及某些体细胞表面的一类模式识别受体,它们可以直接识别结合某些病原体或其产物所共有的高度保守的特定分子结构,即病原相关分子模式。迄今为止,已经发现哺乳动物至少有13种toll样受体,其中人的toll样受体鉴定出11种(TLR1-TLR11) [2]。TLRs识别的配基各不相同,其中TLR1-TLR5的结构已被确定,但只有TLR2与TLR4的功能被部分揭示。TLR4主要介导G-菌感染后LPS的信号转导,而TLR2主要介导G+感染后脂蛋白、脂多肽等的信号转导。它们都最终导致该转录因子的转位与相应免疫基因的活化而转录,释放前炎症因子及辅助刺激分子起到调节炎症反应的作用,从而提示TLRs可能在先天性免疫系统中起重要作用[3-4]。 TLRs家族成员具有相似的结构特征。它们均为Ⅰ型跨膜受体,由胞外区、跨膜区和胞内区3个功能区组成。胞外区序列差异大,是与配体结合的特异部位,主要包括十几至二十几个串联的富亮氨酸重复基序(leucine-rich repeats, LRRs),LRR

TOLL样受体

TLR结构:TOLL样受体(TLR)为I型跨膜蛋白,其胞外段为富含亮氨酸重复序列,参与配体识别;胞内段含有保守的TIR (TOLL样/IL一IR)结构域,招募衔接分子如MYD88、TIRAP、TRIF、TRAM{1}进行信号转导。 TLR识别配体:TLR是结合病原微生物成分的受体,其配体包括合成的激动药、微生物产物、内源性配体{1}其所识别的病原微生物成分包括脂多糖(lipoPolysaeeharide,LpS)、革兰氏阳性细菌的肤聚糖(peptidoglyean,pGN)、脂磷壁酸(liPoteiehoieaeid,LTA)、脂阿拉伯甘露聚糖(11-poarabinomannan,LAM)等。 TLR分类:在人类已发现10种TLR(TLRI一TLmo),表达于参与天然免疫的细胞上,不同的TLR在不同细胞表面有不同的表达,其所识别的配体亦不同。髓系DC表达TOLL 样受体1-6、8,而浆系DC表达TOLL样受体7、9。与DC成熟关系密切的是TLR2、TLR4。其中TLR2识别脂蛋白类,肽多糖类如革兰氏阳性细菌的肤聚糖(peptidoglyean,pGN)、脂磷壁酸(liPoteiehoieaeid,LTA)。而TLR4识别LPS、OK432等。 TLR与DC成熟的关系:{2}{5}

TLR信号转导机制:{3}

TLR受体激动药在肿瘤微环境下的免疫调节作用:{1} TLR基因定位:{4} 特异性引物序列: TLR2(forward GCAAACGCTGTTCTGCTCAG) (reverse AG GCGTCTCCCTCTA TTGTA TT) TLR4 (forward ATGGCATGGCTTACACCACC) (reverse GA GGCCAA TTTTGTCTCCACA)

趋化因子及其受体的研究进展

趋化因子及其受体的研究进展 摘要:趋化因子( chemokine)是一类一级结构相似小分子细胞因子,能够趋化细胞定向移动的,而且在免疫细胞和器官的发育、免疫应答过程、炎症反应、病原体感染、创伤修复及肿瘤形成和转移等方面发挥广泛的生理和病理作用。本文综述了对趋化因子及其受体的结构、分类和生物学功能的研究进展。 关键词: 细胞因子;趋化因子;趋化因子受体;趋化作用 Abstract:chemokine is similar to the primary structure of a class of small molecule cytokine, chemokine cell directional movement, but also in the development of immune cells and organs, immune response, inflammatory response, pathogen infection, wound healing andplay a wide range of physiological and pathological roles of tumor formation and metastasis. This paper reviews the progress on the study of the structure, classification and biological function of chemokines and their receptors. Keywords: cell factor; chemokines; chemokine receptor; chemotactic effect 免疫细胞的定向迁移是集体免疫应答发生和完成的必须条件。趋化因子是一类控制细胞定向迁移的细胞因子。其功能行使由趋化因子受体介导。趋化因子与其受体的相互作用控制着各种免疫细胞在循环系统和组织器官间定向迁移,使之到达感染、创伤和异常增殖部位,执行清除感染源、促进创伤愈合和消灭异常增殖细胞,维持组织细胞的平衡的功能。因此,趋化因子系统在免疫系统功能行使的各个环节中处于关键地位,并由此在病原体的清除、炎症反应、病原体感染、细胞及器官的发育、创伤的修复、肿瘤的形成及其转移、移植免疫排斥等方面都起着重要的作用。以趋化因子及其受体为控制靶点,通过激活或拮抗趋化因子受体的信号传导来调控趋化因子系统的功能,可

阿片受体研究进展

阿片受体研究进展 上海第二医科大学附属瑞金医院麻醉科彭章龙 罂粟用于减轻疼痛已有近千年的历史。1803年由罂粟生物碱分离物质出的晶体,被证实是天然阿片的镇痛活性成份,称为吗啡。吗啡的立体化学结构是其与机休特异部位相互作用产生镇痛所必须。通过吗啡、酮唑辛和SKF-10047等一组激动药所产不同药理活性,确定了三种阿片类药物综合征,分别命名为μ, κ和σ原型,由此导致了μ, κ和σ三种阿片受体的发现。后来发现与SKF-10047相关的σ型综合征不能被普通阿片拮抗剂纳洛酮(naloxone)所阻断,因此σ型受体不再被认为是阿片受体家族的成员。δ型受体是由kosterlitz小组在研究内源性阿片肽和内啡肽的效应时发现的。经过近30年的实验室研究,对μ、κ和δ型受体的认识已较清楚,其基因编码已被克隆,这3种受体称为“经典型阿片受体”。最近cDNA 编码一种称之为“孤立阿片”受体,经签定与经典阿片受体有高度同源性,它的结构基团是阿片受体,因此称其为阿片样受体(opioid receptor-like,ORL1)。有药理学迹象表明每种阿片受体存在亚型,以及其他新型、较少了解的阿片受体ε、λ、ι和ζ。本文着重介绍阿片受体研究进展。 一.经典阿片受体 三种经典μ、κ和δ阿片受体被确认后,发现在脑内分布广泛但不均匀。这些受体分布在痛觉传导区以及与情绪和行为有关的区域,集中分布在导水管周围灰质、内侧丘脑、杏仁核和脊髓胶质区。这些复杂的受体可以被不同的激动剂激活,产生不同的生物效应。例如主要分布于脑干的μ受体被吗啡激活后,可产生镇痛和呼吸抑制等作用,而主要分布于大脑皮质的κ受体只产生镇痛作用而不抑制呼吸。然而不同阿片受体在中枢神经系统的分布,以及对不同阿片配体结合能力存在差异。阿片受体的内源性配体为脑啡肽、内啡肽和强啡肽,它们分别由不同的基因编码。这些五肽对阿片受体的亲和力不同,但三者均可与一种以上的阿片受体结合。其中脑啡肽对δ型受体有较强的选择性,被认为是其内源性配体。强啡肽对κ 型受体选择性较强,是其内源性配体。μ型受体的内源性配体直到1997年才被发现,称为内啡肽或内源性吗啡(endomorphine)。内源性吗啡在中枢神经系统与μ-阿片受体呈镜像分布,对μ受体的结合力比对δ和κ受体的结合力高100倍。

NMDA受体的生理功能及研究进展综述

NMDA受体的生理功能及研究进展 摘要N-甲基-D-天氡氨酸(NMDA)受体是一类离子型谷氨酸受体的一种亚型,是由多亚基构成的异聚体,主要分布在中枢系统中。近年来的证据表明,组成NMDA受体的亚单位有着复杂的生理学和药理学特性,参与神经系统的多种重要生理功能。NMDA受体的异常会导致一些认知功能的缺失,这为治疗性药物开发提供了靶点。 关键词NMDA受体受体学习记忆功能 现代神经科学的研究资料已经证明,谷氨酸(L-glutamicacid,GLU)是中枢神经系统(central nervous system,CNS)中介导快速兴奋性突触反应的重要神经递质。在大脑中分布最广,CNS内存在着与谷氨酸结合并发挥生理效应的两类受体,即离子型谷氨酸受体(ionotropic glutamate receptors,iGluRs)及代谢型谷氨酸受体。离子型受体由NMDA受体与非NMDA受体组成。 NMDA受体是一种分布在突触后膜上的离子通道蛋白,该受体是一种异聚体,由亚基NR1、NR2、NR3组成,每个受体至少由2~3个NR1亚基和2~3个NR2亚基组成。其中NR1亚基有8种剪接变体,NR2亚基分为NR2A、NR2B、NR2C、NR2D4个亚型,NR3有NR3A亚型等。NR1是NMDA受体的基本单位,NR2辅助NMDA受体形成多元化结构,NMDA受体依赖NR2亚单位不同亚型表达不同的受体功能[1]。 NMDA受体是一种具有许多不同变构调控位点并对Ca2+高度通透的配体门控离子通道,NMDA受体显示有许多与其他配体门控离子通道不同的特性:受体控制单价离子和对钙有高度渗透性的阳离子通道;同时结合谷氨酸和甘氨酸需要辅激动剂以刺激NMDA受体;在静息膜电位,NMDA通道被细胞外镁所阻断,而只有同时去极化和结合激动剂下开放。当谷氨酸等神经递质使受体激活,其受体蛋白构象改变,离子通道开放,阳离子如K+、Na+、Ca2+可进出细胞,使细胞膜去极化和神经元兴奋。NMDA受体可调节神经元的存活,树突、轴突结构发育及突触可塑性,可影响神经元回路的形成及学习、记忆过程。 一、NMDA受体在学习、记忆中的作用 学习和记忆的神经生物学基础是突触可塑性,单突触传入通路上给予短串强直刺激,使突触后细胞兴奋,突触后电位出现长达数天乃至数周的振幅增大,这

临床用阿片受体拮抗剂研究进展

Journal of Organic Chemistry Research 有机化学研究, 2015, 3, 9-15 Published Online March 2015 in Hans. https://www.doczj.com/doc/1119028555.html,/journal/jocr https://www.doczj.com/doc/1119028555.html,/10.12677/jocr.2015.31002 Research Progress of Opioid Receptor Antagonist Used in Clinic Qiao Wang1,2, Lang Shu1,2, Ming Liu3, Kaiyuan Shao2, Wenxiang Hu1,2,3* 1School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan Hubei 2Beijing Excalibur Space Military Academy of Medical Sciences, Beijing 3School of Life Sciences, Capital Normal University, Beijing Email: *huwx66@https://www.doczj.com/doc/1119028555.html, Received: Jan. 23rd, 2015; accepted: Feb. 4th, 2015; published: Feb. 10th, 2015 Copyright ? 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/1119028555.html,/licenses/by/4.0/ Abstract Opioid receptor antagonists are a class of specifically drugs for antagonizing the opioid on opioid receptors, thereby reducing or reversing the analgesic activity of narcotic agonists. Antagonists can also eliminate breathing suppression, gastrointestinal disorders and other side effects caused by the use of the agonist. Antagonists are used in clinic as side effects and coma antidote arising from excessive usage of analgesic. This paper summarizes several common clinical types of opioid receptor antagonists and clinical applications. In recent years, antagonists have achieved greater development, but there are still some deficiencies; further research of opioid receptor antagonists is needed to get more competitive, safer and simpler novel μ opioid receptor-specific antagonist, for better use in clinical treatment. Keywords Opioid Receptor, General Opioid Receptor Antagonist, Peripheral Opioid Receptor Antagonist 临床用阿片受体拮抗剂研究进展 王乔1,2,舒浪1,2,刘明3,邵开元2,胡文祥1,2,3* 1武汉工程大学化工与制药学院,湖北武汉 2北京神剑天军医学科学院,北京 3首都师范大学生命科学学院,北京 *通讯作者。

Toll样受体信号通路图

Toll样受体信号通路图 TLR家族成员(TLR3除外)诱导的炎症反应都经过一条经典的信号通路(图1),该通路起始于TLRs的一段胞内保守序列—Toll/IL-1受体同源区(Toll/IL-1receptorhomologousregion,TIR).TIR可激活胞内的信号介质—白介素1受体相关蛋白激酶(IL-1Rassociatedkinase,IRAK)IRAK-1和IRAK-4、肿瘤坏死因子受体相关因子6(TNFR-associatedfactor6,TRAF-6)、促分裂原活化蛋白激酶(mitogenactivatedproteinkinase,MAPK)和IκB激酶(IκBkinase,IκK),进而激活核因子κB(nuclearfactorκB,NF-κB),诱导炎症因子的表达。 Toll-liker Receptor Signaling 本信号转导涉及的信号分子主要包括: CD14,MD-2,TRAM,TRIF,TIRAP,MyD88,TLR1,TLR2,TLR3,TLR4,TLR5,TLR6,TLR7,TLR8,TLR9,IRAK-1,IRAK-2,IRAK-4,IRAK-M,TRAF6,TRIAD3A,ST2L,SOCS1,RIG-I,FADD,TOLLIP,RIP1,A20,UEV1A,Ubc13,ECSIT,MEKK-1,TAK1,

TBK1,MKK3/6,p38,TAB1/2,MKK4/7,JNK,IKKα,IKKβ,IKKγ,IKKε,NEMO,IκBα,NF-κB,p65/RelA,Casp-8,IRF-3,IRF-7,MA VS等

(推荐)II型细胞因子及其受体研究进展

II型细胞因子及其受体研究进展 目前已经发现的细胞因子有200多种,随着基因测序技术的快速发展,相信会有更多的因子被发现,并且随着细胞工程技术和蛋白重组技术的发展,一定会有更多的细胞因子重组蛋白被纯化制备。细胞因子功能多样,不同因子间可以相互作用,同一因子可以有不同的功能,因此,细胞因子构成了一个复杂的网络功能图。而细胞因子想要发挥作用,必须与相应的受体结合行。细胞因子与其受体结合后,会对细胞产生作用,可以刺激细胞生长增殖分化,调控机体免疫应答,为在细胞及分子水平研究某些自身免疫性疾病、肿瘤、免疫缺陷疾病的发病机理提供数据,为临床治疗和诊断提供指导依据。 细胞因子受体一般分成四个类型:Ⅰ型细胞因子受体(Type ⅠCytokine Receptor)、Ⅱ型细胞因子受体家族(Type ⅡCytokine Receptor)、TNF超家族受体以及趋化因子受体。在本文,将主要介绍Ⅱ型细胞因子及其受体的研究进展及其应用。 Ⅱ型细胞因子受体家族(Type ⅡCytokine Receptor ),也称干扰素受体家族(Interferon receptors family)。主要包含Ⅱ型白介素(IL-10,IL-19,IL-20,IL-22等)受体,Ⅰ型干扰素(IFNA,IFNB)受体和Ⅱ型干扰素(IFNG)受体。此类受体的结构特点治是在膜外区近氨基端含有四个保守半胱氨酸残基细无Trp-Ser-X-Trp-Ser序列,一般为具有高亲和力的异二聚体或多聚体。II型细胞因子受体的细胞外结构域由串联Ig样结构域组成,细胞内结构域通常与属于Janus激酶(JAK)家族的酪氨酸激酶相关。

Toll样受体的结构及免疫功能探究

Toll样受体的结构及免疫功能探究 发表时间:2011-09-06T11:23:55.560Z 来源:《中国健康月刊(学术版)》2011年第7期供稿作者:何玉林刘小双叶狄 [导读] TLR是一类从线虫到哺乳动物序列高度保守的模式识别受体。 何玉林刘小双叶狄 基金项目:贵州省遵义医学院博士启动基金 (F-332号) 作者简介:何玉林(1969-),男,甘肃天水人,副教授,博士 【摘要】Toll样受体(Toll-like receptors,TLRs)是天然免疫系统中特异的Ⅰ型跨膜受体及病原体模式识别受体,它通过识别病原体,能立即启动先天性免疫,并能通过信号传导启动获得性免疫,在急性炎症反应、细胞信号转导和细胞凋亡中起重要作用。目前已发现TLR家族共有13个受体,分布于各个器官脏器,针对不同的病原体发挥其识别作用。该文对TLRs的结构和分布、相应配体及免疫功能等方面作简要综述。 【关键词】Toll样受体(TLRs);配体;天然免疫应答;免疫功能 【中图分类号】R441【文献标识码】A【文章编号】1005-0515(2011)07-0002-02 TLR是一类从线虫到哺乳动物序列高度保守的模式识别受体。最早的Toll基因是在研究果蝇背腹极性时发现的,因与果蝇的Toll分子高度同源而得名。后来的研究发现Toll在果蝇的天然免疫应答中扮演了重要角色。TLR通过识别外源性微生物,启动先天性免疫反应,清除侵入的病原微生物。同时活化的TLR也能激活T细胞,启动获得性免疫反应。 TLR在天然免疫方面的特殊意义及在沟通天然免疫和获得性免疫方面的桥梁作用,使生物学界和医学界对其投入了极大的热情。随后,人类和小鼠中先后克隆出多个Toll的同源蛋白,共同构成Toll受体家族。目前为止,已经鉴定了至少13种TLRs,其中TLR1TLR9是人类与老鼠共有,TLR似乎只在人类中有功能,而TLR11TLR13为小鼠所特有。 1TLRs的生物特点 1.1TLR的结构:TLRs属于Ⅰ型跨膜糖蛋白,是具有类似结构的跨膜型式识别受体(pattern recongnition receptors,PRR),由胞外区、跨膜区和胞质区组成。胞外区是由1831个串联的富含亮氨酸的重复基序(leucine-rich repeat,LRR)形成的亮氨酸结构域,空间结构如马蹄形且高度保守,其中亮氨酸在三维空间的一侧排列形成疏水界面,该区为序列多变的Ig样结构域,与宿主对感染反应的特异性有关,其空间结构的细微变化就会影响TLR对病原相关分子模式(pathogen associated molecular pattern,PAMP)的识别;跨膜区是富含半胱氨酸结构域,一般认为跨膜结构域决定了TLRs分子的亚细胞定位;胞质区和白介素受体-1受体(interleukin-1 receptor,IL-1R)家族的胞质区有高度的同源性,称为TIR(Toll/IL-1R)结构域,约200个氨基酸组成。 TLRs识别存在于各种病原体细胞表面分子,如酵母细胞壁的甘露糖以及细菌细胞壁的脂多糖、多肽糖及胞壁酸等各种成分,统称病原体相关的分子模式(PAMP). 1.2TLR的分布: 1.2.1细胞分布和亚细胞定位:TLRs是固有免疫细胞膜上的识别系统中重要组成部分,他们分布于各种组织的细胞膜上,分布十分广泛。如TLR1广泛表达于单核细胞、T和B淋巴细胞、树突状细胞(dendritic cell,DC)、多形核白细胞、NK细胞;TLR2/4/5主要分布于除T、B、NK细胞以外的免疫细胞;TLR3主要表达于未成熟的DC等。但TLR因其识别的PAMP性质不同人在细胞中有不同的分布区。 TLR1/2/4/6分布于细胞表面,并能聚集到接触微生物的吞噬体上;TLR3/7/8/9则定位在细胞内,尤其是内质网上,并用于识别核酸。 1.2.2组织分布:不同的TLR在各种组织中有不同程度的表达,其中在淋巴组织尤其是脾和外周血的白细胞中表达最强。TLR1广泛分布且表达明显,如卵巢、脾脏;TLR2在肺、心脏、脑和肌肉组织可测到TLR2mRNA的表达;TLR3主要表达于胎盘和胰腺;TLR4表达于胎盘组织等;TLR5表达与前列腺和外周血单核细胞;TLR6、TLR9广泛表达于多种细胞;TLR10主要表达于淋巴样组织和脾脏细胞。 2TLR的配体 虽然TLR家族具有相似的结构,但TLR通过识别相应的配体来激活免疫反应。不仅外来病原体的产物,而且宿主自身的某些物质也可以是不同的TLR的配体。配体包括脂多糖(LPS)、病毒蛋白F、透明质酸酶、硫酸肝素、纤维蛋白原、酵母多糖、白色念珠菌以及宿主来源的热休克蛋白60(HSP-60)、纤维连接蛋白等。TLR1能识别细菌的三酰脂肽;TLR2识别的配体包括G+细菌、分支杆菌、疏密螺旋体、酵母菌和支原体的某些成分,如脂蛋白、脂肽、脂磷壁酸、肽聚糖和酵母多糖等;TLR3构成同源二聚体或与TLR4形成异源二聚体,识别鞭毛蛋白,还可识别多聚肌苷胞苷(poly riboinosinic polyribocytidylic acid, poly I:C);TLR4形成同源二聚体,识别LPS及牛型结核杆菌胞壁的骨架、链球菌来源的脂质酸;TLR5特异识别细菌的鞭毛蛋白,有选择的识别渗透过肠上皮的细菌,并引起反应;TLR6主要识别细菌的肽聚糖和脂肽;TLR7、TLR8均能识别单链RNA病毒;TLR9主要识别细菌中非甲基化的胞嘧啶鸟嘌呤二核苷酸(CpG DNA);TLR11能识别来源于尿路细菌的配体。 除了同型二聚体表现出来的功能外,TLR的一些功能也来自于异型二聚体。 3TLR的免疫功能 美国免疫学家Janeway(2000年)首次提出固有免疫细胞识别模式理论,被科学家观察杂志列为2001年十大生物科学重要进展之一。固有免疫细胞膜上不表达特异性抗原受体,但他们具有模式识别受体(PRR),能直接识别并结合各种病原微生物表达的固有保守基序的分子,即PAMPS,其中TLRs是固有免疫细胞膜上最重要的模式识别受体。 天然免疫细胞借助PRR中TLR,识别各种病原微生物的相关分子模式(PAMPs)。因此,天然免疫细胞可以区分自身和非自身成分,识别PAMPs后的天然免疫细胞,迅速被活化,无需这些细胞再克隆分化增殖,此时巨噬细胞通过胞内氧依赖性杀菌系统和氧非依赖行杀菌系统,杀伤病原体。同时把一些具有免疫原性的小分子抗原肽,借助主要组织相容性复合体(major histocompatibility complex,MHC)提供各相应T细胞,启动获得性免疫应答,分泌多种细胞因子,参与免疫调节或杀伤肿瘤细胞等生物学功能。因此,把天然免疫和获得性免疫紧密联系起来。 尽管目前所发现的TLR家族成员种类有限,但同一细胞或不同细胞间TLRs各成员间的相互组合及不同协助蛋白共同作用,组织有效的天然免疫应答,对相对广泛的病原微生物进行特异性识别,引起一系列特异的天然免疫和获得性免疫反应,以对抗微生物感染乃至慢性炎

toll样受体信号通路

Toll 样受体(TLRs)是一个模式识别受体家族,它们在进化上高度保守,从线虫到哺乳 动物都存在TLRs,目前在哺乳动物中已发现 12 个成员[1].TLRs 主要表达于抗原递 呈细胞及一些上皮细胞,为玉型跨膜蛋白,胞外区具有富含亮氨酸的重复序列,能够 特异识别病原微生物进化中保守的抗原分子———病原相关分子模式 (pathogen-associatedmolecular patterns, PAMPs)[2].为了有效地抵抗入侵的病原体,机体需要对多种 PAMPs 产生适当的免疫应答,TLRs 可以通过识别 PAMPs 诱发抵抗病原体的免疫反应.而且 TLRs 也参与识别有害的内源性物质.TLRs 的激活可诱导很强的免疫反应,有利于机体抵抗病原体感染或组织损伤,但是过度的免疫反应也会带来不利影响,如产生内毒素休克、自身免疫性疾病等.为了保证 TLRs 介导正确的免疫应答,机体 存在精密的负调控机制,及时抑制 TLRs 信号,维持机体的免疫平衡[3]TLR 家族成员(TLR3 除外)诱导的炎症反应都经过一条经典的信号通路(图 1),该通路起始于TLRs 的一段胞内保守序列———Toll/IL-1 受体同源区(Toll/IL-1 receptor homologous region,TIR).TIR可激活胞内的信号介质———白介素 1 受体相关蛋白激酶 (IL-1R associated kinase, IRAK) IRAK-1 和IRAK-4、肿瘤坏死因子受体相关因子 6(TNFR-associated factor 6, TRAF-6)、促分裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)和 I资B激酶 (I资B kinase, I资K ),进而激活核因子资 B(nuclear factor 资B,NF-资B),诱导炎症因子的表达.TLRs 信号通路上的许多接头蛋白都具有 TIR结构域:髓系分化因子 88(myeloid differentiationfactor 88, MyD88)、MyD88- 接头蛋白相似物(MyD88-adaptor like,Mal)、含有 TIR 结构能诱导干扰 素茁的接头分子 (TIR domain-containingadaptor inducing interferon 茁,TRIF)、TRIF 相关接头分子(TRIF-related adaptor molecule,TRAM)和SARM (sterile 琢 and armadillo motif-containingprotein)[4].它们参与 TLRs 所介导的信号转导,其中 MyD88 最重要,参与了除 TLR3 外所有 TLRs介导的信号转导.MyD88 首先通过 TIR 与 TLRs 相结合,接着募集下游信号分子 IRAK-4,IRAK-4 磷酸化激活IRAK-1,随后 活化 TRAF6.活化的 TRAF6 具有泛素连接酶(E3)的活性,能够结合泛素结合酶(E2),进而泛素化降解 IKK-酌.这种泛素化降解可以活化TGF-茁激酶(TGF-茁 activated kinase 1, TAK1) 和TAK1 结合蛋白 (TAK1 binding protein, TAB1、TAB2、 TAB3).活化的 TAK1 会催化 IKK-茁磷酸化,最终激活 NF-资B,促使炎症因子的表达.除了共同的 NF-资B 激活通路,不同的 TLRs 还存在着其特有的信号通路,一些TLRs 具有募集 Mal、TRAM 和 TRIF 的作用.不同的接头分子在信号传导中发挥的作 用不同[5],TRIF 在脂多糖(LPS)激活的 TLR4 途径和 Poly(I∶C)激活的 TLR3 途径中都起到了重要的作用,而 TRAM 仅在 TLR4 的途径中发挥作用.TLRs 的激活是一把双刃剑,它可以通过刺激先天性免疫应答和提高获得性免疫反应来保护机体,但是它所引 起的持续性炎症反应也会对机体产生损伤,自身免疫、慢性炎症和感染性疾病都与它 有一定关系.例如LPS 持续刺激TLR4 就可以引起严重的败血病和感染性休克,此外,类风湿性关节炎、慢性阻塞性肺心病、结肠炎、哮喘、心肌病、狼疮和动脉粥样硬化

toll样受体及其研究进展

Toll样受体、信号通路及其免疫的研究 Toll样受体最早是在研究果蝇胚胎发育过程中发现的,它不仅是果蝇胚胎发育过程中的必需蛋白,而且在免疫应答过程中具有重要作用[1]。Toll 样受体(TLRs)是一个模式识别受体家族,它们在进化上高度保守,从线虫到哺乳动物都存在TLRs,它能识别病原微生物进化中保守分子,如脂多糖(LPs)、肽聚糖、酵母多糖以及病原微生物的核酸等等.脂多糖受体TLR4是发现的第一个TLRs,至今在动物中已经发现15种TLRs(在人体已经发现11个成员,即TLRl~TLRl0和TLRl4,小鼠不表达TLR10,但发现了TLR11—13[2],在鸡中发现了TLR15[3]。哺乳动物的TLRs同果蝇的TLRs一样,同属于I型跨膜蛋白,主要由3个功能区构成:胞外区、跨膜区和胞内区。胞外区具有富含亮氨酸的重复序列,能够特异识别病原微生物进化中保守的抗原分子——病原相关分子模式(pathogen-associated molecular patterns, PAMPs)[4]。为了有效地抵抗入侵的病原体,机体需要对多种PAMPs产生适当的免疫应答,TLRs可以通过识别PAMPs诱发抵抗病原体的免疫反应。而且TLRs也参与识别有害的内源性物质. 1. Toll样受体 1.1 Toll样受体的发现Toll是在昆虫中发现的一个受体蛋白,参与昆虫胚胎发育时背腹肌极性的建立。进一步研究发现,Toll胞内区与哺乳动物中自介素-1受体(IL-1R)的胞内区具有很高的同源性,下游的信号转导通路通过NF—kB样因子发挥作用。IL-1R是免疫相关分子,而且昆虫中抗微生物的多肽基因上游大多有NF—kB样因子结合位点,是否Toll蛋白也参与昆虫的天然免疫反应调控?研究证实Toll参与昆虫的抗真菌免疫.真菌感染时果蝇Toll 通路被激活,诱导大量的抗真菌肽Drosomycin,Toll的突变导致果蝇极易受到真菌的感染[1]。.哺乳动物存在Toll的同源分子,即TLRs。TLRs是一个受体家族。 1.2 TLRs分子特征TLRs为一类Ⅰ型跨膜蛋白,其细胞外区域存在由18~31个氨基酸组成的富含亮氨酸的重复单位(LRR motif)XLXXLXLXXL(X代表任何氨基酸,L为亮氨酸)每个LRR由24~29个氨基酸组成,为8折叠一环一a螺旋的结构。整个LRR结构域形成一个马蹄型的结构,参与识别各种病原体。它们的细胞外区域较长,在550~980氨基酸之间,而且同源性较差,如TLR2与TLR4细胞外区域的同源性只有24%。提示TLRs各个分子之间所结合的配体具有不同的结构、性质;但各个分子种属间的差异较小,如人和小鼠的TLR4胞外区有53%相同,而胞质区则高达83%,提示着它们是一组非常保守的分子,执行着相似的功能。TLRs的胞内区含有Toll/IL-1受体同源(Toll/IL-1 receptor homologous region, TIR), 其中包括3个保守盒(conserved boxes),参与信号转导。TIR是一个保守结构,其中的23个氨基酸的位置是固定的,所形成的三个结构域分别为这些分子的标志区域和信号介导区域。具有TIR结构域[5]分子现在发现的共有31种,如MyD88、IL-1相关蛋白激酶(IRAK)、肿瘤坏死因子受体相关因子6(TRAF6)等。 1.3 TLRs的配体(PAMP)及其特异性TLRs配体按来源可分为外源性和内源性配体。外源性配体主要来自病原微生物,是微生物进化过程中的保守成分,如细菌的脂多糖、胞壁酸、肽聚糖以及细菌和病毒的核酸等。内源性配体来自宿主细胞,如热休克蛋白、细胞外基质降解成分等等,内源性配体在机体应激或是组织损伤时释放[6,7]。TLR4识别G-菌的LPS;TLR2可识别G+菌、分枝杆菌及真菌的PAMP。TLR9识别细菌特殊序列胞嘧啶磷酸鸟(CpG-DNA);TLR5 识别细菌鞭毛蛋白。 目前对TLR生物学作用研究的焦点集中在介导对LPS的反应,而LPS的生物活性成分是脂质A。3种天然对大剂量LPS耐受的小鼠C3H/HeJ、C57BL/10ScCr、C57BL/10ScN,

toll样受体

Toll样受体 Toll样受体(Toll-like receptors, TLR)是I型跨膜蛋白质,识别侵入体内的微生物进而激活免疫细胞的应答。被认为在先天性免疫系统中起关键作用。类Toll受体是模式识别受体(pattern recognition receptors,PRR)的一类,识别与宿主不同的病原体分子。这些分子被统称为病原相关分子模式(pathogen-associated molecular patterns,PAMP)。但是,也有一些例外情况。在脊椎动物(包括鱼类、两栖类、哺乳类、鸟类、爬虫类)以及无脊椎动物(如昆虫果蝇已被广泛研究)发现有类Toll受体。在细菌和植物以及更高的生物界中也发现有类Toll 受体。所以,类Toll受体是最古老最保守的免疫系统的组成部分。TLR 家族成员(TLR3 除外)诱导的炎症反应都经过一条经典的信号 通路(图1),该通路起始于TLRs 的一段胞内保守序列—Toll/IL-1 受体同源区(Toll/IL-1receptor homologousregion,TIR).TIR可激活胞内的信号介质—白介素1受体相关蛋白激酶(IL-1R associated kinase,IRAK) IRAK-1 和IRAK-4、肿瘤坏死因子受体相关因子 6(TNFR-associated factor 6, TRAF-6)、促分裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)和IκB激酶(IκB kinase,IκK),进而激活核因子κB(nuclear factor κB,NF-κB),诱导炎 症因子的表达。 本信号转导涉及的信号分子主要包括: CD14,MD-2,TRAM,TRIF,TIRAP,MyD88,TLR1,TLR2,TLR3,TLR4,TLR5,TLR6,TLR7,TLR8,TLR9,IRAK-1,IRAK-2,

Toll样受体研究进展 (1)

万方数据

万方数据

万方数据

Toll样受体研究进展 作者:赵文华, 夏雪山, ZHAO Wen-hua, XIA Xue-shan 作者单位:赵文华,ZHAO Wen-hua(中国医学科学院/中国协和医科大学医学生物研究所,云南昆明 ,650118;云南省热带亚热带动物病毒病重点实验室,云南昆明,650224), 夏雪山,XIA Xue- shan(昆明理工大学,云南昆明,650224) 刊名: 动物医学进展 英文刊名:PROGRESS IN VETERINARY MEDICINE 年,卷(期):2007,28(10) 被引用次数:2次 参考文献(20条) 1.Akira S;Uematsu S;Takeuchi O Pathogen recognition and innate immunity[外文期刊] 2006 2.Terry K M;Douglas T G;Matthew J F Structure and Function of Toll-like receptor proteins[外文期刊] 2000(68) 3.Mihai G N;Jos W M;Kullberg B J Toll-like receptors as an escape mechanism from the host defense[外文期刊] 2004(12) 4.Kabelitz D Expression and Function of Toll-like receptors in T lymphocytes[外文期刊] 2007(1) 5.Kawai T;Akira S TLR signaling[外文期刊] 2007(19) 6.Janssens S;Beyaert R Role of Toll-like receptors in pathogen recognition[外文期刊] 2003(04) 7.Michael R Of mice and men:Species variations of Toll-like receptor expression 2002(06) 8.Jared C R;Glusman G;Rowen L The evolution of vertebrate Toll-like receptors[外文期刊] 2005(102) 9.Hamann L;Hamprecht A;Gomma A Rapid and inexpensive real-time PCR for genotyping functional polymorphisms within the Toll-like receptor-2,-4,and-9 genes[外文期刊] 2004(285) 10.Menzies M;Ingham A Identification and expression of Toll-like receptors 1-10 in selected bovine and ovine tissues[外文期刊] 2006(109) 11.查看详情 12.Kokkinopoulos I;Jordan W J;Ritter M A Toll-like receptor mRNA expression patterns in human dendritic cells and monocytes[外文期刊] 2005 13.Kawai K;Shimura H;Minagawa M Expression of functional Toll-like receptor 2 on human epidermal keratinocytes 2002 14.Kawai T;Akira S TLR signalling 2006 15.Yamamoto M;Akira S Mechanisms of innate immune response mediated by Toll-like receptors 2005(05) 16.何维医学免疫学 2005 17.Akira S;Uematsu S;Takeuchi O Pathogen recognition and innate immunity[外文期刊] 2006 18.Robert W F;Kurt-Jones E A Viruses and Toll-like receptors[外文期刊] 2004(06) 19.Doyle S L;O'Neil L A J Toll-like receptors:From the discobery of NFκB to new insights into transcriptional regulations in innate immunology[外文期刊] 2006(72) 20.Hashimoto C;Hudson K L;Anderson K V The Toll gene of Drosophila required for dorsoal-ventral embryonic polarity,appears to encode a transmembrane protein 1988(52) 引证文献(2条)

Toll样受体及其信号通路研究进展

Toll样受体及其信号通路研究进展 摘要:Toll样受体(TLRs)是一类模式识别受体,可以识别微生物并对其作出反应。TLRs家族成员在免疫系统中起着重要作用,既是参与先天免疫的重要分子,也是连接先天免疫和特异性免疫的桥梁。该受体可以特异性地识别微生物,并启动免疫应答。本文对TLRs结构、功能和信号通路等方面进行综述。 关键词:Toll样受体免疫系统信号通路 在天然免疫系统的研究中,Toll样受体的发现是最重要的进展之一。TLRs 最早是1980年在果蝇胚胎中发现的,此基因决定了果蝇背腹侧的分化[1]。1991年Gay等发现,TLRs蛋白的结构与哺乳动物中IL-1具有同源性[2]。随后,TLRs 被发现能够激活获得性免疫[3]。至今,已经发现21种TLRs,其中人13种(TLR1-13),小鼠12种(TLR1-9及TLR11-13),斑马鱼18种(TLR1-9、TLR11-14和TLR18-22)。 1、TLRs的结构 TLRs结构由三部分组成,胞外区、跨膜区和胞浆区。胞外区是亮氨酸富集的重复序列,识别病原体细胞表面的分子;跨膜区富含半胱氨酸;胞浆区与哺乳动物IL-1受体高度同源,称为TIR[5]。TIR的构型与病原识别相关,不同种类TLRs,识别不同种类的微生物。 2、TLRs的功能 TLRs是抵御感染性疾病的第一道屏障,在免疫系统中起识别微生物的作用。TLRs通过TIR识别相应的配体来激活免疫反应。TLR1可识别细菌的三酰脂肽;TLR2可识别革兰氏阳性细菌的脂蛋白、肽聚糖等;TLR3主要识别dsDNA;TLR4能识别革兰氏阴性菌的脂多糖;TLR5特异识别细菌的鞭毛蛋白;TLR6主要识别细菌的肽聚糖;TLR7、TLR8可识别单链RNA病毒;TLR9可识别CpGDNA。 另外树突细胞可表达TLRs。TLRs在识别脂多糖、肽聚糖、脂蛋白及病毒后,树突细胞被活化并成熟,提供获得性免疫的共刺激信号。TLRs是微生物成分引起树突细胞活化的桥梁。 3、TLRs信号通路 TLRs信号通路由下游信号分子构成,包括髓样分化因子(MyD88)、IL-1R相关蛋白激酶(IRAK)、TRAF6、TAK1和TAB1、TAB2。研究表明,信号转导过程中,存在两个信号通路,包括MyD88依赖途径和MyD88非依赖途径。

相关主题
文本预览
相关文档 最新文档