当前位置:文档之家› 地热能及地热发电技术概述

地热能及地热发电技术概述

地热能及地热发电技术概述
地热能及地热发电技术概述

地热能及地热发电技术概述

摘要文章主要介绍了地热资源及其分类,地热发电的原理,并对发展地热发电中需要解决的关键问题进行了简要的分析,最后对我国地热发电的发展前景做了一下展望。

关键词地热资源;类别;发电原理;关键问题;发展前景

随着人类对资源的过度开采,煤,石油等化石能源在几十年或一百多年后将被消耗殆尽;另一方面,这些能源的燃烧所造成的环境污染也日益凸显,严重威胁着人类社会的可持续发展。因此,开发可再生新能源已成为当前社会不容忽视的必由之路。我国地处欧亚板块,有着丰富的地热资源,太平洋地热带和地中海——喜马拉雅地热带经过我国版图。因此,开发地热能对解决我国能源短缺有着重大意义,具有美好的发展前景。

1地热资源及其分类

地热资源是指在当前技术经济和地质环境条件下,能够从地壳中科学、合理的开发出来的岩石中的热能量和地热流体中的热能量及其伴生的有用组成。地热能是通过漫长的地质作用而形成的集热、矿、水为一体的矿产资源。地热资源按它在地下的储存形式可分为五大类:蒸汽型、热水型、地压型、干热岩型和岩浆型。

1)蒸汽型地热资源:指以温度较高的蒸汽为主的地下对流水热系统,这类地热资源由于需要特殊的地质条件才能形成,因此储量较少。一般蕴藏在1.5 km 左右的地表深度。

2)热水型地热资源:指地下以水为主的对流水热系统,是存在于地热区的水从周围储热岩体中获得能量形成的,包括喷出地面的热水和湿蒸汽。这类资源分布广泛,储量丰富,是当前重点研究对象。

3)地压型地热资源:蕴藏深度为2km~3 km,以高压水形式存在,溶解大量碳氢化合物,开发时可同时得到压力能,热能,化学能。

4)干热岩型地热资源:在地壳深处,岩石具有很高的温度,储存大量得热能,干热岩型地热资源主要指地表下10km左右深处的干燥无水的热岩石。这类资源十分丰富,是未来开发的重点。

5)岩浆型地热资源:指蕴藏在地层深处的呈完全熔融状态或半熔融状态的岩浆中所具有的巨大能量。

2地热发电的原理及技术

感知电世界论文

《感知电世界》课程综合训练报告 新能源发电技术 1.摘要及关键词 摘要: 新能源是指传统能源之外的各种能源形式。目前技术比较成熟,已经开始大规模利用的新能源是风能、太阳能、沼气、燃料电池这四种。本文介绍燃料电池,沼气发电,潮汐发电,地热发电等几种发电技术。 关键词: 燃料发电,沼气发电,潮汐发电,地热发电 2.正文 人类进入21世纪,一场新的能源革命正在悄悄进行。根据经济社会可持续发展的需要,人们迫切呼唤建立以清洁、可再生能源为主的能源结构逐渐取代以污染严重、资源有限的化石能源

为主的能源结构。根据有关数据分析,再过40年左右,石油将消耗所剩无几;再过60年左右, 天然气也将宣布告竭;而煤炭资源按目前的消耗量也只能供人类使用200年左右。从人类自身生存 环境和能源消耗两方面看,都迫使我们寻找其它可再生能源替代现在的常规化石能源。 新能源是指传统能源之外的各种能源形式。目前技术比较成熟,已经开始大规模利用的新能 源是风能、太阳能、沼气、燃料电池这四种。本文介绍沼气、燃料电池等几种发电技术。 燃料电池 燃料电池是一种将储存在燃料和氧化剂中的化学能,直接转化为电能的装置。当源源不断地 从外部向燃料电池供给燃料和氧化剂时,它可以连续发电。依据电解质的不同,燃料电池分为碱 性燃料电池(AFC)、磷酸型燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃 料电池(SOFC)及质子交换膜燃料电池(PEMFC)等。按燃料电池所用原始燃料的类型,大致分 为氢燃料电池、甲烷燃料电池、甲醇燃料电池和汽油燃料电池。燃料电池不受卡诺循环限制,能 量转换效率高,洁净、无污染、噪声低,模块结构、积木性强、比功率高,既可以集中供电,也 适合分散供电。 使用燃料电池发电,是将燃料的化学能直接转换为电能,不需要进行燃烧,没有转动部件, 理论上能量转换率为100%,装置无论大小实际发电效率可达40%~60%,可以实现热电联产联用,没有输电输热损失,综合能源效率可达80%,装置为集木式结构,容量可小到只为手机供电、大 到和目前的火力发电厂相比,非常灵活。 燃料电池其原理与一般电池相同。其单体电池是由正负两个电极(负极即燃料电极和正极即 氧化剂电极)以及电解质组成。不同的是一般电池的活性物质贮存在电池内部,因此,限制了电 池容量。而燃料电池的正、负极本身不包含活性物质,只是个催化转换元件。因此燃料电池是名 副其实的把化学能转化为电能的能量转换机器。电池工作时,燃料和氧化剂由外部供给,进行反应。原则上只要反应物不断输入,反应产物不断排除,燃料电池就能连续地发电。 燃料电池具有高效率、无污染、建设周期短、易维护以及成本低的特点,它不仅是汽车最有 前途的替代清洁能源,还能广泛用于航天飞机、潜艇、水下机器人、通讯系统、中小规模电站、 家用电源,又非常适合提供移动、分散电源和接近终端用户的电力供给,还能解决电网调峰问题。随着燃料电池的商业化推广,市场前景十分广阔。人们预测,燃料电池将成为继火电、水电、核 电后的第四代发电方式,它将引发21世纪新能源与环保的绿色革命。 2005年,从事燃料电池开发的公司总投资额已超过10亿美元。据统计,2005年全球拥有50 万个固定的(静止式)燃料电池装置,到2010年,将有250万户家庭使用燃料电池,同时全球 拥有60万台燃料电池汽车,占世界汽车生产量的1%。

ORC发电简介

低温地热水O R C发电 一、地热资源丰富 地热能是指地球内部蕴藏的能量,一般集中分布在构造板块边缘一带,起源于地球的熔融岩浆和放射性物质的衰变。 据估算,距地壳深度5km以内蕴藏的热量约为1.46×1026J。 若其中的1%可供开采,则该深度的地热能将提供 1.46×1024J的能量,而目前全世界的每年的能量消耗约为 4.18×1020J ,理论上来讲,这部分能量将可供人类使用3500年。 如果能经济的开发这部分资源做发电利用,部分替代以化石能源为燃料的发电方式,对于促进可再生能源开发利用,减小化石能源消耗和CO2、SO2、NOx等温室气体和环境污染物的排放,实现可持续发展,具有重要意义。全球地热资源中32%的地热温度高于130℃,而68%的地热温度低于130℃。 二、地热资源的划分 通常,地热资源可以按温度来划分,地热温度高于150℃为高温,地热温度低于90℃为低温,而地热温度处于90~150℃为中温。 三、地热发电的负荷率 地热能是绿色能源,也是可再生能源。世界上已有24个国家利用地热能发电,其中有5个国家的地热发电量占国家总发电量的15%~22%。从BP公司(世界最大的能源公司之一)的统计数字显示,截止2008年底,全球地热发电总装机容量已达到10469 MW。地热能是一种环境友好型能源,与化石燃料能源相比,在开发利用过程中几乎没有废气排放,且废水排入地下。在已知的新能源中,地热能发电不受季节影响,因此它是稳定、可靠的能源,可用于带基本负荷运行的电站。BP能源公司2009年世界能源统计: 地热发电的负荷率高达90%;

太阳能发电负荷率为20%; 风力发电负荷率为25%。 四、地热发电运行成本 美国能源部(DOE)在2009 年的地热能技术报告中指出,地热能发电的每MWh 发电成本(Levelized Energy Cost 或者LEC)为42-69 美元,其经济性优于风能发电、太阳能热发电、光伏太阳能发电等其他可再生能源发电利用方式。可见,地热能发电利用的潜力巨大,前景良好。 五、低温地热电站的投资 低温地热电站每千瓦的造价为3000 美元 (美国能源部(DOE)公布的数据,在北达科他州Bowman County 建立的低温地热电站(地热资源温度98°C),采用ORC系统。) 美国新建超临界燃煤电厂的每千瓦造价约19000 美元 常规水电每千瓦造价造价约17000美元 天然气联合循环发电每千瓦造价约7000美元 核电每千瓦造价约34000美元 (据美国加利福尼亚州能源委员会及公用事业管制委员会和投资银行Lazard 有限公司的有关报告) 显然,相对于已有的发电系统,低温地热ORC 发电系统具有竞争力,且可用于发电的地热资源经济性温度有进一步降低的潜力,开展该方向的开发研究将带来实际的经济效益。 O RC纯低温余热发电技术在我国地热发电方面已得到初步应用。西藏羊八井1000kW地热电站,辽宁营口熊岳试验电站的装机容量2×100kW等。但目前国内的采用的ORC地热热源基本都在100℃以上,而对于100℃以下,尤其是大容量的地热温度为70℃左右的热源则研究较少。 六、ORC 发电 ORC发电事实上是两个各自封闭的循环系统在工作:图1 1、做功(发电动力)系统

绿色化工论文汇总

毕业论文 (设计) 论文(设计)题目:清洁能源技术综述 姓名高里根 学号201306140148 院系化学化工学院 专业化学工程与工艺 年级2013级 教师田孝鑫 2016年10月8日

清洁能源技术综述 吴伟泽 摘要: 本文综述了目前清洁能源技术有哪些,主要工艺技术和方法,目前存在的问题,现在研究重点探讨及前景探讨。 关键词:清洁能源;工艺技术;可持续发展;前景 由于人类不合理地开发环境以及不合理地利用资源等等行为,导致了如今的很多一些环境污染,资源不足等问题的出现。已经明显地影响到了人类的可持续发展。为维护人类的可持续发展,我们需要做出方方面面的努力。 广义的清洁能源包括在能源的生产、及其消费过程中,选用对生态环境低污染或无污染的能源。既而,清洁能源技术是指在可再生能源及新能源、煤的清洁高效利用等领域开发的有效控制温室气体排放的新技术。可见清洁能源对于人类可持续发展有着十分的重要性。所以本文拟对以下几种研究和应用较多,发展前景广阔的清洁能源技术作了综述。 (1)生物质能技术 生物质指任何形式(除化石燃料及其衍生物)的有机物质,包括农林作物及其残体、水生植物、人畜粪便(动物残体)、城市生活和工业有机废弃物等。生物质能指利用具有能源价值的植物和有机废弃物等生物质作为原料生产出各种形式的能源。 生物质能已成为能源和环境领域研究的新热点, 研究方向可以概括为4点:(1)生物质能开发利用潜力(2)生物质能利用对生态环境影响;(3)生物质能开发利用技术研究;(4)生物质能开发利用可行性分析及其发展前景。 目前, 国内外已有的生物质能利用技术归纳起来有五种,即直接燃烧技术、热化学转换技术、生物转换技术、液化技术和有机垃圾处理技术。秸秆生物质能利用技术成熟、综合效益高的方式主要有沼气技术、气化技术、气化发电和秸秆成型等;木质生物质能利用技术,目前主要围绕气化、液化和炭化进行;对于人畜粪便、城镇废水、工业和生活有机垃圾则通过以厌氧发酵为核心技术的沼气工程来制备能源。中国生物质能利用技术发展方向,一是沼气利用技术,二是

《新能源发电技术》论文

《新能源发电技术》课程论文 新能源风力发电论文 学生姓名王** 学号801010111 所属学院机械电气化工程学院 专业农业电气化与自动化 班级电气化14-2 日期2013. 11 页脚内容0

塔里木大学教务处制 新能源风力发电 摘要:随着煤、石油、天然气等传统化石能源耗尽时间表的日益临近,风能的开发和利用越来越得到人们的重视,已成为能源领域最具商业推广前景的项目之一,目前在国内外发展迅速。风能作为可再生能源的重要类别,具有蕴藏量巨大、可再生、分布广、无污染等特点,风力发电已成为世界可再生能源发展的重要方向。在不断持续的能源紧张中,不少人想到了新能源利用。利用洁净的能源(可再生能源)是人类社会文明进步的表现、是科学技术的发展、是环保理念的体现。洁净能源指太阳能、风能、潮汐能、生物能等,这都是可再生取之不尽的能源,特别是风能技术最为成熟,经济可行性较高,是一种较理想的发展能源。风是地球上的一种自然现象,它是由太阳辐射热引起的。风能是太阳能的一种转换形式,是一种重要的自然能源。太阳照射到地球表面,地球表面各处受热不同,产生温差,从而引起大气的对流运动形成风。 关键词:风能资源分布,清洁能源,风力发电 页脚内容1

一、发展新能源的背景 1、风能 风能是取之不尽、用之不竭、洁净无污染的可再生能源。可再生能源包括风能、太阳能、水能、生物质能、地热能、海洋能等。风力发电是可再生能源领域中除水能外技术最成熟、最具规模开发条件和商业化发展前景的发电方式之一。发展风力发电对于调整能源结构、减轻环境污染、解决能源危机等方面有着非常重要的意义。 2、风能资源 中国风能资源丰富, 具有良好的开发前景, 发展潜力巨大。据最新风能资源普查初步统计成果, 中国陆上离地 10m 高度风能资源总储量约 43. 5 亿 kW, 居世界第 1 位。其中,技术可开发量为2.5亿kW, 技术可开发面积约20万km2,此外,还有潜在技术可开发量约7900万kW。另外,海上10m高度可开发和利用的风能储量约为7.5亿kW。全国10m高度可开发和利用的风能储量超过10亿 kW, 仅次于美国、俄罗斯居世界第3位。陆上风能资源丰富的地区主要分布在三北地区(东北、华北、西北)、东南沿海及附近岛屿。 3、新疆风力发电前景展望 风电是最接近商业化的可再生能源技术之一,是可再生能源发展的重点,也是最有可能大规模开发的能源资源之一。我区发展风电的必要性近期体现在以下几个方面: 页脚内容2

地热能及地热发电技术概述

地热能及地热发电技术概述 摘要文章主要介绍了地热资源及其分类,地热发电的原理,并对发展地热发电中需要解决的关键问题进行了简要的分析,最后对我国地热发电的发展前景做了一下展望。 关键词地热资源;类别;发电原理;关键问题;发展前景 随着人类对资源的过度开采,煤,石油等化石能源在几十年或一百多年后将被消耗殆尽;另一方面,这些能源的燃烧所造成的环境污染也日益凸显,严重威胁着人类社会的可持续发展。因此,开发可再生新能源已成为当前社会不容忽视的必由之路。我国地处欧亚板块,有着丰富的地热资源,太平洋地热带和地中海——喜马拉雅地热带经过我国版图。因此,开发地热能对解决我国能源短缺有着重大意义,具有美好的发展前景。 1地热资源及其分类 地热资源是指在当前技术经济和地质环境条件下,能够从地壳中科学、合理的开发出来的岩石中的热能量和地热流体中的热能量及其伴生的有用组成。地热能是通过漫长的地质作用而形成的集热、矿、水为一体的矿产资源。地热资源按它在地下的储存形式可分为五大类:蒸汽型、热水型、地压型、干热岩型和岩浆型。 1)蒸汽型地热资源:指以温度较高的蒸汽为主的地下对流水热系统,这类地热资源由于需要特殊的地质条件才能形成,因此储量较少。一般蕴藏在1.5 km 左右的地表深度。 2)热水型地热资源:指地下以水为主的对流水热系统,是存在于地热区的水从周围储热岩体中获得能量形成的,包括喷出地面的热水和湿蒸汽。这类资源分布广泛,储量丰富,是当前重点研究对象。 3)地压型地热资源:蕴藏深度为2km~3 km,以高压水形式存在,溶解大量碳氢化合物,开发时可同时得到压力能,热能,化学能。 4)干热岩型地热资源:在地壳深处,岩石具有很高的温度,储存大量得热能,干热岩型地热资源主要指地表下10km左右深处的干燥无水的热岩石。这类资源十分丰富,是未来开发的重点。 5)岩浆型地热资源:指蕴藏在地层深处的呈完全熔融状态或半熔融状态的岩浆中所具有的巨大能量。 2地热发电的原理及技术

地热能论文

摘要: 地热能的介绍,本质.储能.地热能发电的原理,并用于地热供暖.地热务农.地热行医。 相关字:机械能蒸汽地热水 地热能是来自地球深处的可再生性热能,它起于地球的熔融岩浆和放射性物质的衰变。地下水的深处循环和来自极深处的岩浆侵入到地壳后,把热量从地下深处带至近表层。其储量比目前人们所利用能量的总量多很多,大部分集中分布在构造板块边缘一带,该区域也是火山和地震多发区。它不但是无污染的清洁能源,而且如果热量提取速度不超过补充的速度,那么热能而且是可再生的。 离地球表面5000米深,15℃以上的岩石和液体的总含热量,据推算约为14.5×1025焦耳(J),约相当于4948万亿吨(t)标准煤的热量。地热来源主要是地球内部长寿命放射性同位素热核反应产生的热能。按照其储存形式,地热资源可分为蒸汽型、热水型、地压型、干热岩型和熔岩型5大类。 地热资源按温度的划分。中国一般把高于150℃的称为高温地热,主要用于发电。低于此温度的叫中低温地热,通常直接用于采暖、工农业加温、水产养殖及医疗和洗浴等。截止1990年底,世界地热资源开发利用于发电的总装机容量为588万千瓦,地热水的中低温直接利用约相当于1137万千瓦。

地热发电实际上就是把地下的热能转变为机械能,然后再将机械能转变为电能的能量转变过程或称为地热发电。目前开发的地热资源主要是蒸汽型和热水型两类,因此,地热发电也分为两大类。 地热蒸汽发电有一次蒸汽法和二次蒸汽法两种。一次蒸汽法直接利用地下的干饱和(或稍具过热度)蒸汽,或者利用从汽、水混合物中分离出来的蒸汽发电。二次蒸汽法有两种含义,一种是不直接利用比较脏的天然蒸汽(一次蒸汽),而是让它通过换热器汽化洁净水,再利用洁净蒸汽(二次蒸汽)发电。第二种含义是,将从第一次汽水分离出来的高温热水进行减压扩容生产二次蒸汽,压力仍高于当地大气压力,和一次蒸汽分别进入汽轮机发电。 地热水中的水,按常规发电方法是不能直接送入汽轮机去做功的,必须以蒸汽状态输入汽轮机做功。目前对温度低于100℃的非饱和态地下热水发电,有两种方法:一是减压扩容法。利用抽真空装置,使进入扩容器的地下热水减压汽化,产生低于当地大气压力的扩容蒸汽然后将汽和水分离、排水、输汽充入汽轮机做功,这种系统称“闪蒸系统”。低压蒸汽的比容很大,因而使气轮机的单机容量受到很大的限制。但运行过程中比较安全。另一种是利用低沸点物质,如氯乙烷、正丁烷、异丁烷和氟里昂等作为发电的中间工质,地下热水通过换热器加热,使低沸点物质迅速气化,利用所产生气体进入发电机做功,做功后的工质从汽轮机排入凝汽器,并在其中经冷却系统降温,又重新凝结成液态工质后再循环使用。这种方法称“中间工质法”,这种系统称“双流系统”或“双工质发电系统”。这

国内外地热发电技术发展现状及趋势

国内外地热发电技术发展现状及趋势 北极星火力发电网讯:地热资源是一种可再生的清洁能源,储量大、分布广,具有清洁环保、用途广泛、稳定性好、可循环利用等特点,与风能、太阳能等相比,不受季节、气候、昼夜变化等外界因素干扰,是一种现实并具有竞争力的新能源。 2017年2月,国家发展和改革委员会编制的《地热能开发利用“十三五”规划》已经正式印发。根据规划内容,“十三五”期间地热能开发将拉动总计2600亿元投资。在此过程中,将探索建立地热能开发的特许经营权招标制度和PPP模式,并且将放开城镇供热市场准入限制,引导地热能开发企业进入城镇供热市场。“十三五”期间,新增地热发电装机容量500兆瓦,到2020年,地热发电装机容量约530兆瓦。 在加快调整能源结构、强化雾霾治理、积极应对气候变化挑战的大格局中,基于地热资源的地位及其利用价值,相关产业将成为重要投资增长点。 全球地热资源分布情况 地球内部蕴藏着难以想象的巨大能量。根据估算,仅地壳最外层10公里范围内,就拥有1254亿焦热量,相当于全世界现产煤炭总发热量的2000倍。如果计算地热能的总量,则相当于煤炭总储量的1.7亿倍。有人估计,地热资源要比水力发电的潜力大100倍。可供利用的地热能即使按1%计算,仅地下3公里以内可开发的热能,就相当于2.9万亿吨煤的能量!

就全球来说,地热资源的分布是不平衡的。明显的地温梯度每公里深度大于30℃的地热异常区,主要分布在板块生长、开裂-大洋扩张脊和板块碰撞,衰亡-消减带部位。环球性的地热带主要有下列4个: (1)环太平洋地热带:世界许多著名的地热田,如美国的盖瑟尔斯、长谷、罗斯福;墨西哥的塞罗、普列托;新西兰的怀腊开;中国的台湾马槽;日本的松川、大岳等均在这一带。 (2)地中海-喜马拉雅地热带:世界第一座地热发电站意大利的拉德瑞罗地热田就位于这个地热带中。中国的西藏羊八井及云南腾冲地热田也在这个地热带中。 (3)大西洋中脊地热带:冰岛的克拉弗拉、纳马菲亚尔和亚速尔群岛等一些地热田就位于这个地热带。 (4)红海-亚丁湾-东非裂谷地热带:包括吉布提、埃塞俄比亚、肯尼亚等国的地热田。

地热能(发电)研究现状与发展趋势(1)

地热能(发电)研究现状与 发展趋势 学院: 班级: 学号: 姓名: 指导老师:

地热能(发电)研究现状与发展趋势 摘要 地热能是来自地球深处的可再生热能,它起源于地球的熔融岩浆和放射性物质的衰变。地热能是一种环境友好型能源,与化石能源相比,几乎没有废气排放,并且是稳定,可靠的能源。地热发电是20世纪新兴的能源工业,至今已有100多年历史,现在世界很多国家都在用地热发电,它对建造环境友好型和资源节约型两型社会做了重大贡献,是新型能源研究的一个重要课题。地热电站的装机容量和经济性主要取决于地热资源的类型和品位。 关键词:地热能;地热资源;地热发电技术;发电厂

REREARCH STATUS AND DEVELOPMENT TREND OF GEOTHERMAL ENERGY ABSTRACT Geothermal energy is a renewable source of heat from the earth's interior, which originates from the melting of the earth's molten magma and the decay of radioactive material. Geothermal energy is an environmentally friendly energy, compared with fossil energy, almost no emissions, and is stable and reliable energy. Geothermal power generation is a new energy industry since the 20th century, has been 100 years of history, now many countries in the world are in the use of geothermal power, it for the construction of environment friendly and resource saving type society made a significant contribution to is an important subject in the research of new energy. The capacity and economy of the geothermal power station are mainly determined by the type and grade of the geothermal resources. Key words: Geothermal energy; geothermal resources; geothermal power generation technology; power plant

新型能源技术论文

新型能源技术论文 能源是现代社会存在和发展的基石,是人类生存和发展的重要物质条件,无论是在工业、农业、还是在服务业,高新技术产业,都离不开能源。随着现代社会经济的全球化,以及市场经济地不断发展,能源的消费也相应的持续增长,且短期内的消耗不会减少。虽然化石能源在社会的发展历史上,提高了人们的生活水平,大大加强了生产力,但随着时间的推移,化石能源的稀缺性将会越来越突显,且这种稀缺性也会逐渐在能源商品的价格和未来发展问题上反应出来。在化石能源供应日趋紧张的背景下,大规模的开发和利用可再生能源已成为未来各国能源战略中的重要组成部分。其中新型能源包括太阳能、风能、原子核能、氢能、海洋能、地热能以及生物质能。这些能源即是可再生能源,又能为人们提供足够的能量,而且对环境的污染也很少。如果我们能大力发展这些新型能源,推广到大众中去的话,我们就可以克服资源短缺的问题,又可以保护环境。 一、太阳能 太阳能是由内部氢原子发生氢氦聚变释放出巨大核能而产生的能,来自太阳的辐射能量。人类所需能量的绝大部分都直接或间接地来自太阳。植物通过光合作用释放氧气、吸收二氧化碳,并把太阳能转变成化学能在植物体内贮存下来。太阳能发电有两大类型:一类是太阳光发电(亦称太阳能光发电),另一类是太阳热发电(亦称太阳能热发电)。 太阳能是人类取之不尽用之不竭的可再生能源,具有充分的清洁性、绝对的安全性、相对的广泛性、确实的长寿命和免维护性、资源的充足性及潜在的经济性等优点,在长期的能源战略中具有重要地位。我们对太阳能的利用大致可以分为光热转换和光电转换两种方式,其中,光电利用光伏发电,是近些年来发展最快,也是最具经济潜力的能源开发领域。 太阳能技术 ①太阳能热利用和热发电技术。太阳能热利用是太阳辐射能量通过各种集热部件转变成热能后被直接利用,它可分低温(100—300℃):工业用热、制冷、空调、烹调等;高温(300℃以上):热发电、材料高温处理等。 太阳能节能建筑分主动式或衩动式两种。前者与常规能源采暖系统基本相同,仅以太阳能集热器作为热源代替传统锅炉。后者是利用建筑本身的结构,吸收和储存太阳能,达到取暖的目的。 太阳能热发电技术是利用太阳能产生热能,再转换成机械能的发电过程。发电系统主要同集热系统、热传输系统、蓄热器、热交换器以及汽轮发电机系统等组成。美国LUZ公司已建了9个电站,总装机容量为35万千瓦,平均效率达14%,电价约8美分/千瓦时。太阳能热发电技术涉及光学、传热学、材料科学、自动化等学科,是一门综合性交叉性很强的高新技术,也是太阳能开发和研究领域的难点。太阳能热发电技术的关键问题是太阳能的光辐射吸收和高效传热技术。 ②太阳能光电转换技术。太阳电池类型很多,如单晶硅电池、多晶硅电池、非晶硅电池、硫化电池、化电池等。美国、德国、日本都将太阳能光电技术列为新源首位,制造和发电成本已在特殊应用场合有一定竞争能力。当前发展主要障碍是光电池成本高。我国已能生产,年产达1000千瓦,能量转换率达14%。多晶硅电池采用熔化浇铸,定向凝固方法制造,有可能在现有基础上降低成本30%,向实用化推进一步,但要使成数量级下降,需改变制造工艺,制造硅膜太阳能电池和发电系统,需大力加强基础研究。 ③光化学转换技术。光化学是研究光和物质相互作用引起的化学反应的一个化学分支。光化学电池是利用光照射半导体和电解液界面,发生化学反应,在电解液内形成电流,

(完整word版)地热能的应用及发展前景

地热能的应用及发展前景 班级: 姓名: 学号:

地热能的应用及发展前景 摘要:自18世纪60年代英国工业革命开始,人类社会进入到一个崭新的时代,能源动力逐步代替了传统的手工劳动。随着社会的不断发展,各国对能源的需求量不断加大,这使得世界上储存的能源资源不断减少,人类或将面临能源短缺的问题,加之人们以前对能源的认知程度较低,浪费现象较严重,导致我们现在不得不寻找新型能源来代替传统的能源,如今我们正逐渐向以天然气为主的转变,同时风能、核能、光能、地热能、太阳能等可再生能源也正得到广泛的利用,这显然会成为今后替代能源的主流。 前言:地热能开发利用对环境的有害影响小。因此,地热能作为替代能源不论是用于发电还是直接热利用,都能大幅度减轻对环境的不利影响。我国地热能开发利用兴起干70年代初,目前我国新能源和可再生能源发展纲要中地热能也被列为主要任务,进一步扩大地热直接利用和发电利用。 (一)地热能简介 地热能是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。地球内部的温度高达7000℃,而在80至100公英里的深度处,温度会降至650至1200℃。透过地下水的流动和熔岩涌至离地面1至5公里的地壳,热力得以被转送至较接近地面的地方。高温的熔岩将附近的地下水加热,这些加热了的水最终会渗出地面。运用地热能最简单和最合乎成本效益的方法,就是直接取用这些热源,并抽取其能量,为人们提供所需的能源。 (二)地热能的分布 世界地热资源主要分布于以下5个地热带: 1、环太平洋地热带。世界最大的太平洋板块与美洲、欧亚、印度板块的碰撞边界,即从美国的阿拉斯加、加利福尼亚到墨西哥、智利,从新西兰、印度尼西亚、菲律宾到中国沿海和日本。世界许多地热田都位于这个地热带,如美国的盖瑟斯地热田,墨西哥的普列托、新西兰的怀腊开、中国台湾的马槽和日本的松川、大岳等地热田。 2、地中海、喜马拉雅地热带。欧亚板块与非洲、印度板块的碰撞边界,从意大利直至中国的滇藏。如意大利的拉德瑞罗地热田和中国西藏的羊八井及云南

新能源发电技术结课论文

新能源发电技术结课论文 题目 新能源发电技术综述 专业:电气工程及其自动化 班级:电气2班 姓名:杨鼎 学号:0967130234

题目:新能源发电技术综述 摘要: 在新世纪迅速发展的今天,能源已经成了制约各国发展的重要因素,成了人们生活中至关重要的部分。在众多能源中,被人们直接利用最多的就是电能。人们发明了多种方法将其他能源转化为电能,目前使用最广泛的仍然是火力发电,而新兴能源发电技术包括太阳能发电、水力发电、风力发电、核能发电、垃圾焚烧发电等等。 关键词: 新能源太阳能风能 正文: 1.1:新能源技术概述

1980年联合国召开的“联合国新能源和可再生能源会议”对新能源的定义为:以新技术和新材料为基础,使传统的可再生能源得到现代化的开发和利用,用取之不尽、周而复始的可再生能源取代资源有限、对环境有污染的化石能源,重点开发太阳能、风能、生物质能、潮汐能、地热能、氢能和核能。 一般地说,常规能源是指技术上比较成熟且已被大规模利用的能源,而新能源通常是指尚未大规模利用、正在积极研究开发的能源。因此,煤、石油、天然气以及大中型水电都被看作常规能源,而把太阳能、风能、现代生物质能、地热能、海洋能以及核能、氢能等作为新能源。随着技术的进步和可持续发展观念的树立,过去一直被视作垃圾的工业与生活有机废弃物被重新认识,作为一种能源资源化利用的物质而受到深入的研究和开发利用,因此,废弃物的资源化利用也可看作是新能源技术的一种形式。 据估算,每年辐射到地球上的太阳能为17.8亿千瓦,其中可开发利用500~1000亿度。但因其分布很分散,目前能利用的甚微。地热能资源指陆地下5000米深度内的岩石和水体的总含热量。其中全球陆地部分3公里深度内、150℃以上的高温地热能资源为140万吨标准煤,目前一些国家已着手商业开发利用。世界风能的潜力约3500亿千瓦,因风力断续分散,难以经济地利用,今后输能储能技术如有重大改进,风力利用将会增加。海洋能包括潮汐能、波浪能、海水温差能等,理论储量十分可观。限于技术水平,现尚处于小规模研究阶段。当前由于新能源的利用技术尚不成熟,故只占世界所需总能量的很小部分,今后有很大发展前途。 2.1:太阳能发电技术 2.1.2太阳能发电技术概况 太阳内部进行着剧烈的由氢聚变成氦的核反应,并不断向宇宙空间辐射出巨大的能量,可以说是“取之不尽,用之不竭”的能源。地面上的太阳辐射能随时间、地理纬度、气候变化,实际可利用量较低,但可利用资源仍远远大于满足现在人类全部能耗及2100年后规划的能源利用量。 目前,美国、澳大利亚、德国等国太阳能发电技术较为成熟,西班牙更是在近年

国内外地热资源发电技术

国内外地热资源发电技术 (heshaolang 环境科学) 摘要:随着世界经济的不断增长,能源危机越来越突出,地热资源作为一种新型能源矿产越来越受到人们的关注。目前主要有地热发电和地热直接使用两种方式。地热电站没有燃料运输设备,没有庞大的锅炉设备,没有灰渣和烟气对环境的污染,是比较清洁的能源。本文主要介绍国内外地热发电技术的研究进展,包括地热发电技术原理,以及地热发电存在的问题和地热发电技术的发展前景。 关键词:地热资源;地热发电;技术原理;发展前景 地热资源是指在当前技术经济和地质环境条件下,地壳内能够科学、合理地开发出来的岩石中的热能量和地热流体中的热能量及其伴生的有用组分。地热资源因储量大、分布广、清洁环保、稳定性好、利用系数高等特点,成为具有竞争力的新能源。地热资源因其稳定可靠、成本低廉、清洁环保等优点逐渐被各国所认识,开发热度逐年增加。地热资源的利用方式主要有地热发电和地热直接使用。 伴随着化石能源和电力成本的波动,不断上升的能源价格极大地影响了人们的日常生活,全世界都迫切需要开发新能源来稳定不断紧张的能源形势,地热资源提供了一个非常优异的选择。不同于煤炭及天然气,地热发电没有任何隐藏的费用,例如土地退化、排放污染等,也不会对周围区域动物和植物的生存环境造成破坏,更不会对人类健康产生不良影响。此外,由于地热能源是地区性自产的,其能够有效地缓解对于国外能源的依赖,符合国家能源安全政策。据2010年世界地热大会统计,全世界共有78个国家正在开发利用地热能技术,27个国家利用地热发电,总装机容量为10715MW,年发电67246GW·h,平均利用系数72%,美洲和亚洲分别占世界地热发电总装机容量的39.9%和35.1%。地热资源的直接利用发展很快,全世界78个国家地热能直接利用的设备总容量为48483MW,年利用热能117778GW·h,平均利用系数28%。 1 地热发电的发展 利用地热资源发电至今,已经超过一百多年的历史。1904年在意大利的拉德瑞罗,P.G.Conti 国王建立了第一个能够利用地热蒸汽生产电力设备。1913年第一座装机容量0.25 MW的地热电站在意大利建成并运行,标志着商业性地热发电的开端。目前世界最大的地热电站是美国的盖瑟尔斯地热电站,1960年在美国加利福尼亚的盖瑟尔斯(Geysrs),利用地热干蒸汽生产出商业电能;1967年前苏联在帕拉唐卡(Paratunka)建成第一套双工质有机朗肯循环发电站,地热水温81℃,双工质采用制冷剂R12;1969年双工质有机朗肯循环地热发电技术成功用于美国加利福尼亚州;1970年,我国在广东丰顺建成第一座地热电站,机组功率0.1MW;我国最大运行最久的

地热能论文

地热资源 姓名:许卫凯 中国矿业大学(北京)地球科学与测绘工程学院北京100083 摘要:地热能〔Geothermal Energy〕是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。地球内部的温度高达7000℃,而在80至100公英里的深度处,温度会降至650至1200℃。透过地下水的流动和熔岩涌至离地面1至5公里的地壳,热力得以被转送至较接近地面的地方。高温的熔岩将附近的地下水加热,这些加热了的水最终会渗出地面。运用地热能最简单和最合乎成本效益的方法,就是直接取用这些热源,并抽取其能量。地热能的介绍,本质 .储能 .地热能发电的原理,并用于地热供暖.地热务农.地热行医。 关键字:机械能蒸汽地热水 Geothermal Resources Abstract: Geothermal Energy (Geothermal Energy) consists of the crust extract natural thermal Energy, this Energy lava from the earth's interior, and exists in the form of heat, is caused by volcanic eruptions and earthquakes of Energy. The interior of the earth temperature of 7000 ℃, and in 80 to 100 GongYing depth, the temperature will drop to 650-1200 ℃. Through groundwater flow and the lava from the ground into the 1 to 5 km of the earth's crust, heat can be transferred to a place close to the ground. Hot lava nearby groundwater heating, the heating the water will eventually seep the ground. Using geothermal energy, the simplest and the most appropriate cost-benefit method, is to directly access the heat source, and extract its energy. Introduction, the essence of geothermal energy. The energy storage. The principle of geothermal power generation, and used for geothermal heating. Geothermal farming. Geothermal practice medicine. Key words: mechanical energy steam geothermal water

地热能及其直接利用和发电技术结题

地热能及其直接利用和发电技术结题

1绪论 (2) 2 地热能的直接利用技术 (7) 2.1地源热泵技术 (7) 2.2地热务农技术 (9) 2.3地热医疗技术 (10) 3 地热发电技术 (10) 3.1地热发电原理与技术 (10) 3.1.1地热蒸汽发电 (10) 3.1.2地下热水发电 (11) 3.1.3联合循环发电 (12) 3.1.4利用地下热岩石发电 (12) 3.2地热发电循环系统 (13) 3.2.1单机扩容系统 (13) 3.2.2两级扩容系统 (14) 3.2.3双循环系统 (15) 3.3地热发电的技术关键 (15) 3.3.1地热田的回灌 (15) 3.3.2地热田的腐蚀 (16) 3.3.3地热田的结垢 (16) 4 地热能开发产生的问题 (18) 4.1利用率低 (18) 4.2过量开采导致地面下降 (18) 4.3环境污染 (18) 参考文献 (19)

地热能及其直接利用和发电技术 摘要:地热资源有节能减排、高效利用和价廉量稳的三大优势,20世纪70年代以来,国内外都在大规模地利用地热资源来发电、供暖。本文基于对国内外地热能及其应用技术的调研,总结了地热能的直接利用技术和地热能发电技术的发展和亟待解决的技术问题,以及地热能应用带来的影响。重点讨论了地热发电技术的原理和应用。 关键词:地热资源;开发;现状;发电技术;前景 1绪论 地热能〔Geothermal Energy〕是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。地热能是蕴藏于地球深处的热能。按照现有开发技术的可能性,地热能资源的范围一般指在地壳表层以下5000米以内岩石和地热流体所含的热量。 地球内部的温度高达7000℃,而在80至100公英里的深度处,温度会降至650至1200℃。透过地下水的流动和熔岩涌至离地面1至5公里的地壳,热力得以被转送至较接近地面的地方。高温的熔岩将附近的地下水加热,这些加热了的水最终会渗出地面。运用地热能最简单和最合乎成本效益的方法,就是直接取用这些热源,并抽取其能量。地热能是可再生资源。 地球内部蕴藏着的热能称为地热能,来自(1)高温岩浆,(2)岩石中放射性元素衰变;在地球上所有的能源中,地热能仅次于太阳辐射能,排在第二位(火山爆发、地震和其他地壳变动); 世界地热资源主要分布于以下5个地热带:(1)环太平洋地热带。世界最大的太平洋板块与美洲、欧亚、印度板块的碰撞边界,即从美国的阿拉斯加、加利福尼亚到墨西哥、智利,从新西兰、印度尼西亚、菲律宾到中国沿海和日本。世界许多地热田都位于这个地热带,如美国的盖瑟斯地热田,墨西哥的普列托、新西兰的怀腊开、中国台湾的马槽和日本的松川、大岳等地热田。(2)地中海、喜马拉雅地热带。欧亚板块与非洲、印度板块的

地热能发电

新能源之地热能发电

目录 一、项目基本信息 (2) 1.1项目背景........................................................................................ 错误!未定义书签。 1.11地热能源利用背景 (3) 1.12地热能发电技术背景 (3) 1.13国家政策支持背景................................................................. 错误!未定义书签。 1.2地热发电原理 (4) 1.3地热能发电可行性分析 (4) 二、项目概况........................................................................................ 错误!未定义书签。 2.1地热能发电方案对比 (5) 2.2方案分析........................................................................................ 错误!未定义书签。 2.3 方案选择 ....................................................................................... 错误!未定义书签。 2.4 地热能生产工艺 (8) 2.41工作原理................................................................................. 错误!未定义书签。 2.42双循环式发电特点 (9) 2.43双循环式发电装置................................................................. 错误!未定义书签。 2.44工况变化对双循环式发电的影响......................................... 错误!未定义书签。 三、问题与建议...................................................................................... 错误!未定义书签。 3.1地热能发电技术约束 .................................................................. 错误!未定义书签。 3.2环保问题...................................................................................... 错误!未定义书签。 3.3能源利用率问题.......................................................................... 错误!未定义书签。 四、市场发展前景及相关政策............................................................ 错误!未定义书签。 4.1 市场发展前景 ............................................................................. 错误!未定义书签。 4.2相关政策 ...................................................................................... 错误!未定义书签。 五、厂址选择........................................................................................ 错误!未定义书签。 5.1我国地热资源分布 ...................................................................... 错误!未定义书签。 5.2厂址选择 ...................................................................................... 错误!未定义书签。 六、参考文献.......................................................................................... 错误!未定义书签。

地热能发电

地热能发电 一、地热种类 开发的地热资源主要是蒸汽型和热水型两类,因此,地热发电也分为两大类。 地热蒸汽发电有一次蒸汽法和二次蒸汽法两种。 1、一次蒸汽法 一次蒸汽法直接利用地下的干饱和(或稍具过热度)蒸汽,或者利用从汽、水混合物中分离出来的蒸汽发电。 2、二次蒸汽法 二次蒸汽法有两种含义,一种是不直接利用比较脏的天然蒸汽(一次蒸汽),而是让它通过换热器汽化洁净水,再利用洁净蒸汽(二次蒸汽)发电。第二种含义是,将从第一次汽水分离出来的高温热水进行减压扩容生产二次蒸汽,压力仍高于当地大气压力,和一次蒸汽分别进入汽轮机发电。 二、地热蒸汽发电系统 利用地热蒸汽推动汽轮机运转,产生电能。本系统技术成熟、运行安全可靠,是地热发电的主要形式。西藏羊八井地热电站采用的便是这种形式。

1、双循环发电系统 也称有机工质朗肯循环系统。它以低沸点有机物为工质,使工质在流动系统中从地热流体中获得热量,并产生有机质蒸汽,进而推动汽轮机旋转,带动发电机发电。 2、全流发电系统 本系统将地热井口的全部流体,包括所有的蒸汽、热水、不凝气体及化学物质等,不经处理直接送进全流动力机械中膨胀做功,其后排放或收集到凝汽器中。这种形式可以充分利用地热流体的全部能量,但技术上有一定的难度,尚在攻关。 3、干热岩发电系统 干热岩发电系统是利用地下干热岩体发电的设想,由美国人莫顿和史密斯于1970年提出的。1972年,他们在新墨西哥州北部打了两口约4000米的深斜井,从一口井中将冷水注入到干热岩体,从另一口井取出自岩体加热产生的蒸汽,功率达2300千瓦。进行干热岩发电研究的还有日本、英国、法国、德国和俄罗斯,但迄今尚无大规模应用。 三、利用现状 1970年,我国在广东丰顺县邓屋村建成国内第一座地热电站,成为世界上第七个通过地热发电的国家。此后,湖南、河北、山东等

相关主题
文本预览
相关文档 最新文档