当前位置:文档之家› 高中数学专题-二次函数综合问题例谈

高中数学专题-二次函数综合问题例谈

高中数学专题-二次函数综合问题例谈
高中数学专题-二次函数综合问题例谈

二次函数综合问题例谈

二次函数是中学代数的基本内容之一,它既简单又具有丰富的内涵和外延. 作为最基本的初等函数,可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间关系. 这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题. 同时,有关二次函数的内容又与近、现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础. 因此,从这个意义上说,有关二次函数的问题在高考中频繁出现,也就不足为奇了. 学习二次函数,可以从两个方面入手:一是解析式,二是图像特征. 从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法. 本文将从这两个方面研究涉及二次函数的一些综合问题.

1. 代数推理

由于二次函数的解析式简捷明了,易于变形(一般式、顶点式、零点式等),所以,在解决二次函数的问题时,常常借助其解析式,通过纯代数推理,进而导出二次函数的有关性质.

1.1 二次函数的一般式c bx ax y ++=2

)0(≠c 中有三个参数c b a ,,. 解题的关键在于:通过三个独立条件“确定”这三个参数.

例1 已知f x ax bx ()=+2

,满足1≤-≤f ()12且214≤≤f (),求f ()-2的取值范围.

分析:本题中,所给条件并不足以确定参数b a ,的值,但应该注意到:所要求的结论不是()2-f 的确定值,而是与条件相对应的“取值范围”,因此,我们可以把1≤-≤f ()12和

4)1(2≤≤f 当成两个独立条件,先用()1-f 和()1f 来表示b a ,.

解:由()b a f +=1,()b a f -=-1可解得:

))1()1((2

1

)),1()1((21--=-+=

f f b f f a (*) 将以上二式代入f x ax bx ()=+2

,并整理得

()()???

?

??--+???? ??+=2)1(2122x x f x x f x f ,

∴ ()()()1312-+=f f f .

又∵214≤≤f (),2)1(1≤-≤f , ∴ ()1025≤≤f .

例2 设()()f x ax bx c a =++≠2

0,若()f 01≤,()f 11≤,()f -11≤, 试证

明:对于任意-≤≤11x ,有()f x ≤

54

. 分析:同上题,可以用()()()1,1,0-f f f 来表示c b a ,,. 解:∵ ()()()c f c b a f c b a f =++=+-=-0,1,1, ∴ ()()()()0)),1()1((2

1

),0211(21f c f f b f f f a =--=--+=

, ∴ ()()()()()

2

22102121x f x x f x x f x f -+?

??

? ??--+???? ??+=. ∴ 当01≤≤-x 时,

()()()().

4

5

45)21(1)1(22122102

121222

222

222

22≤++-=+--=-+???? ??-+???? ??+-=-+-++≤-?+-?-++?≤x x x x x x x x x x

x x x x f x

x f x x f x f

当10-≤≤x 时,

()()()()222102

121x f x

x f x x f x f -?+-?-++?≤

222122x x

x x x -+-++≤

)1(22222x x x x x -+???

?

??+-+???? ??+= .

4

545)21(122≤+--=++-=x x x

综上,问题获证.

1.2 利用函数与方程根的关系,写出二次函数的零点式()().21x x x x a y --= 例3 设二次函数()()f x ax bx c a =++>2

0,方程()f x x -=0的两个根x x 12,满

足01

12<<<

x x a

. 当()x x ∈01,时,证明()x f x x <<1. 分析:在已知方程()f x x -=0两根的情况下,根据函数与方程根的关系,可以写出函数()x x f -的表达式,从而得到函数)(x f 的表达式.

证明:由题意可知

))(()(21x x x x a x x f --=-.

a

x x x 1021<

<<< , ∴ 0))((21>--x x x x a , ∴ 当()

x x ∈01,时,x x f >)(.

又)1)(())(()(211211+--=-+--=-ax ax x x x x x x x x a x x f , ,011,0221>->+-<-ax ax ax x x 且 ∴ 1)(x x f <,

综上可知,所给问题获证.

1.3 紧扣二次函数的顶点式,44222

a b ac a b x a y -+

??

? ??

+=对称轴、最值、判别式显合力

例4 已知函数x z

a x f 2

2)(-

=。 (1)将)(x f y =的图象向右平移两个单位,得到函数)(x g y =,求函数)(x g y =的解析式;

(2)函数)(x h y =与函数)(x g y =的图象关于直线1=y 对称,求函数)(x h y =的解析式;

(3)设)()(1

)(x h x f a

x F +=,已知)(x F 的最小值是m 且72+>m ,求实数a 的取值范围。

解:(1)()();2

2

22

2

---=-=x x a x f x g

(2)设()x h y =的图像上一点()y x P ,,点()y x P ,关于1=y 的对称点为()y x Q -2,,由点Q 在()x g y =的图像上,所以

y a x x -=-

--22

2

2

2

于是 ,2222

2--+-=x x a

y 即 ();2

2222

--+-=x x a x h (3)22)14(2411)()(1)(+-+??

? ??-=+=

x x a a x h x f a x F . 设x

t 2=,则21

444)(+-+-=

t

a t a a x F . 问题转化为:7221

444+>+-+-t a t a a 对0>t 恒成立. 即

()0147442

>-+--a t t a a 对0>t 恒成立. (*)

故必有044>-a a .(否则,若044<-a a

,则关于t 的二次函数

()14744)(2-+--=a t t a a t u 开口向下,当t 充分大时,必有()0

a

时,

显然不能保证(*)成立.),此时,由于二次函数()14744)(2

-+--=a t t a

a t u 的对称轴

0847>-=a a t ,所以,问题等价于0

????<-?-?->-0

144447044a a a a

a

解之得:

22

1

<

014,044>->-a a a ,故21

444)(+-+-=t

a t a a x F 在a

a a t --=4)

14(4取得

最小值()214442

+-?-=a a

a

m 满足条件. 2. 数形结合

二次函数()0)(2

≠++=a c

bx ax x f 的图像为抛物线,具有许多优美的性质,如对

称性、单调性、凹凸性等. 结合这些图像特征解决有关二次函数的问题,可以化难为易.,形象直观.

2.1 二次函数的图像关于直线a b x 2-=对称, 特别关系a

b

x x -=+21也反映了二次函数的一种对称性.

例5 设二次函数()()f x ax bx c a =++>2

0,方程()f x x -=0的两个根x x 12,满足

01

12<<

<

.

解:由题意 ()c x b ax x x f +-+=-)1(2

.

由方程()f x x -=0的两个根x x 12,满足01

12<<<

x x a

, 可得 ,121021a x a b x <<--<

<且a b x x a b 21

2121---

=---, ∴ a b a a b x x a b 211212121---

<---=---, 即 1x a

b

<-,故 x x 012<.

2.2 二次函数)(x f 的图像具有连续性,且由于二次方程至多有两个实数根. 所以存在实数n m ,使得n m <且0)()(

例6 已知二次函数)0,,(1)(2

>∈++=a R b a bx ax x f ,设方程x x f =)(的两个实数根为1x 和2x .

(1)如果4221<<x ; (2)如果21

分析:条件4221<<

解:设1)1()()(2+-+=-=x b ax x x f x g ,则0)(=x g 的二根为1x 和2x . (1)由0>a 及4221<<

?

?><0)4(0)2(g g ,即???>-+<-+034160

124b a b a ,即

???

????

<+?--<-?+,043224,043233a a b a

a b

两式相加得

12

b

,所以,10->x ; (2)由a

a b x x 4)1()(22

21--=-, 可得 1)1(122+-=+b a .

又01

21>=a

x x ,所以21,x x 同号.

∴ 21

)1(120

22

12b a x x ,

即 ???????+-=+>>1)1(120)0(0)2(2b a g g 或???????+-=+>>-1

)1(120)0(0

)2(2b a g g

解之得 41<

b 或4

7

>b . 2.3 因为二次函数()0)(2

≠++=a c

bx ax x f 在区间

]2,(a

b

-

-∞和区间),2[+∞-

a

b

上分别单调,所以函数()x f 在闭区间上的最大值、最小值必在区间端点或顶点处取得;函数)(x f 在闭区间上的最大值必在区间端点或顶点处取得.

例7 已知二次函数f x ax bx c ()=++2

,当-≤≤11x 时,有-≤≤11f x (),求证:当-≤≤22x 时,有-≤≤77f x ().

分析:研究)(x f 的性质,最好能够得出其解析式,从这个意义上说,应该尽量用已知条件来表达参数c b a ,,. 确定三个参数,只需三个独立条件,本题可以考虑)1(f ,)1(-f ,

)0(f ,这样做的好处有两个:一是c b a ,,的表达较为简洁,二是由于01和±正好是所给条

件的区间端点和中点,这样做能够较好地利用条件来达到控制二次函数范围的目的.

要考虑()x f 在区间[]7,7-上函数值的取值范围,只需考虑其最大值,也即考虑()x f 在区间端点和顶点处的函数值.

解:由题意知:c b a f c f c b a f ++==+-=-)1(,)0(,)1(, ∴ )0()),1()1((2

1

)),0(2)1()1((21f c f f b f f f a =--=--+=

, ∴ f x ax bx c ()=++2

()

2

221)0(2)1(2)1(x f x x f x x f -+?

??

? ??--+???? ??+=. 由-≤≤11x 时,有-≤≤11f x (),可得 ,

1)1(≤f (),11≤-f ()10≤f .

∴ ()()()()7)0(3)1(1303113)2(≤+-+≤--+=f f f f f f f ,

()()()()7)0(3)1(3103131)2(≤+-+≤--+=-f f f f f f f .

(1)若[]2,22-?-

a

b

,则()x f 在[]2,2-上单调,故当[]2,2-∈x 时, ))2(,)2(max()(m ax f f x f -=

∴ 此时问题获证. (2)若[]2,22-∈-

a

b

,则当[]2,2-∈x 时,

)2,)2(,)2(max()(max ??

?

??--=a b f f f x f

()72411214)1()1(2022422<=+?+≤--?+=?+≤-

=??

?

??-f f a b f b a b c a b c a b f , ∴ 此时问题获证.

综上可知:当-≤≤22x 时,有-≤≤77f x ().

二次函数与特殊四边形综合问题专题训练(有答案)

二次函数中动点与特殊四边形综合问题解析与训练 一、知识准备: 抛物线与直线形的结合表形式之一是,以抛物线为载体,探讨是否存在一些点,使其能构成某些特殊四边形,有以下常风的基本形式 (1)抛物线上的点能否构成平行四边形 (2)抛物线上的点能否构成矩形,菱形,正方形 特殊四边形的性质与是解决这类问题的基础,而待定系数法,数形结合,分类讨论是解决这类问题的关键。 二、例题精析 ㈠【抛物线上的点能否构成平行四边形】 例一、(2013河南)如图,抛物线2 y x bx c =-++与直线 1 2 2 y x =+交于,C D两点,其 中点C在y轴上,点D的坐标为 7 (3,) 2 。点P是y轴右侧的抛物线上一动点,过点P作 PE x ⊥轴于点E,交CD于点F. (1)求抛物线的解析式; (2)若点P的横坐标为m,当m为何值时,以,,, O C P F为顶点的四边形是平行四边形?请说明理由。 【解答】(1)∵直线 1 2 2 y x =+经过点C,∴(0,2) C ∵抛物线2 y x bx c =-++经过点(0,2) C,D 7 (3,) 2

∴22727 332 2c b b c c =?? =? ?∴??=-++??=?? ∴抛物线的解析式为2 7 22 y x x =-++ (2)∵点P 的横坐标为m 且在抛物线上 ∴2 71 (,2),(,2)22 P m m m F m m -+ ++ ∵PF ∥CO ,∴当PF CO =时,以,,,O C P F 为顶点的四边形是平行四边形 ① 当03m <<时,2 271 2(2)322 PF m m m m m =-+ +-+=-+ ∴2 32m m -+=,解得:121,2m m == 即当1m =或2时,四边形OCPF 是平行四边形 ② 当3m ≥时,2 217 (2)(2)32 2 PF m m m m m =+--+ +=- 232m m -= ,解得:123322 m m += =(舍去) 即当132 m += 时,四边形OCFP 是平行四边形 练习1:(2013?盘锦)如图,抛物线y=ax 2+bx+3与x 轴相交于点A (﹣1,0)、B (3,0), 与y 轴相交于点C ,点P 为线段OB 上的动点(不与O 、B 重合),过点P 垂直于x 轴的直线与抛物线及线段BC 分别交于点E 、F ,点D 在y 轴正半轴上,OD=2,连接DE 、OF . (1)求抛物线的解析式; (2)当四边形ODEF 是平行四边形时,求点P 的坐标;

《与二次函数有关的综合问题》解析

与二次函数有关的综合问题 复习策略 根据大纲要求本章的学习目标主要有以下五点: (1)通过对实际问题的分析,体会二次函数的意义。 (2)会用描点法画出二次函数的图象,通过图象了解二次函数的性质。 (3)会用配方法将二次函数的一般式化为顶点式,并能由此得到二次函数的顶点坐标,说出图象的开口方向,画出图象的对称轴,并能解决简单的实际问题。 (4)会利用二次函数的图象求一元二次方程的近似解。 (5)求二次函数的解析式。 结合大纲要求及近五年的中考命题的特点和规律,主要是考查学生综合运用知识的能力,以二次函数为载体,对几何进行考查,主要涉及二次函数与三角形、四边形等综合考查。从学生的解题情况来看,考生对二次函数压轴题不得其法,普遍畏惧压轴题,得分率偏低,这往往导致中考高分不多。为此,我们对中考试卷二次函数命题方向及解题策略进行了一些探索,希望能帮助学生在中考中提高解二次函数压轴题的能力。 首先:帮助学生了解并掌握二次函数综合题常见的类型 1.函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。 2.几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。 3.存在性问题:存在性问题则主要考查分类讨论的数学思想,常见的存在性是:是否存在等腰三角形、是否存在直角三角形、是否存在三角形相似,是否存在平行四边形等。有些题在分类讨论列方程求解后,还要检验,排除干扰。 4.最值型问题:这类题则需要根据条件,创设函数,利用函数性质(一般是二次函数)求解。同时注意求最值时要注意自变量的取值范围。解这类问题要注重在图形的形状或位置的变化过程中寻找函数与几何的联系,需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动。 解题过程中应注意以下两点 1.抓住“关键点”---利用面积和周长公式、三角形相似、勾股定理、特殊等式等手段建构二次函数关系。 2.突破“难点”---(1)求最值的常见方法:利用“两点之间线段最短”的性质求一动点到两定点的距离之和的最小值;利用二次函数的性质求最值。 (2)分类讨论的常见形式:等腰三角形问题常按已知线段是底还是腰来分类;直角三角形问题常按哪个角是直角来分类;平行四边形问题常按已知线段是边还是对角线来分类;相似三角形问题常按对应边不同来分类;动点问题常按动点运动的分界点来分类。

高中数学二次函数分类讨论经典例题

例1(1)关于x 的方程0142)3(22=++++m x m x 有两个实根,且一个大于1,一个小于1,求m 的取值范围; (2)关于x 的方程0142)3(22=++++m x m x 有两实根都在)4,0[内,求m 的取值范围; ⑶关于x 的方程0142)3(22=++++m x m x 有两实根在[]3,1外,求m 的取值范围 (4)关于x 的方程0142)3(22=++++m x m mx 有两实根,且一个大于4,一个小于4,求m 的取值范围. 例3已知函数3)12()(2--+=x a ax x f 在区间]2,2 3[-上的最大值为1,求实数a 的值。

解(1)令142)3(2)(2++++=m x m x x f ,∵对应抛物线开口向上,∴方程有两个实根,且一个大于1,一个小于1等价于0)1(?吗?),即.4 21-++++≥+????? ?????≥+-+<+-<≥≥m m m m m m m m m m f f (3)令142)3(2)(2++++=m x m x x f ,原命题等价于 ???<<0)3(0)1(f f 即? ??<++++<++++0142)3(690142)3(21m m m m 得.421-0)4(0g m 或,0 )4(0???>)(恒成立,求实数a 的取 值范围。 解:(1)0)()(恒成立?.)]([min a x f >又当]1,1[-∈x 时, 5)1()]([min -=-=f x f ,所以).5,(--∞∈a 【评注】“有解”与“恒成立”是很容易搞混的两个概念。一般地,对于“有解”与“恒成立”,有下列常用结论:(1)a x f >)(恒成立?a x f >min )]([;(2)a x f <)(恒成立?a x f )(有解?a x f >max )]([;(4)a x f <)(有解?.)]([min a x f < 分析:这是一个逆向最值问题,若从求最值入手,首先应搞清二次项系数a 是否为零,如果)(,0x f a ≠的最大值与二次函数系数a 的正负有关,也与对称轴

二次函数最经典综合提高题

周村区城北中学二次函数综合提升寒假作业题 一、顶点、平移 1、抛物线y =-(x +2)2 -3的顶点坐标是( ). (A) (2,-3); (B) (-2,3); (C) (2,3); (D) (-2,-3) 2、若,,,,,123351A y B y C y 444??????- ? ? ??????? 为二次函数2y x 4x 5=+-的图象上的三点,则123y y y 、、的大小关系是 A.123y y y << B. 213y y y << C.312y y y << D.132y y y << 3、二次函数y=﹣(x ﹣1)2+5,当m ≤x ≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m +n 的值为( )A . B .2 C . D . 4、下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是 ( ) A .y = (x ? 2)2 + 1 B .y = (x + 2)2 + 1 C .y = (x ? 2)2 ? 3 D .y = (x + 2)2 ? 3 5、将二次函数2 45y x x =-+化为2 ()y x h k =-+的形式,则y = . 6二次函数与y=kx 2﹣8x +8的图象与x 轴有交点,则k 的取值范围是 ( ) A .k <2 B .k <2且k ≠0 C .k ≤2 D .k ≤2且k ≠0 7、由二次函数1)3(22+-=x y ,可知( ) A .其图象的开口向下 B .其图象的对称轴为直线3-=x C .其最小值为1 D .当3

北师大版数学高一必修1练习 二次函数的性质

[A 基础达标] 1.函数f (x )=-x 2+4x +5(0≤x <5)的值域为( ) A . (0,5] B .[0,5] C .[5,9] D .(0,9] 解析:选D.f (x )=-x 2+4x +5=-(x -2)2+9(0≤x <5),当x =2时,f (x )最大=9;当x >0且x 接近5时,f (x )接近0,故f (x )的值域为(0,9]. 2.已知函数y =x 2-6x +8在[1,a )上为减函数,则a 的取值范围是( ) A .a ≤3 B .0≤a ≤3 C .a ≥3 D .10时,f (x )的对称轴为x =12a ,在????-∞,12a 上是递减的,由题意(-∞,2)?? ???-∞,12a , 所以2≤12a ,即a ≤14 ,综上,a 的取值范围是????0,14. 4.如果函数f (x )=x 2+bx +c 对任意的实数x ,都有f (1+x )=f (-x ),那么( ) A .f (-2)<f (0)<f (2) B .f (0)<f (-2)<f (2) C .f (2)<f (0)<f (-2) D .f (0)<f (2)<f (-2) 解析:选D.函数f (x )=x 2+bx +c 对任意的实数x 都有f (1+x )=f (-x ).可知函数f (x )图像的对称轴为x =12 ,又函数图像开口向上,自变量离对称轴越远函数值越大,故选D. 5.设二次函数f (x )=-x 2+x +a (a <0),若f (m )>0,则f (m +1)的值为( )

高中数学专题-二次函数综合问题例谈

二次函数综合问题例谈 二次函数是中学代数的基本内容之一,它既简单又具有丰富的内涵和外延. 作为最基本的初等函数,可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间关系. 这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题. 同时,有关二次函数的内容又与近、现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础. 因此,从这个意义上说,有关二次函数的问题在高考中频繁出现,也就不足为奇了. 学习二次函数,可以从两个方面入手:一是解析式,二是图像特征. 从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法. 本文将从这两个方面研究涉及二次函数的一些综合问题. 1. 代数推理 由于二次函数的解析式简捷明了,易于变形(一般式、顶点式、零点式等),所以,在解决二次函数的问题时,常常借助其解析式,通过纯代数推理,进而导出二次函数的有关性质. 1.1 二次函数的一般式c bx ax y ++=2 )0(≠c 中有三个参数c b a ,,. 解题的关键在于:通过三个独立条件“确定”这三个参数. 例1 已知f x ax bx ()=+2 ,满足1≤-≤f ()12且214≤≤f (),求f ()-2的取值范围. 分析:本题中,所给条件并不足以确定参数b a ,的值,但应该注意到:所要求的结论不是()2-f 的确定值,而是与条件相对应的“取值范围”,因此,我们可以把1≤-≤f ()12和 4)1(2≤≤f 当成两个独立条件,先用()1-f 和()1f 来表示b a ,. 解:由()b a f +=1,()b a f -=-1可解得: ))1()1((2 1 )),1()1((21--=-+= f f b f f a (*) 将以上二式代入f x ax bx ()=+2 ,并整理得 ()()??? ? ??--+???? ??+=2)1(2122x x f x x f x f , ∴ ()()()1312-+=f f f . 又∵214≤≤f (),2)1(1≤-≤f , ∴ ()1025≤≤f .

二次函数综合题类型

二次函数综合题常见题型 一、线段最值 1、如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5). (1)求直线BC与抛物线的解析式; (2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值; (3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.

7),且顶点C的横坐标为4,该图象在x 轴上截2、如图,二次函数的图象经过点D(0,3 9 得的线段AB的长为6. ⑴求二次函数的解析式; ⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标; ⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.

3、如图,已知直线 1 1 2 y x =+与y轴交于点A,与x轴交于点D,抛物线2 1 2 y x bx c =++与直 线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0)。 ⑴求该抛物线的解析式; ⑵动点P在轴上移动,当△PAE是直角三角形时,求点P的坐标P。 ⑶在抛物线的对称轴上找一点M,使|| AM MC -的值最大,求出点M的坐标。

4、如图,已知ABC =,点A、C在x轴上,点B坐标 ∠=?,AC BC ACB ?为直角三角形,90 为(3,m)(0 m>),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.(1)求点A的坐标(用m表示); (2)求抛物线的解析式; (3)设点Q为抛物线上点P至点B之间的一动点,连结PQ并延长交BC于点E,连结BQ Array并延长交AC于点F,试证明:() FC AC EC +为定值.

高中数学-二次函数的性质与图象练习

高中数学-二次函数的性质与图象练习课时过关·能力提升 1函数y=x2-2x+m的单调递增区间为() A.(-∞,+∞) B.[1,+∞) C.(-∞,1] D.[-2,+∞) 解析因为二次函数的图象开口向上,且对称轴为x=1, 所以单调递增区间为[1,+∞). 答案B 2函数f(x)=x2-mx+4(m>0)在(-∞,0]上的最小值是() A.4 B.-4 C.与m的取值有关 D.不存在 解析因为函数f(x)的图象开口向上,且对称轴x=>0, 所以f(x)在(-∞,0]上为减函数, 所以f(x)min=f(0)=4. 答案A 3二次函数y=4x2-mx+5的对称轴为x=-2,则当x=1时,y的值为() A.-7 B.1 C.17 D.25 解析由已知得-=-2,解得m=-16, 故y=4x2+16x+5.当x=1时,y=4×12+16×1+5=25. 答案D 4已知二次函数f(x)=x2-ax+7,若f(x-2)是偶函数,则a的值为()

A.4 B.-4 C.2 D.-2 解析由已知得f(x-2)=(x-2)2-a(x-2)+7=x2-(a+4)x+2a+11. 因为f(x-2)是偶函数, 所以其图象关于y轴对称, 即=0,所以a=-4. 答案B 5已知一次函数y=ax+c与二次函数y=ax2+bx+c(a≠0),它们在同一坐标系中的大致图象是() 答案D 6已知函数y=x2-2x+3在区间[0,m]上有最大值3,最小值2,则实数m的取值范围是() A.[1,+∞) B.[1,2) C.[1,2] D.(-∞,2] 解析由于y=x2-2x+3=(x-1)2+2,其图象如图所示,且f(0)=3,f(1)=2,f(2)=3.结合图象可知m的取值 范围是[1,2]. 答案C 7已知二次函数f(x)=ax2+bx-1(a≠0).若f(x1)=f(x2)(x1≠x2),则f(x1+x2)等于() A.- B.- C.-1 D.0 解析由f(x1)=f(x2)可得f(x)图象的对称轴为x=, 故=-,即x1+x2=-,

高中数学教学论文 浅谈二次函数在高中阶段的应用

高中数学教学论文:浅谈二次函数在高中阶段的应用 在初中教材中,对二次函数作了较详细的研究,由于初中学生基础薄弱,又受其接受能力的限制,这部份内容的学习多是机械的,很难从本质上加以理解。进入高中以后,尤其是高三复习阶段,要对他们的基本概念和基本性质(图象以及单调性、奇偶性、有界性)灵活应用,对二次函数还需再深入学习。 一、进一步深入理解函数概念 初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射?:A→B,使得集合B中的元素y=ax2+bx+c(a≠0)与集合A的元素X对应,记为?(x)= ax2+ bx+c(a≠0)这里ax2+bx+c表示对应法则,又表示定义域中的元素X在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题: 类型I:已知?(x)= 2x2+x+2,求?(x+1) 这里不能把?(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。 类型Ⅱ:设?(x+1)=x2-4x+1,求?(x) 这个问题理解为,已知对应法则?下,定义域中的元素x+1的象是x2-4x+1,求定义域中元素X的象,其本质是求对应法则。 一般有两种方法: (1)把所给表达式表示成x+1的多项式。 ?(x+1)=x2-4x+1=(x+1)2-6(x+1)+6,再用x代x+1得?(x)=x2-6x+6 (2)变量代换:它的适应性强,对一般函数都可适用。 令t=x+1,则x=t-1 ∴(t)=(t-1)2-4(t-1)+1=t2-6t+6从而?(x)= x2-6x+6 二、二次函数的单调性,最值与图象。 在高中阶阶段学习单调性时,必须让学生对二次函数y=ax2+bx+c在区间(-∞,-b2a ]及[-b2a ,+∞)上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。 类型Ⅲ:画出下列函数的图象,并通过图象研究其单调性。

例谈二次函数综合题的解题策略

□ 孙朝仁 朱松林 二次函数既是中考的重点内容,也是热点问题.而二次函数综合题在各级各类考试中都属于难度较大的问题,要求同学们不但对于二次函数本身的内容掌握要牢固,而且还要善于将二次函数和其他的有关知识(方程、不等式以及几何等知识)“攀亲”,搞好关系,这样问题的综合层次和要求都比较高 .解决这类问题的关键就是要“沉得住气”,认真仔细地将题目中所提供的信息进行加工梳理,有条不紊地进行“抽丝剥茧”,最终解决问题 .下面略举几例,谈谈二次函数综合题的常见的解题策略 . 一、得意知“形”,由“形”想“数” 例1 已知函数y =x 2+bx +2的图象经过点(3,2). (1)求这个函数的关系式; (2)画出它的图象; (3)根据图象指出:当x 取何值时,y ≥2? 分析 首先,利用待定系数法,可以求出b 的值, 从而获得函数表达式;其次,根据函数关系式不难知“形”—— 用描特殊点法画出函数图象;第三,借助函数图象,由“形”想 “数”,要“确定y ≥2时,x 的取值范围”就是要求位于“直线 y=2上方”图象的自变量取值范围. 解 (1)根据题意,得 2=9+3b +2, 解得 b =-3. ∴函数关系式为y =x 2-3x +2. (2)易求该抛物线与x 轴的两个交点坐标为(1,0)、(2,0),与y 轴的交点坐标为(0,2),对称轴为2 3 x .函数y =x 2-3x +2的图象如图1所示. 图1

(3)根据图象可得,当y =2时,对应的x 的值为0和3 .因此,当x ≤0或x ≥3时,y ≥2. 评析 充分利用函数图象的直观性,分析解决问题是体现“数形结合”思想一个重要方面.本题还可以直接指出“当x 取何值时,y ≤2?”以及根据图象写出“不等式x 2 -3x +2≤0的解集”,这两个问题,请同学们自行写出. 二、函数与方程“攀亲”,由方程求函数 例2 如图2,一元二次方程0322 =-+x x 的两根1x ,2x (1x <2x )是抛物线)0(2≠++=a c bx ax y 与x 轴的两个交点B ,C 的横坐标,且此抛物线过点A (3,6). (1)求此二次函数的解析式; (2)设此抛物线的顶点为P ,对称轴与线段AC 相交于点Q ,求点P 和点Q 的坐标; (3)在x 轴上有一动点M ,当MQ+MA 取得最小值时,求M 点的坐标. 分析 (1)求出方程的两个根,就相当于知道了B ,C 两 点的坐标,进而由A ,B ,C 三点的坐标,利用待定系数法,很 让容易求出二次函数的解析式;(2)要求交点Q 的坐标,只要 函数与方程“攀亲”,将该抛物线的“对称轴方程”与“直线 AC 的解析式”联立得方程组,解这个方程组就可得到;(3)要 求“MQ+MA ”的最小值,只需作点A 关于x 轴的对称点即可,用 对称性及“两点之间线段最短”的几何知识加以解决. 解 (1)解方程0322=-+x x ,得1x =-3,2x =1. ∴抛物线与x 轴的两个交点坐标为:C (-3,0),B (1,0). 将 A (3,6),B (1,0),C (-3,0)代入抛物线的解析式,得 ?????=+-=++=++.039,0,639c b a c b a c b a 解这个方程组,得 ??? ????-===.23,1,21c b a ∴抛物线解析式为2 3212-+=x x y . x ) ) 图2

二次函数七大综合专题

二次函数七大综合专题 二次函数与三角形的综合题

函数中因动点产生的相似三角形问题一般有三个解题途径 ① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。 ③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。 如图,已知抛物线与交于A(-1,0)、E(3,0)两点,与轴交于点B(0,3)。 (1) 求抛物线的解析式; (2) 设抛物线顶点为D ,求四边形AEDB 的面积; (3) △AOB 与△DBE 是否相似?如果相似,请给以证明;如果不相似,请说明理由。 (2016?益阳第21题) 如图,顶点为A 的抛物线经过坐标原点O ,与x 轴交于点B . (1)求抛物线对应的二次函数的表达式; (2)过B 作OA 的平行线交y 轴于点C ,交抛物线于点D ,求证:△OCD ≌△OAB ; (3)在x 轴上找一点P ,使得△PCD 的周长最小,求出P 点的坐标. x y

考点:考查二次函数,三角形的全等、三角形的相似。 解析:(1 )∵抛物线顶点为A , 设抛物线对应的二次函数的表达式为2(1y a x =+, 将原点坐标(0,0)代入表达式,得1 3a =-. ∴抛物线对应的二次函数的表达式为:213y x =-+ . (2)将0y = 代入213y x =-+ 中,得B 点坐标为:, 设直线OA 对应的一次函数的表达式为y kx =, 将A 代入表达式y kx = 中,得k = , ∴直线OA 对应的一次函数的表达式为y x =. ∵BD ∥AO ,设直线BD 对应的一次函数的表达式为y b =+, 将 B 代入y b = +中,得2b =- , ∴直线BD 对应的一次函数的表达式为2y x =-. 由2213y x y x ?= -????=-?? 得交点D 的坐标为(3)-, 将0x = 代入2y =-中,得C 点的坐标为(0,2)-, 由勾股定理,得:OA =2=OC ,AB =2=CD , OB OD ==. 在△OAB 与△OCD 中,OA OC AB CD OB OD =?? =??=? , ∴△OAB ≌△OCD . (3)点C 关于x 轴的对称点C '的坐标为(0,2),则C D '与x 轴的交点即为点P ,它使得△PCD 的周长最小. 过点D 作DQ ⊥y ,垂足为Q ,则PO ∥DQ .∴C PO '?∽C DQ '?. ∴ PO C O DQ C Q '=', 25 = ,∴PO =, ∴ 点P 的坐标为(. 二次函数与平行四边形的综合题 7

高一数学二次函数在闭区间上的最值练习题

第1课 二次函数在闭区间上的最值 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。 一般分为:对称轴在区间的左边,中间,右边三种情况. 设)0()(2 ≠++=a c bx ax x f ,求)(x f 在][n m x ,∈上的最大值与最小值。 分析:将)(x f 配方,得顶点为???? ? ?--a b ac a b 4422,、对称轴为a b x 2-= 当0>a 时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上)(x f 的最值: (1)当[]n m a b ,∈-2时,)(x f 的最小值是 a b ac a b f 4422 -= ?? ? ??-, )(x f 的最大值是)()(n f m f 、中的较大者。 (2)当),(2m a b -∞∈- 时,)(x f 在[]n m ,上是增函数则)(x f 的最小值是)(m f ,最大值是)(n f (3)当),(2+∞∈-n a b 时,)(x f 在[]n m ,上是减函数则)(x f 的最大值是)(m f ,最小值是)(n f 当0

成都市东湖中学九上数学《二次函数专题之化斜为直问题》专练

成都市东湖中学九上数学《二次函数专题之化斜为直问题》专练 运用数学思想:①转换思想(坐标与线段的相互转换)②方程思想(几何问题代数化,代数问题方程化)-、基本图形在直角坐标系中: (1) (2) 二、典题练习 1、如图1,抛物线y=ax2-3ax+b经过A(一1,0)C(3,2)两点,与y轴交于点D,与x轴交于另一点B.求此抛物线的解析式; (1)如图2,过点E(1,一1),作EF⊥x轴于点F,将ΔAEF绕平面内某点旋转180后得ΔMNQ(点M、N、Q分别与点A、E、F对应)使点M、N在抛物线上,求M、N坐标。 AM=_________ MB=_________ AB=AM?________=MB?________ 1 = PB AP , P的坐标________ 2 1 = PB AP ,P的坐标________ n PB AP =,P的坐标________

2、如图,已知抛物线y =x 2 一4与x 轴交于A 、B 两点,直线y =2 1 x +b 交抛物线与D 、E 两点. ①若ED =30,求b 的值; ②若ED 交y 轴于P 且PE:PD =1:2,求b 的值; ③若ED 交x 轴于M 且S ΔPOD :S ΔPAD =1:3,求b 的值。 三、巩固练习 1、ΔABO 中,点A 、B 的坐标分别为(2,0)(1,3),若点C 在第一象限,且BC 平行且等于OA ,抛物 线y =cx 2 +bx +c 经过O 、A 、C 三点,点D 是抛物线的顶点.求此抛物线的解析式; (1)在平面内是否存在这样一点Q ,将线段AD 绕点Q 旋转180后得到线段MN ,使点M 在x 轴上,点N 在该抛物线上,若存在,求出点Q 的坐标;若不存在,请说明理由.

二次函数综合问题例谈

二次函数综合问题例谈 二次函数是中学代数的基本内容之一,它既简单又具有丰富的内涵和外延. 作为最基本的初等函数,可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间关系. 这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题. 同时,有关二次函数的内容又与近、现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础. 因此,从这个意义上说,有关二次函数的问题在高考中频繁出现,也就不足为奇了. 学习二次函数,可以从两个方面入手:一是解析式,二是图像特征. 从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法. 本文将从这两个方面研究涉及二次函数的一些综合问题. 1. 代数推理 由于二次函数的解析式简捷明了,易于变形(一般式、顶点式、零点式等),所以,在解决二次函数的问题时,常常借助其解析式,通过纯代数推理,进而导出二次函数的有关性质. 1.1 二次函数的一般式c bx ax y ++=2)0(≠c 中有三个参数c b a ,,. 解题的关键在于:通过三个独立条件“确定”这三个参数. 例1 已知f x ax bx ()=+2,满足1≤-≤f ()12且214≤≤f (),求f ()-2的取值范围. 分析:本题中,所给条件并不足以确定参数b a ,的值,但应该注意到:所要求的结论不是()2-f 的确定值,而是与条件相对应的“取值范围”,因此,我们可以把1≤-≤f ()12和4)1(2≤≤f 当成两个独立条件,先用()1-f 和()1f 来表示b a ,. 解:由()b a f +=1,()b a f -=-1可解得: ))1()1((2 1)),1()1((21--=-+=f f b f f a (*) 将以上二式代入f x ax bx ()=+2,并整理得 ()()??? ? ??--+???? ??+=2)1(2122x x f x x f x f , ∴ ()()()1312-+=f f f . 又∵214≤≤f (),2)1(1≤-≤f , ∴ ()1025≤≤f .

高中数学二次函数教案人教版必修一

二次函数 一、考纲要求 1、掌握二次函数的概念、图像特征 2、掌握二次函数的对称性和单调性,会求二次函数在给定区间上 的最值 3、掌握二次函数、二次方程、二次不等式(三个二次)之间的紧 密关系,提高解综合问题的能力。 二、高考趋势 由于二次函数与二次方程、二次不等式之间有着紧密的联系,加上三次函数的导数是二次函数,因此二次函数在高中数学中应用十分广泛,一直是高考的热点,特别是借助二次函数模型考查考生的代数推理问题是高考的热点和难点,另外二次函数的应用问题也是2010年高考的热点。 三、知识回顾 1、二次函数的解析式 (1)一般式: (2)顶点式: (3)双根式: 求二次函数解析式的方法: ○1已知时,宜用一般式○2已知时,常使用顶点式○3已知时,用双根式更方便

2、 二次函数的图像和性质 二次函数())0(2≠++=a c bx ax x f 的图像是一条抛物线,对称轴的方程为 顶点坐标是( ) 。 (1)当0>a 时,抛物线的开口 ,函数在 上递减,在 上递增,当a b x 2- =时,函数有最 值为 (2)当0x f , 当 时,恒有 ()0.-=?ac b 时,图像与 x 轴有两个交点,.),0,(),0,(21212211a x x M M x M x M ?=-= 四、基础训练 1、已知二次函数())0(2≠++=a c bx ax x f 的对称轴方程为x=2,则在f(1),f(2),f(3),f(4),f(5)中,相等的两个值为 ,最大值为 。 2函数()322+-=mx x x f ,当]1,(-∝-∈x 时,是减函数,则实数m 的取值范围是 。 3函数()a ax x x f --=22的定义域为R ,则实数a 的取值范围是

二次函数型综合问题

读书破万卷下笔如有神 二次函数型综合问题 这类综合题是以二次函数为中心,综合二次方程、二次三项式、不等式或几何、三角等知识,组成一个题组,重点、难点集中,综合性较强,灵活性较大,是当前各地中考命题的一个热门题型。3.2.1直接与代数知识相结合的问题 这类问题主要是代数知识的综合,解题时牢牢抓住二次函数的有关性质和其它二次三项式的有关知识和解题方法,并结合函数的图象就能找到解题的思路。 2?(m?1)2xx?m?1y?。(1)求证:无论m为何值时,函数y的图象与1例.已知二次函数x 轴总有交点,并指出当m为何值时只有一个交点?(2)当m为何值时,函数y的图象经过原点,并求出此时图象与x 轴的另一个交点的坐标。(3)如果函数y的图象的顶点在第四象限,求职m的取值范围。 2?(m?2)x?(m?1)x1(m?y为实数)。求:(1)m取何值时,抛物线与x例2.已知二次函数轴2?(m?2))xx?1?0(m?1的两个不相等的实的一元二次方程)如果关于x有两个交点?(2数根倒数平方和等于2,求m的值。(3)如果抛物线与x 轴相交于A、B两点,与y轴交于C S?2确定m点,且的值。ABC? 3)02,32,?),(?0(,),()(13例.()已知一个二次函数的图象经过三点。求这个二次函数的解析式;22)中所求的二次函数图象的开口方向和形状保持不变,平行移动这个函数的图象,使之1如果()1,0?(,求此时二次函轴交于两点,与,轴交于与xAByC|AC|=|AB|点坐标为B点,若,且数的解析式。 下笔如有神读书破万卷

22)?3?4)x?(mmy??xm?(2?2的整数,它0m中,例4.以x为自变量的二次函数为不小于)求这个二次函数的解析1B在原点右边。(A,B,点A在原点左边,点的图象与x轴交于点10?S b?y?kx,C式;(2)一次函数A,与这个二次函数的图象交于点,且的图象经过点ABC?求一次函数的解析式。 221mmmx??y?x??2轴有交点,那)求证:如果抛物线与x例5.设抛物线为实数)。(1(m 轴的所有交点中,求与原点距离最近的交点坐)在抛物线与x轴的正半轴上;(2x么交点都在m 的值。标,并求此时 2)a?0?bx?c(?yax与坐标轴有两个且只有两个公共点,这两个公共点到原点已知抛物线.例622dd,dd,0?7???x4x2?5xx?5求符合的两个实数根。的距离分别为是方程,而2211条件的抛物线的解析式。 习题:20m?xy?)求平1(两点。)()m,0(,)0,0轴相交于(x的图象平移,使它与把二次函数.1. 下笔如有神读书破万卷 )若平移后函数图象的顶点在第三象限内两条坐标轴夹角的平分线2移后函数图象的解析式;(的值。上,求m

最新2018高中数学二次函数试题(含答案)

二、二次函数(命题人:华师附中 郭键) 1.(人教A 版第27页A 组第6题)解析式、待定系数法 若()2 f x x bx c =++,且()10f =,()30f =,求()1f -的值. 变式1:若二次函数()2 f x ax bx c =++的图像的顶点坐标为()2,1-,与y 轴的交点坐标为(0,11),则 A .1,4,11a b c ==-=- B .3,12,11a b c === C .3,6,11a b c ==-= D .3,12,11a b c ==-= 变式2:若()()2 23,[,]f x x b x x b c =-+++∈的图像x =1对称,则c =_______. 变式3:若二次函数()2 f x ax bx c =++的图像与x 轴有两个不同的交点()1,0A x 、()2,0B x ,且2212269 x x +=,试问该二次函数的图像由()()231f x x =--的图像向上平移几个单位得到? 2.(北师大版第52页例2)图像特征 将函数()2 361f x x x =--+配方,确定其对称轴,顶点坐标,求出它的单调区间及最大值或最小值,并画出它的图像. 变式1:已知二次函数()2 f x ax bx c =++,如果()()12f x f x =(其中12x x ≠),则122x x f +??= ??? A .2b a - B .b a - C . c D .244ac b a - 变式2:函数()2 f x x px q =++对任意的x 均有()()11f x f x +=-,那么()0f 、()1f -、()1f 的大小关系是 A .()()()110f f f <-< B .()()()011f f f <-< C .()()()101f f f <<- D .()()()101f f f -<< 变式3:已知函数()2f x ax bx c =++的图像如右图所示, 请至少写出三个与系数a 、b 、c 有关的正确命题_________. 3.(人教A 版第43页B 组第1题)单调性 x y O

初中数学二次函数动点问题

函数性问题专题—动点问题 函数及其图象是初中数学中的主要内容之一,也是初中数学与高中数学相联系的纽带.它与代数、几何、三角函数等知识有着密切联系,中考命题中既重点考查函数及其图象的有关基础知识,同时以函数为背景的综合性问题也是命题热点之一,多数省市作压轴题.因此,在中考复习中,关注这一热点显得十分重要.以函数为背景的综合性问题往往都可归结为动点性问题,我们把它归纳为以下七种题型(附例题) 一、因动点而产生的面积问题 例1:如图10,已知抛物线P :y =ax 2 +bx +c (a ≠0 与x 轴交于A 、B 两点(点A 在x 轴的正半轴上,与y 轴交于点C ,矩形DEFG 的一条边DE 在线段AB 上,顶点F 、G 分别在线段BC 、AC 上,抛物线P 上部分点的横坐标对应的纵坐标如下: (1 求A 、B 、C 三点的坐标; (2 若点D 的坐标为(m ,0 ,矩形DEFG 的面积为S ,求S 与m 的函数关系,并指出m 的取值范围; (3 当矩形DEFG 的面积S 取最大值时,连接DF 并延长至点M ,使FM =k ·DF ,若点M 不在抛物线P 上,求k 的取值范围. 若因为时间不够等方面的原因,经过探索、思考仍无法圆满解答本题,请不要轻易放弃,试试将上述(2、(3小题换为下列问题解答(已知条件及第(1小题与上相同,完全正确解答只能得到5分: (2 若点D 的坐标为(1,0 ,求矩形DEFG 的面积 . 例2:如图1,已知直线

12 y x =-与抛物线2 164 y x =- +交于A B ,两点. (1)求A B ,两点的坐标; (2)求线段A B 的垂直平分线的解析式; (3)如图2,取与线段A B 端点分别固定在A B ,两处.用铅笔拉着这根橡皮筋使笔尖P 在直线A B 动点P 将与A B ,构成无数个三角形,这些三角求出最大面积,并指出此时P 点的坐标;如果不存在,请简要说明理由.图2 图1 图10 第-2-页共4页 例3:如图1,矩形ODEF 的一边落在矩形ABCO 的一边上,并且矩形ODE F ∽矩形ABCO ,其相似比为1 : 4,矩形ABCO 的边 AB=4,BC=4

相关主题
文本预览
相关文档 最新文档