当前位置:文档之家› 煤粉主要参数

煤粉主要参数

煤粉主要参数
煤粉主要参数

1矿石在回转窑内进行预还原,可减少电炉的电力负荷。回转窑内镍、铁、钴的还原程度见表2-15。

表2-15 回转窑内镍、铁、钴的还原程度表

烟煤的成分和发热值

无烟煤的成分和发热值

煤粉消耗

煤粉年额定消耗量在水分为1%时估算为101140t,其中干燥窑消耗20860t,回转窑焙烧消耗77153t,煤粉制备消耗块煤:3127t/a。用于燃料的块煤总量为110031t/a(湿基)。

本项目采用无烟煤作还原剂,还原剂无烟煤的消耗量为54854t/a(湿基)。

外部运输量表

干燥物料平衡表

干燥窑热平衡表

焙烧物料平衡

表2-49 焙烧窑热平衡表

表2-50 焙烧窑烟气量及成分表

表2-51 电炉主要区域工艺设计标准

电炉物料和热量平衡表

2.6.

3.1 干燥窑

干燥窑的规格由其热能力决定,热量传输与干燥窑容积成比例。从处理量方面可确定额定的干燥窑尺寸,红土矿干燥强度在30~38kg H2O/m3〃h。

红土矿含水为~34%,干燥后矿石含水为20%~22%。干燥作业率为75%,矿石处理量为55.15t/h(干基),脱水量为15.58t/h,选择干燥窑规格为φ4.8×42m,干燥窑体积为568.03m3,干燥强度为:27.43kg/m3〃h。一般红土矿含水较高,因此本次设计选择的干燥窑可以满足红土矿含水从25%~35%。干燥强度在21~48kg H2O/m3〃h,该范围也是典型的RKEF运营工厂(如 CMSA,SLN Doniambo和PT INCO)中常见的范围。

回转干燥窑及其辅助设施的设计基础

回转焙烧窑及其辅助设施的设计基础

电炉设计基础参数

主要技术经济指标

续表2-77 主要技术经济指标

续表2-77 主要技术经济指标

续表2-77 主要技术经济指标

综合技术经济指标表

续表1-4 综合技术经济指标表

续表1-4 综合技术经济指标表

续表1-4 综合技术经济指标表

续表1-4 综合技术经济指标表

燃煤蒸汽锅炉安全操作规程

行业资料:________ 燃煤蒸汽锅炉安全操作规程 单位:______________________ 部门:______________________ 日期:______年_____月_____日 第1 页共13 页

燃煤蒸汽锅炉安全操作规程 第一条严格执行《一般安全守则》。 (一)烘炉 第一条对新建或大修炉墙后的锅炉,必须进行烘炉。 第二条烘炉前: 1、水压试验合格。 2、备好烘炉燃料、工具、安全护具及照明设施。 3、做好炉膛出口温度测点及取样点的准备工作。 4、安装好烘炉用的临时设施。 5、具备点火条件。 6、各排水阀、取样器阀门全部关闭。 7、如须继续煮炉,要准备好连续煮炉的工作。 第三条烘炉时: 1、开始烘炉,严禁用烈火烘烤,。 2、烘炉初期要自然通风,必要时,可启动风机进行强力通风。 3、烘炉时间要根据锅炉型号、炉墙结构、炉膛温度、砌筑质量等因素决定,新安装锅炉按出厂技术要求决定。燃烧强度根据锅炉尾部烟气温度进行控制。 4、温度缓慢升高,火焰分布要均匀。禁止急剧变化、灭火或断火。 5、监视炉墙变化,发现裂、坏、不平等缺陷时,要及时报告并做好记录。 6、对锅筒及各联箱的膨胀情况要随时监视并做好记录,发现异常情况,要采取措施消除。 第 2 页共 13 页

7、烘炉温度到第一次恒温时,每天定期排污一次,加强水循环,使各部受热均匀。 8、冬季烘炉,要采取防冻措施,保持锅炉房室温在5℃以上。 (二)煮炉 第一条煮炉前: 1、锅炉附机、燃料系统、软化水系统、给水系统均要试运行,能随时投入运行。 2、各系统配置的热工仪表、声响光色、信号、永久照明、通讯联络及消防设施等均安装完毕,并试运合格。 3、检查上、下锅筒、联箱的锈垢情况以确定煮炉时的加药量。 4、准备好煮炉的药品。 5、烘炉后,锅炉要在工作压力下进行一次水压试验,当烘炉与煮炉连续进行时,则水压试验可改在煮炉后检查完毕进行。 6、化验人员准备好化验所用器具和药品。第二条煮炉时: 1、要用合格的软化水,投入一只水位计,其余备用。锅炉水位必须保持接近最高水位,但不允许碱水进入蒸汽过热器内。 2、根据锅炉类型,按规定确定煮炉加药量: 加药量(kg/m水容积) ┃药品名称├─────┬─────┬─────┨ │第一类锅炉│第二类锅炉│第三类锅炉┃ ┃氢氧化钠(NaOH)│2-3│3-4│5- 6┃ ┃磷酸三钠(Na3PO4)│2-3│2-3│5- 第 3 页共 13 页

变压器主要技术参数及含义

变压器主要技术参数的含义 说明:读书时,很多人对变压器、电机很难理解,当你有工作经验后,再来看下这些知识,你会有更深的理解。 (1)额定容量SN:指变压器在铭牌规定条件下,以额定电压、额定电流连续运行时所输送的单相或三相总视在功率。 (2)容量比:指变压器各侧额定容量之间的比值。 (3)额定电压UN.指变压器长时间运行,设计条件所规定的电压值(线电压)。 (4)电压比(变比):指变压器各侧额定电压之间的比值。 (5)额定电流IN:指变压器在额定容量、额定电压下运行时通过的线电流。 (6)相数:单相或三相。 (7)连接组别:表明变压器两侧线电压的相位关系。 (8)空载损耗(铁损)Po:指变压器一个绕组加上额定电压,其余绕组开路时,变压器所消耗的功率。变压器的空载电流很小,它所产生的铜损可忽略不计,所以空载损耗可认为是变压器的铁损。铁损包括励磁损耗和涡流损耗。空载损耗一般与温度无关,而与运行电压的高低有关,当变压器接有负荷后,变压器的实际铁芯损耗小于此值。 (9)空载电流Io%:指变压器在额定电压下空载运行时,一次侧通过的电流。不是指刚合闸瞬间的励磁涌流峰值,而是指合闸后

的稳态电流。空载电流常用其与额定电流比值的百分数表示,即 Io%=Io/I

N×100% (10)负荷损耗Pk(短路损耗或铜损):指变压器当一侧加电压而另一侧短接,使电流为额电流时(对三绕组变压器,第三个绕组应开路),变压器从电源吸取的有功功率。按规定,负荷损耗是折算到参考温庋(75℃)下的数值。因测量时实为短路状态,所以又称为短路损耗。短路状态下,使短路电流达额定值的电压很低,表明铁芯中的磁通量很少,铁损很小,可忽略不计,故可认为短路损耗就是变压组(绕组)中的损耗。 对三绕组变压器,有三个负荷损耗,其中最大一个值作为该变压器的额定负荷损耗。负荷损耗是考核变压器性能的主要参数之一。实际运行时的变压器负荷损耗并不是上述规定的负荷损耗值,因为负荷损耗不仅取决于负荷电流的大小,而且还与周围环境温度有关。 负荷损耗与一、二次电流的平方成正比。 (11)百分比阻抗(短路电压):指变压器二次绕组短路,使一次侧电压逐渐升高,当二次绕组的短路电流达到额定值时,此时一次侧电压与额定电压的比值(百分数)。 变压器的容量与短路电压的关系是:变压器容量越大,其短路电压越大。 (12)额定频率:变压器设计所依据的运行频率,单位为赫兹(Hz),我国规定为50H。 (13)额定温升TN:指变压器的绕组或上层油面的温度与变

相关器的研究及其主要参数测量

实验9-3 相关器的研究及其主要参数测量 微弱信号检测是利用电子学、信息论、计算机、物理学的方法从噪声中提取出有用信号的一门技术学科。“微弱信号”并不是单纯的信号幅度很小,而主要是指信号被噪声淹没,“微弱”是相对于噪声而言的。因此,微弱信号检测是专门与噪声作斗争的技术,其主要任务是提高信噪比。为此,就需要研究噪声的来源和性质,分析噪声产生的原因和规律,噪声的传播路径,有针对性地采取有效措施抑制噪声。研究被测信号和噪声的特性及其差别,以寻找出从噪声中检测出有用信号的理论和方法。 微弱信号检测基本原理:频域的窄带化、时域信号的平均处理、离散量的计数统计、并行检测、自适应噪声抵消等。 微弱信号检测常见技术:相关检测、锁定放大、取样积分(多点平均)、光学多道分析仪、光子计数、自适应噪声抵消等。 【实验目的】 1、了解相关器的原理 2、测量相关器的输出特性 3、测量相关器的抑制干扰能力和抑制白噪声能力 【实验仪器】 1、ND-501C型微弱信号检测实验综合装置 包括:相关器实验盒、宽频带相移器实验盒、同步积分器实验盒、多点信号平均器实验盒、选频放大器实验盒、多功能信号源实验盒、有源高通-低通滤波器实验盒、低噪声前置放大器实验盒、交流-直流-噪声电压表实验盒、频率计实验盒、跟踪滤波器实验盒、相位计实验盒、双相相关器实验盒、PA级电流前置放大器实验盒、电压源-电流源实验盒、V X,V Y→V K,Vφ运算电路实验盒。 2、数字存储示波器 【实验原理】 相关器是锁定(相)放大器的核心部件。相关器就是实现求参考信号和被测信号两者互相关函数的电子线路。由相关函数的数学表达式可知,需要一个乘法器和积分器实现这一数学运算。从理论上讲用一个模拟乘法器和一个积分时间为无穷长的积分器,就可以把深埋在任意大噪声中的微弱信号检测出来。 通常在锁定放大器中不采用模拟乘法器,也不采用积分时间为无穷长的积分器。因为模拟乘法器要保证动态范围大,线性好将是困难的。由于被测信号是正弦波或方波,乘法器就可以采用动态范围大、线性好、电路简单的开关乘法器。国内外大部分的锁定放大器都是采用这种乘法器,本实验只讨论采用这种乘法器的相关器。 3.1 相关器的数学解 锁定放大器中常采用的相关器原理方框图如图1-1所示。被测信号V A和参考信号V B在乘法器中相乘,两者之积V1为乘法器的输出信号。同时也是低通滤波器的输入信号。低通滤波器是采用运算放大器的有源滤波器,电阻R1、R0、C0为图中所示,V o为低通滤波器的输出信号。图中的乘法器用开关来实现,可以等效成被测输入信号与单位幅度的方波相乘的乘法器。若参考信号为占空比1:1的对称方波,V B就能用单位幅度的对称方波函数表示(或称单位幅度开关函数记为X K)。因此有: V B=X k=4 π∑1 2n+1 sin(2n+1)ωR t n=0,1,2… ={ +1 正半周 ?1 负半周 (1-1)

MOS管参数解释

MOS管参数解释 MOS管介绍 在使用MOS管设计开关电源或者马达驱动电路的时候,一般都要考虑MOS的导通电阻,最大电压等,最大电流等因素。 MOSFET管是FET的一种,可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,一般主要应用的为增强型的NMOS管和增强型的PMOS管,所以通常提到的就是这两种。这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。 在MOS管内部,漏极和源极之间会寄生一个二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要,并且只在单个的MOS管中存在此二极管,在集成电路芯片内部通常是没有的。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免。 MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到一定电压(如4V或10V, 其他电压,看手册)就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,因而在DS间流过电流的同时,两端还会有电压,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几毫欧,几十毫欧左右 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,导通瞬间电压和电流的乘积很大,造成的损失也就很大。降低开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。 MOS管驱动 MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。但是,我们还需要速度。在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。 普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极电压。而高端驱动的MOS 管导通时源极电压与漏极电压(VCC)相同,所以这时栅极电压要比VCC大(4V或10V其他电压,看手册)。如果在同一个系统里,要得到比VCC大的电压,就要专门的升压电路了。

燃煤锅炉型号和参数的代表符号

锅炉型号和参数符号意义 工业锅炉产品共分三大类:蒸汽锅炉、热水锅炉、有机热载体炉 1、蒸汽锅炉产品型号由三部分组成,各部分之间用短横线相连,即: △△△××-××/×××-××123456 1——锅炉形式2——燃烧方式 3——额定蒸发量(t/h)4——额定蒸汽压力 5——过热蒸汽温度(饱和蒸汽不标)6——燃料种类 2、热水锅炉产品型号由三部分组成,各部分之间用短横线相连,即: △△△××-××/×××-×× 123456 1——锅炉形式2——燃烧方式 3——额定热功率(MW)4——允许工作压力(热水)Mpa 5——出水温度/进水温度℃6——燃料种类 锅炉形式代号 锅壳锅炉水管锅炉 锅炉型式代号锅炉型式代号 立式水管LS 单锅筒立式DL 卧式外燃WW 单锅筒纵置式DZ 立式火管LH 单锅筒横置式DH 卧式内燃WN 双锅筒纵置式SZ 双锅筒横置式SH 强制循环式QX

燃烧方式代号 燃烧方式代号燃烧方式代号固定炉排G 振动炉排Z 固定双层炉排 C 下饲炉排 A 活动手摇炉排H 沸腾炉排 F 链条炉排L 半沸腾炉排 B 往复炉排W 室燃炉S 抛煤机P 旋风炉X 倒转炉排加抛煤机 D 燃料种类代号 燃料种类代号燃料种类代号Ⅰ类劣质煤LⅠ木柴M Ⅱ类劣质煤LⅡ稻糠 D Ⅰ类无烟煤WⅠ甘蔗渣G Ⅱ类无烟煤WⅡ柴油YC Ⅲ类无烟煤WⅢ重油YY Ⅰ类烟煤AⅠ天然气QT Ⅱ类烟煤AⅡ焦炉煤气QJ Ⅲ类烟煤AⅢ液化石油气QY 褐煤H 油母页岩YM

贫煤P 其他燃料T 型煤X 3、有机热载体炉分液相炉和气相炉两类,有机热载体炉产品型号由二部分组成,二部分之间用短横线相连,即: △△△-△△ 12345 1——炉类型代号2——燃烧设备代号 3——炉体安置型式代号4——额定热功率:KW 5——燃料代号 炉类型代号按表1的规定表1 炉类型代号 有机热载体炉类型代号 液相炉Y 气相炉Q 燃烧设备代号按表2的规定表2 燃烧设备代号 燃烧设备代号 链条炉排L 抛煤机炉排P 其他炉排G 油燃烧器Y 气燃烧器Q 炉体安置型式代号按表3的规定表3 炉体型式代号 在机热戴本炉体安置型式代号 立式L

微波基本参数的测量原理

微波基本参数的测量 一、实验目的 1、了解各种微波器件; 2、了解微波工作状态及传输特性; 3、了解微波传输线场型特性; 4、熟悉驻波、衰减、波长(频率)和功率的测量; 5、学会测量微波介质材料的介电常数和损耗角正切值。 二、实验原理 微波系统中最基本的参数有频率、驻波比、功率等。要对这些参数进行测量,首先要了解电磁波在规则波导内传播的特点,各种常用元器件及仪器的结构原理和使用方法,其次是要掌握一些微波测量的基本技术。 1、导行波的概念: 由传输线所引导的,能沿一定方向传播的电磁波称为“导行波”。导行波的电场E 或磁场H 都是x 、y 、z 三个方向的函数。导行波可分成以下三种类型: (A) 横电磁波(TEM 波): TEM 波的特征是:电场E 和磁场H 均无纵向分量,亦即:0=Z E ,0=Z H 。电场E 和磁场H ,都是纯横向的。TEM 波沿传输方向的分量为零。所以,这种波是无法在波导中传播的。 (B) 横电波(TE 波): TE 波即是横电波或称为“磁波”(H 波),其特征是0=Z E ,而0≠Z H 。亦即:电场E 是纯横向的,而磁场H 则具有纵向分量。 (C) 横磁波(TM 波): TM 波即是横磁波或称为“电波”(E 波),其特征是0=Z H ,而0≠Z E 。亦即:磁场H 是纯横向的,而电场E 则具有纵向分量。 TE 波和TM 波均为“色散波”。矩形波导中,既能传输mm TE 波,又能传输mm TM 波(其中m 代表电场或磁场在x 方向半周变化的次数,n 代表电场或磁场在y 方向半周变化的次数)。 2、波导管: 波导管是引导微波电磁波能量沿一定方向传播的微波传输系统,有同轴线波导管和微带等,波导的功率容量大,损耗小。常见的波导管有矩形波导和圆波导,本实验用矩形波导。 矩形波导的宽边定为x 方向,内尺寸用a 表示。窄边定为y 方向,内尺寸用b 表示。10TE 波以圆频率ω自波导管开口沿着z 方向传播。在忽略损耗,且管内充满均匀介质(空气)下,波导管内电磁场的各分量可由麦克斯韦方程组以及边界条件得到: ()sin()j t z o y x E j e ωβωμππα-=-, ()sin()j t z o x x H j e ωβμαππα -=

20吨,40吨燃煤生物质两用蒸汽锅炉热水锅炉生产厂家

20吨,40吨全自动燃煤燃煤生物质锅炉采用自动上料,自动出渣,运行自动化,出力足,运行稳定,使用寿命长。燃煤生物质锅炉用于工业生产时,需要根据用户生产需求选择锅炉的压力和蒸汽温度,有饱和蒸汽锅炉和过热蒸汽锅炉两种。燃煤生物质锅炉采用双锅筒偏置炉膛结构,炉膛内设计了旋风燃烬室结构,高温烟气通过高速旋转、混合燃烧、灰尘分离,从而达到炉内一级除尘、节能、环保 的效果;炉膛容积大,可适用各种生物质燃料。独立的风室结构,使 高效率,低成本,全球畅销炉型 SZL7-85/60-T 10吨燃煤生物质锅炉,价格区间20-70万,可致电咨询价格 纵向风室间风量调节灵敏可靠,横向布风均匀,克服了风塞、窜风、偏烧现象;受热面积大,升压快,出力足,能耗低。该系列产品获得国家科技进步二等奖,新加坡新产品博览会金狮奖,是国家节能工程重点推广产品。 锅炉之所以被列为燃煤生物质锅炉十大品牌之一,不仅是因为优质的锅炉质量,还有完善的服务体系和技术支持体系。 一、燃煤生物质锅炉优势

环保:配置专业除尘装置,环保效果好,拥有专业的脱硫脱硝经验; 节能:卧式三回程大炉膛设计,内设旋风燃烬室,燃尽率、热效率高; 已达成合作项目超100000例,可实地考察 二、燃煤生物质锅炉选型 燃煤生物质锅炉的型号非常多,用户生产用锅炉时,需要的蒸汽量也各有不同,对蒸汽温度要求各不一样,用户采购燃煤生物质锅炉,最重要的是要选型。 燃煤生物质锅炉选型需要了解如下的参数: 1、需要的蒸汽温度 2、单位时间内需要的蒸汽量 3、辅机配置要求 4、属于锅炉更换,还是新上项目 三、燃煤生物质锅炉应用领域 1、食品行业,化工行业,包装行业,制药行业,生物设备行业,洗涤熨烫,混凝土养护,清洗等。 2、不同行业需要的蒸汽压力和温度不同,常见锅炉压力有1.0兆帕,1.25兆帕,1.6兆帕,相应的蒸汽温度是184度,194度,204度。锅炉实际使用压力可在额定压力以下随意调整,满足生产需求。 3、我司针对各行业的生产工艺都颇有研究,可根据用户所处行业,定制锅炉选型及配置方案。 四、燃煤生物质锅炉图片

相关器的研究及其主要参数测量(v1.2.1)

实验9-3相关器的研究及其主要参数测量 微弱信号检测是利用电子学、信息论、计算机、物理学的方法从噪声中提取出有用信号的一门技术学科。“微弱信号”并不是单纯的信号幅度很小,而主要是指信号被噪声淹没,“微弱”是相对于噪声而言的。因此,微弱信号检测是专门与噪声作斗争的技术,其主要任务是提高信噪比。为此,就需要研究噪声的来源和性质,分析噪声产生的原因和规律,噪声的传播路径,有针对性地采取有效措施抑制噪声。研究被测信号和噪声的特性及其差别,以寻找出从噪声中检测出有用信号的理论和方法。 微弱信号检测基本原理:频域的窄带化、时域信号的平均处理、离散量的计数统计、并行检测、自适应噪声抵消等。 微弱信号检测常见技术:相关检测、锁定放大、取样积分(多点平均)、光学多道分析仪、光子计数、自适应噪声抵消等。 【实验目的】 1、了解相关器的原理 2、测量相关器的输出特性 3、测量相关器的抑制干扰能力和抑制白噪声能力 【实验仪器】 1、ND-501C 型微弱信号检测实验综合装置 包括:相关器实验盒、宽频带相移器实验盒、同步积分器实验盒、多点信号平均器实验盒、选频放大器实验盒、多功能信号源实验盒、有源高通-低通滤波器实验盒、低噪声前置放大器实验盒、交流-直流-噪声电压表实验盒、频率计实验盒、跟踪滤波器实验盒、相位计实验盒、双相相关器实验盒、PA 级电流前置放大器实验盒、电压源-电流源实验盒、V X ,V Y →V K ,V φ运算电路实验盒。2、数字存储示波器 【实验原理】 相关器是锁定(相)放大器的核心部件。相关器就是实现求参考信号和被测信号两者互相关函数的电子线路。由相关函数的数学表达式可知,需要一个乘法器和积分器实现这一数学运算。从理论上讲用一个模拟乘法器和一个积分时间为无穷长的积分器,就可以把深埋在任意大噪声中的微弱信号检测出来。 通常在锁定放大器中不采用模拟乘法器,也不采用积分时间为无穷长的积分器。因为模拟乘法器要保证动态范围大,线性好将是困难的。由于被测信号是正弦波或方波,乘法器就可以采用动态范围大、线性好、电路简单的开关乘法器。国内外大部分的锁定放大器都是采用这种乘法器,本实验只讨论采用这种乘法器的相关器。 3.1相关器的数学解 锁定放大器中常采用的相关器原理方框图如图1-1所示。被测信号V A 和参考信号V B 在乘法器中相乘,两者之积V 1为乘法器的输出信号。同时也是低通滤波器的输入信号。低通滤波器是采用运算放大器的有源滤波器,电阻R 1、R 0、C 0为图中所示,V o 为低通滤波器的输出信号。图中的乘法器用开关来实现,可以等效成被测输入信号与单位幅度的方波相乘的乘法器。若参考信号为占空比1:1的对称方波,V B 就能用单位幅度的对称方波函数表示(或称单位幅度开关函数记为X K )。因此有:

MOS管主要参数

MOS管主要参数 1.开启电压VT ·开启电压(又称阈值电压):使得源极S和漏极D之间开始形成导电沟道所需的栅极电压; ·标准的N沟道MOS管,VT约为3~6V; ·通过工艺上的改进,可以使MOS管的VT值降到2~3V。 2. 直流输入电阻RGS ·即在栅源极之间加的电压与栅极电流之比 ·这一特性有时以流过栅极的栅流表示 ·MOS管的RGS可以很容易地超过1010Ω。 3. 漏源击穿电压BVDS ·在VGS=0(增强型)的条件下,在增加漏源电压过程中使ID开始剧增时的VDS称为漏源击穿电压BVDS ·ID剧增的原因有下列两个方面: (1)漏极附近耗尽层的雪崩击穿 (2)漏源极间的穿通击穿 ·有些MOS管中,其沟道长度较短,不断增加VDS会使漏区的耗尽层一直扩展到源区,使沟道长度为零,即产生漏源间的穿通,穿通后 ,源区中的多数载流子,将直接受耗尽层电场的吸引,到达漏区,产生大的ID 4. 栅源击穿电压BVGS ·在增加栅源电压过程中,使栅极电流IG由零开始剧增时的VGS,称为栅源击穿电压BVGS。 5. 低频跨导gm ·在VDS为某一固定数值的条件下,漏极电流的微变量和引起这个变化的栅源电压微变量之比称为跨导 ·gm反映了栅源电压对漏极电流的控制能力 ·是表征MOS管放大能力的一个重要参数 ·一般在十分之几至几mA/V的范围内 6. 导通电阻RON ·导通电阻RON说明了VDS对ID的影响,是漏极特性某一点切线的斜率的倒数 ·在饱和区,ID几乎不随VDS改变,RON的数值很大,一般在几十千欧到几百千欧之间 ·由于在数字电路中,MOS管导通时经常工作在VDS=0的状态下,所以这时的导通电阻RON可用原点的RON来近似 ·对一般的MOS管而言,RON的数值在几百欧以内 7. 极间电容 ·三个电极之间都存在着极间电容:栅源电容CGS 、栅漏电容CGD和漏源电容CDS ·CGS和CGD约为1~3pF ·CDS约在0.1~1pF之间 8. 低频噪声系数NF ·噪声是由管子内部载流子运动的不规则性所引起的 ·由于它的存在,就使一个放大器即便在没有信号输人时,在输出端也出现不规则的电压或电流变化 ·噪声性能的大小通常用噪声系数NF来表示,它的单位为分贝(dB)

燃煤锅炉改燃气锅炉分析

燃煤锅炉改燃气锅炉分析 燃煤锅炉在实际使用运行中,热效率低,能源浪费大,排尘浓度大,煤的含硫量高,对大气污染严重。尤其是近年来,能源供需和环境污染的矛盾日益突出。天然气是目前世界上一种最清洁的燃料,它燃烧充分,热效率高,对大气污染又低,有很好的环保性能。同时,气体燃料通过管道输送,可极大的减小劳动强度,改善劳动条件,降低运行成本。根据新的环保法,推荐使用清洁燃料或天然气,对产生大气污染的设备要实行监管,严格限定污染物的排放量,实施“碧水蓝天工程” ,各级政府会采取相应措施,制定了相应的强制性法规,限制燃煤锅炉的使用,例如北京、上海、西安等地不再批准建设新的燃煤锅炉房,原有的锅炉房一律改造为燃气锅炉。国家“西气东输” 、“川气东送”等工程的实施,为锅炉的煤改气提供了优质、充足、廉价的气源。 以下以某厂为例,对燃煤锅炉与燃天然气锅炉的改造、运行进行分析。 一、基本情况 某厂原有10t/h燃煤蒸汽锅炉一台,该锅炉为上海四方锅炉厂生产,型号SHL-1.25-A II 型,2000年生产,2003年投入使用。锅炉炉体受压元件基本完好,有继续使用价值;锅炉的给水系统和送、引风系统基本完好,非常适宜改造为燃气锅炉。 1、锅炉参数 ①额定出力10t/h ②额定工作压力1.25Mpa ③给水温度105 C ④设计效率>90% ⑤使用燃料:燃煤 ⑥燃料消耗量:5t 标准煤/吨蒸汽 ⑦燃烧方式室燃 ⑧电能消耗(风系统)96.4Kw 2、改造要求 用户要求将现有的一台10t/h燃煤蒸汽锅炉改造为天然气锅炉。并达到如下目标: 1)保持原锅炉的额定参数(如汽温、汽压、给水温度等不变) 2)保持或提高原锅炉的出力和效率 3)通过改造达到消除烟尘,满足环保要求

ADC参数解释和关键指标

第五章ADC 静态电参数测试(一) 翻译整理:李雷 本文要点: ADC 的电参数定义 ADC 电参数测试特有的难点以及解决这些难题的技术 ADC 线性度测试的各类方法 ADC 数据规范(Data Sheet)样例 快速测试ADC 的条件和技巧 用于ADC 静态电参数测试的典型系统硬件配置 关键词解释 失调误差 Eo(Offset Error):转换特性曲线的实际起始值与理想起始值(零值)的偏差。 增益误差E G(Gain Error):转换特性曲线的实际斜率与理想斜率的偏差。(在有些资料上增益误差又称为满刻度误差) 线性误差Er(Linearity Error):转换特性曲线与最佳拟合直线间的最大偏差。(NS 公司定义)或者用:准确度E A(Accuracy):转换特性曲线与理想转换特性曲线的最大偏差(AD 公司定义)。 信噪比(SNR): 基频能量和噪声频谱能量的比值。 一、ADC 静态电参数定义及测试简介 模拟/数字转换器(ADC)是最为常见的混合信号架构器件。ADC是一种连接现实模拟世界和快速信号处理数字世界的接口。电压型ADC(本文讨论)输入电压量并通过其特有的功能输出与之相对应的数字代码。ADC的输出代码可以有多种编码技术(如:二进制补码,自然二进制码等)。 测试ADC 器件的关键是要认识到模/数转换器“多对一”的本质。也就是说,ADC 的多个不同的输入电压对应一个固定的输出数字代码,因此测试ADC 有别于测试其它传统的模拟或数字器件(施加输入激励,测试输出响应)。对于 ADC,我们必须找到引起输出改变的特定的输入值,并且利用这些特殊的输入值计算出ADC 的静态电参数(如:失调误差、增益误差,积分非线性等)。 本章主要介绍ADC 静态电参数的定义以及如何测试它们。 Figure5.1:Analog-to-Digital Conversion Process. An ADC receives an analog input and outputs the digital codes that most closely represents then input magnitude relative to full scale. 1.ADC 的静态电参数规范

MOS管参数解释

MOS管介绍 在使用MOS,一般都要考虑MOS,,最大电流等因素。 MOSFET管是FET,可以被制造成增强型或耗尽型,P沟道或N沟道共4,一般主要应用的为增强型的NMOS管和增强型的PMOS,所以通常提到的就是这两种。 这两种增强型MOS,比较常用的是NMOS。。所以开关电源,一般都用NMOS。 在MOS,漏极和源极之间会寄生一个二极管。,在驱动感性负载(如马达)这个二极管很重要,并且只在单个的MOS,在集成电路芯片内部通常。 MOS,这不是我们需要的,而是由于制造工艺限制产生的。 ,但没有办法避免。 MOS管导通特性 ,相当于开关闭合。 NMOS,Vgs,适合用于源极接地时的情况(低端驱动)只要栅(如4V或10V,,看手册)就可以了。 PMOS的特性,Vgs,适合用于源极接VCC时的情况(高端驱动)。但,虽然PMOS,但由于导通电阻大,价格贵,替换种类少等原,在高端驱动中,通常还是使用NMOS。 MOS开关管损失 不管是NMOS还是PMOS导通后都有导通电阻存在,因而在DS,两端还,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS。现在的小功率MOS,几十毫欧左右 MOS,一定不是在瞬间完成的。MOS,流 ,在这段时间内,MOS,叫做开关损。,而且开关频率越快,导通瞬间电压和电流的乘积很大,。,可以减小每次导通时的损失;降低开关频率,可以减小 。。 MOS管驱动 MOS,只要GS,就可以了。,我们还需要速。 在MOS,在GS,GD,而MOS,实际上就。,因为对电容充电瞬间可以把电容看成短路,

。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大。 普遍用于高端驱动的NMOS导通时需要是栅极电压大于源极电压。而高端驱动的MOS管导通时源极电压与漏极电压(VCC),所以这时栅极电压要比VCC大(4V或10V,看手册)。,要得到比VCC,就要专门的升压电路。很多马达 ,要注意的是应该选择合适的外接电容,以得到足够的短路电流去驱动MOS。 M os f et参数含义说明 Feat ur es: V ds: D S击穿电压.当V gs=0V时,M O S的D S所能承受的最大电压 R ds(on):D S的导通电阻.当V gs=10V时,M O S的D S之间的电阻 I d:最大D S电流.会随温度的升高而降低 V gs:最大G S电压.一般为:-20V~+20V I dm:最大脉冲D S电流.会随温度的升高而降低,体现一个抗冲击能力,跟脉冲时间也有关系Pd:最大耗散功率 Tj:最大工作结温,通常为150度和175度 Ts t g:最大存储温度 I ar:雪崩电流 Ear:重复雪崩击穿能量 Eas:单次脉冲雪崩击穿能量 B V ds s: D S击穿电压 I ds s:饱和D S电流,uA级的电流 I gs s: G S驱动电流,nA级的电流. gf s:跨导 Q g: G总充电电量 Q gs: G S充电电量 Q gd: G D充电电量 Td(on):导通延迟时间,从有输入电压上升到10%开始到V ds下降到其幅值90%的时间 Tr:上升时间,输出电压 V D S从 90%下降到其幅值 10%的时间 Td(of f):关断延迟时间,输入电压下降到 90%开始到 V D S上升到其关断电压时 10%的时间Tf:下降时间,输出电压 V D S从 10%上升到其幅值 90%的时间 (参考图 4)。 C i s s:输入电容,C i s s=C gd + C gs. C os s:输出电容,C os s=C ds +C gd. C r s s:反向传输电容,C r s s=C gc.

20吨燃煤蒸汽锅炉技术方案

20吨燃煤蒸汽锅炉技术方案 燃煤蒸汽锅炉控制方案 燃煤蒸汽锅炉控制器技术方案一、设计依据和原则 依据锅炉监控系统的设计要求,按照自控装置系统必须科学、合理、成熟、安全可靠、稳定、可扩展以及性价比高的原则进行设计,并符合《自动化控制工程规范国家标准》和《计算机软件工程规范国家标准》的要求以及国标《压力容器安全规范》。 二、模拟量采集说明: 主要记录参数:汽包水位检测、蒸汽压力、炉膛压力、给水流量、蒸汽流量、省煤器前后温度、炉膛温度、烟道温度; 三、硬件说明 1.鼓、引风机,给水泵采用ABB变频器; 2.显示控制仪表采用香港昌辉仪表; 3. 电器元器件采用正泰产品; 4. 给水系统采用三冲量控制; 5(引风机采用PID自动控制; 6(鼓风机控制采用人工给定。 四、控制对象属性 控制对象:燃煤蒸汽锅炉SZL20-1.25-AII 控制方式:锅炉蒸汽压力控制 压控范围:0-1.25MPa 五、燃煤蒸汽锅炉控制 1(手动控制

在硬件手动状态下,可以直接对各负载设备进行操作,当发生一般故 燃煤蒸汽锅炉控制方案障,仪表作相应指示,发生汽包超压、汽包水位极低等严重故障时,仪表显示故障部位,同时自动切断电源,音响报警提示操作者,保证系统安全运行。 2.自动控制 ?鼓引风机连锁,先启动引风机再启动鼓风机、炉排;停止时先停止鼓风机再停止引风机、炉排。 ?引风机PID控制:引风机根据炉膛负压变频控制,炉膛压力增大引风机频率增加,炉膛压力减小引风频率减小. ?锅炉给水三冲量控制:根据汽包液位、给水流量、蒸汽流量调节给水变频器。 3(系统分测试和运行功能。 六、故障报警及保护 1)(汽包压力超高保护 锅炉汽包压力大于设定的汽包压力时,进入连锁鼓引风机及炉排,声光报警。故障指示“汽包压力超高故障”,同时显示“蒸汽压力值”,故障排除后,经复位才能重新正常工作。 2)( 锅炉缺水保护 锅内水位低于警戒水位时,进入连锁鼓引风机及炉排,并声光报警。故障显示“锅炉水位超低限”。故障消除后,经复位才能重新正常工作。 3)( 烟道温度超温保护 当烟道温度超过设定值时,进入连锁鼓引风机及炉排,故障显示“锅炉排烟温度超高限”,同时显示“排烟温度值”故障排除后自动复位。 4)炉膛压力超高报警

s参数的解释

S参数例子 Ur1 = S11 Ui1 + S12 Ui2 Ur2 = S21 Ui1 + S22 Ui2 Ui1,Ui2,Ur1,Ur2:分别是端口1和端口2的归一化入射电压和反射电压 S11:端口2匹配时,端口1的反射系数; S22:端口1匹配时,端口2的反射系数; S12:端口1匹配时,端口2到端口1的反向传输系数; S21:端口2匹配时,端口1到端口2的正向传输系数; S 参数(散射参数)用于评估DUT 反射信号和传送信号的性能。S 参数由两个复数之比定义,它包含有关信号的幅度和相位的信息。S 参数通常表示为: S输出输入 输出:输出信号的DUT 端口号 输入:输入信号的DUT 端口号 例如,S 参数S21 是DUT 上端口2 的输出信号与DUT 上端口1 的输入信号之比,输出信号和输入信号都用复数表示。 当启动平衡- 不平衡转换功能时,可以选择混合模S 参数。 S参数分析 微波系统主要研究信号和能量两大问题:信号问题主要是研究幅频和相频特性;能量问题主要是研究能量如何有效地传输。微波系统是分布参数电路,必须采用场分析法,但场分析法过于复杂,因此需要一种简化的分析方法。微波网络法被广泛运用于微波系统的分析,是一种等效电路法,在分析场分布的基础上,用路的方法将微波元件等效为电抗或电阻器件,将实际的导波传输系统等效为传输线,从而将实际的微波系统简化为微波网络,把场的问题转化为路的问题来解决。微波网络理论是在低频网络理论的基础上发展起来的,低频电路分析是微波电路分析的一个特殊情况。一般地,对于一个网络有Y、Z和S参数可用来测量和分析,Y称为导纳参数,Z称为阻抗参数,S称为散射参数;前两个参数主要用于集总电路,Z和Y参数对于集总参数电路分析非常有效,各参数可以很方便的测试;但是在微波系统中,由于确定非TEM波电压、电流非常困难,而且在微波频率测量电压和电流也存在实际困难。因此,在处理高频网络时,等效电压和电流以及有关的阻抗和导纳参数变得较抽象。与直接测量入射、反射及传输波概念更加一致的表示是散射参数,即S参数矩阵,它更适合于分布参数电路。S参数就是建立在入射波、反射波关系基础上的网络参数,适于微波电路分析,以器件端口的反射信号以及从该端口传向另一端口的信号来描述电路网络。同N端口网络的阻抗和导纳矩阵那样,用散射矩阵亦能对N端口网络进行完善的描述。阻抗和导纳矩阵

常见mos管的型号参数

电调常见的烧毁问题,可通过更换烧坏的MOS管来解决,如相应电流的,可用更多大额定电流的代替。注意,焊接MOS止静电。 TO-220 TO-252 TO-3

附SO-8(贴片8脚)封装MOS管IRF7805Z的引脚图。 上图中有小圆点的为1脚 注:下表按电流降序排列(如有未列出的,可回帖,我尽量补 封装形式极性型号电流(A)耐压(V)导通电阻(mΩ) SO-8N型SI43362230 4.2 SO-8N型IRF78312130 3.6 SO-8N型IRF783220304

SO-8N型IRF872114308.5 SO-8N型IRF78051330 SO-8N型IRF7805Q133011 SO-8N型IRF7413123018 SO-8N型TPC800312306 SO-8N型IRF7477113020 SO-8N型IRF7811113012 SO-8N型IRF7466103015 SO-8N型SI4410103014 SO-8N型SI4420103010 SO-8N型A27009307.3 SO-8N型IRF78078.330 SO-8N型SI48127.33028 SO-8N型SI9410 6.93050 SO-8N型IRF731363029 SO-8P型SI440517307.5 SO-8P型STM4439A143018 SO-8P型FDS667913309 SO-8P型SI441113308 SO-8P型SI446312.32016 SO-8P型SI44071230 SO-8P型IRF7424113013.5 SO-8P型IRF7416103020 SO-8P型IRF7416Q103020 SO-8P型SI442593019 SO-8P型IRF74248.83022 SO-8P型SI443583020 SO-8P型SI4435DY83020 SO-8P型A271673011.3 SO-8P型IRF7406 5.83045 SO-8P型SI9435 5.33050 SO-8P型IRF7205 4.63070 TO-252N型FDD668884305 TO-3N型IRF1504010055 TO-220N型IRF370321030 2.8 TO-220N型IRL3803140306 TO-220N型IRF140513155 5.3 TO-220N型IRF3205110558 TO-220N型BUZ111S80558

燃煤蒸汽锅炉能源结构和利用率发展

燃煤蒸汽锅炉能源消耗的结构 河南太康银晨锅炉https://www.doczj.com/doc/1314203227.html,官网每日一帖: 化石燃料,包括核燃料、天然气、石油、煤炭以及油页岩、沥青砂等均为非再生能源,又称为地壳能源。它们的形成要经过几百万年、几千万年乃至亿万年,其储量日益减少,据估计,这些燃煤锅炉燃料的储量寿命各潜在储量寿命,大约只有几百年,如何使用这此燃料,各个国家都有适合自己国情的燃煤蒸汽锅炉燃料政策或能源政策,都有与之相应的能源消耗结构。 从世界的情况来看,过去以木柴和煤为主的能源消耗,近代已转换为以石油,天然气为主;我国根据国情,在动力燃料中,燃煤蒸汽锅炉的主要燃料为煤。 为了提高有限的化石燃料的有效利用率,世界各国发展节能技术越来越注意提高燃煤锅炉能源转换和传递的效率(如提高能源转换动力设备的燃烧謴和传热效率),并重视二次能源(如电能、热能等)利用率的提高。 能源弹性系数、能源利用率 能源消耗的增长,从另一方面看又是经济发展的重要标志。一种新型能源的推广使用,一种新式能源转换设备的发明创造,都会促使经济的发展。例如:蒸汽锅炉的发明,标志着第一次产业革命的爆发;电力的应用推动了资本主义国家工业化的实现。反之,如果能源发生了问题,也势必对整个经济的发展产生严重影响。例如:1974年美国能源缺少1.16亿吨标准煤,国民经济生产总值减少了930亿美元;日本能源短缺0.6亿吨标准煤,国民经济生产总值减少了485亿美元。据估计,能源不中的引起的工业产值损失,大约为本身价值的20-60倍。 根据我国建国后30年的统计,平均能源系数为1.27。这个数值,与先进工业国家比较还有很大的差距。 能源弹性系数低也可能是由于能源消费量增长慢,这往往表示国民生产总值也增长缓慢,生产不景气,通过对能源弹性系数分析,可以找出在正常发展情况下,燃煤蒸汽锅炉能源消费量增长速度与国民生产总值增长的一些关系,以预测中、远期能源需要量。我国的现代化建设规划,国民经济将在倍增长,要求能源弹性系数保持较低的数值,把总产值的增长与能源消费量增长的比例关系提高到一个新的水平,把开发能源和利用能源建立在先进的技术基础上。对燃煤蒸汽锅炉进行技术改进。 2.能源利用率 要衡量一个国家、一个地区或一个企业能源利用的状况与水平,常常要利用能源消费系数(或能源消费指数)来进行分析、对比。 持续而稳定的经济发展,要求经济显著增长,而能源数量不大幅度增长,即能源消费系数趋于平稳或下降。 这要求提高能源利用率有效利用能量/供给能量x100%》。目前,工业发达国家的能源利用率可达10-57%,我国大、中、小型电厂的平均热效率只有19-25%。 提高能源利用水平一方面是对能源进行合理利用、高效利用,另一方面对已经散失的能量进行高效回收。对于燃料为燃煤的燃煤蒸汽锅炉来说,应该设计、制造技术先进的燃烧设备,使燃料的燃煤过程在尽可能高的温度下进行,以便得到时更高的燃烧效率,减少燃料的热损失。因此,在研讨燃煤蒸汽锅炉燃烧设备时,应该时时考虑节约燃料,提高能源的利用率。买燃煤蒸汽锅炉就要选资质齐全,信誉良好的锅炉厂家。河南银晨锅炉https://www.doczj.com/doc/1314203227.html,

MOS管参数解释

M O S管参数解释Prepared on 21 November 2021

MOS管参数解释 MOS管介绍 在使用MOS管设计开关电源或者马达驱动电路的时候,一般都要考虑MOS的导通电阻,最大电压等,最大电流等因素。MOSFET管是FET的一种,可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,一般主要应用的为增强型的NMOS管和增强型的PMOS管,所以通常提到的就是这两种。 这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。在MOS管内部,漏极和源极之间会寄生一个二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要,并且只在单个的MOS管中存在此二极管,在集成电路芯片内部通常是没有的。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免。 MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到一定电压(如4V或10V,其他电压,看手册)就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,因而在DS间流过电流的同时,两端还会有电压,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几毫欧,几十毫欧左右 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,导通瞬间电压和电流的乘积很大,造成的损失也就很大。降低开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。 MOS管驱动 MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。但是,我们还需要速度。 在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。 普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极电压。而高端驱动的MOS管导通时源极电压与漏极电压(VCC)相同,所以这时栅极电压要比VCC大(4V或10V其他电压,看手册)。如果在同一个系统里,要得到比VCC大的电压,就要专门的升压电路了。很多马达驱动器都集成了电荷泵,要注意的是应该选择合适的外接电容,以得到足够的短路电流去驱动MOS管。 Mosfet参数含义说明Features:Vds:DS击穿电压.当Vgs=0V时,MOS的DS所能承受的最大电压Rds(on):DS的导通电阻.当Vgs =10V时,MOS的DS之间的电阻Id:最大DS电流.会随温度的升高而降低Vgs:最大GS电压.一般为:-20V~+20VIdm:最大脉冲DS 电流.会随温度的升高而降低,体现一个抗冲击能力,跟脉冲时间也有关系Pd:最大耗散功率Tj:最大工作结温,通常为150度和175度Tstg:最大存储温度Iar:雪崩电流Ear:重复雪崩击穿能量Eas:单次脉冲雪崩击穿能量BVdss:DS击穿电压Idss:饱和DS电流,uA级的电流Igss:GS驱动电流,nA级的电流.gfs:跨导Qg:G总充电电量Qgs:GS充电电量Qgd:GD充电电量Td(on):导通延迟时间,从有输入电压上升到10%开始到Vds下降到其幅值90%的时间Tr:上升时间,输出电压VDS从90%下降到其幅值10%的时间T d(off):关断延迟时间,输入电压下降到90%开始到VDS上升到其关断电压时10%的时间Tf:下降时间,输出电压VDS从10%上升到其幅值90%的时间(参考图4)。Ciss:输入电容,Ciss=Cgd+Cgs.Coss:输出电容,Coss=Cds+Cgd.Crss:反向传输电容,Crss=Cgc. 其实MOS主要是通过栅控制器件的开启和导通,所以以NMOS管为例,只需要将栅得足够低,让它在中无法形成,也就没有了沟道,没有低阻通路,自然就变成高阻态,从漏源两端看上去,它便是关断的 追问

相关主题
文本预览
相关文档 最新文档