当前位置:文档之家› 傅里叶变换红外光谱仪最新制样方式和采样技术

傅里叶变换红外光谱仪最新制样方式和采样技术

FTIR(傅里叶红外光谱简介)

1、简介: 傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR Spectrometer),简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 2、基本原理 光源发出的光被分束器(类似半透半反镜)分为两束,一束经透射到达动镜,另一束经反射到达定镜。两束光分别经定镜和动镜反射再回到分束器,动镜以一恒定速度作直线运动,因而经分束器分束后的两束光形成光程差,产生干涉。干涉光在分束器会合后通过样品池,通过样品后含有样品信息的干涉光到达检测器,然后通过傅里叶变换对信号进行处理,最终得到透过率或吸光度随波数或波长的红外吸收光谱图。 3、主要特点 ①信噪比高 傅里叶变换红外光谱仪所用的光学元件少,没有光栅或棱镜分光器,降低了光的损耗,而且通过干涉进一步增加了光的信号,因此到达检测器的辐射强度大,信噪比高。 ②重现性好 傅里叶变换红外光谱仪采用的傅里叶变换对光的信号进行处理,避免了电机驱动光栅分光时带来的误差,所以重现性比较好。 ③扫描速度快 傅里叶变换红外光谱仪是按照全波段进行数据采集的,得到的光谱是对多次数据采集求平均后的结果,而且完成一次完整的数据采集只需要一至数秒,而色散型仪器则需要在任一瞬间只测试很窄的频率范围,一次完整的数据采集需要十分钟至二十分钟。 4、技术参数 光谱范围:4000--400cm-1 7800--350cm-1(中红外) 125000--350cm-1(近、中红外) 最高分辨率:2.0cm-1 / 1.0cm-1 / 0.5cm-1 信噪比:15000:1(P-P) / 30000:1(P-P) / 40000:1(P-P)

拉曼光谱的原理及应用.doc

拉曼光谱的原理及应用 拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。 (一)含义 光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。 c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2 拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器 3 拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。 4 因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。 5 共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。(四)几种重要的拉曼光谱分析技术 1、单道检测的拉曼光谱分析技术 2、以CCD为代表的多通道探测器用于拉曼光谱的检测仪的分析技术 3、采用傅立叶变换技术的FT-Raman光谱分析技术 4、共振拉曼光谱分析技术 5、表面增强拉曼效应分析技术 (五) 拉曼频移,拉曼光谱与分子极化率的关系 1、拉曼频移:散射光频与激发光频之差,取决于分子振动能级的改变,所以它是特征的,与入射光的波长无关,适应于分子结构的分析 2、拉曼光谱与分子极化率的关系 分子在静电场E中,极化感应偶极矩P为静电场E与极化率的乘积 诱导偶极矩与外电场的强度之比为分子的极化率 分子中两原子距离最大时,极化率也最大 拉曼散射强度与极化率成正比例 (六)应用激光光源的拉曼光谱法 应用激光具有单色性好、方向性强、亮度高、相干性好等特性,与表面增强拉曼效应相结合,便产生了表面增强拉曼光谱。其灵敏度比常规拉曼光谱可提高104~107倍,加之活性载体表面选择吸附分子对荧光发射的抑制,使分析的信噪比大大提高。已应用于生物、药物及环境分析中痕量物质的检测。共振拉曼光谱是建立在共振拉曼效应基础上的另一种激光拉曼光谱法。共振拉曼效应产生于激发光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104~106倍,有利于低浓度和微量样品的检测。已用于无机、有

傅立叶变换红外光谱仪的基本原理

傅立叶变换红外光谱仪的 基本原理及其应用 红外光谱仪是鉴别物质和分析物质结构的有效手段,其中傅立叶变换红外光谱仪(FT-IR)是七十年代发展起来的第三代红外光谱仪的典型代表。它是根据光的相干性原理设计的,是一种干涉型光谱仪,具有优良的特性,完善的功能,并且应用范围极其广泛,同样也有着广泛的发展前景。本文就傅立叶变换红外光谱仪的基本原理作扼要的介绍,总结了傅立叶变换红外光谱法的主要特点,综述了其在各个方面的应用,并对傅立叶变换红外光谱仪的发展方向提出了一些基本观点。 关键词:傅立叶变换红外光谱仪;基本原理;应用;发展

目录 摘要............................. 错误!未定义书签。ABSTRACT ......................... 错误!未定义书签。 1 傅里叶红外光谱仪的发展历史 (1) 2 基本原理 (3) 2.1光学系统及工作原理 (4) 2.2傅立叶变换红外光谱测定 (5) 2.3傅立叶变换红外光谱仪的主要特点 (6) 3 样品处理 (6) 3.1气体样品 (6) 3.2液体和溶液样品 (6) 3.3固体样品 (6) 4 傅立叶变换红外光谱仪的应用 (7) 4.1在临床医学和药学方面的应用⑷ (7) 4.2在化学、化工方面的应用 (8) 4.3在环境分析中的应用 (9) 4.4在半导体和超导材料等方面的应用⑼ (9) 5 全文总结 (9) 参考文献 (10)

1 傅立叶红外光谱仪的发展历史 到目前为止红外光谱仪已发展了三代。第一代是最早使用的棱镜式色散型红外光谱仪, 用棱镜作为分光元件,分辨率较低,对温度、湿度敏感, 对环境要求苛刻。60年代出现了第二代光栅型色散式红外光谱仪, 由于采用先进的光栅刻制和复制技术, 提高了仪器的分辨率, 拓宽了测量波段, 降低了环境要求。70年代发展起来的干涉型红外光谱仪, 是红外光谱仪的第三代的典型代表(见图1), 具有宽的测量范围、高测量精度、极高的分辨率以及极快的测量速度。傅立叶变换红外光谱仪是干涉型红外光谱仪器的代表, 具有优良的特性, 完善的功能。 图1 傅立叶变换红外光谱仪实物图 近年来各国厂家对其光源、干涉仪、检测器及数据处理等各系统进行了大量的研究和改进, 使之日趋完善。由于计算机技术和自动化技术在仪器中的广泛使用, 使得红外光谱仪的调整、控制、测试及结果的分析大部分由计算机完成, 如显微红外光谱中的图像技术。各公司的显微红外光谱仪均能对样品的某一区域进行面扫描, 得到该区域的化学成分的分布图, 如Continuum (Nicolet) 、EquinoxTM55 (Bruker) 、Spectrum2000 ( Perkin El2mer)和Stingray lmaging (Bio-Rad)等显微镜都有此功能。 随着仪器精密度的提高, 红外光谱仪在分辨率和扫描速度等方面达到了很高的指标。如BrukerIFSl20H最佳分辨率为010008cm- 1, Bomen公司的DA系列可达010026cm- 1。而扫描速度Bruker可达117张谱图/ s, 利用步进扫描技术可达250皮纳秒的时间分辨率。Nicolet8700扫描速度为105 次/ s,步进扫描时间分辨率为10ns。现有的傅立叶变换红外光谱仪已不仅限于中红外(MIR) 的使用, 分束器的使用可将光谱范围可覆盖紫外到远红外的区段。如Bruker为50000~4cm- 1, Bomen为50000~5cm- 1, Nicolet为25000~20cm- 1。这些很高的技术指标、标志材料、光路设计、加工技术和软件都达到了很高的水平[1]。 但是,通常的透射红外光谱,即使是傅里叶变换透射红外光谱,都存在如下不足: ①固体压片或液膜法制样麻烦,光程很难控制一致,给测量结果带来误差。另外,无论是添加红外惰性物质或是压制自支撑片,都会给粉末状态的样品造成形态变化或表面污染,使其在一定

傅里叶变换红外光谱仪

傅里叶红外光谱仪(FTIR) (仅供参考) 一.实验目的: 1.了解FTIR的工作原理以及仪器的操作。 2.通过对多孔硅的测试,初步学会分析方法。 二.实验原理: 1.傅里叶红外光谱仪的工作原理: FTIR光谱仪由3部分组成:红外光学台(光学系统)、计算机和打印机。而红外光学台是红外光谱仪的最主要部分。 红外光学台由红外光源、光阑、干涉仪、样品室、检测器以及各种红外反射镜、氦氖激光器、控制电路和电源组成。下图所示为红外光学台基本光路图。 傅里叶变换红外光谱是将迈克尔逊干涉仪动镜扫描时采集的数据点进行傅立叶变换得到的。动镜在移动过程中,在一定的长度范围内,在大小有限,距离相等的位置采集数据,由这些数据点组成干涉图,然后对它进行傅立叶变换,得到一定范围内的红外光谱图。每一个数据点由两个数组成,对应于X轴和Y轴。对应同一个数据点,X值和Y值决定于光谱图的表示方式。因此,在采集数据之前,需要设定光谱的横纵坐标单位。 红外光谱图的横坐标单位有两种表示法:波数和波长。通常以波数为单位。而对于纵坐标,对于采用透射法测定样品的透射光谱,光谱图的纵坐标只有两种表示方法,即透射率T 和吸光度A。透射率T是由红外光透过样品的光强I和红外光透过背景(通常是空光路)的光强I0的比值,通常采用百分数(%)表示。吸光度A是透射率T倒数的对数。 透射率光谱图虽然能直观地看出样品对红外光的吸收情况,但是透射率光谱的透射率与样品的质量不成正比关系,即透射率光谱不能用于红外光谱的定量分析。而吸光度光谱的吸光度值A在一定范围内与样品的厚度和样品的浓度成正比关系,所以大都以吸光度表示红外光谱图。 本实验运用的仪器是Nicolet 380 智能傅立叶红外光谱仪。 2.傅里叶红外光谱仪的主要特点: ⑴具有很高的分辨能力,在整个光谱范围内分辨能力达到0.1cm-1。 ⑵具有极高的波数准确度,波数准确度可以达到0.01cm-1。 ⑶杂散光的影响度低,通常在全光谱范围杂散光影响低于0.3%。 ⑷扫描时间短,可以用于观测瞬时反应。 ⑸可以研究很宽的光谱范围。本实验仪器波数范围为400cm-1~4000cm-1。

傅里叶变换红外光谱仪的测试原理解读

傅里叶变换红外光谱仪的测试原理 傅里叶变换红外光谱仪由迈克耳逊干涉仪和数据处理系统组合而成,它的工作原理就是迈克耳逊干涉仪的原理。 迈克耳逊干涉仪的光路如图所示,图中已调到M2与M1垂直。∑是面光源(由被单色光或白光照亮的一块毛玻璃充当,面上每一点都向各个方向射出光线,又称扩展光源,图中只画出由S点射出光线中的一条来说明光路。这条光线进入分束板G1后,在半透膜上被分成两条光线,反射光线①和透射光线②,分别射向M1和M2又被反射回来。反射后,光线①再次进入G1并穿出,光线②再次穿过补偿板G2并被G1上的半透膜反射,最后两条光线平行射向探测器的透镜E,会聚于焦平面上的一点,探测器也可以是观测者的眼睛。由于光线①和光线②是用分振幅法获得的相干光,故可产生干涉。光路中加补偿板G2的作用是使分束后的光线①和光线②都以相等的光程分别通过G1、G2两次,补偿了只有G1而产生的附加光程差。M2′是M2被G1上半透膜反射所成的虚象,在观测者看来好象M2位于M2′的位置并与M1平行,在它 们之间形成了一个空气薄膜。移动M1即可改变空气膜的厚度,当M1接近M2′时厚度减小,直至二者重合时厚度为零,继续同向移动,M1还可穿越M2′的另一测形成空气膜。最后通过观测干涉条纹的分布情况就可以获得我们所要的信息。 如果是傅里叶变换红外光谱仪,那还要加上对干涉信息的数据处理系统而最终获得我们的数据图表。 二.紫外—可见分光光度计定量分析法的依据是什么? 比耳(Beer确定了吸光度与溶液浓度及液层厚度之间的关系,建立了光吸收的基本定律。 ○1. 朗伯定律 当溶液浓度一定时,入射光强度与透射光强度之比的对数,即透光率倒数的对数与液层厚度成正比。人们定义:溶液对单色光的吸收程度为吸光度。公式表示为 A=Lg(I0/It

傅里叶变换红外光谱分析基础知识

傅里叶变换红外光谱分析基础知识 傅里叶变换红外光谱分析技术介绍傅里叶变换红外光谱分析技术为大量的学术研究实验室、化学分析实验室、质保/质控实验室和法庭科学实验室提供了重要的分析手段。傅里叶变换红外光谱分析方法的普及已深深植根,从简单的化合物鉴定到质控监测,广泛应用于各种化学分析,尤其是聚合物和有机化合物分析。 什么是傅立叶变换红外光谱? FTIR指的是傅立叶变换红外,是红外光谱分析的优选方法。当连续波长的红外光源照射样品时,样品中的分子会吸收或部分某些波长光,没有被吸收的光会到达检测器(称为透射方法)。将检测器获取透过样品的光模拟信号进行模数转换和傅立叶变换,得到具有样品信息和背景信息的单光束谱,然后用相同的检测方法获取红外光不经过样品的背景单光束谱,将透过样品的单光束谱扣除背景单光束谱,就生成了代表样品分子结构特征的红外指纹的光谱。由于不同化学结构(分子)会产生不同的指纹光谱,这就体现出红外光谱的价值意义。 那么,什么是FTIR(傅立叶变换红外光谱)? 傅立叶变换技术将检测器输出信号转换成可解读红外光谱。傅立叶变换红外生成的光谱以图形的形式提供可解析的样品分子结构的信息。 傅立叶变换红外的工作原理是什么?为何使用它? 傅立叶变换红外利用干涉图记录放置于红外光路中的材料的相关信息。傅立叶变换产生光谱,分析人员利用该光谱鉴定材料或进行定量分析。 一个傅立叶变换红外光谱是从干涉图被译解成为可解读的光谱。光谱图的图形可帮助鉴定样品,因为样品的分子振动吸收会在光谱上显示出特定的红外指纹。 傅立叶变换红外采样介绍 傅立叶变换红外主要有以下四种采样技术: 透射衰减全反射 (ATR)镜面反射漫反射每一项技术有各自特点,这使它们可适用于不同的状态的样品。 傅立叶变换红外光谱仪的采样和应用

傅里叶红外光谱仪测试原理及常用制样方法

傅里叶红外光谱仪测试原理及常用制样方法 傅里叶变换红外光谱仪由迈克耳逊干涉仪和数据处理系统组合而成,它的工作原理就是迈克耳逊干涉仪的原理。 迈克耳逊干涉仪的光路如图所示,图中已调到M2与M1垂直。∑是面光源(由被单色光或白光照亮的一块毛玻璃充当),面上每一点都向各个方向射出光线,又称扩展光源,图中只画出由S点射出光线中的一条来说明光路。这条光线进入分束板G1后,在半透膜上被分成两条光线,反射光线①和透射光线②,分别射向M1和M2又被反射回来。反射后,光线①再次进入G1并穿出,光线②再次穿过补偿板G2并被G1上的半透膜反射,最后两条光线平行射向探测器的透镜E,会聚于焦平面上的一点,探测器也可以是观测者的眼睛。由于光线①和光线②是用分振幅法获得的相干光,故可产生干涉。光路中加补偿板G2的作用是使分束后的光线①和光线②都以相等的光程分别通过G1、G2两次,补偿了只有G1而产生的附加光程差。M2′是M2被G1上半透膜反射所成的虚象,在观测者看来好象M2位于M2′的位置并与M1平行,在它们之间形成了一个空气薄膜。移动M1即可改变空气膜的厚度,当M1接近M2′时厚度减小,直至二者重合时厚度为零,继续同向移动,M1还可穿越M2′的另一测形成空气膜。最后通过观测干涉条纹的分布情况就可以获得我们所要的信息。 如果是傅里叶变换红外光谱仪,那还要加上对干涉信息的数据处理系统而最终获得我们的数据图表。 二.紫外;-;可见分光光度计定量分析法的依据是什么? 比耳(Beer)确定了吸光度与溶液浓度及液层厚度之间的关系,建立了光吸收的基本定律。 ○1. 朗伯定律 当溶液浓度一定时,入射光强度与透射光强度之比的对数,即透光率倒数的对数与液层厚度成正比。人们定义:溶液对单色光的吸收程度为吸光度。公式表示为A=Lg (I0/It) ○2.比耳定律 当一束单色光通过液层厚度一定的均匀溶液时,溶液中的吸光物质的浓度增大dC,则透

实验-傅立叶变换光谱实验

实验3-3 傅立叶变换光谱实验 ● 实验简介: 利用光的干涉现象,得到干涉图,经过傅立叶变换,在频域中得到光谱,这种方法得到的光谱称为傅立叶变换光谱,所用的仪器称为傅立叶光谱仪。它的优点是: 1. 它以大的圆形入射孔径代替普通光谱仪的窄的入射狭缝,在获得同样分辨本领条件下,它能从较大的立体角接受光源辐射。 2. 在一般分光光度计中,每一瞬间只能测量一个光谱元,而傅立叶光谱仪能在整个工作时间内,同时记录所有待测光谱元,这又进一步使接收器获得更多的辐射能量,提高接收信号的信噪比。所以,它特别适合于光源较弱的红外光谱区,目前它已作为一种新型红外光谱仪广泛应用于红外光谱工作中。 ● 实验目的: 利用傅立叶变换光谱仪,测量常用光源的光谱分布。 ● 实验原理 傅立叶光谱方法利用干涉图和光谱图之间的对应关系。通过测量干涉图和对干涉图进行傅立叶积分变换的方法来测定和研究光谱图。和传统的色散性光谱仪相比较,傅立叶光谱仪可以理解为以某种数学方式对光谱信息进行编码的摄谱仪,它能同时测量、记录所有谱元的信号,并以更高的效率采集来自光源的辐射能量,从而使它具有比传统光谱仪高得多的信噪比和分辨率;同时它的数字化的光谱数据,也便于计算机处理和演绎。正是这些基本优点,使得傅立叶光谱方法发展为目前红外和远红外波段中最有力的光谱工具。它的研究、开发和应用已经形成了光谱学的一个独立分支——傅立叶光谱学,或称干涉光谱学。 傅立叶的变换过程实际上就是调制与解调的过程,通过调制我们将待测光的高频率调制成我们可以掌控、接收的频率。然后将接收器接收到的信号送到调制器中进行分解,得出待测光中的频率成分及各频率对应的强度值。这样我们就得到了待测光的光谱图。 调制和解调方程: 调制方程: ()()cos(2)I B d δνπνδν+∞-∞=? 解调方程: ()()cos(2)B I d νδπνδδ+∞-∞=? I(δ)——随光程变化的干涉图 v ——表示最小波数 B(v)——复原光谱图强度分布 ● 实验内容 1.利用激光调整迈克尔逊干涉仪,调出光的干涉条纹 2.利用钨丝灯调出白光的干涉条纹,目的是找出光程差为零的位置 3.去掉白光灯,放入被测光源,调整干涉条纹的方向和宽度 4.调整参考激光光路,尽量减少两光路之间的相互影响 5.调整电机转速,连接计算机,开始采集数据

傅里叶红外光谱仪操作规程.pdf

傅里叶红外光谱仪操作规程 1.开机前准备 开机前检查实验室电源、温度和湿度等环境条件,当电压稳定,室温在15~25℃、湿度≤60%才能开机。 2.开机 首先打开仪器的外置电源,稳定半小时,使得仪器能量达到最佳状态。开启电脑,并打开仪器操作平台OMNIC软件,运行Diagnostic菜单,检查仪器稳定性。 3.制样 根据样品特性以及状态,制定相应的制样方法并制样。固体粉末样品用KBr 压片法制成透明的薄片;液体样品用液膜法、涂膜法或直接注入液体池内进行测定;(液膜法是在可拆液体池两片窗片之间,滴上1-2滴液体试样,使之形成一薄的液膜;涂膜法是用刮刀取适量的试样均匀涂于KBr窗片上,然后将另一块窗片盖上,稍加压力,来回推移,使之形成一层均匀无气泡的液膜;沸点较低,挥发性较大的液体试样,可直接注入封闭的红外玻璃或石英液体池中,液层厚度一般为0.01~1mm)。 4.扫描和输出红外光谱图 将制好的KBr薄片轻轻放在锁氏样品架内,插入样品池并拉紧盖子,在软件设置好的模式和参数下测试红外光谱图。先扫描空光路背景信号(或不放样品时的KBr薄片,有4个扣除空气背景的方法可供选择),再扫描样品信号,经傅里叶变换得到样品红外光谱图。根据需要,打印或者保存红外光谱图。 5.关机 (1)先关闭OMNIC软件,再关闭仪器电源,盖上仪器防尘罩。 (2)在记录本上记录使用情况。 6.清洗压片模具和玛瑙研钵 KBr对钢制模具的平滑表面会产生极强的腐蚀性,因此模具用后应立即用水冲洗,再用去离子水冲洗三遍,用脱脂棉蘸取乙醇或丙酮擦洗各个部分,然后用电吹风吹干,保存在干燥箱内备用。玛瑙研钵的清洗与模具相同。

傅里叶变换光谱实验

傅里叶变换光谱实验 一、实验目的 1、了解傅里叶变换光谱的基本原理。 2、学会测量待测光的光谱图。 重点:傅里叶变换光谱实验装置的正确使用,实验过程中参数的选定 难点:傅里叶变换光谱原理的理解 二、实验原理 现代光学的一个重大进展是引入“傅里叶变换”概念,由此发展成为光学领域内的一个崭新分支——傅里叶变换光学。本实验中用到的“傅里叶变换光谱实验装置”利用了傅里叶光谱中存在的干涉图和光谱图的变换关系,仪器用途是演示通过傅里叶变换的方法测定光源的辐射光谱。本实验仪器的意义在于进行傅里叶变换原理的演示。本实验测量光谱范围设计在可见区(400-800nm )并且光路部分设计为开放式,以便能更深刻、直观地了解傅里叶变换光学的实现与应用。 傅里叶变换过程实际上就是调制与解调的过程,通过调制我们将待测光的高频率调制成我们可以掌控、接收的频率。然后将接收到的信号送到解调器中进行分解,得出待测光中的频率成分及各频率对应的强度值。这样我们就得到了待测光的光谱图。下面介绍两个方程: 调制方程:()()cos 2I x I xd σπσσ+∞-∞=? 解调方程:()()cos 2I I x xdx σπσ+∞ -∞=?

调制过程:这一步由迈克耳孙干涉仪实现,设一单色光进入干涉仪后,它将被分成两束后进行干涉,干涉后的光强值为 0()c o s 2I x I x πσ=,(其中x 为光程差,它随动镜的移动而变化,σ为单色光的波数值)。如果待测光为连续光谱,那么干涉后的光强为()()cos 2I x I xd σπσσ+∞ -∞=?。 图1 实验装置中的迈克尔孙干涉仪 解调过程:我们把从接收器上采集到的数据送入计算机中进行数据处理,这一步就是解调过程。使用的方程就是解调方程,这个方程也是傅里叶变换光谱学中干涉图—光谱图关系的基本方程。 对于给定的波数σ,如果已知干涉图与光程差的关系式,就可以用解调方程计算的这波数处的光谱强度()I σ。为了获得整个工作波数范围的光谱图,只需对所希望的波段内的每一个波数反复按解调方程进行傅里叶变换运算就行了。 三、实验仪器 XGF-Ⅰ型傅里叶变换光谱实验装置 、数据传输设备(USB 线)、 计算机一套(如需要数据输出还应连接相应的输出设备,比如说打印机等)、待测光源(如图2所示)。

傅里叶红外光谱仪111

傅里叶红外光谱仪 编辑本段1.原理部分 1.1 傅里叶变换红外光谱仪的测试原理 傅里叶变换红外光谱仪由迈克耳逊干涉仪和数据处理系统组合而成, 它的工作原理就是迈克耳逊干涉仪的原理。迈克耳逊干涉仪的光路如图所示,图中已调到M2 与M1 垂直。Σ是面光源(由被单色光或白光照亮的一块毛玻璃充当),面上每一点都向各个方向射出光线,又称扩展光源,图中只画出由S 点射出光线中的一条来说明光路。这条光线进入分束板G1 后,在半透膜上被分成两条光线,反射光线①和透射光线②,分别射向M1 和M2 又被反射回来。反射后,光线①再次进入G1 并穿出,光线②再次穿过补偿板G2 并被G1 上的半透膜反射,最后两条光线平行射向探测器的透镜E,会聚于焦平面上的一点,探测器也可以是观测者的眼睛。由于光线①和光线②是用分振幅法获得的相干光,故可产生干涉。光路中加补偿板G2 的作用是使分束后的光线①和光线②都以相等的光程分别通过G1、G2 两次,补偿了只有G1 而产生的附加光程差。M2′是M2 被G1 上半透膜反射所成的虚象,在观测者看来好象M2 位于M2′的位置并与M1 平行,在它们之间形成了一个空气薄膜。移动M1 即可改变空气膜的厚度,当M1 接近M2′时厚度减小,直至二者重合时厚度为零,继续同向移动,M1 还可穿越M2′的另一测形成空气膜。最后通过观测干涉条纹的分布情况就可以获得我们所要的信息。如果是傅里叶变换红外光谱仪,那还要加上对干涉信息的数据处理系统而最终获得我们的数据图表。 1.2 紫外可见分光光度计定量分析法的依据 比耳(Beer)确定了吸光度与溶液浓度及液层厚度之间的关系,建立了光吸收的基本定律。 1.2.1. 朗伯定律 当溶液浓度一定时,入射光强度与透射光强度之比的对数,即透光率倒数的对数与液层厚度成正比。人们定义:溶液对单色光的吸收程度为吸光度。公式表示为A=Lg(I0/It) 1.2.2 比耳定律 当一束单色光通过液层厚度一定的均匀溶液时,溶液中的吸光物质的浓度增大dC,则透射光强度将减弱 dI,-dI 与入射光光强度I 与dc 的积成正比。 ∴?dI ∝I·dc-dI/I=k3·dc

傅里叶变换红外光谱仪解析

仪器分析综述 系别:生物科学与技术系 班级:09食品2 姓名:欧阳凡学号:091304251 傅里叶变换红外光谱仪 前言 随着计算方法和计算技术的发展,20世纪70年代出现新一代的红外光谱测量技术及仪器--傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR ,简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 正文 傅里叶变换红外光谱仪分光光度计由光学检测系统、计算机书籍处理系统、计算机接口、电子线路系统组成。 光源发出的光被分束器(类似半透半反镜)分为两束,一束经反射到达动镜,另一束经透射到达定镜。两束光分别经定镜和动镜反射再回到分束器,动镜以一恒定速度作直线运动,因而经分束器分束后的两束光形成光程差,产生干涉。干涉光在分束器会合后通过样品池,通过样品后含有样品信息的干涉光到达检测器,然后通过傅里叶变换对信号进行处理,最终得到透过率或吸光度随波数或波长的红外吸收光谱图。 光学检测系统由迈克逊干涉仪、光源、检测器组成、迈克逊干涉仪内有两个相垂直的平面反射镜M1、M2和一个与两镜成45度角的分束器,M1可沿镜轴方向前后移动。自光源发出的红外光经准直镜M3反射后变为平行光束,照在分束器上

后变成两束光。其中一束被反射到可动镜头M1后又被M1反射回分束器,并在分束器上再次分城反射光和透射光,透射光部分照在举聚光镜M4上,然后到到达探测器,另一束光透过分束器,射在固定镜M2上,并被M2反射回分束器,在分束器上再次发生反射和透射,反射部分照在聚光镜M4上,最后也到达探测器。因而这两束到达探测器的光油了光程差,成了相干光,移动可动镜M1可改变两束光程差。在连续改变光程差的同时,记录下中央干涉条纹的光强变化,及得到干涉图。如果在复合的相干光路中放有样品,就得到样品的干涉图。需要通过计算机进行傅里叶变换后才能得到红外光谱图。 主要特点 1、信噪比高 傅里叶变换红外光谱仪所用的光学元件少,没有光栅或棱镜分光器,降低了光的损耗,而且通过干涉进一步增加了光的信号,因此到达检测器的辐射强度大,信噪比高。 2、重现性好 傅里叶变换红外光谱仪采用的傅里叶变换对光的信号进行处理,避免了电机驱动光栅分光时带来的误差,所以重现性比较好。 3、扫描速度快 傅里叶变换红外光谱仪是按照全波段进行数据采集的,得到的光谱是对多次数据采集平均后的结果,而且完成一次完整的数据采集只需要一至数秒,而色散型仪器则需要在任一瞬间只测试很窄的频率范围,一次完整的数据采集需要十分钟至二十分钟。 FTIR 的吸收强度和表示方法 红外吸收光谱分析对于同一类型的化学键,偶极矩的变化与结构的对称性有关。例如C =

基于傅立叶变换的光谱数据分析

1绪论 本章介绍课题的研究背景,总结阐述光谱分析技术的发展应用,以及光谱测量仪 器的分类和各自特点,特别是傅里叶光谱仪及应用情况,简要介绍傅里叶变换光谱仪 的研究现状及成果;最后阐述本课题的研究目的、意义以及主要研究内容和技术指标 要求。 1.1选题的背景、目的和意义 在现代高技术战争中,激光武器及其对抗已显得日益重要,面对战场上激光战术 侦察、激光武器和激光制导武器等激光威胁,加速发展激光侦察告警技术己成为激光 对抗的首要任务。准确、可靠、迅速地掌握对方激光的属性己成为交战双方开战的重要前提,因此采用先进技术提高激光告警设备敌我识别的性能、抗干扰能力和反应速度是非常必要的。 激光告警技术是是光电对抗的重要组成部分。研究激光告警技术的目的是快速探测敌方激光威胁的存在,尽可能确定出其方位、波长、强度、脉冲特性(脉宽、重复频率等)等信息,以便我方能及时采取保护或反击措施。激光告警设备硬件通常由激光接收系统、光电传感器、信号处理器、显示与告警装置等部分组成。目前,告警设备在软件上基本都采用解方程组或者查表的方法,求解来袭激光的波长、角度和次数等基本信息。例如,典型相干识别法的迈克尔逊型、法布里一拍罗(F-P)型和光栅衍射型告警机,利用形成的干涉条纹间距确定入射激光的波长,利用干涉图的横向位移量确定入射激光方向等。当激光以一定波长和方向入射时,特定条纹在光电探测器上的位置的不同或者条纹阳间距的不同,制作波长和与入射方向对应的查找表,这样处理器只需计算目标条纹的成像位置和间距,便可通过软件查表实现波长和角度的测定。这种方法原理简单、编程容易;但是无法求出目标激光的光谱特征,从而无法得到威胁激光的时、空特性和类型[1]。 为了实时获取来袭激光的光谱分布和类型,提高告警系统的信噪比和探测率,需 要研究具有高速、准确、性能可靠的新型激光告警系统。 1.2激光光谱探测技术的国内外研究现状 目前,激光信号光谱的探测,主要通过光谱仪来实现,光谱仪从原理上可分为色 散型和干涉型两大类。

傅里叶红外光谱仪操作规程

傅立叶变换红外光谱仪 操作规程 一、主要技术指标 1、仪器型号:Nicolet 6700 2、扫描范围:4000 cm-1~ 400cm-1 3、最小精度:1cm-1 4、检测器:DTGS 5、分束器:多层镀膜溴化钾 6、光源:EverGlo光源 二、环境条件 1、电源要求: 仪器供电电压:220V±10%,频率50Hz±10% 2、温湿度要求: 室内温度18℃~25℃相对湿度≤60% 为保证仪器达到较高的控温精度,应保证稳定室温; 实验室保持抽湿状态,以维持空气干燥,且不宜开空调。 样品室窗门应轻开轻关,避免仪器振动受损。 三、试验步骤 1、标样质量浓度曲线的绘制 (1)配制系列浓度的标液:分别称取脂肪酸甲酯0.0100g、0.0200g、 0.0300g、0.0400g和0.0500g于10mL容量瓶中,加入少量环己烷摇匀, 再加环己烷至刻线位置。分别得到质量浓度为1g/L、2 g/L、3 g/L、4 g/L、 5 g/L的脂肪酸甲酯标准溶液。 (2)按以下试验操作步骤2扫描以上所配制的各个不同质量浓度的脂肪酸甲酯标准溶液,分别得到其红外谱图。 (3)打开OMNIC分析软件,将所得的不同浓度的标样图谱以及相应的浓度数值等输入该软件,绘制脂肪酸甲酯质量浓度曲线,保存。 2、试验操作: (1)开机时,首先打开仪器电源,稳定半小时,使得仪器能量达到最佳状态。 (2)开启电脑,并打开仪器操作平台OMNIC软件,运行Diagnostic 菜单,设置实验参数并检查仪器稳定性。

(3)扫描背景谱图:用环己烷反复清洗样品池(一般为3次),扫描环己烷红外谱图并保存。 (4)稀释待测试样,用稀释过的待测试样润洗样品池(2到3次)。然后向样品池中加满试样,以环己烷为背景对试样进行扫描得到其红外谱图并保存。 (5)每个样品重复进行上述(3)(4)两步骤进行平行测定。 3、试验数据分析: (1)打开OMNIC分析软件,调取试验所得的试样谱图,与标样数据对比分析,得到试样中待测物的质量浓度。 (2)试验结束后,并依次关闭OMNIC软件及仪器、主机的电源,清洗样品池,使仪器周围保持干净整洁。 四、注意事项及维护保养 1、实验室必须有良好的接地。 2、在仪器使用过程中,请经常检查仪器内部的湿度指示,Nicolet系 列用户可用软件检查干燥剂湿度是否过关。若干燥剂颜色变浅,请 及时将干燥剂在烘箱里烘干。 3、每次做完样品后,在样品仓内放一杯干燥硅胶,以保持样品仓的干 燥并同时保护两边的KBr窗片。 4、仪器长时间不使用时,间隔几天开启仪器一段时间,使仪器处于通 电状态,可防止仪器受潮。 5、每次做完试验,用布罩将仪器盖好。

论述拉曼光谱的原理

目录 摘要 ................................................................................................................................................................ I I 关键词 ............................................................................................................................................................ I I 2 拉曼散射原理 ............................................................................................................................................ I I 2.1 拉曼散射........................................................................................................................................ I II 2.1.1 斯托克斯散射.................................................................................................................... I II 2.1.2 反斯托克斯散.................................................................................................................... I II 2.2 拉曼光谱参数................................................................................................................................ I II 2.2.1 谱峰的位置和强度............................................................................................................ I II 2.2.2 拉曼位移........................................................................................................................... IV 2.2.3 去偏度............................................................................................................................... IV 3 拉曼光谱技术 .......................................................................................................................................... IV 3.1 表面增强拉曼光谱技术............................................................................................................... IV 3.2 高温拉曼光谱技术....................................................................................................................... IV 3.3 共振拉曼光谱技术......................................................................................................................... V 4 拉曼光谱仪 ................................................................................................................................................ V 4.1 激光拉曼光谱仪的结构分类......................................................................................................... V 4.1.1 色散型................................................................................................................................. V 4.1.2 傅里叶变换拉曼光谱仪..................................................................................................... V 4.2 拉曼光谱仪检测原理................................................................................................................... VI 5 结论 .......................................................................................................................................................... VI 参考文献 ...................................................................................................................................................... VI

傅里叶变换光谱

傅立叶变换光谱实验报告 姓名: 学号: 专业:光电子 一、 实验目的 (1) 自组傅里叶变换光谱仪,掌握傅里叶变换光谱的原理; (2) 测量常用光源的光谱分布。 二、 实验原理 傅里叶变换光谱仪是基于迈克尔逊干涉仪结构。使两束相干光的光程差发生连续改变,干涉光强相应发生变化,记录下光强接收器输出中连续的变化部分,得到干涉光强随光程差的变化曲线,即干涉图函数。然后计算出干涉图的傅里叶余弦变换,即可得到光源的光谱分布。这样得到的光谱就被称为傅里叶变换光谱。 1、干涉光强的计算 根据光波叠加原理,若有两束单色光,它们的波数都是σ,具有Δ的光程差,传播方向和偏振方向相同,光强都是I ’,这两束光相互叠加产生干涉,得到光强为: )2cos('2'2)(cos '42 ?+=?=πσπσI I I I 从上式看,单色光的干涉图像包含一个直流分量和一个余弦函数分量,余弦函数分量的周期就是单色光的波长。 若光源不是单色光,光强随波长的分布为I(σ),在光谱间隔d σ内光强是I (σ)d σ将此光源发出的光等强分成两束,相互干涉后光强是: )2cos()(2)(2?+=πσσσσσd I d I dI 在整个光谱范围内的干涉总光强为: I =c ò0 ¥ I (s )d s +c ò0 ¥ I (s )cos(2ps D )d s

其中为常数,上式右侧第一项为常数,与光程差Δ无关;右边第二项是光程差的函数,将第二项单独写出: I (D )=c ò0¥ I (s )cos(2ps D )d s 两束光干涉所得光强是光束光谱分布的傅立叶余弦变换。傅立叶余弦变换是可逆的,则有: ? ???=∞ d I c I )2cos()(')(0 πσσ 只要测出相干光束的干涉光强随光程差变化的干涉图函数曲线I(σ)进行傅立叶变换就可以得到相干光束的光谱分布。 2、实际应用的相关讨论 将上述公式用于实际还需进行一下讨论: 1.公式中要求光程差测量范围为0到∞,但实际中光程差的测量范围有限。理论上,光程差测量范围的大小(最大光程差X )决定了傅里叶变换光谱的光谱分辨率,其波束分辨率为1/(2X),但由实际条件X 只能为有限值; 2.公式中要求干涉光强随光程差连续变化曲线I(Δ)。但实际中采用间隔一定距离离散采样的方法,光程差的采样间隔的大小决定了傅里叶变换光谱的光谱范围。避免光谱线混淆的条件是采样间隔小于或等于最小波长的二分之一。 实验中为了实现高精度的等光程差,采用间接测量的方法:用一个精密电机带动迈克尔逊干涉仪的细调手轮,让其动镜匀速移动,从而以恒定速度改变光程差。用光电接收器接收光强信号,得到干涉光强随时间变化的曲线。再用已知波长的单色光测出动镜移动的速度,就可以得到干涉光

相关主题
文本预览
相关文档 最新文档