当前位置:文档之家› 现代生物技术实践

现代生物技术实践

现代生物技术实践
现代生物技术实践

《现代生物技术》工厂见习大纲

一、实践课程任务

生物技术见习是《生物科学》专业重要实践性教学环节。通过见习使生物技术理论知识在实践中融会贯通并得到验证,培养学生独立工作能力、组织领导能力及分析和解决实际问题能力。

1.通过对生物工程工厂生产全过程的参观,进一步巩固和扩大学生基础理论与专业知识。

2.通过参观生物工程生产过程,培养学生综合运用所学各科知识的能力,培养解决生产中实际问题的能力。

3.了解现代生物技术在食品加工、生物制品生产、发酵工艺技术和卫生检验技术中的应用。

二、见习时间及地点

为了培养学生理论联系实际的能力,根据生物科学专业教学计划安排,定于第四学期1周的工厂见习。地点包括:发酵工业企业、食品生产企业和生物制药企业等生产等单位。

三、实习组织及要求

1.成立工厂见习领导小组,负责整个见习工作。

2.外出见习原则以班级为单位,班级指定负责人,具体负责召集、清点人数、纪律及安全等事项,并随时与指导教师联系,以便及时掌握学生情况。

3.见习期间不准私自外出,并及时了解实习地点有关单位的安全注意事项及各项规章制度,确保实习安全,对违纪者按照有关规定严肃处理。

4.见习过程中认真观察,勤学好问,并做好见习日记,见习结束后连同实习报告和实习总结一并上交装入档案。

四、实习报告

工厂见习结束后每人按实习目的及见习内容的要求完成一篇实习报告。实习报告主要内容包括:见习主要内容和主要收获。

五、见习成绩评定

实习指导教师根据每位同学见习报告确定见习习成绩,分优、良、中、及格、不及格五档。

2017年12月4日

吾鲁木汗.那孜尔别克

现代生物技术的应用与展望

现代生物技术的应用与展望 姓名:班级:学号: 摘要:参阅大量文献资料对近年来生物技术在农业、医药业、社会科学等中的应用进展进行了综述。从改革传统农业结构,解决食品短缺问题的应用、深入基因研究,解决健康长寿问题、运用现代生物技术,解决环境污染问题等内容出发,指明了生物技术现代科学发展中的应用前景。 关键词:生物技术基因医学健康农业 Abstract: a large number of literature on recent biotechnology in agriculture, medicine and industry, social science and application were reviewed in this paper. From the reform of traditional agriculture structure, to solve food shortage problem, in-depth application of genetic research, solve the longevity and health problems, use of modern biological technology, solve the problem of environmental pollution and other content, pointed out the biological technology of modern science and application prospects. 现代生物技术也可称之为生物工程,是以重组DNA技术和细胞融合技术为基础,利用生物体(或者生物组织、细胞及其组分)的特性和功能,设计构建具有预期性状的新物种或新品系,以及与工程原理相结合进行加工生产,为社会提供商品和服务的—个综合性技术体系。其内容包括基因工程、细胞工程、酶工程、发酵工程和蛋白质工程。现代生物技术的诞生以2O世纪7O年代初DNA重组技术和淋巴细胞杂交瘤技术的发明和应用为标志,迄今已走过了30多年的发展历程。实践证明现代生物技术对解决人类面临的粮食、健康、环境和能源等重大问题方面开辟了无限广阔的前景,受到了各国政府和企业界的广泛关注,与微电子技术、新材料技术和新能源技术并列为影响未来国计民生的四大科学技术支柱,是2l世纪高新技术产业的先导。可以预测,生物技术的应用与发展将导致生产体系与经济结构的飞跃变化,甚至可能引发一次新的工业革命,对人类社会的生产、生活各方面必将产生全面而深刻的影响。 1 改革传统农业结构,解决食品短缺问题 现代生物技术在农业中最突出的应用是利用转基因技术,将目的基因导入动、植物体内,对家畜、家禽及农作物进行品种改良,从而获得高产、优质、抗病虫害的转基因动植物新品种,达到充分提高资源利用效率,降低生产成本的目的。经过长期不断的努力,现代农业生物技术已取得重大突破,不仅从根本上改变了传统农作物的培育和种植,也为农业生产带来了新一轮的革命,并将在解决目前人类所面临的粮食危机、环境恶化、资源匮乏、效益衰减等方面发挥巨大作用。 1.1 提高农产品的产量与质量农作物病虫害是造成农业产量下降的主要原因之一,因而利用转基因技术把抗病、抗虫基因导入农作物中,使之可避免或减少病虫害。近年来,抗黄杆菌的水稻、抗除草剂的大豆、抗病毒病的甜椒、抗腐能力强与耐贮性高的番茄等转基因植物开始进入市场,提高了产量,增加了效益;根据人类的需要,还可把特定基因导入植物体,可达到改良农产品品质的目的,如高含量必需氨基酸的马铃薯,高蛋白质含量的大豆等;此外还可利用生物技术破坏水果细胞壁纤维酶,保证猕猴桃、桃、西红柿等水果成熟但不变软而提高水果的保鲜度,便于水果的运输。从1996年到2o02年,转基因农作物在全球的种植面积从170万ha扩大到5810万ha,即增加35倍,显示了现代农业生物技术强大的生命

现代生物技术与应用

染色体工程技术 在小麦品质改良中的应用及社会意义 摘要:本文报告了染色体工程在小麦品质改良中的方法,在理论研究与育种实践上的应用。论述了染色体工程在小麦品质改良和生产实践中所体现出来的社会意义。 关键词:染色体工程,小麦,类型变化,实践 正文: 染色体操作(chromosome manipulation)是按设计有计划削减、添加和代换同种或异种染色体的方法和技术。也称为染色体操作。染色体工程一词,虽然在20世纪70年代初才提出。其实早在30年代,美国西尔斯(E.R.Sears)及其学生就已开始研究,但当时局限于小麦,定义为:在小麦中利用缺体或单体材料,对个别染色体或染色体片断进行替代或转移的工程谓之“染色体工程”。 植物染色体工程从50年代的兴起迄今约30余年的历史,但运用这一技术在改造 植物的遗传性方面却显示了它强大的力量,表现在创造崭新的遗传资源,培育突破性新 品种和合成新物种等方面取得的重大进展。 目前对基因操作的主要方法有:有性杂交、染色体代换、易位、添加、染色体显微切割和微克隆、PCR扩增等。 现代小麦育种十分注意栽培品种的类型变化,期望它们优质、高产、抗病、矮秆。我们知道,在小麦近缘种属中,存在着小麦栽培品种所没有的优质、抗病基因。在常规的杂交程序中,栽培品种与野生种之间,因染色体组不同,在多数情况下染色体不能配对,其基因很难进行重。细胞遗传学家已经研究出一套方法,将异种变异性应用于小麦育种实践。这些方法包括染色体附加、染色体代换、染色体易位等。用这些方法实现了小麦染色体附加、代换、易位和部分同源染色体间的重组。 (一)麦外源染色体的添加 普通小麦附加系的系统研究工作开始于1940年,07mara把3个不同的黑麦染色体分别附加到小麦中。1960年Evans~Jenkins得到了所有7个黑麦染色体的双体附加系。之后,Sears把小伞山羊草的染色体附加到小麦中;Joppa等(1978)用一种新方法得到了具有15对染色俸的硬粒小麦双单体(3D,4D,5D)附加系;Islam(1978)把6个大麦染色体分烈跗加到小麦中。有人还把顶芒山羊草和冰草的一些种的染色体附加到小麦中。

现代生物学与健康论文

现代生物学与健康 ——人体肥胖与饮食营养健康摘要:现如今随着社会经济的发展,人们生活水平的提高,每天的饮食也有了很大的改善,肥胖也已成为困扰大众的几大主要病症之一。人们在饮食方面也不太注重,只顾自己吃的是否合胃口或者是吃的是否“开心”,满足自己的时间观,而不去注重是否健康,是否对身体有好处,这很有可能导致肥胖。众所周知,肥胖对于人有百害而无一利,肥胖能引起人的许多疾病,而许多人的肥胖是由于饮食不科学或者食物中的营养摄入不合理造成的。鉴于学习了现代生物学与健康这门十分有意义的课程,我将浅谈一下人体肥胖与饮食营养健康的问题。 关键词:健康、营养、肥胖、膳食减肥 日常生活中,我们在吃着各种各样的食物。俗话说“病从口入”,也是说人们在饮食上如果不注意科学,吃错了也会导致疾病。“民以食为天”,而健康则是身体的最大本钱,这些无疑都牵动着我们的神经。所以,我们首先需要了解什么是“健康”;吃的营养才健康,那什么又是“营养”。 1.健康与营养的概述 1.1健康是指一个人在身体、精神和社会等方面都处于良好的状态。传统的健康观是“无病即健康”,现代人的健康观是整体健康,健康内容包括:躯体健康、心理健康、心灵健康、社会健康、智力健康、道德健康、环境健康等。健康是人的基本权利,是人生最宝贵的财富之一;健康是生活质量的基础;健康是人类自我觉醒的重要方面;健康是生命存在的最佳状态,有着丰富深刻的内涵。 据WHO(联合国世界卫生组织)1989年的定义是:在生理健康,心理健康,道德健康和社会适应良好四个方面健全。WHO制订的身体健康的初测十项标准:精力充沛,生活工作不疲劳;乐观积极,承担责任不挑剔;善于休闲,睡眠良好;适应各种环境,应变能力强;能抵御一般的感冒和传染病;体重适中,体型比例协调;视力良好,反应灵敏,眼睑不发炎;牙齿清洁,齿龈正常不出血;毛发有光泽,无头屑;皮肤,肌肉有弹性,步履轻松有力。 1.2营养素是健康之本,是健康的物质基础。营养学家对营养所作的解释是:食物中的营养素和其他物质间的相互作用与平衡对健康和疾病的关系,以及机体摄食、消化、吸收、转运、利用和排泄物质的过程。

现代生物技术论文

摘要通过对现代生物技术的介绍,针对不同的环境问题,应用不同的现代生物技术,给予解决的方法和实例,并对现代和未来的生物技术在环境保护中的应用作出了合理的分析和猜想,从而达到解决世界人类生活环境所面对的难题,比改善现阶段环境恶劣的发展趋势,让环境更适宜人类居住目的。 关键词生物技术环境保护应用前景

引言: 现代生物技术以分子生物学、细胞生物学、微生物学、免疫学、遗传学、生理学、系统生物学等学科为支撑,结合了化学、化工、计算机、微电子等学科,从而形成了一门多学科互相渗透的综合性学科。就其应用领域,可分为农业生物技术、医学生物技术、植物生物技术、动物生物技术、食品生物技术、环境生物技术等。通过应用现代生物技术中的基因工程、生物工程等技术来改善环境,最终用最小的成本达到最大的环境保护作用,现如今已经有了很大的发展,相信不远的将来一定能很好地解决环境保护问题。 现如今的生物技术已经突飞猛进,不再是从前的落后的生物技术,无论从硬件还是软件方面都有着从前无法比拟的优越条件,于是科学家也将现代的生物技术应用在各种领域,如生活、科研、农产、食品等,当然也少不了在环境保护中的应用,应用先到生物技术可以把不易降解和降解周期很慢的污染物进行快速降解,从而达到环境保护的作用。例如应用超级细菌将海洋中漂浮的石油进行快速降解等等。 什么是现代生物技术呢?广义上讲,生物技术是利用有机体、死细胞、活细胞以及细胞内含物,采用特殊的过程生产出特殊的产品应作到农业、医药以及环境修复治理中。现代生物技术是一个复杂的技术群。基因工程仅是现代生物技术中具有代表性的一种,它的特征是在分子水平上创造或改造生物类型和生物机能。此外,在染色体、细胞、组织、器官乃至生物个体水平上也可进行创造或改造生物类型和生物机能的工程,例如染色体工程、细胞工程、组织培养和器官培养、数量遗传工程等,这些,也属于现代生物技术的范畴。而为这些工程服务的一些新工艺体系,如现代发酵工程、酶工程、生物反应器工程等,同样被纳入了现代生物技术的系统。 刘芝在印度新德里召开的"无害环境生物技术应用国际合作会议"上,专家们评估了生物技术应用对环境和人类健康的影响,提出了利用生物技术预防、阻止和逆转环境恶化,加强自然资源的持续利用,保护环境和生态平衡的措施。专家们认为,利用生物技术治理环境污染具有巨大的潜力。 超级微生物显神威 近来,科学家发现,有些微生物,不仅能降解石油及其衍生物、金属离子、农药等工农业污染物,甚至连放射性核废料,极毒的化学物质都能降解。美国一家生化公司的科学家,培育出了能降解极毒化学物质多氯代联苯(PCB)的微生物。这种微生物能将这种工业废弃物中常见的毒物分解为水、二氧化碳和无害的单细胞物质。另一组科学家培养出能吞食有毒金属的微生物。为了培养这种微生物,科学家先把他们放在汞、铝等有毒重金属的附近,然后将最健壮的存活微生物收集起来,再从这些微生物中取出能分解有毒金属的基因,植入到另一具有其他降解能力的微生物中,便得到具有多种降解能力的"超级微生物"。科学家还利用基因工程技术,将浮游生物的基因移植到能吞食石油的微生物中去,使这种微生物具有浮游本领,在海洋水面上游弋,专门吞食石油,称为"海上拖布" 微生物脱硫治理空气污染 燃煤和燃油产生的二氧化硫等硫化物是大气污染的元凶,又是产生硫雨的主要原因。据北京环保局计算,北京市仅燃煤每年排入大气的二氧化硫就达26吨

现代生物学技术

现代生物学技术 1:2010年诺贝尔生理学或医学奖:试管婴儿 2:人造生命“人造儿”菌落图 细胞工程与胚胎移植 一:细胞工程概述 1:细胞工程:以细胞为对象,应用生命理论科学理论,借助工程学原理和技术。 研究对象:动植物细胞(原生质体)。细胞器、染色体、细胞核、胚胎 2:生物工程:以生命科学为基础,用生物体系和工程学原理。生产生物制品和制造新物种的一种综合技术。 第一代生物工程:4000多年前—20世纪30年代 第二代生物工程:30年代—二战期间 微生物工程→生物化学工程→酶工程→基因工程→细胞工程→蛋白质工程(第二代基因工程)→组织工程→代谢工程 3:细胞工程发展历史 ①探索期:19世纪末—20世纪中期 动物:1885年卢克斯“组织培养”1907【美】哈林森 植物:1937年【荷兰】温特植物组织培养 ②诞生期:20世纪70年代 1956—1959年斯沃尔三倍体:三棘刺鱼 1959年张明觉试管兔 1962年仓鼠肾细胞悬浮培养 1965年哈里斯·沃特金斯灭活病毒诱导动物细胞融合 20世纪70年代高国楠聚乙二醇促使植物原生质体融合 1960年兰花无性繁殖 1972年【美】卡尔森NaNO3诱导烟草原生质体融合 4:快速发展时期:20世纪70年代——至今 1973年古各树里。植物活性物质生产新途径 1975年科勒·米尔斯坦单克隆抗体 1977年首例试管婴儿 1981年埃文斯·科夫曼分离小鼠胚胎干细胞 A:动植物人工繁殖技术:植物组织培养,人工育种,试管动物,克隆动物 B:细胞充足与新品种培育技术{细胞水平、细胞器水平} C:生物制品生产技术 D:细胞组织工程技术 二、动物细胞工程 1.动物细胞和组织培养 正常哺乳动物细胞四大生物学特征:锚地依赖性 血清依赖性生长因子 接触依赖性 形态依赖性细胞扁平状 2.细胞融合

高中生物选修三《现代生物科技专题》经典知识点

高中生物 记忆材料 《现代生物科技专题》 经典知识点 班级: 姓名: 诸城繁华中学

★考点1、(Ⅰ)基因工程的诞生——基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。 ★考点2、(Ⅱ)基因工程的原理及技术 原理:基因重组 技术:(一)基因工程的基本工具 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)来源:主要是从原核生物中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。 (3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。 2.“分子缝合针”——DNA连接酶 (1)两种DNA连接酶(E·coliDNA连接酶和T4DNA连接酶)的比较: ①相同点:都缝合磷酸二酯键。 ②区别:E·coliDNA连接酶来源于T4噬菌体,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。 (2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 3.“分子运输车”——载体 (1)载体具备的条件:①能在受体细胞中复制并稳定保存。②具有一至多个限制酶切点,供外源DNA片段插入。③具有标记基因,供重组DNA 的鉴定和选择。(2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。 (3)其它载体:噬菌体的衍生物、动植物病毒 (二)基因工程的基本操作程序 第一步:目的基因的获取 1.目的基因是指:编码蛋白质的结构基因。 2.原核基因采取直接分离获得,真核基因是人工合成。 直接分离基因最常用的方法是“鸟枪法”,又叫“散弹射击法”。具体做法是:用限制酶将供体细胞中的DNA切成许多片段,将这些片段分别载入运载体,然后通过运载体分别转入不同的受体细胞,让供体细胞所提供的DNA(外源DNA)的所有片段分别在各个受体细胞中大量复制(在遗传学中叫做扩增),从中找出含有目的基因的细胞,再用一定的方法把带有目的基因的DNA片段分离出来。如许多抗虫、抗病毒的基因都可以用上述方法获得。用“鸟枪法”获取目的基因的缺点是工作量大,具有一定的盲目性。 人工合成目的基因的常用方法有反转录法(以目的基因转录成的信使RNA为模板,反转录成互补的单链DNA,然后在酶的作用下合成双链DNA,从而获得所需要的基因)和化学合成法(根据已知的蛋白质的氨基酸序列,推测出相应的信使RNA序列,然后按照碱基互补配对原则,推测出它的结构基因的核苷酸序列,再通过化学的方法,以单核苷酸为原料合成目的基因。如人的血红蛋白基因、胰岛素基因等就可以通过人工合成基因的方法获得) 3.PCR技术扩增目的基因 (1)原理:DNA双链复制 (2)过程:第一步:加热至90~95℃DNA解链;第二步:冷却到55~60℃,引物结合到互补DNA链;第三步:加热至70~75℃,热稳定DNA 聚合酶从引物起始互补链的合成。 第二步:基因表达载体的构建——是基因工程的核心

第十六章 基因表达的调节控制以及现代生物学技术

第十六章基因表达的调节控制以及现代生物学技术 一:填空题 1.正调控和负调控是基因表达的两种最基本的调节形式,其中原核细胞常用________________调控,而真核细胞常用________________调控模式。 2.操纵子由________________、________________和________________三种成分组成。 3.与阻遏蛋白结合的DNA序列通常被称为________________。 4.β-半乳糖甘酶基因的表达受到________________和________________两种机制的调节。 5.葡萄糖效应是指________________。 6.ticRNA是指________________;micRNA是指________________。 7.大肠杆菌细胞内参与His合成有关酶的基因表达受到________________和________________两种机制的调节。 8.________________或________________可诱导原核细胞出现严谨反应。 9.________________和________________被称为魔斑分子,它作为________________酶的别构效应物调节此酶的活性。 10.鼠伤寒沙门氏菌两种鞭毛蛋白表达之间的转换是通过________________机制实现的。 11.哺乳动物细胞对氨基蝶呤产生抗性,是因为细胞内的DHFR基因经历了________________。 12.在胚系细胞之中,抗体重链的基因可分为________________、________________、________________和 ________________四个区域。 13.在基因表达的调控之中,________________和________________与________________和________________之间的相互作用十分重要。 14.女性两条X染色体只有一条X染色体具有转录的活性是因为________________和________________。 15.乳糖操纵子的天然诱导物是________________,实验室里常用________________作为乳糖操纵子的安慰诱导物诱导β-半乳糖苷酶的产生。 16.基因扩增或基因放大是指________________,它是通过局部DNA的来实现,________________扩增可导致细胞癌变。 17.SPO1噬菌体通过________________级联调节早、中和晚期基因在不同时间内的表达。 18.存在于反式作用因子上负责激活基因转录的结构花色通常有________________、________________和 ________________三种形式。 19.真核细胞核基质的主要成分是________________。 20.组蛋白可经历________________、________________和________________修饰而调节基因的表达。 21.原核细胞DNA的甲基化位点主要是在________________序列上,真核细胞核DNA的甲基化位点则主要是在________________序列上。 22.反式作用因子通常通过________________、________________和________________键与相应的顺式作用因子结合。 23.PCR即是________________。 24.人类基因组计划的主要内容是________________。 25.Southern blotting、Northern blotting和Western blotting分别被用来检测________________、________________和________________。 26.________________是应用于蛋白质工程中的最主要的手段。 27.RFLP即是________________。 28.噬菌体展示(Phage display)技术中常用的噬菌体是________________。 29.基因工程需要的最常用的工具酶包括________________、________________和________________等。 30.基因克隆的载体通常是由________________、________________和________________改造而来。 31.可使用________________和________________方法获得原核细胞的启动子序列。 32.体外转录通常需要使用________________、________________或________________RNA聚合酶。 33.脉冲场凝胶电泳(Pulsed field gel electrophoresis)被用来分离________________。 34.第一个使用体细胞克隆出来的哺乳动物是________________。 35.一种基因的启动子序列与启动子的一致序列越相近,该基因的转录效率就越________________。 36.基因敲除(Gene knockout)即是________________,它是研究________________的好方法。 二:是非题 1.[ ]原核细胞与真核细胞的基因表达调节的主要发生在转录水平上。 2.[ ]衰减子这种调控模式不可能出现在真核细胞。 3.[ ]操纵子结构是原核细胞特有的。 4.[ ]某些蛋白质既可以作为阻遏蛋白又可以作为激活蛋白参与基因表达的调控。 5.[ ]转录因子都具有负责与DNA结合的结构花色。 6.[ ]某些反式作用因子通过亮氨酸拉链这种结构花色与DNA结合。 7.[ ]真核细胞的基因转录也具有抗终止作用。 8.[ ]真核细胞核的三类基因的转录都受到增强子的调节。 9.[ ]某一个基因的转录活性越强,则该基因所处的DNA序列对Ⅰ就越敏感。

现代生物技术在农业中的应用与发展

浅谈现代生物技术在农业中的应用 摘要:生物技术的投入,使得现代农业生产起到了良好的效果,增加了作物和家畜的产量和质量。本文主要介绍了生物技术在农业生产中的应用现状,通过对于现状研究,预示了生物技术在未来的农业生产中,必将会得到更加深入应用的发展趋势。 关键词:生物技术;农业;生产;应用 随着生物技术在农业中的不断应用与革新,其已经成为21世纪具有潜力的产业之一。其发展之迅速,趋势之良好,并且在极大程度上影响了传统农业技术,使得现代农业技术走向了一个新的高度。在现代农业中,优质、高产、绿色环保是其发展的重要课题。目前,世界各国已经开始将生物技术视为高新技术,这是由于其可以帮助人们解决食品短缺、环境污染和经济建设等问题,有助于国家提升自身的综合国力,增强经济实力。 然而,由于人类社会、经济的不断发展,以及为了发展而进行的过度环境开发利用等行为,其给生存环境带来了极大的污染和破坏。众所周知,地球每小时都可能有一个物种灭绝,并且我们的地球已经面临着生态失衡、资源枯竭等严重现象。这些现象给我们走可持续发展道路带来了极大的阻碍,但生物技术的出现却给人类的未来送来了一丝曙光。 一、生物技术 生物技术(biotechnology)亦可称“生物工程”或“生物工程技术”,其是指利用现代生命科学作为基础,结合其它学科的科学原理,采用最先进的技术手段,并按照预先的设计,达到改造生物体或加工生物原料的目的,从而生产出所需的特定生物产品或达到某些预定的目的。生物技术主要包括传统生物技术、发酵技术和现代生物技术。其中,现代生物技术则又是在传统生物技术上发展起来的,但其又和传统生物技术有着本质上的区别。所以,生物技术是一门新兴的、具有综合性的学科。 二、农业生产中的现代生物技术应用

生物技术与人类健康论文

浅谈基因工程与人类健康 王招弟 经济管理学院 14会计4班 70 摘要:基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程在世界围发展迅速,渗透科学各个领域。其中包括基因制药、转基因技术的发展及应用等,回顾生物技术的每一步发展都为人类的健康做出了巨大的贡献。 关键词:基因工程、基因制药、转基因技术、人类健康 20世纪80年代以来,运用基因工程技术已成功生产出白细胞介素-2、尿激酶、乙型肝炎苗等,临床上发挥了重要作用。目前人类已知至少五千多种疾病的发生都直接或间接与基因有关,如肿瘤、高血压、糖尿病、肥胖、艾滋病,如何根治这些疾病还需人类基因组的进一步研究。2003年4月中国、美国、英国、日本、法国、德国六国政府首脑联合发表了《六国政府首脑关于完成人类基因组序列图的联合声明》宣布:国际人类基因组测序协作组已经解读了人类生命密码书中所有章节的秘密,完成了人类基因组的“完成图”,并且全世界都可以不受限制地免费获取这些信息。日前美国奎格?文特研究所和多伦多儿童医院以及加州大学的研究者第一次向世界公布了个人的二倍体基因组序列。 有关基因工程与人类健康的密切联系,我将从以下几个方面展开叙述。一、基因制药 科学家预言,下个世纪的药物主要是基因药物。在庞大的“人类基因组”这台大戏中,基因药物扮演了一个重要角色。尤其是针对一些遗传疾病与疑难顽症,基因药物把传统疗法上升到了基因疗法。 随着基因工程的发展,将相应的人体遗传物质(基因)转移到不同的微生物中,制造出如胰岛素、干扰素、生长激素等药物,已成现实。科学家在牛羊中植入人类基因,使这些动物的乳汁含有人类血液的主要成分,如特有的蛋白质、使血液凝结的成分和抗体等等。科学家还把基因切开、粘上,从一种植物转移到另一种植物,从一种动物转移到另一种动物,把切下的基因植入任何生命细胞中,从而获

选修3现代生物科技专题知识点

选修3《现代生物科技专题》知识点总结 专题1 基因工程 基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。 一、基因工程的基本工具 1.“分子手术刀”——限制性核酸切酶(限制酶) (1)来源:主要是从原核生物中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。 (3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。 2.“分子缝合针”——DNA连接酶 (1)两种DNA连接酶(E·coliDNA连接酶和T4-DNA连接酶)的比较: ①相同点:都缝合磷酸二酯键。 ②区别:E·coliDNA连接酶来源于大肠杆菌,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接 起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。 (2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。 3.“分子运输车”——运载体 (1)运载体具备的条件:①能在受体细胞中复制并稳定保存。 ②具有一至多个限制酶切点,供外源DNA片段插入。 ③具有标记基因,供重组DNA的鉴定和选择。 (2)最常用的运载体是质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。 (3)其它运载体:λ噬菌体的衍生物、动植物病毒 二、基因工程的基本操作程序 第一步:目的基因的获取 1.目的基因是指:编码蛋白质的结构基因。 2.原核基因采取直接分离获得,真核基因是人工合成。人工合成目的基因的常用方法有反转录法_和化学合成 法_。 3.PCR技术扩增目的基因 (1)PCR的含义:是一项在生物体外复制特定DNA片段的核酸合成技术。 (2)目的:获取大量的目的基因 (3)原理:DNA双链复制 (4)过程:第一步:加热至90~95℃,DNA解链为单链; 第二步:冷却到55~60℃,引物与两条单链DNA结合; 第三步:加热至70~75℃,TaqDNA聚合酶从引物起始进行互补链的合成。 (5)特点:指数(2n)形式扩增 第二步:基因表达载体的构建 1.目的:使目的基因在受体细胞中稳定存在,并且可以遗传至下一代,使目的基因能够表达和发挥作用。

现代生物科学技术专题复习题(细胞工程)

现代生物科学技术专题复习题(细胞工程)2012、7 1、(2011 A .②和③过程会发生减数分裂过程 B .①阶段需生长素而③阶段需细胞分裂素 C .①阶段有细胞增殖但无细胞分化 D .此兰花的花药离体培养所得植株为二倍体 2、(2011西城)19.下列关于克隆的说法不正确的是 A .由一个受精卵发育为一个完整的个体叫做克隆 B .基因克隆是指某目的基因复制的过程 C .动物体细胞克隆要通过细胞核移植形成重组细胞 D .动物克隆的技术基础是动物细胞的培养 3、(2011海淀)26.下面的简式表示植物组织培养的大致过程,据此判断不正确的是 A .若①是来自不同植物体细胞融合的杂种细胞,则④可能出现不同植物的遗传特性 B .若①是花粉,则④是单倍体植株,经染色体加倍后可得到稳定遗传的品种 C .若①是人参细胞,对②进行扩大培养可提高细胞产物人参皂甙的产量 D .若①是具有杂种优势的农作物细胞,则利用③进行繁育会发生性状分离 4、(2011海淀)27.下列实例与所利用的技术或原理不相符合的是 A .转基因抗虫棉的培育需要利用植物组织培养技术 B .植物组织培养过程依据的原理是植物细胞具有全能性 C .原生质体融合和动物细胞融合都利用了细胞膜的选择透过性 D .植物愈伤组织的形成和杂交瘤细胞的培养都与细胞分裂有关 5、(2011朝阳期末)26.下列各项不属于细胞工程在实际中应用的是: A .培育工程菌使之能产生人生长激素 B .将甲植物细胞内的叶绿体移入乙植物细胞内 C .将番茄的原生质体和马铃薯的原生质体融合,培育出“番茄—马铃薯” D .能够产生抗体的B 细胞与小鼠骨髓瘤细胞融合制备单克隆抗体 6、(2011朝阳期末)39.下列有关克隆的叙述,错误的是 A .动物难以克隆的根本原因是基因组中的基因不完整 B .细胞克隆可用于从普通细胞系中分离出缺乏特殊基因的突变细胞系 C .“多利”绵羊的性状与供核绵羊不完全相同 D .克隆动物的核心技术手段是核移植,属于无性生殖 7、(20XX 年江苏卷)14.关于现代生物技术应用的叙述,错误的是 A .蛋白质工程可合成自然界中不存在的蛋白质 B .体细胞杂交技术可用于克隆动物和制备单克隆抗体 C .植物组织培养技术可用于植物茎尖脱毒 D .动物细胞培养技术可用于转基因动物的培育 8、(2011石景山期末)40.利用细胞工程方法,以SARS 病毒蛋白质外壳为抗原制备出单克隆抗体。下列叙述正确的是 A .用纯化的蛋白质外壳反复注射到小鼠体内,即可获得单克隆抗体 B .体外培养单个效应B 细胞,即可获得针对SARS 病毒的单克隆抗体 C .将等量效应B 细胞和骨髓瘤细胞混合,诱导融合后的细胞均为杂交瘤细胞 D .给小鼠注射抗原,是为了获得能产生相应抗体的效应B 细胞 9、(2011丰台期末)49.下列关于单克隆抗体的叙述,不正确的是 A .小鼠骨髓瘤细胞和经免疫的 B 淋巴细胞融合可制备单克隆抗体 B .动物细胞融合不同于原生质体融合的诱导因素是灭活病毒 C .单克隆抗体比血清抗体的特异性强、纯度高 D .单克隆抗体技术的原理是细胞全能性 10、(20XX 年石景山期末)我国西北一些地区年降雨量小于450mm ,只适宜种植灌木和草,但却被硬性规定种植属于乔木的杨树,结果防护林成为残败的“灰色长城”。其失败的原因主要是违背了 A .物种多样性原理 B .协调与平衡原理 C .系统整体性原理 D .物质循环再生原理 11、(20XX 年崇文区期末)城市生活垃圾要做到分类、回收、利用,实现废物资源化利用所遵循的生态工程原理是 A .物种多样性原理 B .整体性原理 C .物质循环再生原理 D .协调与平衡原理

现代生物技术的发展与前景

在当今世界各国纷纷建立以基因为核心的知识产权保护,抢占21世纪国际生物技术制高点的新形势下,参加北京“国际周”现代农业高层论坛的专家呼吁,要密切关注现代农业生物技术领域日益显现的研究成果商品化、研究方式规模化和基因资源争夺白热化的趋势,在即将到来的生物世纪里,真正占据自己的位置。 农业生物技术的主要研究内容包括:增强农作物以及畜禽鱼的抗性、品质改良、提高产量和生产具有特殊用途的物质等。其中以转基因作物的研究和运用最为重要,发展最快。根据统计资料,到2000年,全世界转基因作物推广面积达4420万公顷,比1996年增长了25倍;种植转基因作物的国家从1996年的6个增加到2000年的13个。这其中美国的转基因作物种植面积最广,达到了3030万公顷,占68%;其次为阿根廷,1000万公顷,占23%;加拿大300万公顷,占7%;我国为50万公顷,占1%。根据有关专家的看法,现代农业生物技术的最新发展趋势表现为:——研究成果商品化产业化进程加速。目前,农业生物技术作为一项高新技术产业在发达国家业已形成,并处于一个高速发展时期。有关专家预测,本世纪生物技术产品在国际贸易中的份额将达到10%以上,而现代农业生物技术又将占相当的比重。世界银行下属机构预测世界范围内转基因作物产业的交易额为2000年20亿美元,2005年60亿美元,2010年200亿美元;国际农业生物技术应

用机构(ISAAA)的预测则分别为30亿美元、80亿美元和280亿美元。 ——研究方式集约化、规模化明显。在政府以及公共机构对现代农业生物技术进行投资研究的同时,众多私有企业也开始注意到这一领域将是继计算机和网络技术之后的又一个潜力巨大的经济增长点,私人公司已逐步成为农业生物技术的研究主体。以美国为例,民营机构1992年对这一领域的投资为5.95亿美元,而1999年则达到15亿美元。与此同时,世界范围内出现了生物技术企业领域的兼并和收购狂潮,并购金额从1997年的12.37亿美元陡然升至1999年的138亿美元。一些资产过百亿美元的巨型跨国公司由此形成,过去分散的研究基地也随之向集中化规模化发展。 据业内人士分析,促成公司并购的原因,一方面是为合理利用资源、降低生产成本、优化人员组合,而更重要的原因,则是因为现代农业生物技术产业是一个高技术、高投入、高风险、长周期的产业,小公司在资金、技术、以及抗风险能力上均难以独立对农业生物技术产品进行研发和推广。只有强强联手的大型现代农业生物技术企业才能有效占领市场,与其它企业抗衡。 ——基因资源争夺呈白热化。在商业利益驱使下,发达国家各主要生物技术公司对生物资源及其知识产权展开了激烈争夺,其核心就是对基因的争夺。谁掌握了基因,谁就掌握了生物技术的制高点,就掌握了未来竞争的主动权。有专家称,转基因植物技术知识产权很可能就是未来国际贸易中市场准入、贸易壁垒问题产生的主要原因。

现代生物技术试题

2011 现代生物技术期末试卷 一填空题 1 在基因工程实践中,常用的载体有(质粒),(噬菌体)和(腺病毒载体) 质粒是细菌染色体外能够自主复制的环形双链的DNA分子。质粒DNA不仅能在细菌中复制,并且在添加真核复制信号和启动子后,可以构建出能在原核和真核细胞中均可复制的穿梭质粒,并在真核细胞中表达, 载体的特点:1、至少有一个复制起点,因而至少可在一种生物体中自主复制。2、至少应有一个克隆位点,以供外源DNA插入。3、至少应有一个遗传标记基因,以指示载体或重组DNA分子是否进入宿主细胞。4、具有较小的分子量和较高的拷贝数。 2 (限制性内切酶)酶和(DNA连接酶)酶的发现和应用,才真正使DNA分子的体外切割与连接成为可能。 3 根据质粒复制控制类型,可将质粒分为(严紧型质粒)和(松弛型)质粒。 根据载体功能划分:1). 普通型载体,2)、表达型载体. 表达外源基因以产生大量外源基因产物用于构建cDNA 文库 4 1993年美国科学家(Kary Mullis )因发明PCR技术而获得诺贝尔奖。 5 一切生物生命活动的结构和功能单位是(细胞),其可分为()和()两大类 细胞分裂的方式:无丝:最简单的细胞分裂方式,只出现在低等生物或动植物的器官和组织内有丝:是细胞分裂的主要形式,其实质是染色体经过复制变成双份,再平均分配到两个子细胞中,从而保持遗传物质的稳定传递.有丝分裂过程包括间期,前期,中期,后期和末期. 细胞的分裂是通过细胞周期来实现的。S期,DNA合成的时期. 从S 期到有丝分裂期(M期)为G2期从M期结束到S期开始之前称为G1期. 6 人工种子由(种皮)、(胚乳)和(胚)三部分构成。 7动物细胞常用的培养方法有(贴壁培养)、(悬浮培养)和(固定化培养)三种。8酶的命名方法有(系统命名)和(习惯命名)两种。 酶是生物体活细胞产生的、具有催化反应功能的蛋白质生物体内的各种物质代谢、能量传递、信息转录、神经传导、免疫调节、细胞衰老及生长发育等等,都离不开酶的参与。 作用:1、执行某种具体的生理功能;2、担负保卫清除功能;3、协同激素起生物信号放大作用;4、催化和调控代谢反应 所有的酶都由生物体合成,几乎所有生物都能合成产生酶,酶在生物体内的合成总是受其相应合成调节机制控制,以保证机体最有效、经济地将体内合成原料与能量用于自身生命最需要的酶等物质 分布:它们或定位于某亚细胞结构上处于“溶解”状态;不同生物体细胞内酶的数量和种类不同;同一生物体内的不同部位或不同生长发育阶段的细胞内酶的数量、种类不同; 微生物酶来说,合成后分泌有两种情况:胞外酶(分泌型酶)是指可以穿过质膜的任何酶,大多数是水解酶,大多数工业用酶是胞外酶。胞内酶是指合成后仍然在细胞内发挥作用的酶。 酶系统分类命名的基础是酶的专一性:

现代生物科技专题

《现代生物科技专题》中的技术流程归纳与试题分析(1)选修模块3《现代生物科技专题》是以技术操作为核心的,但技术的依据是科学的原理,技术的最终目的是为了应用,以服务于社会。因此,现代生物科技专题包含的要素就是科学(原理)、技术(操作)与社会(应用)。在复习中,牢固掌握技术的操作流程,明确技术的原理,了解技术的应用或应用前景,就成为复习本模块的三大要素。本刊将分期重点归纳本模块的主要生物工程技术,并择相关试题作分析,供同学们复习时参考。 一.基因工程 基因工程是按照人们的意愿,在DNA分子水平上进行设计,通过体外DNA 重组与转基因等技术,赋予生物以新的遗传特性,创造出新的生物类型和生物产品的过程。在选修模块3中,基因工程是最重要的生物工程技术之一,也是高考中考查频度最高的内容之一。[基因工程的操作流程图]

[例1]基因工程是在现代生物学、化学和工程学基础上建立和发展起来的,并有赖于微生物学理论和技术的发展运用。基因工程基本操作流程如下图,请据图分析回答: (1)图中A是;在基因工程中,需要在酶的作用下才能完成剪接过程。 (2)在下图基因工程的操作过程中,遵循碱基互补配对原则的步骤有。(用图中序号表示) (3)从分子水平分析不同种生物之间的基因移植成功的主要原因 是,这也说明了不同生物共用一套。 (4)研究中发现,番茄体内的蛋白酶抑制剂对害虫的消化酶有抑制作用,导致害虫无法消化食物而被杀死,人们成功地将番茄的蛋白酶抑制剂基因导入玉米体内,玉米获得了与番茄相似的抗虫性状,玉米这种变异的来源 是。 分析:(1)图示转基因操作中,首先是将A与运载体拼接为重组DNA,然后导入受体细胞的。在拼接的过程中,需要限制性内切酶切割目的基因与运载体,还需要通过DNA连接酶将目的基因与运载体切点相邻的脱氧核苷酸缝合起来。 (2)在转基因过程中,过程②拼接形成重组DNA时,由于限制性内切酶切割后的DNA与运载体通常会留下粘性末端,在DNA连接酶进行“缝合”前,

现代生物医学技术前沿

生物分子间相互作用分析系统(BIAcore) 1.Biomolecular Interaction Analysis core 生物分子相互作用分析系统 BIA技术是基于表面等离子共振(SPR)的物理光学现象的新型生物传感分析技术。 不必使用荧光标记和同位素标记,从而保持了生物分子的天然活性 2.工作原理: 实验时先将一种生物分子固定在传感器芯片表面,将与之相互作用的分子溶于溶液中,流过芯片表面。检测器能跟踪检测溶液中的分子与芯片表面的分子结合、解离整个过程的变化。 传感器芯片:传感器芯片是实时信号传导的载体芯片,是在玻璃片上覆盖了一层金膜,在金膜的表面连有不同的多聚物用于固定不同性质的生物分子。每个芯片表面有4个通道(FC),可以独立做4个不同的实验,为了满足分析各种生物体系的要求,专门设计了多种传感器芯片。每一种芯片都具有良好的品质能提供:稳定的基线,高灵敏度,广泛的再生方法,反复使用性和特别好的重现性。 液体传送系统:微液流盘是一个液体传送系统,通过软件的控制自动地传送一定体积的样品至传感器芯片表面。通过对管道内微型气阀的控制,形成各种液体流动回路,将样品或缓冲液送到传感片表面的不同通道。甚至自动进行样品的回收。 SPR光学原理:当入射光以临界角入射到两种不同介质的界面时将产生全反射,由于在介质表面镀上一层金属薄膜后,入射光可引起金属中自由电子的共振,(从而导致反射光角度减弱,使反射光完全消失的角度称作共振角)。共振角会随金属薄膜表面通过的液相的折射率的改变而改变,折射率的变化(RU)与金属表面的生物大分子质量成正比 3.应用:测定分子复合物的生成和解离的速度 共聚焦激光显微镜的原理与应用 理论: 共聚焦激光扫描荧光显微镜:是以激光作为光源、采用逐点扫描及共轭聚焦技术,能对样本进行断层扫描,以获得高分辨率焦平面光学图像的荧光显微镜系统. 基本原理:高压汞灯(滤镜分光),紫外、蓝、绿(激发),被荧光探针染色的生物样本(光学成像),被标记结构的荧光图像。 优势: 1、由于采用了逐点扫描及共轭聚焦技术,激光扫描共聚焦荧光显微镜采集的样本焦平面荧光图像远比普通荧光显微镜获得的样本全层图像分辨率高 2、由于激光的穿透性强,共聚焦荧光显微镜可对样本进行连续断层扫描而获得序列光学切片,可实现样本结构的三维重建 3、由于激光的单色性好,对于多重标记的样本,激光扫描共聚焦荧光显微镜区分不同颜色标记物的能力较普通荧光显微镜强 4、由于激光扫描共聚焦荧光显微镜可对厚样本进行光学切片,可用振荡切片机直接对新鲜或固定样本切厚片(50~100 m),避免了石蜡包埋、冰冻等传统切片方法对细胞结构和抗原性的破坏,并可实现活组织检测。 实验: 固定的目的是使构成组织细胞成分的蛋白等物质不溶于水和有机溶剂,并迅速使组织细胞中各种酶降解、失活,防止组织自溶和抗原弥散,保持组织细胞的完整性和所要检测物质的抗原性。 固定方法:侵入法,灌注法 切片方法:冰冻切片,石蜡切片,振动切片

相关主题
文本预览
相关文档 最新文档