当前位置:文档之家› 板式换热器的换热计算方法Word版

板式换热器的换热计算方法Word版

板式换热器的换热计算方法Word版
板式换热器的换热计算方法Word版

板式换热器的计算方法

板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。

以下五个参数在板式换热器的选型计算中是必须的:

?总传热量(单位:kW).

?一次侧、二次侧的进出口温度

?一次侧、二次侧的允许压力降

?最高工作温度

?最大工作压力

如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。

温度

T1 = 热侧进口温度

T2 = 热侧出口温度

t1 = 冷侧进口温度

t2= 冷侧出口温度

热负荷

热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为:

(热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。

(1)无相变化传热过程

式中

Q----冷流体吸收或热流体放出的热流量,W;

m h,m c-----热、冷流体的质量流量,kg/s;

C ph,C pc------热、冷流体的比定压热容,kJ/(kg·K);

T1,t1 ------热、冷流体的进口温度,K;

T2,t2------热、冷流体的出口温度,K。

(2)有相变化传热过程

两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为:

一侧有相变化

两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程

式中

r,r1,r2--------物流相变热,J/kg;

D,D1,D2--------相变物流量,kg/s。

对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。

对数平均温差

(LMTD)

对数平均温差是换热器传热的动力,对数平均温差的大小直接关系到换热器传热难易程度

.在某些特殊情况下无法计算对数平均温差,此时用算术平均温差代替对数平均温差,介质在逆流情况和在并流情况下的对数平均温差的计算方式是不同的。在一些特殊情况下,用算术平均温差代替对数平均温差。

逆流时:并流时:

热长(F)

热长和一侧的温度差和对数平均温差相关联。 F = dt/LMTD

以下四个介质的物理性质影响的传热

密度、粘度、比热容、导热系数

总传热系数

总传热系数是用来衡量换热器传热阻力的一个参数。传热阻力主要是由传热板片材料和厚度、污垢和流体本身等因素构成。单位:W/m2 ℃ or kcal/h,m2 ℃.

压力降

压力降直接影响到板式换热器的大小,如果有较大的允许压力降,则可能减少换热器的成本,但会损失泵的功率,增加运行费用。一般情况下,在水水换热情况下,允许压力降一般在20-100KPa是可以解接受的。

污垢系数

和管壳式换热器相比,板式换热器中水的流动是处于高湍流状态,同一种介质的相对于板式换热器的污垢系数要小的多。在无法确定水的污垢系数的情况下,在计算时可以保留10%的富裕量。

计算方法

热负荷可以用下式表示:

Q = m · cp · dt

Q = k · A · LMTD

Q = 热负荷 (kW)

m = 质量流速 (kg/s)

cp = 比热 (kJ/kg ℃)

dt = 介质的进出口温度差 (℃)

k = 总传热系数 (W/m2 ℃)

A = 传热面积 (m2)

LMTD = 对数平均温差

总的传热系数用下式计算:

其中:

k=总传热系数(W/m2 ℃)

α1 = 一次测的换热系数(W/m2 ℃)

α2 = 一次测的换热系数(W/m2 ℃)

δ=传热板片的厚度(m)

λ=板片的导热系数 (W/m ℃)

R1、R2分别是两侧的污垢系数 (m2 ℃/W)

α1、α2可以用努赛尔准则式求得。

传热效率和传热单元数法

在传热计算中,传热速率方程和热流量衡算式将换热器和换热物流的各参数关联起来。当已

知工艺物流的流量、进、出温度时,可根据前面介绍的方法,计算平均传热温差△

t m及热流量Q,从而求得所需的传热面积A,此类问题即前面提及的设计型计算问题。

然而,当给定两物流的流量、进口温度以及传热面积、传热系数K时,却难以采取解析方法直接确定两流体的出口温度。往往需采用试差方法求解。此类问题即前面所提及的操作

型计算问题。对此,若采用1955年由凯斯和伦敦导出的传热效率及传热单元数法,则能避

免试差而方便地求得其解。

传热效率传热单元数

假设冷、热两流体在一传热面为无穷大的间壁换热器内进行逆流

换热,其结果必然会有一端达到平衡,或是热流体出口温度降到冷流

体的入口温度;或是冷流体的出口温度升到热流体的入口温度,如图

中(b)及(c)所示。然而究竟哪一侧流体能获得最大的温度变化

(T1-t1),这将取决于两流体热容量流率(mC

p)的相对大小。由热流量衡算式得:

可见,只有热容量流率相对小的流体才有可能获得较大的温度变

化,将该流体的热容量流率以(mC p)min表示,而相对大的热容量流率

表示为(mC p)max。

(a)传热实际情况

在换热器中,取微元传热面积,由热流量衡算和传热

速率方程可得:

对于热流体:

为传热单元数

取为常数,则有

对于冷流体:

多个换热器串联

传热单元数物理意义:

全部温差变化相当于多少平均,NTU数值上表示

单位传热推动力引起的温度变化;表明了换热器传热能力

的强弱。

(b)冷流体C pc m c相对小的理论极

限情况(c)热流体C pc m c相对小的理论极

限情况

将换热器实际热流量Q与其无限大传热面积时的最大可能传热量Qmax之比,称为换热器的传热效率ε。

逆流

当较小时

当较小时

并流

其温度变化最大的依然是热容量流率较小的流体,最大可能的传热温差仍为T1-t1。故具有相同的传热效率定义式。传热效率与传热单元数的关系

换热器中传热效率与传热单元数的关系可根据热流量衡

算及传热速率方程导出。

热容量流率比

整理

不同流型,不同结构,则关系不同。

在传热单元数相同时,逆流时换热器的传热效率总是大于

并流时。

已知R和NTU,可求得,进而求和,可避免试差

计算

(注:可编辑下载,若有不当之处,请指正,谢谢!)

板式换热器的换热计算方法Word版

板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: ?总传热量(单位:kW). ?一次侧、二次侧的进出口温度 ?一次侧、二次侧的允许压力降 ?最高工作温度 ?最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。

(1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; m h,m c-----热、冷流体的质量流量,kg/s; C ph,C pc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。

换热器计算公式与比热容概要

换热器计算公式与比热容 5 术语和定义 5.1 热侧 废气通道,又称气侧。 5.2 冷侧 冷却液通道,又称水侧。 5.3 气阻 气侧压力降,又称气侧压差。 5.4 水阻 水侧压力降,又称水侧压差。 5.5 换热面积A h 热侧总表面积,单位m2。 5.6 热侧通道面积S h 热侧总横截面积,单位m2。 5.7 放热量Q h 热侧空气放热量,指EGR冷却器稳定工作状态下,热侧空气所放出的热量,单位为kW。其计算公式如下: Q h=G h×Cp h(t hi-t ho)/1000………………………………………………(5-1)式中: G h——空气质量流量,kg/s; Cp h——增压空气比热,kJ/kg℃; t hi——热侧空气进口温度,℃;

t ho——热侧空气出口温度,℃。 5.8 吸热量Q w 冷侧冷却液吸热量,单位kW。其计算公式如下: Q w=G w×Cp w×(t wo-t wi)/1000 ………………………………………(5-2) 式中: G w——水质量流量,kg/s; Cp w——水比热,kJ/kg℃; t wi——冷却水进口温度,℃; t wo——冷却水出口温度,℃。 5.9 热平衡误差δ 计算公式: δ=[( Q h - Q w)÷Q h]×100 % …………………………………………(5-3a) 或 δ=[( Q w - Q h)÷Q w]×100% ………………………………………(5-3b) 式中: δ——热平衡误差,%; 当热平衡误差δ大于±5%,试验参数应重新测量,直到δ不大于±5%。 5.10 散热能力Q 指在规定的工作条件下,空气通过EGR冷却器散发掉的理论散热量,单位为Kw(或W),其计算公式如下: Q=K×A h×△t m ………………………………………………………(5-4) 式中:

换热器计算步骤

第2章工艺计算 2.1设计原始数据 表2—1 2.2管壳式换热器传热设计基本步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)由热平衡计算的传热量的大小,并确定第二种换热流体的用量。 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取管径和管内流速 (7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核 (8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍 l (9)选取管长 (10)计算管数 N T (11)校核管内流速,确定管程数 (12)画出排管图,确定壳径 D和壳程挡板形式及数量等 i (13)校核壳程对流传热系数 (14)校核平均温度差 (15)校核传热面积 (16)计算流体流动阻力。若阻力超过允许值,则需调整设计。 2.3 确定物性数据 2.3.1定性温度 由《饱和水蒸气表》可知,蒸汽和水在p=7.22MPa、t>295℃情况下为蒸汽,所以在不考虑开工温度、压力不稳定的情况下,壳程物料应为蒸汽,故壳程不存在相变。

对于壳程不存在相变,其定性温度可取流体进出口温度的平均值。其壳程混合气体的平均温度为: t=420295 357.5 2 + =℃(2-1) 管程流体的定性温度: T=310330 320 2 + =℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。 2.3.2 物性参数 管程水在320℃下的有关物性数据如下:【参考物性数据无机表1.10.1】 表2—2 壳程蒸气在357.5下的物性数据[1]:【锅炉手册饱和水蒸气表】 表2—3 2.4估算传热面积 2.4.1热流量

板式换热器选型与计算方法

板式换热器选型与计算方法 板式换热器的选型与计算方法 板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; mh,mc-----热、冷流体的质量流量,kg/s; Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。 对数平均温差(LMTD) 对数平均温差是换热器传热的动力,对数平均温差的大小直接关系到换热器传热难易程度.在某些特殊情况下无法计算对数平均温差,此时用算术平均温差代替对数平均温差,介质在逆流情况和在并流情况下的对数平均温差的计算方式是不同的。在一些特殊情况下,用算术平均温差代替对数平均温差。 逆流时: 并流时:

板式换热器换热量的计算

板式换热器例题 1、换热器换热量的计算 w t Gc Q 1046750)2065(41873600 20000=-??=?= 2、外网进入热水供应用户的水流量 s kg t c Q G /10) 7095(418710467500=-=?= 3、加热水的流通断面积 换热器内水的流速取0.1~0.5m/s 。加热水的平均温度为(95+70)/2=82.5℃,该温度下水的密度为970.2kg/m 3。 200206.02 .9705.010m w G f r r r =?==ρ 4、被加热水的流通断面积 换热器内水的流速取0.1~0.5m/s 。被加热水的平均温度为(65+20)/2=42.5℃,该温度下水的密度为991.2kg/m 3。 201868.02 .9913.0360020000m w G f l l l =??==ρ 5、选型 初选BR12型板式换热器,单片换热面积为0.12m 2/片,单通道流通断面积为0.72×10-3。 6、实际流速 加热水流道数为 2810 72.00206.03=?==-d r r f f n 被加热水流道数为 261072.001868.03=?== -d l l f f n 取流道数为28。 加热水实际流速 s m f n G w r d r r /5.02 .9701072.0281030=???==-ρ 被加热水实际流速 s m f n G w l d l l /28.02 .9911072.02856.53=???==-ρ 7、传热系数 查图知传热系数为3600w/m 2.K 。 8、传热温差

()()()()℃396595207065952070) ()() ()(112 21122=-----=-----=?In t t In t t t p ττττ 9、传热面积 246.739 36001046750m t K Q F p =?=?= 10、需要的片数 6212 .046.7===d F F N 11、实际片数 考虑一个富裕量。 62×1.25=78

换热器及其基本计算

姓名:杜鑫鑫学号:0903032038 合肥学院 材 料 工 程 基 础 姓名: 班级:09无机非二班 学号:\ 课题名称:换热器及其基本计算 指导教师:胡坤宏

换热器及其基本计算 一、换热器基础知识 (1)换热器的定义: 换热器是指在两种温度不同的流体中进行换热的设备。 (2)换热器的分类: 由于应用场合不同,工程上应用的换热器种类很多,这些换热器照工作原理、结构和流体流程分类。 二、几个不同的换热器 (1)管壳式换热器 管壳式换热器又称列管式换热器,是一种通用的标准换热设备。它具有结构简单、坚固耐用、造价低廉、用材广泛、清洗方便、适应性强等优点,应用最为广泛,在换热设备中占据主导地位。 管壳式换热器是把换热管束与管板连接后,再用筒体与管箱包起来,形成两个独立的空间。管内的通道及与其相贯通的管箱称为管程;管外的通道及与其相贯通的部分称为壳程。一种流体在管内流动,而另一种流体在壳与管束之间从管外表面流过,为了保证壳程流体能够横向流过管束,以形成较高的传热速率,在外壳上装有许多挡板。 而壳管式换热器又可根据不同分为U形管式换热器、固定管板换热器、浮头式换热器、填料函式换热器几类。 (2) 套管式换热器 套管式换热器是用两种尺寸不同的标准管连接而成同心圆套管,外面的叫壳程,内部的叫管程。两种不同介质可在壳程和管程内逆向流动(或同向)以达到换热的效果。 套管式换热器以同心套管中的内管作为传热元件的换热器。两种不同直径的管子套在一起组成同心套管,每一段套管称为“一程”,程的内管(传热管)借U形肘管,而外管用短管依次连接成排,固定于支架上。热量通过内管管壁由一种流体传递给另一种流体。通常,热流体由上部引入,而冷流体则由下部引入。套管中外管的两端与内管用焊接或法兰连接。内管与U形肘管多用法兰连接,便于传热管的清洗和增减。每程传热管的有效长度取4~7米。这种换热器传热面积最高达18平方米,故适用于小容量换热。当内外管壁温差较大时,可在外管设置U形膨胀节或内外管间采用填料函滑动密封,以减小温差应力。管子可用钢、铸铁、陶瓷和玻璃等制成,若选材得当,它可用于腐蚀性介质的换热。这种换热器具有若干突出的优点,所以至今仍被广泛用于石油化工等工业部门。

换热器设计指南汇总

换热器设计指南 1总贝!I i.i目的 为规范本公司工艺设计人员设计管壳式换热器及校核管壳式换热器而编制。 1. 2范围 1.2.1本规定规定了管壳式换热器的选型、设计、校核及材料选择。 1.2.2本规定适用于本公司所有的管壳式换热器。 1.3规范性引用文件 下列文件中的条款通过本规定的引用而成为本规定的条款,凡注日期的应用文件,其随后所有的修改单或修改版均不适用本规定。凡不注日期或修改号 (版次)的引用文件,其最新版本适用于本规定。 GB150-1999钢制压力容器 GB151-1999管壳式换热器 HTRI设计手册 Shell & tube heat exchangers ------- JGC 石油化工设计手册第3卷——化学工业出版社(2002) 换热器设计手册——中国石化出版社(2004) 换热器设计手册——化学工业出版社(2002) Shell and Tube Heat Exchangers Technical Specification ---------- SHESLL (2004) SHELL AND TUBE HEAT EXCHANGERS——BP (1997) Shell and Tube Exchanger Design and Selection -------- HEVRON COP. (1989)

HEAT EXCHANGERS——FLUOR DANIEL (1994) Shell and Tube Heat Exchangers ------- TOTAL (2002) 管壳式换热器工程规定——SEI (2005) 2设计基础 2. 1传热过程名词定义 2.1.1无相变过程 加热:用工艺流体或其他热流体加热另一工艺流体的过程。 冷却:用工艺流体、冷却水或空气等冷剂冷却另一工艺流体的过程。 换热:用工艺流体加热或冷却另外一股工艺流体的过程。 2.1.2沸腾过程 在传热过程中存在着相的变化一液体加热沸腾后一部分变为汽相。此时除显热传递外,还有潜热的传递。 池沸过程:用工艺流体、水蒸汽或其他热流体加热汽化大容积设备中的工艺流体过程。 流动沸腾:用工艺流体、水蒸汽或其他热流体加热汽化狭窄流道中的工艺流体过程。 2.1.3冷凝过程 部分或全部流体被冷凝为液相,热流体的显热和潜热被冷流体带走,这一相变过程叫冷凝过程。 纯蒸汽或混合蒸汽冷凝:用工艺流体、冷却水或空气,全部或部分冷凝另一工艺流体。 有不凝气的冷凝:用工艺流体、冷却水或空气,部分冷凝工艺流体和同时冷却不凝性气体。 2.2换热器的术语及分类 2.2.1术语及定义 换热器装置:为某个可能包括可替换操作条件的特定作业的一个或多个换热器; 位号:设计人员对某一换热器单元的识别号; 有效表面:进行热交换的管子外表面积; 管程:介质流经换热管内的通道及与其相贯通部分; 壳程:介质流经换热管外的通道及与其相贯通部分;

简单计算板式换热器板片面积

选用板式换热器就是要选择板片的面积的简单方法: Q=K×F×Δt, Q——热负荷 K——传热系数 F——换热面积 Δt——传热温差(一般用对数温差) 传热系数取决于换热器自身的结构,每个不同流道的板片,都有自身的经验公式,如果不严格的话,可以取2000~3000。最后算出的板换的面积要乘以一定的系数如1.2。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。

ARD艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD已发展成为可拆式板式换热器领域卓越的厂家。 ARD艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、风凯/FUNKE、萨莫威孚/Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号将近2000种的板式换热器板片和垫片,ARD艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD 提供的换热器配件或接受ARD的维护服务(包括定期清洗、维修及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD都能为您提供板式换热器领域的系统解决方案。

换热器计算

热解工艺水-气换热装置(卧式)设计 摘要 城市生活垃圾是指城市居民日常生活中或为城市日常生活提供服务的活动中产生的固体废弃物。城市生活垃圾具有二重性,如果经过合理的资源化处理,可转化为可再生利用的能源,但是如果不加以利用和合理处置将造成环境的污染。随着城市化进程的加快和人民生活水平的提高,源源不断的城市生活垃圾将会产生出来。城市生活垃圾的收集、运输和处理过程会产生大量的有害成分,从而对大气、土壤、水等造成污染,不仅严重破坏城市景观,而且传播疾病,威胁人类的健康甚至生命安全。城市生活垃圾已成为社会公害之一,是我国和世界各大城市面临的重大环境问题。 本设计对环境污染概况和城市垃圾进行了详细的介绍,由城市垃圾处理引申出垃圾热解技术。并且针对垃圾碳化热解装置的配套换热装置进行设计。通过对换热器的规格要求,特性参数,设计出热解交换器,并且绘制出工艺流程图来简单化的展示垃圾热解的处理方式及流程。 关键词:城市垃圾垃圾热解技术换热器

Pyrolysis process water - gas heat exchanger unit (horizontal) Design ABSTRACT MSW is the daily life of urban residents in activities or providing services for the city everyday solid waste generated. MSW has a duality, if after a reasonable treatment resources, can be converted to the use of renewable energy, but if you do not take advantage and reasonable disposition will cause environmental pollution. With the acceleration of urbanization and people's living standards improve, a steady stream of municipal solid waste will be generated out. Municipal solid waste collection, transportation and treatment process will generate a lot of harmful ingredients, resulting in the pollution of air, soil, water, etc., not only seriously undermine the urban landscape, and the spread of disease, the threat to human health or safety. MSW has become one of the social nuisance, are major environmental problems facing the country and the world's major cities. The design overview of environmental pollution and urban waste carried out a detailed description, come out of the garbage from the municipal waste pyrolysis technology. And heat transfer device is designed for supporting garbage pyrolysis carbonization device. Through the heat exchanger specifications, parameters, pyrolysis exchanger design

列管式换热器的设计计算

列管式换热器的设计计算 1.流体流径的选择 哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换 热器为例) (1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。 (2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。 (3) 压强高的流体宜走管内,以免壳体受压。 (4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。 (5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。 (6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用 多管程以增大流速。 (7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和 流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。 在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾,例如首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降,以便作出较恰当的选择。 2. 流体流速的选择 增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。但是流速增加,又使流体阻力增大,动力消耗就增多。所以适宜的流速要通过经济衡算才能定出。 此外,在选择流速时,还需考虑结构上的要求。例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。管子太长不易清洗,且一般管长都有一定的标准; 单程变为多程使平均温度差下降。这些也是选择流速时应予考虑的问题。 3. 流体两端温度的确定 若换热器中冷、热流体的温度都由工艺条件所规定,就不存在确定流体两端温度的问题。若其中一个流体仅已知进口温度,则出口温度应由设计者来确定。例如用冷水冷却某热流体,冷水的进口温度可以根据当地的气温条件作出估计,而换热器出口的冷水温度,便需要根据经济衡算来决定。为了节省水量,可使水的出口温度提高些,但传热面积就需要加大;为了减小传热面积,则要增加水量。两者是相互矛盾的。一般来说,设计时可采取冷却水两端温差为5~10℃。缺水地区选用较大的温度 差,水源丰富地区选用较小的温度差。 4. 管子的规格和排列方法 选择管径时,应尽可能使流速高些,但一般不应超过前面介绍的流速范围。易结垢、粘度较大的液体宜采用较大的管径。我国目前试用的列管式换热器系列标准中仅有φ25×2.5mm及φ19×mm两种 规格的管子。 管长的选择是以清洗方便及合理使用管材为原则。长管不便于清洗,且易弯曲。一般出厂的标准钢管长为6m,则合理的换热器管长应为1.5、2、3或6m。系列标准中也采用这四种管长。此外,管长和壳径应相适应,一般取L/D为4~6(对直径小的换热器可大些)。 如前所述,管子在管板上的排列方法有等边三角形、正方形直列和正方形错列等,如第五节中图4-25所示。等边三角形排列的优点有:管板的强度高;流体走短路的机会少,且管外流体扰动较大,因而对流传热系数较高;相同的壳径内可排列更多的管子。正方形直列排列的优点是便于清洗列管的外壁,适用于壳程流体易产生污垢的场合;但其对流传热系数较正三角排列时为低。正方形错列排列则介于上述两者之间,即对流传热系数(较直列排列的)可以适当地提高。 管子在管板上排列的间距(指相邻两根管子的中心距),随管子与管板的连接方法不同而异。通常,胀管法取t=(1.3~1.5)do,且相邻两管外壁间距不应小于6mm,即t≥(d+6)。焊接法取t=1.25do。 5. 管程和壳程数的确定当流体的流量较小或传热面积较大而需管数很多时,有时会使管内流速较低,因而对流传热系数较小。为了提高管内流速,可采用多管程。但是程数过多,导致管程流体

换热器热量及面积计算公式

换热器热量及面积计算 一、热量计算 1、一般式Q=Q c=Q h Q=W h(H h,1- H h,2)= W c(H c,2- H c,1) 式中: Q为换热器的热负荷,kj/h或kw; W为流体的质量流量,kg/h; H为单位质量流体的焓,kj/kg; 下标c和h分别表示冷流体和热流体,下标1和2分别表示换热器的进口和出口。 2、无相变化 Q=W h c p,h(T1-T2)=W c c p,c(t2-t1) 式中: c p为流体平均定压比热容,kj/(kg.℃); T为热流体的温度,℃; t为冷流体的温度,℃。 3、有相变化 a.冷凝液在饱和温度下离开换热器,Q=W h r = W c c p,c(t2-t1) 式中: W h为饱和蒸汽(即热流体)冷凝速率(即质量流量)(kg/s) r为饱和蒸汽的冷凝潜热(J/kg) b.冷凝液的温度低于饱和温度,则热流体释放热量为潜热加显热

Q=W h[r+c p,h(T s-T w)] = W c c p,c(t2-t1) 式中: c p,h为冷凝液的比热容(J/(kg/℃));T s为饱和液体的温度(℃) 二、面积计算 1、总传热系数K 管壳式换热器中的K值如下表: 注: 1 w = 1 J/s = 3.6 kj/h = 0.86 kcal/h 1 kcal = 4.18 kj 2、温差

(1)逆流 热流体温度T:T1→T2 冷流体温度t:t2←t1 温差△t:△t1→△t2 △t m=(△t2-△t1)/㏑(△t2/△t1) (2)并流 热流体温度T:T1→T2 冷流体温度t:t1→t2 温差△t:△t2→△t1 △t m=(△t2-△t1)/㏑(△t2/△t1) 对数平均温差,两种流体在热交换器中传热过程温差的积分的平均值。( 恒温传热时△t=T-t,例如:饱和蒸汽和沸腾液体间的传热。) 对数平均温差因为在冷凝器板换一系列的换热器中温度是变化的为了我们更好的选型计算所以出来一个相对准确的数值, 当△T1/△T2>1.7时用公式: △Tm=(△T1-△T2)/㏑(△T1/△T2). 如果△T1/△T2≤1.7时,△Tm=(△T1+△T2)/2 二种流体在热交换器中传热过程温差的积分的平均值。 逆流时△T1=T1-t2 △T2=T2-t1 顺流时△T1=T1-t1 △T2=T2-t2 其中: T1 ——热流进口温度℃ T2——热流出口温度

列管式换热器的计算

四、列管式换热器的工艺计算 4.1、确定物性参数: 定性温度:可取流体进口温度的平均值 壳程油的定性温度为 T=(140+40)/2=90℃ 管程流体的定性温度为 t=(30+40)/2=35℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据煤油在定性温度下的物性数据: ρo=825kg/m3 μo=7.15×10-4Pa?S c po=2.22KJ/(Kg?℃) λo=0.14W/(m?℃) 循环冷却水在35℃下的物性数据: ρi=994kg/m3 C pi=4.08KJ/(kg.℃) λi=0.626W/(m.℃) μi=0.000725Pa.s 4.2、计算总传热系数: m o=[(15.8×104)×103]/(300×24)=21944Kg/h

Q o=m o c po t o=21944×2.22×(140-40)=4.87×106KJ/h=1353KW 4.2.1.2、平均传热温差 4.2.1.3、冷却水用量 W i=Q o/C piΔt=4.87×106/(4.08×(40-30))=119362 Kg/h 4.2.2、总传热系数K =0.023××× =4759W/(.℃﹚ 壳程传热系数:假设壳程的传热系数 污垢热阻 管壁的导热系数λ=45W/﹙m.℃﹚ 则总传热系数K为: 4.3、计算传热面积 S’=Q/(KΔt)= (1353×103)/(310×39)=111.9m2 考虑15%的面积裕度,S=1.15×S’=128.7 m2 4.4、工艺结构尺寸 选用φ25×2.5传热管(碳钢),取管内流速μi=1m/s 依据传热管内径和流速确定单程传热管数 =(119362/(994×3600) 0.785×0.022×1 =106.2≈107根 按单程管计算,所需的传热管长度为

换热器的传热计算

换热器的传热计算 换热器的传热计算包括两类:一类是设计型计算,即根据工艺提出的条件,确定换热面积;另一类是校核型计算,即对已知换热面积的换热器,核算其传热量、流体的流量或温度。这两种计算均以热量衡算和总传热速率方程为基础。 换热器热负荷Q 值一般由工艺包提供,也可以由所需工艺要求求得。Q=W c p Δt ,若流体有相变,Q=c p r 。 热负荷确定后,可由总传热速率方程(Q=K S Δt )求得换热面积,最后根据《化工设备标准系列》确定换热器的选型。 其中总传热系数K= 0011 h Rs kd bd d d Rs d h d o m i i i i ++++ (1) 在实际计算中,总传热系数通常采用推荐值,这些推荐值是从实践中积累或通过实验测定获得的,可以从有关手册中查得。在选用这些推荐值时,应注意以下几点: 1. 设计中管程和壳程的流体应与所选的管程和壳程的流体相一致。 2. 设计中流体的性质(粘度等)和状态(流速等)应与所选的流体性质和 状态相一致。 3. 设计中换热器的类型应与所选的换热器的类型相一致。 4. 总传热系数的推荐值一般范围很大,设计时可根据实际情况选取中间的 某一数值。若需降低设备费可选取较大的K 值;若需降低操作费用可取较小的K 值。 5. 为保证较好的换热效果,设计中一般流体采用逆流换热,若采用错流或 折流换热时,可通过安德伍德(Underwood )和鲍曼(Bowman )图算法对Δt 进行修正。 虽然这些推荐值给设计带来了很大便利,但是某些情况下,所选K 值与实际值出入很大,为避免盲目烦琐的试差计算,可根据式(1)对K 值估算。 式(1)可分为三部分,对流传热热阻、污垢热阻和管壁导热热阻,其中污垢热阻和管壁导热热阻可查相关手册求得。由此,K 值估算最关键的部分就是对流传热系数h 的估算。

板式换热器计算公式

板式换热器计算公式 板式换热器是由一系列具有一定波纹形状的金属片叠装而成的一种新式高效换热器。对于各个厂家和运用商来说,板式换热器选型计算方法及公式都是比照首要的,由于选好换热器对于出产和车间的作业是很关键的。 板片型式或波纹式应根据换热场合的实际需要而定。对流量大答应压降小的情况,应选用阻力小的板型,反之选用阻力大的板型。根据流体压力和温度的情况,判定选择可拆卸式,仍是钎焊式。判定板型时不宜选择单板面积太小的板片,避免板片数量过多,板间流速偏小,传热系数过低,对较大的换热器更应留心这个疑问。 流程和流道的选择 流程指板式换热器内一种介质同一活动方向的一组并联流道,而流道指板式换热器内,相邻两板片构成的介质活动通道。一般情况下,将若干个流道按并联或串联的方法连接起来,以构成冷、热介质通道的不一样组合。 流程组合方式应根据换热和流体阻力计算,在满足技能条件恳求下判定。尽量使冷、热水流道内的对流换热系数相等或靠近,然后得到最佳的传热作用。由于在传热表面两边对流换热系数相等或靠近时传热系数获得较大值。虽然板式换热器各板间流速不等,但在换热和流体

阻力计算时,仍以均匀流速进行计算。由于“U”形单流程的接纳都固定在压紧板上,拆装便当。 计算方法及公式 (1) 求热负荷QQ=G.ρ.CP.Δt (2) 求冷热流体进出口温度t2=t1+ Q /G .ρ .CP (3) 冷热流体流量G= Q / ρ .CP .(t2-t1 (4) 求均匀温度差ΔtmΔtm=(T1-t2)-(T2-t1)/In(T1-t2)/(T2-t1)或 Δtm=(T1-t2)+(T2-t1)/2 (5) 选择板型若一切的板型选择完,则进行效果剖析。 (6) 由K值规划,计算板片数规划Nmin,NmaxNmin = Q / Kmax .Δtm .F P .βNmax = Q / Kmin .Δtm .F P .β

换热器计算复习过程

换热器计算

换热器计算的设计型和操作型问题(5.5)--传热过程计算与 换热器 日期:2005-12-28 18:04:55 来源:来自网络查看:[大中小] 作者:椴木杉热度: 944 在工程应用上,对换热器的计算可分为两种类型:一类是设计型计算(或称为设计计算),即根据生产要求的传热速率和工艺条件,确定其所需换热器的传热面积及其他有关尺寸,进而设计或选用换热器;另一类是操作型计算(或称为校核计算),即根据给定换热器的结构参数及冷、热流体进入换热器的初始条件,通过计算判断一个换热器是否能满足生产要求或预测生产过程中某些参数(如流体的流量、初温等)的变化对换热器传热能力的影响。两类计算所依据的基本方程都是热量衡算方程和传热速率方程,计算方法有对数平均温差(LMTD)法和传热效率-传热单元数(e-NTU)法两种。 一、设计型计算 设计型计算一般是指根据给定的换热任务,通常已知冷、热流体的流量以及冷、热流体进出口端四个温度中的任意三个。当选定换热表面几何情况及流体的流动排布型式后计算传热面积,并进一步作结构设计,或者合理地选择换热器的型号。 对于设计型计算,既可以采用对数平均温差法,也可以采用传热效率-传热单元数法,其计算一般步骤如表5-2所示。 表5-2 设计型计算的计算步骤 例5-4 一列管式换热器中,苯在换热器的管内流动,流量为1.25 kg/s,由80℃冷却至

30℃;冷却水在管间与苯呈逆流流动,冷却水进口温度为20℃,出口温度不超过50℃。若已知换热器的传热系数为470 W/(m2·℃),苯的平均比热为1900 J/(kg·℃)。若忽略换热器的散热损失,试分别采用对数平均温差法和传热效率-传热单元数法计算所需要的传热面积。 解(1)对数平均温差法 由热量衡算方程,换热器的传热速率为 苯与冷却水之间的平均传热温差为 由传热速率方程,换热器的传热面积为 A = Q/KΔt m = 118.8x1000/(470X18.2) = 13.9 m3 (2)传热效率-传热单元数法 苯侧 (m C ph) = 1.25*1900 = 2375 W/℃ 冷却水侧 (m c C pc) =(m h C ph)(t h1-t h2)/(t c1-t c2) =2375*(80-30)/(50-20)=3958.3 W/℃因此, (m C p)min=(m h C ph)=2375 W/℃ 由式(5-29),可得 Qmax = (m C p)min(t h1-t c1) = 2375*(80-20) = 142.5*10^3 W 由传热效率和热容流量比的定义式 e = Q/Qmax = 118.8/142.5 = 0.83 C Rh=(m h C ph)/(m c C pc)=2375/3958.3=0.6

板式换热器工艺计算

4.3.9 换热器设计举例 对一段预热器进行换热器设计。甲苯废气经过换热器加热后进入二段预热器,此热量交换介质为水蒸气,冷物流走管程,热物流出料走壳程,逆流传热。 (1)计算热负荷 根据物料衡算得出进入甲苯废气流量为719842.816kg/h ,混合比热容为1.021KJ/kg/℃,计算公式如下 )(W Q 21T T C ph h -= 带入数据得 719842.816 1.021(13040)66146356.36 /Q KJ h =??-= (2)计算两流体的平均温差 ℃99.73ln 1 21 2=???-?= ?t t t t t m 而5625.04020040130t 1112=--=--= t T t P ,667.040 130140 2001221=--=--=t t T T R 经查表查得: 95.0=?t ?,所以℃29.7099.7395.0=?=?=??m t m t T ? 初选换热器规格。根据两流体情况,假设)( ℃./W 1200K 2m = 2Q 66146356.361000 S 217.84K 120070.293600 m m T ?= ==??? 20S 1.2261.4S m =?= 4.3.10初选换热器规格 (1)管径与流速 选取管热管规格: 表4.5 换热管规格一览表 材料 钢管标准 外径×厚度(mm×mm ) 外径偏差/mm 壁厚偏差 碳钢 GB8163 25×2.5 ±0.20 +12%,-10% 取管内流速为u=2m/s

(2)管程数和传热管数 以单管程传热管数计算: u d q n i v 24 π= 式中:qv ——管程体积流量,由物料衡算计算结果知719842.816kg/h,换算为562.93m3/h; n ——单程传热管数目; di ——传热管内径,mm ; u ——管内流体流速,m/s 。 带入已知数据计算得: 根24999.2482 02.0785.03600 /93.5622 ≈=??= n 传热管所需长度计算: s n d S L 0π= 式中:L ——按单程管计算得传热管长度; S ——传热面积; d 0——传热管外径,mm ; 带入数据得: m L 14.11249 025.014.3217.83 =??= 由计算结果知,单程的传热管过长,则需采用多管程,管程数计算如下: l L N p = 式中:l ——取单程管长度,本设计取6000mm; Np ——管程数;

板式换热器选型计算

板式换热器选型计算 板式换热器是一种高效紧凑型热交换设备,它具有传热效率高、阻力损失小、结构紧凑、拆装方便、操作灵活等优点,目前广泛应用于冶金、机械、电力、石油、化工、制药、纺织、造纸、食品、城镇小区集中供热等各个行业和领域,因此掌握板式换热器的选型计算对每个工程设计人员都是非常重要的。目前板式换热器的选型计算一般分为手工简易算法、手工标准算法及计算机算法三种,以下就三种算法的特点进行简要的说明。 一、手工简易算法 计算公式: F=Wq/(K*△T) 式中 F —换热面积 m2 Wq—换热量 W K —传热系数 W/m2·℃ △T—平均对数温差℃ 根据选定换热系统的有关参数,计算换热量、平均对数温差,设定传热系数,求出换热面积。选定厂家及换热器型号,计算板间流速,通过厂家样本提供的传热特性曲线及流阻特性曲线,查出实际传热系数及压降。若实际传热系数小于设定传热系数,则应降低设定传热系数,重新计算。若实际传热系数大于设定传热系数,而实际压降大于设定压降,则应进一步降低设定传热系数,增大换热面积,重新计算。经过反复校核,直到计算结果满足换热系统的要求,最终确定换热器型号及换热面积大小。这种算法的优点是计算简单,步骤少,时间短;缺点是结果不准确,应用范围窄。造成结果不准确的原因主要是样本所提供的传热特性曲线及流阻特性曲线是一定工况条件下的曲线,而设计工况可能与之不符。此外样本所提供的传热特性曲线及流阻特性曲线仅为水―水换热系统,在使用中有很大的局限性。 以下给出佛山显像管厂总装厂房低温冷却水及40℃热水两套换热系统实例加以说明采用手工简易算法得出的计算结果与实测结果的差别:

板式换热器选型计算的方法及公式

板式换热器选型计算的方法及公式 (1)求热负荷Q Q=G .ρ.CP .Δt (2)求冷热流体进出口温度 t 2=t 1+Q/G .ρ.CP (3)冷热流体流量 G=Q/ρ.CP .(t2-t1 (4)求平均温度差Δtm Δtm=(T1-t2)-(T2-t1)/In(T1-t2)/(T2-t1)或Δtm=(T 1-t2)+(T2-t1)/2 (5)选择板型 若所有的板型选择完,则进行结果分析。 (6)由K值范围,计算板片数范围Nmin ,Nmax Nmin=Q/Kmax .Δtm.FP .β Nmax=Q/Kmin .Δtm.FP .β (7)取板片数N (Nmin ≤N≤Nmax ) 若N 已达Nmax ,做(5)。 (8)取N 的流程组合形式,若组合形式取完则做(7)。 (9)求Re ,Nu Re=W .de/ν Nu=a 1.Re a 2.Pr a 3 (10)求a ,K 传热面积F a=Nu .λ/de K=1/1/a h+1/a c+γc+γc+δ/λ0 F=Q/K .Δtm.β

艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD 艾瑞德专业生产可拆式板式换热器(PHE )、换热器密封垫(PHEGASKET )、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE )的专业换热器厂家。 ARD 艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD 致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD 已发展成为可拆式板式换热器领域卓越的厂家。 ARD 艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval 、斯必克/SPX 、安培威/APV 、基伊埃/GEA 、传特/TRANTER 、舒瑞普/SWEP 、桑德斯/SONDEX 、艾普尔.斯密特/API.Schmidt 、风凯/FUNKE 、萨莫威孚/Thermowave 、维卡勃Vicarb 、东和恩泰/DONGHWA 、艾克森ACCESSEN 、MULLER 、FISCHER 、REHEAT 等)的所有型号将近2000种的板式换热器板片和垫片,ARD 艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD 提供的换热器配件或接受ARD 的维护服务(包括定期清洗、维修及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD 都能为您提供板式换热器领域的系统解决方案。 (11)由传热面积F求所需板片数NN NN=F/Fp+2 (12)若N <NN ,做(8)。 (13)求压降Δp Eu=a 4.Re a 5 Δp=Eu .ρ.W 2 .ф (14)若Δp >Δ允 ,做(8); 若Δp ≤Δ允 ,记录结果,做(8)。

相关主题
文本预览
相关文档 最新文档