当前位置:文档之家› 圆锥曲线和射影几何

圆锥曲线和射影几何

圆锥曲线和射影几何
圆锥曲线和射影几何

圆锥曲线与射影几何

射影几何是几何学的重要内容,射影几何中的一些重要定理与结论往往能运用在欧式几何中,有利于我们的解题。在这里,我们将对解析几何中一些常见的圆锥曲线问题进行总结,并给中一些较为方便的解法。

例1:设点C(2,0)B(1,0),A(-1,0),, D 在双曲线12

2=-y x 的左支上,A D ≠,直线

CD 交双曲线122=-y x 的右支于点E 。求证:直线AD 与直线BE 的交点P 在直

线2

1=

x 上。 如果是用解析几何的做法,这将是非常麻烦的。但是如果用射影几何的知识求解,将会有意想不到的效果。

我们知道,圆与圆锥曲线在摄影变换下是可以互相转换的。我们先不考虑题目中的数据与特殊的关系,仅仅考虑点线之间的位置关系,那么题设变成:

有一点

A 在一条双曲线内部,过A 引两条直线与双曲线分别交于

B ,

C ,

D ,

E 。连

BD ,CE 交于点P ,且P 点在四边形BCDE 外部。

又因为双曲线与圆在射影几何中属同一个变换群,所以可以将双曲线变为圆。如图1 连

BE ,CD 交于点Q ,连PQ ,先证明:直线PQ 是A 点的极线。

D

证明: 对

C 于'C 重合,B 于'B 重合的六边形''EBB DCC 用帕斯卡定理得:

DC 于EB 的交点Q ,'CC 于'BB 的交点M ,E C '于'DB 的交点P 三点共线,

同理P ,Q ,N 三点共线

所以

P ,Q ,M ,N 四点共线。

又因为

BC 是M 的极线,DE 是N 的极线,所以MN 是BC 与DE 的交点A

的极线,即

PQ 是A 的极线。

回到原图,由极线的定义与性质得

PQ OA ,且FAGH

为调与点列。

有了前面的铺垫再证例1就简单了。 证明: 过

P 点作X PH ⊥轴,则PH 是C 点的极线,AHBC 为调与点列 因为

A (-1,0),

B (1,0),

C (2,0)

所以H (2

1,0)

P 在直线2

1=x 上

关于极线的知识,下文仍有用到,这里不再叙述。 例2:

M 是抛物线)0(22≥=p px y 的准线上的任意点,过M 点作抛物线的切线

1l ,2l ,切点分别为A ,B (A 在X 轴的上方)。

(1) 求证:直线AB 过定点。

(2) 过

M 作X 轴的平行线l 与抛物线交于P ,与AB 交于Q .

证明

PQ MP =。

证明:

(1)同例一,我们很容易得到AB 是M 的极线。

在准线上再取一点N ,过N 点作抛物线的切线3l ,4l ,切点为C ,D ,CD 为N 的极线

所以

AB ,CD 的交点E 的极线为MN 即直线

AB 过定点E

(2)易得M ,P ,Q ,以及l 与抛物线另一端的交点∞M 为调与点列。

因为∞M 是无穷远点

所以

PQ MP =,证毕。

仿射几何是射影几何的“子几何”,相对与射影几何,仿射几何有着更为丰富的性质。

例3:已知椭圆122

22

=+b

y a x ,求这个椭圆内接三角形的面积的最大值。 对于例3,因为面积不是射影不变量,所以我们不能单单用射影变换来解题。我们可以对变

换的条件加以限制,使之变成仿射变换,欧式平面上两个几何图形的面积比是仿射不变量。

证明:我们把平面直角坐标系中的每一个点

),(y x 变成)','(y x ,其中

x x =',

ay y ='

显然,当

'''M Q P ?为正三角形时,面积最大。

此时

2

4

33'''a S M Q P =?

根据仿射变换的性质,

a

b

S S M Q P PQM =??''' 所以ab S PQM 4

3

3=? 例4:作斜率为3

1的直线l 与椭圆C :143622=+y x 交于A ,B 两点,且)2,23(P 在直线的左上方。求证:

PAB ?的内切圆圆心在一条定直线上。

证明:由于关于椭圆的计算比较烦杂,我们仍对椭圆作仿射变换。

我们把平面直角坐标系中的每一个点

),(y x 变成)','(y x ,其中

','

猜想这条定直线平行于Y 轴

PH 垂直于X 轴,与AB 交点为C ,过P 点作X 轴的平行线与AB 交于D 。

若猜想成立,由于?=∠90CPD ,则ACBD 为调与点列

现在证明

ACBD 为调与点列:

),23(a C ,易得)23,26(a D -,x a y OC 2

3=

过过D 点作⊥DE OC ,垂足为E ,a

x a y DE

3623+-= 将两条直线方程联立,解出

E 的横坐标为2182108a

+ 所以

?+=?22)23(a OE OC ?+2)23(

1(a

36)1821082=+a 所以D 的极线过C 点,即ACBD 为调与点列 由于?=∠90CPD ,则CPB APC ∠=∠

所以

PAB ?的内切圆圆心在PC 上

其实,类似的题目还有很多,这里不再叙述。学几何,我们不能局限于解析几何,有时可以跳出来,从几何的本质入手,这样跟有利于我们学习数学。

二次函数与几何图形结合练习

3.2 与几何图形结合3.2.1 与等腰三角形结合1、如图,直线y=3x+3交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交 x 轴于另 一点C (3,0). ⑴求抛物线的解析式 ; ⑵在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求出符合条件的 Q 点坐标;若不存在,请说明理由 2、如图,已知直线y=x 与交于A 、B 两点. (1)求交点A 、B 的坐标;(2)记一次函数y=x 的函数值为y 1,二次函数 的函数值为y 2.若y 1>y 2,求x 的 取值范围; (3)在该抛物线上存在几个点,使得每个点与AB 构成的三角形为等腰三角形?并求出不 少于3个满足条件的点 P 的坐标. y =x 2 y =x 2

3、如图,已知二次函数的图象经过点A (3,3)、B (4,0)和原点O 。P 为二次函数图象 上的一个动点,过点 P 作x 轴的垂线,垂足为 D (m ,0),并与直线OA 交于点C . (1)求出二次函数的解析式; (2)当点P 在直线OA 的上方时,求线段PC 的最大值; (3)当m >0时,探索是否存在点P ,使得△PCO 为等腰三角形,如果存在,求出 P 的坐 标;如果不存在,请说明理由. 3.2.2 与直角三角形结合1、二次函数的图象的一部分如图所示.已知它的顶点 M 在第二象限,且经 过点A(1,0)和点B(0,l).(1)试求,所满足的关系式;(2)设此二次函数的图象与x 轴的另一个交点为 C ,当△AMC 的面积为△ABC 面积的 倍时,求a 的值;(3)是否存在实数a ,使得△ABC 为直角三角形.若存在,请求出 a 的值;若不存在,请说 明理由. 2 y ax bx c a b 5 4

射影几何

南京师范大学 毕业设计(论文) (2009 届) 题目:漫谈射影几何的几种子几何及其关系 学院:数学科学学院 专业:数学与应用数学 姓名:刘峰 学号:0 6 0 5 0 2 1 0 指导教师:杨明升 南京师范大学教务处制

漫谈射影几何的几种子几何及其关系 刘峰 数学与应用数学(师范)06050210 一.摘要 射影几何学是研究图形的射影性质,即它们经过射影变换不变的性质. 射影几何集中表现了投影和截影的思想,论述了同一射影下,一个物体的不同截景所形成的几何图形的共同性质,以及同一物体在不同射影下的几何图形的共同性质,一度也叫做投影几何学,在经典几何学中,射影几何处于一种特殊地位,通过它可以把其他一些几何联系起来. 概括的说,射影几何学是几何学的一个重要分支学科,它是专门研究图形的位置关系的,也是专门用来讨论在把点投影到直线或者平面上的时候,图形的不变性质的科学. 这门”诞生于艺术的科学”,今天成了最美的数学分支之一. 二.关键词 射影几何,摄影仿射几何,摄影欧氏几何,仿射几何,欧氏几何,射影变换,仿射变换,正交变换,射影变换群,仿射变换群,正交变换群,克莱因变换群. 三.射影几何(projective geometry)的发展简况 十七世纪,当笛卡儿和费尔马创立的解析几何问世的时候,还有一门几何学同时出现在人们的面前. 这门几何学和画图有很密切的关系,它的某些概念早在古希腊时期就曾经引起一些学者的注意,欧洲文艺复兴时期透视学的兴起,给这门几何学的产生和成长准备了充分的条件. 这门几何学就是射影几何学. 基于绘图学和建筑学的需要,古希腊几何学家就开始研究透视法,也就是投影和截影. 在文艺复兴时期,人们在绘画和建筑艺术方面非常注意和大力研究如何在平面上表现实物的图形. 那时候,人们发现,一个画家要把一个事物画在一块画布上就好比是用自己的眼睛当作投影中心,把实物的影子影射到画布上去,然后再描绘出来. 在这个过程中,被描绘下来

平面图形与立体图形的认识

【几何图形】 从实物中抽象出来的各种图形,包括立体图形和平面图形。 立体图形分为柱体,锥体,球体 多面体:围城棱柱和棱锥的面都是平的面,像这样的立体图形叫做多面体 欧拉公式:定点数+面数-棱数=2 练习: 1.下面几何体中,不是多面体的是() A球体 B 三棱锥 C 三棱柱D四棱柱 2.下列判断正确的是 A长方形是多面体B柱体是多面体 C圆锥是多面体D棱柱、棱锥都是多面体 3、将半圆绕它的直径旋转一周形成的几何体是() A、圆柱 B、圆锥 C、球 D、正方体 【点、线、面、体】 (1)几何图形的组成 点:线和线相交的地方是点,它是几何图形中最基本的图形。 线:面和面相交的地方是线,分为直线和曲线。 面:包围着体的是面,分为平面和曲面。 体:几何体也简称体。 (2)点动成线,线动成面,面动成体。 例、右侧这个几何体的名称是_______;它由_______个面组成;它有_______个顶点;经过每个顶点有_______条边。 解答:五棱柱,7,10,3 【直线】 1、概念:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。 2、直线的性质 (1)直线公理:经过两个点有一条直线,并且只有一条直线。它可以简单地说成:过两点有且只有一条直线。 (2)过一点的直线有无数条。 (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。 (4)直线上有无穷多个点。 (5)两条不同的直线至多有一个公共点。 3、表示:一条直线可以用一个小写字母表示;或者用两个大写字母表示 练习: 1.经过一点,有______条直线;经过两点有_____条直线,并且______条直线. 2、我们在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为__________________. 【射线】 直线上一点和它一旁的部分叫做射线。这个点叫做射线的端点。

圆锥曲线中的四种经典模型

圆锥曲线中的定点定值问题的四种经典模型 定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。下面总结圆锥曲线中几种常见的几种定点模型: 模型一:“手电筒”模型 例题、已知椭圆C :13 42 2=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。求证:直线l 过定点,并求出该定点的坐标。 解:设1122(,),(,)A x y B x y ,由22 3412 y kx m x y =+??+=?得222 (34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ?=-+->,22340k m +-> 2121222 84(3) ,3434mk m x x x x k k -+=-?=++ 222 2 121212122 3(4) ()()()34m k y y kx m kx m k x x mk x x m k -?=+?+=+++=+ 以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ?=-, 1212122 y y x x ∴?=---,1212122()40y y x x x x +-++=, 222222 3(4)4(3)1640343434m k m mk k k k --+++=+++, 整理得:2 2 71640m mk k ++=,解得:1222,7 k m k m =-=- ,且满足22 340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾; 当27k m =- 时,2 :()7 l y k x =-,直线过定点2(,0)7 综上可知,直线l 过定点,定点坐标为2 (,0).7 ◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直 线交圆锥曲线于AB ,则AB 必过定点)) (,)((2 222022220b a b a y b a b a x +-+-。(参考百度文库文章:“圆锥曲线的弦对定点张直角的一组性质”) ◆模型拓展:本题还可以拓展为“手电筒”模型:只要任意一个限定AP 与BP 条件(如=?BP AP k k 定值,=+BP AP k k 定值),直线AB 依然会过定点(因为三条直线形似手电筒,固名曰手电筒模型)。(参考优酷视频资料尼尔森数学第一季第13节) 此模型解题步骤: Step1:设AB 直线m kx y +=,联立曲线方程得根与系数关系,?求出参数范围; Step2:由AP 与BP 关系(如1-=?BP AP k k ),得一次函数)()(k f m m f k ==或者; Step3:将)()(k f m m f k ==或者代入m kx y +=,得定定y x x k y +-=)(。 ◆迁移训练 练习1:过抛物线M:px y 22 =上一点P (1,2)作倾斜角互补的直线PA 与PB ,交M 于A 、B 两点,求证:直线AB 过定点。(注:本题结论也适用于抛物线与双曲线) 练习2:过抛物线M:x y 42=的顶点任意作两条互相垂直的弦OA 、OB ,求证:直线AB 过定点。(经典例题,多种解法)

平面图形与立体图形教案

4.1几何图形 4.1.1立体图形与平面图形 【教学目标】 1、能从实物图形中抽取出几何图形;能在生活中寻找出相应的几何图形;会认识常见的平面几何图形和立体几何图形。 2、通过实物抽取几何图形的体验,培养自己的几何图形感,能用几何图形描述生活中的物体。 3、通过对多彩多姿的图形世界体验,激发自己对几何学习的兴趣,也体会学习的快乐。 【教学重难点】 1.重点: (1)掌握立体图形与平面图形的关系,学会它们之间的相互转化;?初步建立空间观念. (2)理解几何图形是从实物图形中抽象出来的。 (3)从实际出发,用直观的形式,让学生感受图形的丰富多彩,激发学生学习的兴趣. 2.难点: (1)立体图形与平面图形之间的互相转化. (2)从现实情境中,抽象概括出几何图形 【教具准备】 长方体、正方体、球、圆柱、圆锥等几何体模型,墨水瓶包装盒(每个学生都准备一个),及多媒体教学设备和课本图4.1-5的教学幻灯片.

【教学过程】 一、引入新课 由多媒体展示美丽的图形世界 在同学们所观看中,有哪些是我们熟悉的几何图形? 二、新授 1.学生在回顾刚才所看到的图片,充分发表自己的意见,?并通过小组交流,补充自己的意见,积累小组活动经验. 2.指定一名学生回答问题,并能正确说出这些几何图形的名称. 学生回答:有圆柱、长方体、正方体等等. 教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征. 3.立体图形的概念. (1)长方体、正方体、球、圆柱、圆锥等都是立体图形. (2)学生活动:看课本图4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥) (3)用多媒体放映课本4.1-4的幻灯片 (4)提出问题:在这个幻灯片中,包含哪些简单的平面图形? (5)探索解决问题的方法. ①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案. ②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等.4.平面图形的概念.

平面几何60条著名定理

1、勾股定理(毕达哥拉斯定理) 2、射影定理(欧几里得定理) 3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线的两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 6、三角形各边的垂直一平分线交于一点。 7、三角形的三条高线交于一点 8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半 14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2) 16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2 17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD 18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上 19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD 20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,

二次函数与几何图形结合题及答案

1.如图,已知抛物线2 1y x =-与x 轴交于A 、B 两点,与y 轴交于点C . (1)求A 、B 、C 三点的坐标; (2)过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP 的面积; (3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与?PCA 相似.若存在,请求出M 点的坐标;否则,请说明理由. 解:(1)令0y =,得2 10x -= 解得1x =± 令0x =,得1y =- ∴ A (1,0)- B (1,0) C (0,1)- ……………………3分 (2)∵O A =O B =O C =1 ∴∠BAC =∠AC O=∠BC O= 45 ∵A P ∥CB , ∴∠P AB = 45 过点P 作P E ⊥x 轴于E ,则?A P E 为等腰直角三角形 令O E =a ,则P E =1a + ∴P (,1)a a + ∵点P 在抛物线21y x =-上 ∴2 11a a +=- 解得12a =,21a =-(不合题意,舍去) ∴P E =3……………………………………………………………………………5分 ∴四边形ACB P 的面积S =12AB ?O C +12AB ?P E =11 2123422 ??+??=………………………………6分 (3). 假设存在 ∵∠P AB =∠BAC =45 ∴P A ⊥AC ∵MG ⊥x 轴于点G , ∴∠MG A =∠P AC =90 在Rt △A O C 中,O A =O C =1 ∴AC =2 在Rt △P AE 中,AE =P E =3 ∴A P= 32 ………8分 设M 点的横坐标为m ,则M 2 (,1)m m - ①点M 在y 轴左侧时,则1m <- (ⅰ) 当?A MG ∽?P CA 时,有 AG PA =MG CA ∵A G=1m --,MG=2 1m -即2322 = 解得11m =-(舍去) 23m =(舍去)………9分 G M C B y P A o x

第五讲 圆锥曲线及其几何性质

回顾复习五:圆锥曲线及其几何性质 ☆考点梳理 1.圆锥曲线的轨迹定义与统一定义. 2.圆锥曲线的标准方程及其推导. 3.圆锥曲线的几何性质:范围、对称性、焦点、离心率、准线、渐近线.☆基础演练 1.如图,椭圆中心为O,A、B为左右顶点,F为左焦点, 左准线l交x轴于C,点P、Q在椭圆上,PD⊥l于D, QF⊥OA于F.给出下列比值: 其中为离心率的有_________________. 2.若 12 ,F F为椭圆 22 1 25 x y m +=的焦点,且 12 8 F F=,则m的 值为. 3.过抛物线的焦点F作直线交其于A、B两点,A、B在抛物线准线上的射影分别为A1、 B1,则 11 A FB ∠=____________. 4.经过两点() 143 ,, ?? - ? ? ?? 的圆锥曲线的标准方程是________________. 5.过双曲线 22 22 1 x y a b -=的右焦点F作一条渐近线的垂线分别交于A、B两点,O为坐标 原点,若OA、AB、OB成等差数列,且BF,FA u u u r u u u r 同向,则离心率e=_________. 6.椭圆 22 1 2516 x y +=的两个焦点为F1、F2,弦AB过F1,若 2 ABF ?的内切圆周长为π, ()() 1122 A x,y, B x,y,则 12 y y -=____________. ☆典型例题 1.椭圆的定义 例1.如图,已知E,F为平面上的两个定点,G为动点, 610 EF,FG, ==点P为线段EG的中垂线与GF的交点. ⑴建立适当的平面直角坐标系求出点P的轨迹方程; ⑵若点P的轨迹上存在两个不同的点A、B,且线段AB 的中垂线与EF(或EF的延长线)相交于一点C,线段EF 的中点为O,证明: 9 5 OC<. 2.中点弦问题 例3.直线l交椭圆 22 1 2016 x y +=于M,N两点,点() 04 B,,若⊿BMN的重心恰为椭圆 右焦点,则直线l的方程是_________________. 3.椭圆的几何性质 例2.已知 1 F、 2 F分别是椭圆() 22 22 10 x y a b a b +=>>的左右焦点,右准线l,离心率e. ⑴若P为椭圆上的一点,且 12 F PF ∠=θ,则 12 PF F S ? =_____________. ⑵若椭圆上存在一点P,使得 12 PF PF ⊥,则e的范围是_____________. ⑶若椭圆上存在一点P,使得 12 PF ePF =,则e的范围是_____________. ⑷若在l上存在一点P,使得线段 1 PF的中垂线经过 2 F,则e的范围是___________. ⑸若P为椭圆上的一点,线段 2 PF与圆222 x y b +=相切于中点Q,则e=________. ⑹过F且斜率为k的直线交椭圆于A、B两点,且3 AF FB = u u u r u u u r ,若 2 e=,则k=___. 4.最值问题 例4.已知动点P在椭圆 22 1 1612 x y +=上,(,(2,0) A B. ⑴若2 PA PB +取最小值,则点P的坐标为____________; ⑵若动点M满足||1 BM= u u u u r ,且0 PM BM= u u u u r u u u u r g,则| |的最小值是; ⑶PA PB +的取值范围是________________________. 例5.椭圆W的中心在原点,焦点在x轴上,离心率为 3 两条准线间的距离为6.椭 圆W的左焦点为F,过左准线与x轴的交点M任作一条斜率不为零的直线l与椭圆W 交于不同的两点A、B,点A关于x轴的对称点为C. ⑴求椭圆W的方程;⑵求证:CF FB λ = u u u r u u u r ;⑶求MBC ?面积S的最大值. ☆方法提炼 1.椭圆的标准方程有两种形式,有时需要就焦点位置进行讨论. 2.椭圆有两种定义方式,解题时要学会“回到定义去”. 3.椭圆有两个焦点、两条准线,解题时建议联系起来考虑. 4.解解析几何问题,“画个图”是个好建议;中点弦问题利用“点差法”可简化运算. 5.在处理直线与椭圆相结合的问题时,要学会利用韦达定理整体处理. P H E F G 第 1 页

二次函数与几何图形综合题(可编辑修改word版)

二次函数与几何图形综合题 类型 1 二次函数与相似三角形的存在性问题 1.(2015·昆明西山区一模)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(4,0),C(0,2) 三点. (1)求这条抛物线的解析式; (2)P 为线段BC 上的一个动点,过P 作PE 垂直于x 轴与抛物线交于点E,设P 点横坐标为m,PE 长度为y,请写出y 与m 的函数关系式,并求出PE 的最大值; (3)D 为抛物线上一动点,是否存在点D 使以A、B、D 为顶点的三角形与△COB 相似?若存在,试求出点D 的坐标;若不存在,请说明理由.

2.(2013·曲靖)如图,在平面直角坐标系xOy 中,直线y=x+4 与坐标轴分别交于A,B 两点,过A,B 两点的抛物线为y=-x2+bx+c.点D 为线段AB 上一动点,过点D 作CD⊥x 轴于点C,交抛物线于点E. (1)求抛物线的解析式; (2)当DE=4 时,求四边形CAEB 的面积; (3)连接BE,是否存在点D,使得△DBE 和△DAC 相似?若存在,求出D 点坐标;若不存在,说明理由. 3.(2015·襄阳)边长为 2 的正方形OABC 在平面直角坐标系中的位置如图所示,点D 是边OA 的中点,连接CD,点E 在第一象限,且DE⊥DC,DE=DC.以直线AB 为对称轴的抛物线过C,E 两点.

(1)求抛物线的解析式; (2)点P 从点C 出发,沿射线CB 以每秒 1 个单位长度的速度运动,运动时间为t 秒.过点P 作PF⊥CD 于点F.当t 为何值时,以点P,F,D 为顶点的三角形与△COD 相似? (3)点M 为直线AB 上一动点,点N 为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由. 类型 2 二次函数与平行四边形的存在性问题 1.(2014·曲靖)如图,抛物线y=ax2+bx+c 与坐标轴分别交于A(-3,0),B(1,0),C(0,3)三点,D

射影几何的诞生与发展

射影几何的诞生与发展 一从透视学到射影几何 1.在文艺复兴时期,描绘现实世界成为绘画的重要目标,这就使画家们在将三维现实世界绘制到二维的画布上时,面临这样的问题: (1)一个物体的同一投影的两个截影有什么共同的性质? (2)从两个光源分别对两个物体投影到同一个物影上,那么两个物体间具有什么关系? 2.由于绘画、制图的刺激而导致了富有文艺复兴特色的学科---透视学的兴起(文艺复兴时期:普遍认为发端于14世纪的意大利,以后扩展到西欧,16世纪大道鼎盛),从而诞生了射影几何学。意大利人布努雷契(1377-1446)是第一个认真研究透视法并试图运用几何方法进行绘画的艺术家。 3.数学透视法的天才阿尔贝蒂(1401-1472)的《论绘画》一书(1511)则是早期数学透视法的代表作,成为射影几何学发展的起点。 4.对于透视法产生的问题给予数学上解答的第一人是德沙格(1591-1661)法国陆军军官,后来成为工程师和建筑师,都是靠自学的。1639年发表《试论锥面截一平面所得结果的初稿》,这部著作充满了创造性的思想,引入了无穷远点、无穷远直线、德沙格定理、交比不变性定理、对合调和点组关系的不变性、极点极带理论等。 5.数学家帕斯卡(1623-1662)16岁就开始研究投射与取景法,1640年完成著作《圆锥曲线论》,不久失传,1779年被重新发现,他最突出的成就是所谓的帕斯卡定理,即圆锥曲线的内接六边形的对边交点共线 6.画家拉伊尔(1640-1718)在《圆锥曲线》(1685)这本射影几何专著中最突出的地方在于极点理论方面的创新。 7.德沙格等人把这种投影分析法和所获得的结果视为欧几里得几何的一部分,从而在17世纪人们对二者不加区别,但这一方法诱发了一些新的思想和观点: 1)一个数学对象从一个形状连续变化到另一形状 2)变换与变换不变性 3)几何新方法------仅关心几何图形的相交与结构关系,不涉及度量 二射影几何的繁荣 1.在19世纪以前,射影几何一直是在欧氏几何的框架下被研究的,并且由于18世纪解析几何、微积分的发展洪流而被人遗忘,到

(完整版)二次函数与几何图形综合题.doc

二次函数与几何图形综合题 类型 1二次函数与相似三角形的存在性问题 1. (2015 ·明西山区一模昆)如图,已知抛物线y= ax2+bx+ c(a≠0)经过 A(- 1, 0), B(4, 0), C(0 ,2) 三点. (1)求这条抛物线的解析式; (2)P 为线段 BC 上的一个动点,过P 作 PE 垂直于 x 轴与抛物线交于点 E,设 P 点横坐标为 m, PE 长度为 y,请写出 y 与 m 的函数关系式,并求出PE 的最大值; (3)D 为抛物线上一动点,是否存在点 D 使以 A、B、D 为顶点的三角形与△ COB 相似?若存在,试求出点 D 的坐标;若不存在,请说明理由.

2. (2013 ·靖曲 )如图,在平面直角坐标系xOy 中,直线y= x+ 4 与坐标轴分别交于A, B 两点,过A,B 两点的抛物线为y=- x2+ bx+ c.点 D 为线段 AB 上一动点,过点 D 作 CD⊥ x 轴于点 C,交抛物线于点 E. (1)求抛物线的解析式; (2)当 DE= 4 时,求四边形CAEB 的面积; (3)连接 BE,是否存在点 D ,使得△ DBE 和△ DAC 相似?若存在,求出 D 点坐标;若不存在,说明理由.

3.(2015 襄·阳 )边长为 2 的正方形O ABC 在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接 CD ,点 E 在第一象限,且DE⊥ DC , DE =DC.以直线 AB 为对称轴的抛物线过C, E 两点. (1)求抛物线的解析式; (2)点 P 从点 C 出发,沿射线 CB 以每秒 1 个单位长度的速度运动,运动时间为t 秒.过点 P 作 PF ⊥ CD 于点 F .当 t 为何值时,以点P, F ,D 为顶点的三角形与△COD 相似? (3)点 M 为直线 AB 上一动点,点N 为抛物线上一动点,是否存在点M, N,使得以点M,N, D, E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.

圆锥曲线和射影几何

圆锥曲线与射影几何 射影几何是几何学的重要内容,射影几何中的一些重要定理与结论往往能运用在欧式几何中,有利于我们的解题。在这里,我们将对解析几何中一些常见的圆锥曲线问题进行总结,并给中一些较为方便的解法。 例1:设点C(2,0)B(1,0),A(-1,0),, D 在双曲线12 2=-y x 的左支上,A D ≠,直线 CD 交双曲线122=-y x 的右支于点E 。求证:直线AD 与直线BE 的交点P 在直 线2 1= x 上。 如果是用解析几何的做法,这将是非常麻烦的。但是如果用射影几何的知识求解,将会有意想不到的效果。 我们知道,圆与圆锥曲线在摄影变换下是可以互相转换的。我们先不考虑题目中的数据与特殊的关系,仅仅考虑点线之间的位置关系,那么题设变成: 有一点 A 在一条双曲线内部,过A 引两条直线与双曲线分别交于 B , C , D , E 。连 BD ,CE 交于点P ,且P 点在四边形BCDE 外部。 又因为双曲线与圆在射影几何中属同一个变换群,所以可以将双曲线变为圆。如图1 连 BE ,CD 交于点Q ,连PQ ,先证明:直线PQ 是A 点的极线。 D

证明: 对 C 于'C 重合,B 于'B 重合的六边形''EBB DCC 用帕斯卡定理得: DC 于EB 的交点Q ,'CC 于'BB 的交点M ,E C '于'DB 的交点P 三点共线, 同理P ,Q ,N 三点共线 所以 P ,Q ,M ,N 四点共线。 又因为 BC 是M 的极线,DE 是N 的极线,所以MN 是BC 与DE 的交点A 的极线,即 PQ 是A 的极线。 回到原图,由极线的定义与性质得 PQ OA ,且FAGH 为调与点列。

几何图形与平面图形

课题 4.1.1几何图形与平面图形 一、学习目标 1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程; 2、能由实物形状想象出几何图形,由几何图形想象出实物形状; 3、能识别一些简单几何体,正确区分平面图形与立体图形。 学习重点:识别简单的几何体 学习难点:从具体事物中抽象出几何图形 二、自主探究 1、几何图形 (1)仔细观察图4.1-1,让同学们感受是丰富多彩的图形世界; (2)出示一个长方体的纸盒,让同学们观察图4.1-2回答问题: 从整体上看,它的形状是 从不同侧面看,你看到的图形是 看棱得到的是 看顶点的到的是 。 我们见过的长方体、圆柱、圆锥、球、圆、线段、点等,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。我们把这些图形称为几何图形。 2、立体图形 说一说下面这些几何图形有什么共同特点? 有些几何图形的各部分不都在同一平面内,它们是 .(如: ) 请再举出一些立体图形的例子. 想一想 生活中还有哪些物体的形状类似于这些立体图形呢? 3、平面图形 (1)纸盒 (1)长方体 (2)长方形 (3)正方形(4)线段 点

说一说下面这些几何图形又有什么共同特点? 平面图形的概念 线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是 。 请再举出一些平面图形的例子。 思考:立体图形与平面图形是两类不同的几何图形,它们的区别在哪里?它们有什么联系? 三、课堂练习 课本119页练习 四、要点归纳 1、 2、平面图形与立体图形的关系: 立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内; 立体图形中某些部分是平面图形。 五、拓展训练 1.下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球. 其中属于立体图形的是( ) A. ①②③; B. ③④⑤; C. ① ③⑤; D. ③④⑤⑥ 【总结反思】 现实物体 几何图形 平面图形 立体图形 看外形

专题平面几何的四个重要定理

专题平面几何的四个重 要定理 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

竞赛专题讲座06 -平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、 Q、R共线的充要条件是。 塞瓦(Ceva)定理(塞瓦点) △ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点 的充要条件是。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该 四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是 该点落在三角形的外接圆上。 例题: 1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求 证:。

【分析】CEF截△ABD→(梅氏定理) 【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。 2.过△ABC的重心G的直线分别交AB、AC于E、F, 交CB于D。 求证:。 【分析】连结并延长AG交BC于M,则M为BC的 中点。 DEG截△ABM→(梅氏定理) DGF截△ACM→(梅氏定理) ∴===1 【评注】梅氏定理 3. D、E、F分别在△ABC的BC、CA、AB边上, ,AD、BE、CF交成△LMN。 求S△LMN。 【分析】 【评注】梅氏定理 4.以△ABC各边为底边向外作相似的 等腰△BCE、△CAF、△ABG。求证:AE、 BF、CG相交于一点。

【分析】 【评注】塞瓦定理 5.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则 CD=DA=AB,AC=BD。 由托勒密定理, AC·BD=AD·BC+CD·AB。 【评注】托勒密定理 6.已知正七边形A 1A2A3A4A5A6A7。 求证:。(第21届全苏数学竞赛) 【分析】 【评注】托勒密定理 7.△ABC的BC边上的高AD的延长线交 外接圆于P,作PE⊥AB于E,延长ED交 AC延长线于F。 求证:BC·EF=BF·CE+BE·CF。 【分析】 【评注】西姆松定理(西姆松线) 8.正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的 比为AM:AC=CN:CE=k,且B、M、N共 线。求k。(23-IMO-5) 【分析】 【评注】面积法 9. O为△ABC内一点,分别以d a、d b、d c表示O到BC、CA、AB的距离,以R a、 R b、R c表示O到A、B、C的距离。

二次函数与几何图形动点问题--答案

二次函数与几何图形 模式1:平行四边形 分类标准:讨论对角线 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成平行四边形,则可分成以下几种情况 (1)当边AB 是对角线时,那么有BC AP // (2)当边AC 是对角线时,那么有CP AB // (3)当边BC 是对角线时,那么有BP AC // 1、本题满分14分)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点. (1)求抛物线的解析式; (2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S 关于m 的函数关系式,并求出S 的最大值; (3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能使以点P 、Q 、B 、0为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.

2、如图1,抛物线322 ++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D . (1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴; (2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m . ①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形? ②设△BCF 的面积为S ,求S 与m 的函数关系.

模式2:梯形 分类标准:讨论上下底 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成梯形,则可分成以下几种情况 (1)当边AB 是底时,那么有PC AB // (2)当边AC 是底时,那么有BP AC // (3)当边BC 是底时,那么有AP BC // 3、已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C 的坐标为)20(-,,直线 x y 3 2 -=与边BC 相交于点D . (1)求点D 的坐标; (2)抛物线c bx ax y ++=2 经过点A 、D 、O ,求此抛物线的表达式; (3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.

《立体图形与平面图形》练习题

4.1 多姿多彩的图形(1) 几何图形 长方形的是()1.如图所示,水平放置的下列几何体,从正面看到的视图不是 .. 2.下列几何体中,直棱柱的个数是() A.5 B.4 C.3 D.2 3.直四棱柱、长方体和正方体之间的包含关系是() A B C D 4.若一个棱柱有10个顶点,则下列说法正确的是() A.这个棱柱有4个侧面 B.这个棱柱有5条侧棱 C.这个棱柱的底面是十边形 D.这个棱柱是一个十棱柱 5.小明用如下左图所示的胶漆滚从左到右滚涂墙壁,下列平面图形中符合胶漆滚涂出的图案是() A B C D 6.举出两个俯视图为圆的实物例子: 、. 7.写出下列立体图形的名称(从左到右依次写出): . 8.如果直六棱柱的其中一条侧棱长为4cm,那么它的所有侧棱长度之和为 cm. 9.分别画出图中的物体的三个视图: 10.如图①②③④四个图形都是平面图形,观察图②和表中对应数值,探究计数的方法并解答下面的问题.

(1)数一数每个图各有多少顶点、多少条边、这些边围成多少区域,将结果填入下表: (2)根据表中的数值,写出平面图的顶点数、边数、区域数之间的关系; (3)如果一个平面图形有20个顶点和11个区域,求这个平面图形的边数. 参考答案 1.答案: B 解析:B答案中圆锥的主视图是三角形. 2.答案: C 解析:直棱柱的侧面应是矩形,符合这个条件的有第一个,第五个和第六个.故选C.

3.答案:A 解析:正方体是特殊的长方体,长方体又是特殊的直四棱柱,故选A.4.答案:B 解析:一个棱柱有10个顶点,则它是五棱柱,五棱柱有5个侧面,有5条侧棱,底面是五边形.故选B. 5.答案:A 解析:由胶漆滚得图形可得,最左边中间为一小黑正方形,胶漆滚从左到右,则最先留下印记的即为中间有一小黑正方形的图形.故选A. 6.圆柱,球,圆锥. 7.从左到右依次为:圆柱、长方体、四棱锥、圆锥. 8.直六棱柱的其中一条侧棱长为4cm,那么它的所有侧棱长度之和为6×4=24cm.故答案为24. 9.三个视图如下: 10.解:(1)结和图形我们可以得出: 图①有4个顶点、6条边、这些边围成3个区域; 图②有7个顶点、9条边、这些边围成3个区域; 图③有8个顶点、12条边、这些边围成5个区域; 10个顶点、15条边、这些边围成6区域.

第十九讲平面几何中的几个著名定理

第十九讲平面几何中的几个著名定理 几何学起源于土地测量,几千年来,人们对几何学进行了深入的研究,现已发展成为一门具有严密的逻辑体系的数学分支.人们从少量的公理出发,经过演绎推理得到不少结论,这些结论一般就称为定理.平面几何中有不少定理,除了教科书中所阐述的一些定理外,还有许多著名的定理,以这些定理为基础,可以推出不少几何事实,得到完美的结论,以至巧妙而简捷地解决不少问题.而这些定理的证明本身,给我们许多有价值的数学思想方法,对开阔眼界、活跃思维都颇为有益.有些定理的证明方法及其引伸出的结论体现了数学的美,使人们感到对这些定理的理解也可以看作是一种享受.下面我们来介绍一些著名的定理. 1.梅内劳斯定理 亚历山大里亚的梅内劳斯(Menelaus,约公元100年,他和斯巴达的Menelaus是两个人)曾著《球面论》,着重讨论球面三角形的几何性质.以他的名子命名的“梅内劳斯定理”现载在初等几何和射影几何的书中,是证明点共线的重要定理. 定理一直线与△ABC的三边AB,BC,CA或延长线分别相交于X,Y,Z,则 证过A,B,C分别作直线XZY的垂线,设垂足分别为Q,P,S,见图3-98.由△AXQ∽△BXP得

同理 将这三式相乘,得 说明(1)如果直线与△ABC的边都不相交,而相交在延长线上,同样可证得上述结论,但一定要有交点,且交点不在顶点上,否则定理的结论中的分母出现零,分子也出现零,这时定理的结论应改为 AX×BY×CZ=XB×YC×ZA, 仍然成立. (2)梅内劳斯定理的逆定理也成立,即“在△ABC 的边AB和AC上分别取点X,Z,在BC的延长线上取点Y,如果 那么X,Y,Z共线”.梅内劳斯定理的逆定理常被用来证明三点共线. 例1 已知△ABC的内角∠B和∠C的平分线分别为BE和CF,∠A的外角平分线与BC的延长线相交于D,求证:D,E,F共线. 证如图3-99有 相乘后得

浅析射影几何及其应用讲解

浅析射影几何及其应用 湖北省黄冈中学 一、概述 射影几何是欧几里得几何学的一个重要分支,研究的是在射影变换中图形所具有的性质。在高等数学中,射影几何的定义是根据克莱因的变换群理论与奥古斯特·费迪南德·莫比乌斯(1970-1868)的齐次坐标理论,这一部分已经涉及了群论和解析几何,但是这两位数学家对于射影几何的发展作出的巨大贡献是令人钦佩的。在本次综合性学习中小组成员对于射影几何的纯几何内容进行了探究,对以下专题进行了研究: 1、射影几何的基本概念及交比不变性 2、笛沙格定理(早期射影几何中最重要的定理之一) 3、对偶原理 4、二次曲线在射影几何上的应用 5、布列安桑定理和帕斯卡定理 6、二次曲线蝴蝶定理

二、研究过程 1、射影几何的基本概念及交比不变性 射影几何虽然不属于高考内容,射影几何与较为容易的中学几何具有更加抽象、难以理解的特点,但是射影几何所研究的图形的性质是极具有吸引力的,可以说是中学几何的一个延伸。 射影几何所研究的对象是图形的位置关系,和在射影变换下图形的性质。射影,顾名思义,就是在光源(可以是平行光源或者是点光源),图形保持的性质。在生活中,路灯下人的影子会被拉长,矩形和圆在光源照射下会出现平行四边形和椭圆的影子,图形的形状和大小发生了变化。然而,在这种变换中图形之间的有些位置关系没有变,比如,相切的椭圆和直线在变换之后仍相切。此外,射影几何最重要的概念之一——交比也不会发生改变。 在中学的几何中,我们认为两条平行的直线是不相交的。但是在射影几何中,我们可以规定一簇平行直线相交于平面上一个无穷远点,而通过这个点的所有直线是一簇有确定方向的平行直线。一条直线有且只有一个无穷远点,平面上方向不同的直线经过不同的无穷远点。所有这样的无穷远点构成了一条无穷远直线,同样在三维空间中可类似地定义出无穷远平面,这样就扩充了两个公理: 1、过两点有且只有一条直线 2、两条直线有且只有一个交点 这两条公理对普通点(即非无穷远点)和无穷远点均成立。这两条公

认识平面几何的61个著名定理

【认识平面几何的61个著名定理,自行画出图形来学习,★部分要求证明出来】 ★1、勾股定理(毕达哥拉斯定理) ★2、射影定理(欧几里得定理) ★3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线和两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 ★6、三角形各边的垂直平分线交于一点。 ★7、从三角形的各顶点向其对边所作的三条垂线交于一点 8、设三角形ABC 的外心为O ,垂心为H ,从O 向BC 边引垂线,设垂足不L ,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 ★13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式: ()()()s c s b s a s r ---=,s 为三角形周长的一半 ★14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC 的边BC 的中点为P ,则有AB 2+AC 2=2(AP 2+BP 2) 16、斯图尔特定理:P 将三角形ABC 的边BC 分成m 和n 两段,则有n×AB 2+m×AC 2=BC×(AP 2+mn ) 17、波罗摩及多定理:圆内接四边形ABCD 的对角线互相垂直时,连接AB 中点M 和对角线交点E 的直线垂直于CD 18、阿波罗尼斯定理:到两定点A 、B 的距离之比为定比m:n (值不为1)的点P ,位于将线段AB 分成m:n 的内分点C 和外分点D 为直径两端点的定圆周上 ★19、托勒密定理:设四边形ABCD 内接于圆,则有AB×CD+AD×BC=AC×BD

相关主题
文本预览
相关文档 最新文档