当前位置:文档之家› 高考数学(理)二轮练习【专题1】(第2讲)不等式与线性规划(含答案)

高考数学(理)二轮练习【专题1】(第2讲)不等式与线性规划(含答案)

高考数学(理)二轮练习【专题1】(第2讲)不等式与线性规划(含答案)
高考数学(理)二轮练习【专题1】(第2讲)不等式与线性规划(含答案)

第2讲 不等式与线性规划

考情解读 1.在高考中主要考查利用不等式的性质进行两数的大小比较、一元二次不等式的解法、基本不等式及线性规划问题.基本不等式主要考查求最值问题,线性规划主要考查直接求最优解和已知最优解求参数的值或取值范围问题.2.多与集合、函数等知识交汇命题,以选择、填空题的形式呈现,属中档题.

1.四类不等式的解法 (1)一元二次不等式的解法

先化为一般形式ax 2+bx +c >0(a ≠0),再求相应一元二次方程ax 2+bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集. (2)简单分式不等式的解法

①变形?f (x )

g (x )

>0(<0)?f (x )g (x )>0(<0);

②变形?f (x )

g (x )≥0(≤0)?f (x )g (x )≥0(≤0)且g (x )≠0.

(3)简单指数不等式的解法 ①当a >1时,a f (x )>a g (x )?f (x )>g (x ); ②当0a g (x )?f (x )

①当a >1时,log a f (x )>log a g (x )?f (x )>g (x )且f (x )>0,g (x )>0; ②当0log a g (x )?f (x )0,g (x )>0. 2.五个重要不等式

(1)|a |≥0,a 2≥0(a ∈R ). (2)a 2+b 2≥2ab (a 、b ∈R ). (3)a +b 2≥ab (a >0,b >0).

(4)ab ≤(a +b 2)2

(a ,b ∈R ).

(5)

a 2+

b 22≥a +b 2≥ab ≥2ab

a +b

(a >0,b >0). 3.二元一次不等式(组)和简单的线性规划

(1)线性规划问题的有关概念:线性约束条件、线性目标函数、可行域、最优解等.

(2)解不含实际背景的线性规划问题的一般步骤:①画出可行域;②根据线性目标函数的几何意义确定最优解;③求出目标函数的最大值或者最小值. 4.两个常用结论

(1)ax 2+bx +c >0(a ≠0)恒成立的条件是????

? a >0,Δ<0.

(2)ax 2

+bx +c <0(a ≠0)恒成立的条件是?

????

a <0,

Δ<0.

热点一 一元二次不等式的解法

例1 (1)(2013·安徽)已知一元二次不等式f (x )<0的解集为?

??

?

??x |x <-1或x >12,则f (10x )>0的解集

为( )

A .{x |x <-1或x >-lg 2}

B .{x |-1

C .{x |x >-lg 2}

D .{x |x <-lg 2}

(2)已知函数f (x )=(x -2)(ax +b )为偶函数,且在(0,+∞)单调递增,则f (2-x )>0的解集为( ) A .{x |x >2或x <-2} B .{x |-24}

D .{x |0

思维启迪 (1)利用换元思想,设10x =t ,先解f (t )>0.(2)利用f (x )是偶函数求b ,再解f (2-x )>0. 答案 (1)D (2)C

解析 (1)由已知条件0<10x <12,解得x

2=-lg 2.

(2)由题意可知f (-x )=f (x ).

即(-x -2)(-ax +b )=(x -2)(ax +b ),(2a -b )x =0恒成立, 故2a -b =0,即b =2a ,则f (x )=a (x -2)(x +2). 又函数在(0,+∞)单调递增,所以a >0. f (2-x )>0即ax (x -4)>0,解得x <0或x >4. 故选C.

思维升华 二次函数、二次不等式是高中数学的基础知识,也是高考的热点,“三个二次”的相互转化体现了转化与化归的数学思想方法.

(1)不等式x -1

2x +1

≤0的解集为( )

A .(-1

2,1]

B .[-1

2

,1]

C .(-∞,-1

2)∪[1,+∞)

D .(-∞,-1

2

]∪[1,+∞)

(2)已知p :?x 0∈R ,mx 20+1≤0,q :?x ∈R ,x 2

+mx +1>0.若p ∧q 为真命题,则实数m 的

取值范围是( ) A .(-∞,-2) B .[-2,0) C .(-2,0) D .[0,2]

答案 (1)A (2)C

解析 (1)原不等式等价于(x -1)(2x +1)<0或x -1=0,即-1

2

所以不等式的解集为(-1

2

,1],选A.

(2)p ∧q 为真命题,等价于p ,q 均为真命题.命题p 为真时,m <0;命题q 为真时,Δ=m 2-4<0,解得-2

例2 (1)(2014·湖北)某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为F =76 000v v 2+18v +20l .

①如果不限定车型,l =6.05,则最大车流量为________辆/时;

②如果限定车型,l =5,则最大车流量比①中的最大车流量增加________辆/时.

(2)(2013·山东)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2

z 的最

大值为( )

A .0

B .1 C.9

4

D .3

思维启迪 (1)把所给l 值代入,分子分母同除以v ,构造基本不等式的形式求最值;(2)关键是寻找xy

z 取得最大值时的条件.

答案 (1)①1 900 ②100 (2)B

解析 (1)①当l =6.05时,F =76 000v

v 2+18v +121

76 000

v +121

v +18≤

76 0002

v ·121

v +18

=76 000

22+18=1 900. 当且仅当v =11 米/秒时等号成立,此时车流量最大为1 900辆/时. ②当l =5时,F =76 000v

v 2+18v +100

76 000

v +100

v +18≤

76 0002

v ·100

v +18

=76 000

20+18=2 000. 当且仅当v =10 米/秒时等号成立,此时车流量最大为2 000 辆/时.比①中的最大车流量增加100 辆/时.

(2)由已知得z =x 2-3xy +4y 2,(*)

则xy z =xy x 2-3xy +4y 2=1x y +4y

x -3≤1,当且仅当x =2y 时取等号,把x =2y 代入(*)式,得z =2y 2, 所以2x +1y -2z =1y +1y -1

y 2=-????1y -12+1≤1, 所以当y =1时,2x +1y -2

z

的最大值为1.

思维升华 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.

(1)若点A (m ,n )在第一象限,且在直线x 3+y

4

=1上,则mn 的最大值为________.

(2)已知关于x 的不等式2x +2

x -a

≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为( ) A .1 B.32 C .2 D.5

2

答案 (1)3 (2)B

解析 (1)因为点A (m ,n )在第一象限,且在直线x 3+y 4=1上,所以m ,n >0,且m 3+n

4=1.

所以m 3·n 4≤(m 3+

n

42)2(当且仅当m 3=n 4=12,即m =32,n =2时,取等号).所以m 3·n 4≤14,即mn ≤3,

所以mn 的最大值为3.

(2)2x +2x -a =2(x -a )+2x -a +2a

≥2·2(x -a )·2

x -a +2a =4+2a ,

由题意可知4+2a ≥7,得a ≥3

2,

即实数a 的最小值为3

2

,故选B.

热点三 简单的线性规划问题

例3 (2013·湖北)某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为( ) A .31 200元 B .36 000元 C .36 800元

D .38 400元

思维启迪 通过设变量将实际问题转化为线性规划问题. 答案 C

解析 设租A 型车x 辆,B 型车y 辆时租金为z 元, 则z =1 600x +2 400y, x 、y 满足?????

x +y ≤21

y -x ≤7

36x +60y ≥900,

x ,y ≥0,x 、y ∈N

画出可行域如图

直线y =-23x +z

2 400过点A (5,12)时纵截距最小,

所以z min =5×1 600+2 400×12=36 800, 故租金最少为36 800元.

思维升华 (1)线性规划问题一般有三种题型:一是求最值;二是求区域面积;三是确定目标函数中的字母系数的取值范围.(2)解决线性规划问题首先要找到可行域,再注意目标函数所表示的几何意义,利用数形结合找到目标函数的最优解.(3)对于应用问题,要准确地设出变量,确定可行域和目标函数.

(1)已知实数x ,y 满足约束条件?????

x >04x +3y ≤4y ≥0

,则w =y

+1

x

的最小值是( )

A .-2

B .2

C .-1

D .1

(2)(2013·北京)设关于x 、y 的不等式组????

?

2x -y +1>0,x +m <0,

y -m >0表示的平面区域内存在点P (x 0,y 0),

满足x 0-2y 0=2,求得m 的取值范围是( ) A.?

???-∞,4

3 B.?

???-∞,1

3 C.?

???-∞,-23 D.?

???-∞,-53 答案 (1)D (2)C

解析 (1)画出可行域,如图所示.

w =y +1x 表示可行域内的点(x ,y )与定点P (0,-1)连线的斜率,观察图形可知P A 的斜率最小

-1-0

0-1

=1,故选D. (2)当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0.

如图所示的阴影部分为不等式组表示的平面区域. 要使可行域内包含y =1

2

x -1上的点,只需可行域边界点

(-m ,m )在直线y =12x -1的下方即可,即m <-12m -1,解得m <-2

3

.

1.几类不等式的解法

一元二次不等式解集的端点值是相应一元二次方程的根,也是相应的二次函数图象与x 轴交点的横坐标,即二次函数的零点;分式不等式可转化为整式不等式(组)来解;以函数为背景的不等式可利用函数的单调性进行转化. 2.基本不等式的作用

二元基本不等式具有将“积式”转化为“和式”或将“和式”转化为“积式”的放缩功能,常常用于比较数(式)的大小或证明不等式或求函数的最值或解决不等式恒成立问题.解决问题的关键是弄清分式代数式、函数解析式、不等式的结构特点,选择好利用基本不等式的切入点,并创造基本不等式的应用背景,如通过“代换”、“拆项”、“凑项”等技巧,改变原式的结构使其具备基本不等式的应用条件.利用基本不等式求最值时要注意“一正、二定、三相等”的条件,三个条件缺一不可. 3.线性规划问题的基本步骤

(1)定域——画出不等式(组)所表示的平面区域,注意平面区域的边界与不等式中的不等号的对应;

(2)平移——画出目标函数等于0时所表示的直线l ,平行移动直线,让其与平面区域有公共点,根据目标函数的几何意义确定最优解,注意要熟练把握最常见的几类目标函数的几何意义; (3)求值——利用直线方程构成的方程组求解最优解的坐标,代入目标函数,求出最值.

真题感悟

1.(2014·山东)已知实数x ,y 满足a x 1

y 2+1 B .ln(x 2+1)>ln(y 2+1) C .sin x >sin y D .x 3>y 3

答案 D

解析 因为0y .采用赋值法判断,A 中,当x =1,y =0时,1

2<1,A 不成

立.B 中,当x =0,y =-1时,ln 1

?

x +2y -4≤0,x -y -1≤0,

x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值

范围是________. 答案 [1,3

2

]

解析 画可行域如图所示,设目标函数z =ax +y ,即y =-ax +z ,要使1≤z ≤4恒成立,则

a >0,数形结合知,满足?????

1≤2a +1≤4,1≤a ≤4

即可,解得1≤a ≤32.所以a 的取值范围是1≤a ≤3

2.

押题精练

1.为了迎接2014年3月8日的到来,某商场举行了促销活动,经测算某产品的销售量P 万件(生产量与销售量相等)与促销费用x 万元满足P =3-2x +1

,已知生产该产品还需投入成本(10+2P )万元(不含促销费用),产品的销售价格定为(4+20

P

)万元/万件.则促销费用投入 万元时,厂家的利润最大?( ) A .1 B .1.5 C .2

D .3

答案 A

解析 设该产品的利润为y 万元,由题意知,该产品售价为2×(10+2P

P

)万元,所以y =2×(10+2P P )×P -10-2P -x =16-4x +1-x (x >0),所以y =17-(4

x +1+x +1)≤17-2

4x +1×(x +1)=13(当且仅当4x +1

=x +1,即x =1时取等号),所以促销费用投入1万元时,厂家的利润最大,故选A.

2.若点P (x ,y )满足线性约束条件???

3x -y ≤0,x -3y +2≥0,

y ≥0,

点A (3,3),O 为坐标原点,则OA →·OP

的最大值为________. 答案 6

解析 由题意,知OA →=(3,3),设OP →=(x ,y ),则OA →·OP →

=3x +3y . 令z =3x +3y ,

如图画出不等式组所表示的可行域,

可知当直线y =-3x +

3

3

z 经过点B 时,z 取得最大值. 由?

?? 3x -y =0,x -3y +2=0,解得???

x =1,y =3,即B (1,3),故z 的最大值为3×1+3×3=6.

即OA →·OP →

的最大值为6.

(推荐时间:50分钟)

一、选择题

1.(2014·四川)若a >b >0,c b d B.a c b c D.a d

答案 D

解析 令a =3,b =2,c =-3,d =-2, 则a c =-1,b

d =-1, 所以A ,B 错误; a d =-32,b c =-23, 所以a d

所以C 错误.故选D.

2.下列不等式一定成立的是( ) A .lg ????x 2+1

4>lg x (x >0) B .sin x +1sin x ≥2(x ≠k π,k ∈Z )

C .x 2+1≥2|x |(x ∈R ) D.1

x 2+1>1(x ∈R ) 答案 C

解析 应用基本不等式:x ,y >0,x +y

2≥xy (当且仅当x =y 时取等号)逐个分析,注意基本不

等式的应用条件及取等号的条件. 当x >0时,x 2+14≥2·x ·1

2

=x ,

所以lg ????x 2+1

4≥lg x (x >0),故选项A 不正确; 运用基本不等式时需保证一正二定三相等,

而当x ≠k π,k ∈Z 时,sin x 的正负不定,故选项B 不正确; 由基本不等式可知,选项C 正确;

当x =0时,有1

x 2+1

=1,故选项D 不正确.

3.(2013·重庆)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a 等于( ) A.52 B.72 C.154 D.152

答案 A

解析 由x 2-2ax -8a 2<0,得(x +2a )(x -4a )<0,因a >0,所以不等式的解集为(-2a,4a ),即x 2=4a ,x 1=-2a ,由x 2-x 1=15,得4a -(-2a )=15,解得a =5

2

.

4.(2014·重庆)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( ) A .6+2 3 B .7+2 3 C .6+4 3 D .7+4 3

答案 D

解析 由题意得????

?

ab >0,

ab ≥0,

3a +4b >0,

所以?????

a >0,

b >0.

又log 4(3a +4b )=log 2ab , 所以log 4(3a +4b )=log 4ab ,

所以3a +4b =ab ,故4a +3

b =1.

所以a +b =(a +b )(4a +3b )=7+3a b +4b

a

≥7+2

3a b ·4b

a

=7+43, 当且仅当3a b =4b

a

时取等号.故选D.

5.已知变量x ,y 满足约束条件????

?

x +y -5≤0x -2y +1≤0

x -1≥0,则z =x +2y -1的最大值为( )

A .9

B .8

C .7

D .6

答案 B

解析 约束条件????

?

x +y -5≤0x -2y +1≤0

x -1≥0

所表示的区域如图,

由图可知,当目标函数过A (1,4)时取得最大值,故z =x +2y -1的最大值为1+2×4-1=8. 二、填空题

6.已知f (x )是R 上的减函数,A (3,-1),B (0,1)是其图象上两点,则不等式|f (1+ln x )|<1的解集是________. 答案 (1

e

,e 2)

解析 ∵|f (1+ln x )|<1, ∴-1

e

?

x -y ≤0,x +y ≥0,

y ≤a ,且z =2x +3y 的最大值是5,则实数a 的值为________.

答案 1

解析 画出满足条件的可行域如图阴影部分所示,则当直线z =2x +3y 过点A (a ,a )时,z =2x +3y 取得最大值5,所以5=2a +3a ,解得a =1.

8.若点A (1,1)在直线2mx +ny -2=0上,其中mn >0,则1m +1

n 的最小值为________.

答案 3

2

+ 2

解析 ∵点A (1,1)在直线2mx +ny -2=0上, ∴2m +n =2,

∵1m +1n =(1m +1n )2m +n 2=12(2+2m n +n m +1) ≥1

2

(3+22m n ·n m )=3

2

+2, 当且仅当2m n =n

m ,即n =2m 时取等号,

∴1m +1n 的最小值为3

2+ 2. 三、解答题

9.设集合A 为函数y =ln(-x 2-2x +8)的定义域,集合B 为函数y =x +1x +1的值域,集合C

为不等式(ax -1

a )(x +4)≤0的解集.

(1)求A ∩B ;

(2)若C ??R A ,求a 的取值范围. 解 (1)由-x 2-2x +8>0得-4

即A =(-4,2). y =x +

1x +1=(x +1)+1x +1

-1, 当x +1>0,即x >-1时y ≥2-1=1, 此时x =0,符合要求;

当x +1<0,即x <-1时,y ≤-2-1=-3, 此时x =-2,符合要求. 所以B =(-∞,-3]∪[1,+∞), 所以A ∩B =(-4,-3]∪[1,2).

(2)(ax -1a )(x +4)=0有两根x =-4或x =1a 2.

当a >0时,C ={x |-4≤x ≤1

a 2},不可能C ??R A ;

当a <0时,C ={x |x ≤-4或x ≥1

a 2},

若C ??R A ,则1a 2≥2,∴a 2≤1

2,

∴-

22≤a <0.故a 的取值范围为[-2

2

,0). 10.已知函数f (x )=1

3ax 3-bx 2+(2-b )x +1在x =x 1处取得极大值,在x =x 2处取得极小值,且

00;

(2)若z =a +2b ,求z 的取值范围. (1)证明 求函数f (x )的导数 f ′(x )=ax 2-2bx +2-b .

由函数f (x )在x =x 1处取得极大值, 在x =x 2处取得极小值, 知x 1、x 2是f ′(x )=0的两个根, 所以f ′(x )=a (x -x 1)(x -x 2). 当x 0, 由x -x 1<0,x -x 2<0得a >0.

(2)解 在题设下,0

?

f ′(0)>0,f ′(1)<0,

f ′(2)>0,

即????? 2-b >0,a -2b +2-b <0,4a -4b +2-b >0,化简得?????

2-b >0,a -3b +2<0,4a -5b +2>0.

此不等式组表示的区域为平面aOb 上的三条直线:

2-b =0,a -3b +2=0,4a -5b +2=0所围成的△ABC 的内部,其三个顶点分别为 A ????47,67,B (2,2),C (4,2). z 在这三点的值依次为16

7,6,8.

所以z 的取值范围为(16

7

,8).

11.某工厂生产某种产品,每日的成本C (单位:万元)与日产量x (单位:吨)满足函数关系式C =3+x ,每日的销售额S (单位:万元)与日产量x 的函数关系式S =???

??

3x +k x -8+5,0

14,x ≥6.已知每日的利润L =S -C ,且当x =2时,L =3. (1)求k 的值;

(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值. 解 (1)由题意可得L =?????

2x +k x -8+2,0

11-x ,x ≥6.

因为当x =2时,L =3,所以3=2×2+k

2-8+2,

解得k =18.

(2)当0

x -8

+2,所以

L =2(x -8)+18x -8+18=-[2(8-x )+18

8-x ]+18≤-2

2(8-x )·18

8-x

+18=6,

当且仅当2(8-x )=18

8-x ,即x =5时取得等号.

当x ≥6时,L =11-x ≤5. 所以当x =5时L 取得最大值6.

所以当日产量为5吨时,每日的利润可以达到最大,最大值为6万元.

(完整版)初一不等式难题-经典题训练(附答案)

初一不等式难题,经典题训练(附答案) 1. 已知不等式3x-a ≤0的正整数解恰好是1,2,3,则a 的取值范围是_______ 2. 已知关于x 的不等式组0 521 x a x ->?? -≥-?无解,则a 的取值范围是_________ 3. 若关于x 的不等式(a-1)x-2 a +2>0的解集为x<2,则a 的值为( ) A 0 B 2 C 0或2 D -1 4. 若不等式组2 20 x a b x ->?? ->?的解集为11x -<<,则2006()a b +=_________ 5. 已知关于x 的不等式组的解集41320 x x x a +?>+? ??+- 7. 不等式组951 1 x x x m +<+?? >+?的解集是2x >,则m 的取值范围是( ) A. 2m ≤ B. 2m ≥ C. 1m ≤ D. 1m f 8.不等式()()20x x x +-<的解集是_________ 9.当a>3时,不等式ax+2<3x+b 的解集是,则b=______ 10.已知a,b 为常数,若ax+b>0的解集是1 3 x <,则的0bx a -<解集是( ) A. 3x >- B 3x <- C. 3x > D. 3x < 11.如果关于x 的不等式组的整70 60x m x n -≥?? -? p 数解仅为1,2,3,那么适合不等式组的整数(m,n)对共 有( )对 A 49 B 42 C 36 D 13 12.已知非负数x,y,z 满足123 234 x y z ---==,设345x y z ω=++,求的ω最大值与最小值

基本不等式与线性规划

基本不等式与线性规划

不等式(二) 一.基本不等式(ab b a 2 ≥+一正:两个数或式子必须都为 正数. 二定;必须有和定或积定 三相等:等号成立为最值存在的充分,那里使用基本不等式,那两个数相等) 积定,和有最小( 1.设41 4,4-+-=>x x y x 2.设 4 1 ,4-+ =>x x y x 3.1,1>>b a ,则a b b a log log +的最小为 .4.下列函数中,最小值为22的是 ( ) A .x x y 2+= B .)0(sin 2 sin π<<+=x x x y C .x x e e y -+=2 D .2 log 2log 2 x x y += 5.下列各函数中,最小值为2的是 ( ) A .y=x +x 1 B .y= sinx +x sin 1 ,x ∈(0,2π) C .y= 2 32 2++x x D .y= x x 1 +

6.若lg x +lg y =2,则x 1+y 1 的最小值为( ) A .201 B .51 C .2 1 D .2 7.(10.重庆)已知0>t ,则函数t t t y 142+-= 的最小值 为 . 8.若1>=+y x y x 则y x 2 1+的最小 . (09.天津)设0,0>>b a ,若3是a 3与b 3的等比中项,则b a 1 1+的最小值为( ) A .8 B .4 C .1 D .4 1 已知312,0,0=+>>y x y x ,则y x 11+的最小 . 若实数a 、b 满足的最小值是则b a b a 22,2+=+ ( ) A .8 B .4 C .22 D .4 22 和定,积有最大(和定的判断依据:相反符号) 1.设 , 20<

基本不等式与线性规划

不等式(二) 一.基本不等式(ab b a 2≥+一正:两个数或式子必须都为正数. 二定;必须有和定或积定 三相等:等号成立为最值存在的充分,那里使用基本不等式,那两个数相等) 积定,和有最小(积定的判断依据:互为倒数关系) 1.设4 1 4,4-+-=>x x y x 的最小值为 . 2.设4 1 ,4-+ =>x x y x 的最小值为 . 3.1,1>>b a ,则a b b a log log +的最小为 . 4.下列函数中,最小值为22的是 ( ) A .x x y 2+ = B .)0(sin 2 sin π<<+ =x x x y C .x x e e y -+=2 D .2log 2log 2x x y += 5.下列各函数中,最小值为2的是 ( ) A .y=x + x 1 B .y= sinx +x sin 1,x ∈(0,2 π) C .y= 2 322++x x D .y=x x 1 + 6.若lg x +lg y =2,则 x 1 +y 1的最小值为( ) A . 20 1 B . 5 1 C . 2 1 D .2 7.(10.重庆)已知0>t ,则函数t t t y 1 42+-=的最小值为 . 8.若1>=+y x y x 则 y x 2 1+的最小 . (09.天津)设0,0>>b a ,若3是a 3与b 3的等比中项,则b a 1 1+的最小值为( ) A .8 B .4 C .1 D .4 1 总结:常见倒数关系 x x a a -与 a b b a log log 与

七年级数学不等式专题练习题

一元一次不等式组 知识点一:一元一次不等式组的解法求不等式组的解集的过程,叫做解不等式组。解一元一次不等式组的一般步骤为:(1)分别解不等式组中的每一个不等式;(2)将每一个不等式的解集在数轴上表示出来,找出它们的公共部分;(3)根据找出的公共部分写出这个一元一次不等式组的解集(若没有公共部分,说明这个不等式组无解).要点诠释:用数轴表示不等式组的解集时,要时刻牢记:大于向右画,小于向左画,有等号画实心圆点,无等号画空心圆圈。知识点二:利用不等式或不等式组解决实际问题列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式或不等式组;(5)解:解出所列的不等式或不等式组的解集;(6)答:检验是否符合题意,写出答案。要点诠释:在以上步骤中,审题是基础,是根据不等关系列出不等式的关键,而根据题意找出不等关系又是解题的难点,特别要注意结合实际意义对一元一次不等式或不等式组的解进行合理取舍,这是初学者易错的地方。注意积累利用一元一次不等式或不等式组解决实际问题的经验。

一:解不等式组,并在数轴上表示它的解集 1. ???≥-≥-.04,012x x 2.? ??>+≤-.074,03x x

3.??????>-<-322,352x x x x 4.?? ???->---->-.6)2(3)3(2,132x x x x 二.变式练习

最新不等式提高题专项练习

一元一次不等式(组)常见试题分类练习 一、解法常见考题: 1、已知方程组?? ?-=++=+②① m y x m y x 12,312的解满足x +y <0,求m 的取值范围. 2、已知? ??+=+=+122, 42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围. 3、若关于x 的不等式组???????+<+->+a x x x x 3 22,32 15 只有4个整数解,求a 的取值范围. 4、关于x 的不等式组? ??->-≥-123, 0x a x 的整数解共有5个,求a 的取值范围. 5、已知a 是自然数,关于x 的不等式组?? ?>-≥-0 2, 43x a x 的解集是x >2,求a 的取值范围. 6、若不等式组 X+8<4x -1 的解集是x >3,则m 的取值范围是 。 x >m 7、不等式组?? ?+>+<+1 , 159m x x x 的解集是x >2,则m 的取值范围是( ). (A)m ≤2 (B)m ≥2 (C)m ≤1 (D)m ≥1 8、关于x 的不等式组? ??->-≥-123, 0x a x 的整数解共有5个,求a 的取值范围. 9、若不等式组? ??? ? x +8<4x -1x>m 的解集为x>3,则m 的取值范围是________. 10、试确定实数a 的取值范围,使不等式组??? x 2+x +1 3 >0x +5a +43>4 3(x +1)+a 恰有两个整数解. 11、已知a 是自然数,关于x 的不等式组?? ?>-≥-0 2, 43x a x 的解集是x >2,求a 的值. 12、若关于x 的不等式组???????+<+->+a x x x x 3 22,32 15 只有4个整数解,求a 的取值范围. 二、最后一间房问题: 1、若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间?

高中数学 不等式专题训练

1、(02京皖春1)不等式组???<-<-0 30 122x x x 的解集是( ) A .{x |-1<x <1} B .{x |0<x <3} C .{x |0<x <1} D .{x |-1<x <3} 2、(01河南广东1)不等式 3 1 --x x >0的解集为( ) A .{x |x <1} B .{x |x >3} C .{x |x <1或x >3} D .{x |1+->|22|330x x x x x 的解集是( ) A .{x |0<x <2} B .{x |0<x <2.5} C .{x |0<x <6} D .{x |0<x <3} 5、(95全国理16)不等式( 3 1)8 2 -x >3-2x 的解集是_____。 6、(02全国文5理4)在(0,2π)内,使sin x >cos x 成立的x 取值范围为( ) A .( 4π,2π)∪(π,45π) B .( 4π ,π) C .(4π,4 5π) D .(4π,π)∪(45π,2 3π) 7、解不等式1|55|2<+-x x 8、不等式022>++bx ax 的解集为}3 1 21|{<<- x x ,求a , b 9、解不等式∣∣x +4∣-8∣>2 解:由原不式式得∣x +4∣-8>2或∣x +4∣-8<-2 ∴∣x +4∣>10或∣x +4∣<6 ∴x >6或x <-14或-106或x <-14或-102x 11、解不等式:∣x +3∣+∣2x -4∣>2 12、解不等式2931831>?+-+x x 13、解关于x 的不等式0)1(2>---a a x x 14、a 为何值时,不等式2)1()23(22+-++-x a x a a >0的解为一切实数? 15、(06重庆文15)设0,1a a >≠,函数2 ()log (23)a f x x x =-+有最小值,则不等式log (1)0a x ->的 解集为 。 16、(06重庆理15)设0,1a a >≠,函数2lg(23) ()x x f x a -+=有最大值,则不等式() 2log 570a x x -+>的 解集为 。 17、已知不等式230{|1,}x x t x x m x R -+<<<∈的解集为 (1)求t ,m 的值; (2)若函数4)(2++-=ax x x f 在区间(],1-∞上递增,解关于x 的不等式2 log (32)0a mx x t -++-<.

高考数学二轮复习专题突破训练一第2讲不等式与线性规划理含2014年高考真题

第2讲 不等式与线性规划 考情解读 1.在高考中主要考查利用不等式的性质进行两数的大小比较、一元二次不等式的解法、基本不等式及线性规划问题.基本不等式主要考查求最值问题,线性规划主要考查直接求最优解和已知最优解求参数的值或取值范围问题.2.多与集合、函数等知识交汇命题,以选择、填空题的形式呈现,属中档题. 1.四类不等式的解法 (1)一元二次不等式的解法 先化为一般形式ax 2 +bx +c >0(a ≠0),再求相应一元二次方程ax 2 +bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集. (2)简单分式不等式的解法 ①变形?f x g x >0(<0)?f (x )g (x )>0(<0); ②变形? f x g x ≥0(≤0)?f (x )g (x )≥0(≤0)且g (x )≠0. (3)简单指数不等式的解法 ①当a >1时,a f (x ) >a g (x ) ?f (x )>g (x ); ②当0a g (x ) ?f (x )1时,log a f (x )>log a g (x )?f (x )>g (x )且f (x )>0,g (x )>0; ②当0log a g (x )?f (x )0,g (x )>0. 2.五个重要不等式 (1)|a |≥0,a 2 ≥0(a ∈R ). (2)a 2 +b 2 ≥2ab (a 、b ∈R ). (3) a +b 2 ≥ab (a >0,b >0). (4)ab ≤(a +b 2)2 (a ,b ∈R ). (5) a 2+ b 22 ≥ a +b 2 ≥ab ≥ 2ab a +b (a >0,b >0). 3.二元一次不等式(组)和简单的线性规划 (1)线性规划问题的有关概念:线性约束条件、线性目标函数、可行域、最优解等.

不等式经典题型专题练习

不等式经典题型专题练习(含答案) 姓名:__________ 班级:___________ 一、解答题 1.解不等式组: ()13x 2x 11{ 2 5233x x -+≤-+≥-,并在数轴上表示不等式组的解集. 2.若不等式组21{ 23 x a x b -<->的解集为-1

4.由方程组 21 2 x y x y a += ? ? -= ? 得到的x、y的值都不大于1,求a的取值范围. 5.解不等式组:并写出它的所有的整数解. 6.已知关于x、y的方程组 521118 23128 x y a x y a +=+ ? ? -=- ? 的解满足x>0,y>0,求实数a的取 值范围.

6.求不等式组 x20 x 1x3 2 -> ? ? ? +≥- ?? 的最小整数解. 7.求适合不等式﹣11<﹣2a﹣5≤3的a的整数解. 8.已知关于x的不等式组的整数解共有5个,求a的取值范围.

9.若二元一次方程组2{ 24 x y k x y -=+=的解x y > ,求k 的取值范围. 10.解不等式组并求它的整数解的和. 11.已知x ,y 均为负数且满足:232x y m x y m +=-??-=?① ②,求m 的取值范围. 12.解不等式组?? ???<+-+≤+12312)2(352x x x x ,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集.

14.若方程组2225x y m x y m +=+??-=-? 的解是一对正数,则: (1)求m 的取值范围 (2)化简:42 m m -++ 15.我市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房. 如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿住宿的学生可能有多少人 16.某宾馆一楼客房比二楼少5间,某旅游团有48人,如果全住一楼,若按每间4人安排,则房间不够;若按每间5人安排,则有的房间住不满5人.如果全住在二楼,若按每间3人安排,则房间不够;若按每间4人安排,则有的房间住不满4人,试求该宾馆一楼有多少间客房

一元一次不等式培优专题训练一

一元一次不等式培优专题训练一 例1 1、 用“>”或“<”填空,并在题后括号内注明理由: (1)∵a >b,∴a -m ________b -m (2)∵a >2b,∴2 a ________ b (3)∵4a >5a,∴a ________0 (4)∵2x -1<9,∴x ________5 2、不等号填空:(1)、x 为任意有理数,x -3____x -4.(2)若a <0,b <0,则a ·b ____ab 2. 变式训练:(七中实验)若b a <,则2ac 2bc ;若22bc ac <,则a b (填不等号) ; 例2、不等式(组)的解法:1、不等式1y ,试求出m 的取值范围. x -y=5m -1, ② 3、(09优等生数学)已知关于x ,Y 的方程组???-=+-=-1 331k y x k y x 的解满足x+y >3k+2,求k 的取值范围

高考数学专题练习:不等式与线性规划

高考数学专题练习:不等式与线性规划 1.若不等式(-2)n a -3n -1-(-2)n <0对任意正整数n 恒成立,则实数a 的取值范围是( ) A.? ? ???1,43 B.? ???? 12,43 C.? ? ???1,74 D.? ?? ??12,74 答案 D 解析 当n 为奇数时,要满足2n (1-a )<3n -1恒成立, 即1-a <13× ? ????32n 恒成立,只需1-a <13×? ????321,解得a >1 2; 当n 为偶数时,要满足2n (a -1)<3n -1恒成立, 即a -1<13× ? ????32n 恒成立,只需a -1<13×? ????322,解得a <7 4. 综上,12<a <7 4,故选D. 2.已知a >0,b >0,且a ≠1,b ≠1,若log a b >1,则( ) A.(a -1)(b -1)<0 B.(a -1)(a -b )>0 C.(b -1)(b -a )<0 D.(b -1)(b -a )>0 答案 D 解析 取a =2,b =4,则(a -1)(b -1)=3>0,排除A ;则(a -1)(a -b )=-2<0,排除B ;(b -1)(b -a )=6>0,排除C,故选D. 3.设函数f (x )=??? x 2-4x +6,x ≥0, x +6,x <0,则不等式f (x )>f (1)的解集是( ) A.(-3,1)∪(3,+∞) B.(-3,1)∪(2,+∞) C.(-1,1)∪(3,+∞) D.(-∞,-3)∪(1,3) 答案 A 解析 f (1)=3.由题意得??? x ≥0,x 2-4x +6>3或??? x <0, x +6>3, 解得-33. 4. 若a ,b ,c 为实数,则下列命题为真命题的是( ) A.若a >b ,则ac 2>bc 2 B.若a <b <0,则a 2>ab >b 2

不等式计算专项练习及答案

不等式计算专项练习 一、解答题 1.解不等式组,并且把解集在数轴上表示出来. 2.求不等式组的整数解. 3.计算下列不等式(组): (1)x-<2-. (2)-2≤≤7 (3); (4) 4.已知:y1=x+3,y2=-x+2,求满足下列条件时x的取值范围:(1)y1<y2 (2)2y1-y2≤4 5.解不等式组: 6.求下列不等式组的解集 7.(1)计算:(-2)-2×|-3|-()0 (2)解不等式组: 8.解不等式组,并指出它的所有整数解. 9.解不等式组:,并写出该不等式组的整数解.

11.解不等式组并写出的所有整数解. 12.(1)解方程:. (2)求不等式组:. 13.求不等式组的整数解. 14.(1)解不等式组:并把解集在数轴上表示出来. (2)解不等式组: 15.求不等式组的非负整数解. 16.解不等式(组),并把它们的解集在数轴上表示出来 (1); (2) 17.(1)解不等式组 (2)在(1)的条件下化简:|x+1|+|x-4| 18.已知关于x,y的方程组的解为正数. (1)求a的取值范围; (2)化简|-4a+5|-|a+4|. 19.(1)解不等式2->+1,并把它的解集在数轴上表示出来; (2)求不等式组的整数解. 20.解不等式组:. 21.解不等式组 22.解不等式组,并把它们解集表示在数轴上,写出满足该不等式组的 所有整数解.

23.解不等式组:;在数轴上表示出不等式组的解集,并写出它的整数 解. 24.解不等式组:. 25.解不等式组 26.解不等式组 ) 27.当x 是不等式组 的正整数解时,求多项式(1﹣3x )(1+3x )+(1+3x ) 2 +(﹣x 2)3÷x 4的值. 28.解方程与不等式组: 解方程:;解不等式组: 29.解不等式组. 30.解不等式组,并写出不等式组的整数解. 31.(1)解不等式组: (2)解方程: 32.解不等式组: . 33.解不等式组,并在数轴上表示它的解集. 34.(1)解方程: ; (2)解不等式组: ,并把解集在数轴上表示出来.

(732)解一元一次不等式专项练习50题(有答案)ok

解一元一次不等式专项练习50题(有答案)1., 2.﹣(x﹣1)≤1, 3. ﹣1>. 4.x+2<, 5..6.,7.≥, 8. 9. 10.>,11., 12..

14. 3x ﹣, 15.3(x﹣1)+2≥2(x﹣3).16.,17.10﹣4(x﹣4)≤2(x﹣1),18.﹣1<. 19..21.,22.,23.≥.24.>1.25..26.,

28.; 29. . 30. ≤ 31.,32.(x+1)≤2﹣x 33.2(5x+3)≤x﹣3(1﹣2x)35.; 36. .37.. 38.4x+3≥3x+5. 39.2(x+2)≥4(x﹣1)+7. 40.>x﹣1

41.2(3﹣x)<x﹣3.42.3(x+2)≤5(x﹣1)+7,43.1﹣≥ 44.2(x+3)﹣4x>3﹣x.45.2(1﹣2x)+5≤3(2﹣x)46., 47..48.2﹣>3+. 49.4(x+3)﹣<2(2﹣x)﹣(x ﹣)50..

解不等式50题参考答案: 1.解:去分母得:3(x+1)>2x+6, 去括号得:3x+3>2x+6, 移项、合并同类项得:x>3, ∴不等式的解集为x>3 2.解:去分母得:x+1﹣2(x﹣1)≤2, ∴x+1﹣2x+2≤2, 移项、合并同类项得:﹣x≤﹣1, 不等式的两边都除以﹣1得:x≥1 3.解:去分母得2(x+4)﹣6>3(3x﹣1),去括号得2x+8﹣6>9x﹣3, 移项得2x﹣9x>﹣3﹣8+6, 合并同类项得﹣7x>﹣5, 化系数为1得x < 4.解;x+2 <, 去分母得:3x+6<4x+7, 移项、合并同类项得:﹣x<1, 不等式的两边都除以﹣1得:x>﹣1, ∴不等式的解集是x>﹣1 5.解:去分母,得6x+2(x+1)≤6﹣(x﹣14) 去括号,得6x+2x+2≤6﹣x+14…(3分) 移项,合并同类项,得9x≤18 …(5分) 两边都除以9,得x≤2 6.解:去分母得:2(2x﹣3)>3(3x﹣2) 去括号得:4x﹣6>9x﹣6 移项合并同类项得:﹣5x>0 ∴x<0 7.解:去分母得,3(3x﹣4)+30≥2(x+2), 去括号得,9x﹣12+30≥2x+4, 移项,合并同类项得,7x≥﹣14, 系数化为1得,x>﹣2 8.解:x﹣3<24﹣2(3﹣4x), x﹣3<24﹣6+8x, x﹣8x<24﹣6+3, ﹣7x<21, x>﹣3 9.解:化简原不等式可得:6(3x﹣1)≤(10x+5)﹣6,即8x≥﹣16, 可求得x≥﹣2 10.解:去分母,得3(x+1)﹣8>4(x﹣5)﹣8x, 去括号,得3x+3﹣8>4x﹣20﹣8x, 移项、合并同类项,得7x>﹣15,11.解:去分母,得x+5﹣2<3x+2, 移项,得x﹣3x<2+2﹣5, 合并同类项,得﹣2x<﹣1, 化系数为1,得x > 12.解:去分母,得3(x+1)≥2(2x+1)+6, 去括号,得3x+3≥4x+2+6, 移项、合并同类项,得﹣x≥5, 系数化为1,得x≤﹣5 13.解:去分母,得2(2x﹣1)﹣24>﹣3(x+4),去括号,得4x﹣2﹣24>﹣3x﹣12, 移项、合并同类项,得7x>14, 两边都除以7,得x>2 14.解:去分母得,6x﹣1<2x+7, 移项得,6x﹣2x<7+1, 合并同类项得,4x<8, 化系数为1得,x<2 15.解:3(x﹣1)+2≥2(x﹣3), 去括号得:3x﹣3+2≥2x﹣6, 移项得:3x﹣2x≥﹣6+3﹣2, 解得:x≥﹣5 16.解:去分母得:2(x﹣1)﹣3(x+4)>﹣12,去括号得:2x﹣2﹣3x﹣12>﹣12, 移项得:2x﹣3x>﹣12+2+12, 合并得:﹣x>2, 解得:x<﹣2 17.解:去括号得:10﹣4x+16≤2x﹣2, 移项合并得:﹣6x≤﹣28, 解得:x ≥ 18.解:去分母得,3(x+5)﹣6<2(3x+2), 去括号得,3x+15﹣6<6x+4, 移项、合并同类项得,5<3x, 把x的系数化为1得x >. 19 .解:∵ ∴3(x+5)﹣6<2(3x+2) ∴3x+15﹣6<6x+4 ∴3x﹣6x<4﹣15+6 ∴﹣3x<﹣5 ∴x 20.解:去分母得30﹣2(2﹣3x)≤5(1+x), 去括号得30﹣4+6x≤5+5x, 移项得6x﹣5x≤5+4﹣30,

基本不等式练习题(带答案)

《基本不等式》同步测试 一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若 a ∈R ,下列不等式恒成立的是 ( ) A .21a a +> B .2 111 a <+ C .296a a +> D .2 lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( ) A. 1 2 B.22a b + C.2ab D.a 3. 设x >0,则1 33y x x =-- 的最大值为 ( ) A.3 B.332- C.3-23 D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( ) A. 10 B. 63 C. 46 D. 183 5. 若x , y 是正数,且 14 1x y +=,则xy 有 ( ) A.最大值16 B.最小值 116 C.最小值16 D.最大值116 6. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( ) A .2222a b c ++≥ B .2 ()3a b c ++≥ C . 11123a b c + + ≥ D .3a b c ++≤ 7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( ) A . 114x y ≤+ B .111x y +≥ C .2xy ≥ D .1 1xy ≥ 8. a ,b 是正数,则 2,, 2 a b ab ab a b ++三个数的大小顺序是 ( ) A.22a b ab ab a b +≤≤+ B.22a b ab ab a b +≤≤ + C. 22ab a b ab a b +≤≤+ D.22 ab a b ab a b +≤≤ + 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2 p q x +≥ 10. 下列函数中,最小值为4的是 ( ) A.4y x x =+ B.4sin sin y x x =+ (0)x π<<

线性规划与基本不等式

线性规划及基本不等式 一、知识梳理 (一)二元一次不等式表示的区域 1、对于直线0=++C By Ax (A>0),斜率K=__________,与x 轴的交点为________与y 轴的交点为___________ 2、 当B>0时, 0>++C By Ax 表示直线0=++C By Ax 上方区域; 0<++C By Ax 表示直线0=++c By Ax 的下方区域. 当B<0时, 0>++C By Ax 表示直线0=++C By Ax 下方区域; 0<++C By Ax 表示直线0=++c By Ax 的上方区域. 3、问题1:画出不等式组?????≤≥+≥+-3005x y x y x 表示的平面区域 问题2:求z=x-3y 的最大值和最小值 注、(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z=Ax+By 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z=Ax+By 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.满足线性约束条件的解(x,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(11,y x )和(22,y x )分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解. (2)、用图解法解决简单的线性规划问题的基本步骤: 1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域). 2.设z=0,画出直线l0. 3.观察、分析,平移直线l0,从而找到最优解. 4.最后求得目标函数的最大值及最小值. (3)、线性目标函数的最值常在可行域的顶点处取得 (二)基本不等式 1.基本形式:,a b R ∈,则222a b ab +≥;0,0a b >>, 则a b +≥,当且仅当a b =时等号成 立2.、已知x 为正数,求2x+x 1 的最小值

不等式经典题型专题练习(含答案)-

不等式经典题型专题练习(含答案) :__________ 班级:___________ 一、解答题 1.解不等式组: ()13x 2x 11{ 25 233x x -+≤-+≥-,并在数轴上表示不等式组的解集. 2.若不等式组21{ 23x a x b -<->的解集为-1

5.解不等式组:并写出它的所有的整数解. 6.已知关于x、y的方程组 521118 23128 x y a x y a +=+ ? ? -=- ? 的解满足x>0,y>0,数a的取 值围. 6.求不等式组 x20 x 1x3 2 -> ? ? ? +≥- ?? 的最小整数解. 7.求适合不等式﹣11<﹣2a﹣5≤3的a的整数解. 8.已知关于x的不等式组的整数解共有5个,求a的取值围. 9.若二元一次方程组 2 { 24 x y k x y -= += 的解x y >,求k的取值围.

10.解不等式组5134122 x x x x ->-???--??≤并求它的整数解的和. 11.已知x ,y 均为负数且满足:232x y m x y m +=-?? -=?①②,求m 的取值围. 12.解不等式组?? ???<+-+≤+12312)2(352x x x x ,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集. 14.若方程组2225 x y m x y m +=+??-=-?的解是一对正数,则: (1)求m 的取值围 (2)化简:42m m -++ 15.我市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房. 如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?

不等式综合练习题集

不等式专题练习题 一、知识内容 不等式是高中数学的重要内容之一,不等式的性质是解证不等式的基础;两个正数的算术平均数不小于它们的几何平均数的定理(教材中称为基本不等式,通常称均值不等式)及其变形在不等式的证明和解决有关不等式的实际问题中发挥着重要的作用;线性规划是运筹学的一个重要分支,在实际生活中有着广泛的应用. 二、核心思想方法 解不等式是研究方程和函数的重要工具,不等式的概念、性质涉及到求函数最大(小)值,实数大小比较,求参数的取值范围等;不等式的综合题主要是不等式与集合、函数、数列、三角函数、解析几何、导数等知识的综合,综合性强,难度较大,是高考命题的热点,也是高考复习的难点;均值不等式的证明最终是利用了配方法,使用该不等式的核心方法则是整体思想方法,就是对哪两个正数使用定理,例如下面练习题的第5题是对2,a b使用不等式,而不是对,a b使用不等式;线性规划的核心方法是数形结合和转化的思想方法,在具体转化上涉及到面积、截距(目标函数为二元一次多项式)、距离(目标函数含二元二次多项式)、斜率(目标函数为分式)等几何意义,分别如下面练习题的第9、22、23、24题. 三、高考命题趋势 本专题的高考命题热点可从以下两个方面去把握: 1.以客观题形式命题:不等式的性质和解不等式问题多以一个选择题的形式出现,且多与集合、简易逻辑、函数知识相结合,难度较低;均值不等式是历年高考的重点考查内容,考查方式多变,在客观题中出现,一般只有一个选择或填空,考查直接,难度较低;线性规划问题是近几年高考的一个新热点,在考题中主要以选择、填空形式出现,且设问也是灵活多变,每年高考必有一题.四个注意问题:(1)命题者有时把线性规划问题和均值不等式结合在一起,提高了难度,例如下面练习题的第8、28题.(2)线性规划的约束条件中含有参数的,例如下面练习题的第7、9题.(3)均值不等式的凑定值技巧,一是关注消元,而是关注整体代入思想方法,分别如下面练习题的第17、18题.(4)克服思维定势,有些题目很象是利用基本不等式的,其实只是解出未知数代入化简的,

不等式专题训练

不等式专题训练1 1.若a >0,b >0,a+b=2,则下列不等式不恒成立的是( ) A .ab ≤1 B .a 2+b 2≥2 C . + ≤ D .+≥2 2.已知变量x ,y 满足,则的取值范围为( ) A .[0,] B .[0,+∞) C .(﹣∞,] D .[﹣,0] 3.以下结论正确的是( ) A .若a <b 且c <d ,则ac <bd B .若ac2>bc2,则a >b C .若a >b ,c <d ,则a ﹣c <b ﹣d D .若0<a <b ,集合A={x|x=},B={x|x=},则A ?B 4.设x ,y 满足约束条件30,0,20,x y a x y x y --≤?? -≥??+≥? 若目标函数z x y =+的最大值为2,则实数a 的 值为( ) A .2 B .1 C .1- D .2- 5.已知集合()12 2|log 12,| 21x A x x B x x ??+?? =+≥-=≥????-?? ? ? ,则 A B =I ( ) A.()1,1- B.[)0,1 C.[]0,3 D.? 6.若实数x ,y 满足,则z=x ﹣2y 的最小值为( ) A .﹣7 B .﹣3 C .1 D .9 7.设a ,b ∈R + ,且a ≠b ,a+b=2,则必有 ( ) A .1≤ab ≤ B .<ab <1 C .ab <<1 D .1<ab < 8.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A .a 2 >ab >b 2 B .ac 2 <bc 2 C . D . 9.如果实数x 、y 满足,目标函数z=kx+y 的最大值为12,最小值3,那么实数k 的值为( ) A .2 B .﹣2 C . D .不存在 10.若点(2,﹣3)不在不等式组表示的平面区域内,则实数a 的取值范围是( ) A .(﹣∞,0) B .(﹣1,+∞) C .(0,+∞) D .(﹣∞,﹣1) 11.设变量x ,y 满足约束条件,则目标函数z=2x+5y 的最小值为( )

练习-线性规划与基本不等式

线性规划与基本不等式 1.若222x y x y ????+? ≤,≤,≥,则目标函数2z x y =+的取值范围是( ) A.[26], B.[25], C.[36], D.[35], 2.已知x y ,满足约束条件5003x y x y x -+??+??? ≥,≥,≤.则24z x y =+的最大值为( ) A.5 B.38- C.10 D.38 3.若变量x ,y 满足约束条件30101x y x y y -+≤??-+≥??≥? ,则z =2x +y -4的最大值为( ) A .-4 B .-1 C .1 D .5 4.已知目标函数2z x y =+中变量x y ,满足条件4335251x y x y x --??+取得最大值的最优解有无穷多个,则a 的值为( ) A.14 B.35 C.4 D.53 8.已知0x >,0y >,且231x y +=,则23 x y +的最小值为( )

《一元一次不等式的整数解》专题训练及答案

《一元一次不等式的整数解》专题训练 一.选择题(共10小题) 1.关于x的不等式x﹣b≥0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2 2.不等式2x﹣1≥3x﹣3的正整数解的个数是() A.1个 B.2个 C.3个 D.4个 3.不等式+1<的负整数解有() A.1个 B.2个 C.3个 D.4个 4.使不等式4x+3<x+6成立的最大整数解是() A.﹣1 B.0 C.1 D.以上都不对 5.下列说法中错误的是() A.不等式x+1≤4的整数解有无数个 B.不等式x+4<5的解集是x<1 C.不等式x<4的正整数解为有限个 D.0是不等式3x<﹣1的解 6.不等式3(x﹣1)≤5﹣x的非负整数解有() A.1个 B.2个 C.3个 D.4个 7.不等式>﹣1的正整数解的个数是() A.1个 B.2个 C.3个 D.4个 8.不等式3(x﹣2)<7的正整数解有() A.2个 B.3个 C.4个 D.5个 9.使不等式x﹣2≥﹣3与2x+3<5同时成立的x的整数值是()A.﹣2,﹣1,0 B.0,1 C.﹣1,0 D.不存在 10.不等式4(x﹣2)>2(3x+5)的非负整数解的个数为() A.0个 B.1个 C.2个 D.3个 二.填空题(共10小题)

11.如果不等式3x﹣m≤0的正整数解是1,2,3,那么m的范围是.12.不等式2x<4x﹣6的最小整数解为. 13.不等式﹣x+2>0的最大正整数解是. 14.不等式2x﹣7<5﹣2x的非负整数解的个数为个. 15.如果不等式2x﹣m≥0的负整数解是﹣1,﹣2,则m的取值范围是.16.不等式4﹣x>1的正整数解为. 17.已知满足不等式3(x﹣2)+5<4(x﹣1)+6的最小整数解是方程:2x﹣ax=3的解,则a的值为. 18.不等式5x﹣3<3x+5的所有正整数解的和是. 19.不等式3x﹣4<x的正整数解是. 20.不等式﹣4x≥﹣12的正整数解为. 三.解答题(共10小题) 21.已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值. 22.解不等式<1﹣,并求出它的非负整数解. 23.x取哪些整数值时,不等式5x+2>3(x﹣1)与x≤2﹣都成立?24.解不等式,并把它的解集表示在数轴上,再写出它的最小整数解. 25.解不等式:,并写出它的所有正整数解. 26.求不等式≥的正整数解. 27.解不等式:1﹣≥,并写出它的所有正整数解. 28.求不等式组的最小整数解. 29.若关于x,y的二元一次方程组的解满足x﹣y>﹣3.5,求出满

线性规划和基本不等式常见题型

线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、 若x 、y 满足约束条件222 x y x y ≤?? ≤??+≥? ,则z=x+2y 的取值范围是 ( ) A 、[2,6] B 、[2,5] C 、[3,6] D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将直线 向右上方平移,过点A (2,0)时,有最小值2, 过点B (2,2)时,有最大值6,故选 A 二、求可行域的面积 例2、不等式组260 302x y x y y +-≥?? +-≤??≤? 表示的平面区域的面积为 A 、4 B 、1 C 、5 D 、无穷大 解:如图,作出可行域, △ABC 的面积即为所求, 由梯形OMBC 的面积减去梯形OMAC 的面积即可,选 B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数 A 、9个 B 、10个 C 、13个 D 、14个 解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0) 2 (0,0)x y x y x y x y x y x y x y x y +≤≥≥??-≤≥? ? -+≤≥??--≤? 作出可行域如右图,是正方形内部(包括边界),容易得 到整点个数为13个,选 D 四,求非线性目标函数的最值 例4、已知x 、y 满足以下约束条件220240330x y x y x y +-≥?? -+≥??--≤? ,则 z=x 2 +y 2 的最大值和最小值分别是( ) A 、13,1 B 、13,2 C 、13,4 5 D 、

文本预览
相关文档 最新文档