当前位置:文档之家› 界面现象 复习题解答

界面现象 复习题解答

界面现象 复习题解答
界面现象 复习题解答

第十二章界面现象复习题解答

1、为什么气泡、液滴、肥皂泡等等都呈圆形玻璃管口加热后会变的光滑并缩小(俗称圆口),这些现象

的本质是什么

答:这些现象的本质是:表面层分子总是受到本体内部分子的拉力,有进入本体内部的趋势,即总是使表面积缩小到最小的趋势,因为相同体积的球形表面积最小,所以都成球形,而玻璃管口加热后变为圆口也是减小曲率半径((缩小表面积)。

2、用学到的关于界面现象的知识解释以下几种做法或现象的基本原理:(1)人工降雨,(2)有机蒸馏中加沸石,(3)毛细凝聚,(4)过饱和溶液、过饱和蒸汽、过冷液体等过饱和现象,(5)重量分析中的“陈化”过程,(6)喷洒农药时为何常常要在药液中加少量表面活性剂。

答:都用开尔文公式RTlnP/P0=2 r m/ρR’或RTlnP1/P2=(2 r m/ρ)*(1/R1′-1/ R2′)或RTlnS/S0=2 r m/ρR’或RTlnS1/S2=(2 r m/ρ)*(1/R1′-1/ R2′)来解释。

3、如图所示,在三通活塞的两端涂上肥皂液,关断右端通路,在左端吹一个大泡;然后关闭左端,在右端吹一个小泡,最后让左右两端相通,试问接通后两泡的大小有何变化到何时达到平

衡讲出变化的原因及平衡时两泡的曲率半径的比值。

答:接通后小泡变小,大泡变大,即小气泡的附加压力Ps大于大气泡的附加压力,当达平衡时两气泡的曲率半径相等。

4、因吉布斯自由能越低,体系越稳定,所以物体总有降低本身表面吉布斯自由能的趋势。请说说纯液体、溶液、固体是如何降低自己的表面吉布斯自由能的。

答:纯液体通过缩小表面积来降低表面吉布斯自由能。溶液通过减小表面积和表面吸附两种途径来降低表面吉布斯自由能,对表面活性剂产生正吸附(Pi= -a i/RT(dr/da i),对非表面活性剂产生负吸附。

固体通过吸附气体分子或液体分子来降低体系吉布斯自由能。

5、为什么小晶粒的熔点比大块的固体的熔点略低而溶解度却比大晶粒大

答:根据开尔文公式RTlnS1/S2=2 r m/ρR’说明小晶粒的溶解度大于大块固体的溶解度(因为相同质量的小晶粒的表面吉布斯自由能大于大晶体的表面吉布斯自由能。因为熔点是三相平衡点,

∵RTlnP小/P大=(2 r m/ρ)*(1/R小-1/ R大),小晶体的蒸汽压大于大晶体的蒸汽压,所以小晶体的熔点

比大晶体的熔点低)

6、若用CaCO 3进行热分解,问细粒CaCO 3的分解压(A p )与大块CaCO 3的分解压(B p )相比,两者大小如何试说明为什么

答:根据开尔文公式RTlnP/P 0=2rm/ρR’, R’越小,其蒸汽压越大。所以细小的CaCO 3的分解压大于大块CaCO 3的分解压,指分解平衡时CO 2的压力 CaCO 3=CaO+CO 2(g )

∵ΔrG θ=-RTlnKp θ=-RTlnP CO2=θθθ)()()(32

CaCO m f CaO m f CO f G G G m ?-?+?故颗粒小的CaCO 3的生成吉布斯自由能小于大块的生成吉布斯自由能,所以小颗粒的CaCO 3分解时的ΔG θ变大,所以Kp θ=P CO2变大。

7、 设有内径一样大的a 、b 、c 、d 、e 、f 管及内径较大的g 管一起插入水中,除f 管内壁涂有石蜡外,

其余全是洁净的玻璃管,若a 管内液面升高为h ,试估计其余管内的水面高度若先将水在各管内(c 、d 管除外)都灌到h 的高度,在让其自动下降,结果又如何 答:根据:gh cos 2液ρθ==R

r P s ∴gR cos 2液ρθr h =,由于f 管有石蜡,其θ>90°,且半径不相同,故各管的高度不

同(见书)。若将水先灌入各管内为h 高度,结果除(a 、

d )外,其余不变(固

e 的R 较大)。

8、 在装有两种不同溶液的毛细管中(如图),若在毛细管右端加热,请注明液体流动的方向。

题7

(a)

(b) (b)

9、为什么当把泉水小心注入干燥杯子时,水面会高出杯面为什么井水比河水有较大的表面张力

答:因泉水有较多的矿物质,以离子形式溶解在泉水中,使泉水的表面张力大于自来水的表面张

力,不润湿杯子,接触角θ>90°,形成凸面液面,所以水面高出杯子,同理,井水比河水的矿物质多,

是非表面活性物质,表面张力大,所以井水的表面张力大于河水的表面张力。

10、为什么气体吸附在固体表面一般总是放热的而却有一些气—固吸附是吸热的(如H 2在玻璃上的吸附),如何解释这种现象

答:根据热力学基本关系式:ΔH=ΔG+TΔ S ,由于物理吸附和化学吸附都是自发过程,ΔG <0。而气体分子在固体表面吸附后,熵减小,ΔS<0,所以ΔH <0,是放热的,但H 2在玻璃上吸附后发生裂解: H 2 H+H (1)H+玻 H-玻 (2) 第一步是吸热,第二步放热,而吸热大于放热,故总过程是吸热。

11、如果某固体的大粒子(半径为1R ')在水中形成饱和溶液的浓度为c 1,微小粒子(半径为2

R ')在水中形成饱和溶液的浓度为c 2,固—液界面张力为γl —s ,试证明饱和溶液浓度与曲率半径的关系式为: ???? ??'-'=-12

12112ln R R RT M c c s l ργ式中M 为该固体的摩尔质量,ρ为其密度。

答:开尔文公式同样适用于不同曲率半径固体的溶解,)11(2ln

'2'121R R rm s s RT -=ρ 12、试说明同一个气—固相催化剂反应,为何在不同的压力下表现出不同的反应级数证明BET 公式在压力很小时(即P 《 Ps )可还原为兰缪尔吸附等温式。

答:以单分子反应为例

S A +

设表面反应为控制步骤,A k r θ2= , A A a a ρρθ+=

1 ∴A

A a a k r ρρ+=12 ,当aρA 1,A A K a k r ρρ==2 表现为一级反应。当aρA 1(低压时),r=k 2为零级反应。

BET 等温式:s m m S p p c V c c V P P V p .11)(-+=-,或可写作()??????-+-=s s m p p c p p cp V V 11)(,压力很低,pp s

时,()s m s s cp V p c p Vp p 1-=+,∴()c V p c p V p m s 1-+=,()p c p cp V V s m 1-+= s p cp V p m 很小 θ=m V V =kp p p c s

=

当PPs 时,Kp V p cp V p p c p cp V V m s s s m =-+=m )1(很小, ∴θ=V/Vm=KP ,与兰格缪尔等温式在低压下的形式一致。

(完整word版)道路工程材料知识点考点总结

道路工程材料知识点考点 绪论 ● 道路工程材料是道路工程建设与养护的物质基础,其性能直接决定了道路工程质量和服务寿命和结 构形式。 ● 路面结构由下而上有:垫层,基层,面层。 ● 面层结构材料应有足够的强度、稳定性、耐久性和良好的表面特性。 第一章 ● 砂石材料是石料和集料的统称 ● 岩石物理常数为密度和孔隙率 ● 真实密度:指规定条件下,烘干岩石矿质实体单位真实体积的质量。 ● 毛体积密度:指在规定条件下,烘干岩石矿质实体包括空隙(闭口、开口空隙)体积在内的单位毛 体积的质量。 ● 孔隙率:是指岩石孔隙体积占岩石总体积(开口空隙和闭口空隙)的百分率。 ● 吸水性:岩石吸入水分的能力称为吸水性。 ● 吸水性的大小用吸水率与饱和吸水率来表征。 ● 吸水率:是岩石试样在常温、常压条件下最大的吸水质量占干燥试样质量的百分率。 ● 饱和吸水率:是岩石在常温及真空抽气条件下,最大吸水质量占干燥试样质量的百分率。 ● 岩石的抗冻性:是指在岩石能够经受反复冻结和融化而不破坏,并不严重降低岩石强度的能力。 ● 集料:是由不同粒径矿质颗粒组成的混合料,在沥青混合料或水泥混凝土中起骨架和填充作用。 ● 表观密度:是指在规定条件下,烘干集料矿质实体包括闭口空隙在内的表观单位体积的质量。 ● 级配:是指集料中各种粒径颗粒的搭配比例或分布情况。 ● 压碎值:用于衡量石料在逐渐增加的荷载下抵抗压碎的能力,也是石料强度的相对指标。压碎值是对石料的标准试样在标准条件下进行加荷,测试石料被压碎后,标准筛上筛余质量的百分率。1000 1?='m m Q a (1m :试验后通过2.36mm 筛孔的细集料质量) ● 磨光值:是反映石料抵抗轮胎磨光作用能力的指标,是决定某种集料能否用于沥青路面抗滑磨耗层 的关键指标。 ● 冲击值:反映粗集料抵抗冲击荷载的能力。由于路表集料直接承受车轮荷载的冲击作用,这一指标 对道路表层用料非常重要。 ● 磨耗值:用于评定道路路面表层所用粗集料抵抗车轮磨耗作用的能力。 ● 级配参数: ?? ???分率。质量占试样总质量的百是指通过某号筛的式样通过百分率和。筛分级筛余百分率之总分率和大于该号筛的各是指某号筛上的筛余百累计筛余百分率率。量占试样总质量的百分是指某号筛上的筛余质分级筛余百分率i i i A a ρ 沥青混合料 水泥混合料 粗集料 >2.36mm >4.75mm 细集料 <2.36mm <4.75mm

傅献彩物理化学选择题———第十二章 界面现象 物化试卷(一)

目录(试卷均已上传至“百度文库”,请自己搜索)第一章热力学第一定律及其应用物化试卷(一)第一章热力学第一定律及其应用物化试卷(二)第二章热力学第二定律物化试卷(一) 第二章热力学第二定律物化试卷(二) 第三章统计热力学基础 第四章溶液物化试卷(一) 第四章溶液物化试卷(二) 第五章相平衡物化试卷(一) 第五章相平衡物化试卷(二) 第六章化学平衡物化试卷(一) 第六章化学平衡物化试卷(二) 第七章电解质溶液物化试卷(一) 第七章电解质溶液物化试卷(二) 第八章可逆电池的电动势及其应用物化试卷(一)第八章可逆电池的电动势及其应用物化试卷(二)第九章电解与极化作用 第十章化学动力学基础(一)物化试卷(一) 第十章化学动力学基础(一)物化试卷(二) 第十一章化学动力学基础(二) 物化试卷(一) 第十一章化学动力学基础(二) 物化试卷(二) 第十二章界面现象物化试卷(一) 第十二章界面现象物化试卷(二) 第十三章胶体与大分子溶液物化试卷(一) 第十三章胶体与大分子溶液物化试卷(二) 参考答案

1. 液体的表面自由能γ 可以表示为: ( ) (A) (α H/αA)T,p,n(B) (αF/αA)T,p,n (C) (αU/αA)S,V,n(D) (αG/αA)T,V,n 2. 对大多数纯液体其表面张力随温度的变化率是: ( ) (A) (αγ/αT)p> 0 (B) (αγ/αT)p< 0 (C) (αγ/αT)p= 0 (D) 无一定变化规律 3. 已知400 K 时,汞的饱和蒸气压为 p0,密度为ρ ,如果求在相同温度下,一个直径为10-7m 的汞滴的蒸气压,应该用公式:( ) (A) p = p0+ 2γ/R' (B) ln(p/p0) =ΔVapHm(1/T0-1/T)/R (C) RTln(p/p0) = 2γM/ρR' (D) p = nRT/V 4. 弯曲表面上附加压力的计算公式:Δp = p'-p0= 2γ/R' 中,R' 的符号:( ) (A) 液面为凸面时为正,凹面为负(C) 总为正 (B) 液面为凸面时为负,凹面为正(D) 总为负 5. 液体在毛细管中上升的高度与下列那一个因素无关: (A)温度(B)液体密度(C)重力加速度(D)大气压力 6. 把玻璃毛细管插入水中,凹面下液体所受的压力p 与平面液体所受的压力p 相比:( ) (A) p = p0(B)p < p0(C) p > p0(D) 不确定

自然界中的电现象

(一)自然界中的电现象 打雷和闪电是自然界中最为显著的电现象,给人的印象极为深刻。我国自古以来在语言、文字中就出现了对自然中电现象的描绘,如称雷公电母、电闪雷鸣、春雷滚滚、雷电交加、天走银蛇等等。而且,雷电击人、毁坏物体的自然灾害时有发生。 历史上曾有科学家尝试接收雷电的能量,但实验不成功。人们着手研究、探讨电的现象和规律,是从摩擦、静电感应开始的。自从了解了电和磁的关系,人类终于实现了对电的规模应用,对电的理解也更为深入。今天,电不但是照明、影音、通讯、电热、机械动力等的能量源泉,实现了电量与非电量的能量转换,而且通过计算机技术传递着各种信息,把社会生产、社会生活推向了信息化时代。电科学技术已经是人类不可缺少的,是极大促动生产力发展的现代科学技术,有着广阔的发展前景,已经形成了多门类、多分支的学科。 电工学是研究电主要在动力以及电器应用方面原理的基础理论学科。学习电工学,应该对电的本质有明晰的了解。 二、电的物质性和电的产生模型 (一)电的物质性 电是物质的一种运动形式,电实质就是电子的定向运动,在运动过程中表现出了电的性质和特点。自然现象中的电和我们日常所经常接触使用的电,在本质上都是一样的。 我们知道,物质的原子是由本身的原子核、电子构成,带正电荷粒子的原子核与带负电荷粒子的电子之间存有着万有引力和静电力库仑力,方向为相互所指。 因为所带电量相等而整个原子对外不显电性,其间的静电力是它们相互束缚的最主要力量。电荷粒子具有同种电荷相互排斥、异种电荷相互吸引的性质,一个电 子电荷粒子的电量是16×10库仑,静止质量约为91×10克。 作为不稳定结构的原子,如金属铜的原子,一旦因原子的最外层自由电子受到外部作用力而偏离原运行轨道,则该原子成为显正电性的原子,而偏离轨道的自由电子显负电性,若干铜原子的电子在同一外力作用下形成有规则的、连续的定向运动,在宏观上就是电流。理应注意,自由电子受外力作用所谓偏离原运行轨道,即是发生定向位移,受到作用力越大,偏离位移也就越厉害,位移的方向就是电荷受到外力与自由电子受到原子核静电力合矢量的方向。电流是电子之间以相互接力式的定向位移,传递着对它们产生作用力的外力的能量,一般情况下,如果接力传递链不能形成,外力再大,能量也得不到传递。而在导电状态下的金属铜导体带正电荷的原子核是不会发生位移的。除了金属铜原子外,其他金属类原子也有类似性质。其,只要能起作用的外力充足大,部分非金属原子最外层电子也会被强行形成接力式定向位移,而传递能量。 (二)电荷的聚集与电场 电场是在外力的作用下所形成的电荷团,正电荷的电荷团为正电场,负电荷的电荷团为负电场,无论电场的电荷量多少,都具有电场的性质,包含电场力、电场

第十章界面现象练习题及答案

第十章界面现象练习题 一、是非题(对的画√错的画×) 1、液体的表面张力总是力图缩小液体的表面积。() 2、液体的表面张力的方向总是与液面垂直。() 3、分子间力越大的物体其表面张力也越大。() 4、垂直插入水槽中一支干净的玻璃毛细管,当在管中上升平衡液面外加热时,水柱会上升。() 5、在相同温度下,纯汞在玻璃毛细管中呈凸液面,所以与之平衡的饱和蒸气压必大于其平液面的蒸汽压。() 6、溶液表面张力总是随溶液的浓度增大而减小。() 7、某水溶液发生负吸附后,在干净的毛细管中的上升高度比纯水在该毛细管中上升的高度低。() 8、通常物理吸附的速率较小,而化学吸附的速率较大。() 9、兰格缪尔等温吸附理论只适用于单分子层吸附。() 10、临界胶束浓度(CMC)越小的表面活性剂,其活性越高。() 11、物理吸附无选择性。() 12、纯水、盐水、皂液相比,其表面张力的排列顺序是:γ(盐水)<γ(纯水)<γ(皂液)。() 13、在相同温度与外压力下,水在干净的玻璃毛细管中呈凹液面,故管中饱和蒸气压应小于水平液面的蒸气压力。() 14、朗缪尔吸附的理论假设之一是吸附剂固体的表面是均匀的。() 15、同一纯物质,小液滴的饱和蒸气压大于大液滴的饱和蒸气压。() 16、弯曲液面的饱和蒸气压总大于同温度下平液面的蒸气压。() 17、表面张力在数值上等于等温等压条件下系统增加单位表面积时环境对系统所做的可逆非体积功。() 18、某水溶液发生正吸附后,在干净的毛细管中的上升高度比在纯水的毛细管中的水上升高度低。() 19、弯曲液面处的表面张力的方向总是与液面相切。()

20、吉布斯所定义的“表面过剩物质的量”只能是正值,不可能是负值。( ) 21、封闭在容器内的大、小液滴若干个,在等温下达平衡时,其个数不变,大小趋于一致。() 22、凡能引起表面张力降低的物质均称之为表面活性剂。() 23、表面过剩物质的量为负值,所以吸附达平衡后,必然引起液体表面张力降低。() 24、在吉布斯模型中,选择表面相的位置使溶剂的表面过剩物质的量n1(γ),则溶质的表面过剩物质的量ni(γ)可以大于零、等于零或小于零。() 25、过饱和蒸气之所以可能存在,是因新生成的微小液滴具有很大的 比表面吉布斯函数。() 二、选择题 1、液体表面分子所受合力的方向总是(),液体表面张力的方向总是() (1)沿液体表面的法线方向,指向液体内部。 (2)沿液体表面的法线方向,指向气体内部。 (3)沿液体表面的切线方向, (4)无确定的方向。 2、在定温定压下影响物质的表面吉布斯函数的因素是() (1)仅有表面积As (2)仅有表面张力γ (3)表面积As和表面张力γ(4)没有确定的函数关系 3、附加压力产生的原因是() (1)由于存在表面(2)由于在表面上存在表面张力 (3)由于表面张力的存在,在弯曲表面两边压力不同 (4)难于确定 4、在水平放置的玻璃毛细管中注入少许水(水润湿玻璃)在毛细管中水平水柱 的两端呈凹液面,当在右端水凹面处加热,毛细管中的水向何端移动。()(1)向左移动(2)向右移动 (3)不动(4)难以确定 5、今有一球形肥皂泡,半径为r,肥皂水溶液的表面张力为γ,则肥皂泡内附加压力是()

第十二章界面现象 复习题解答

第十二章 界面现象复习题解答 1、 为什么气泡、液滴、肥皂泡等等都呈圆形?玻璃管口加热后会变的光滑并缩小(俗称圆口),这些现象的本质就是什么? 答:这些现象的本质就是:表面层分子总就是受到本体内部分子的拉力,有进入本体内部的趋势,即总就 是使表面积缩小到最小的趋势,因为相同体积的球形表面积最小,所以都成球形,而玻璃管口加热后变为 圆口也就是减小曲率半径((缩小表面积)。 2、 用学到的关于界面现象的知识解释以下几种做法或现象的基本原理:(1)人工降雨,(2)有机蒸馏中加沸石,(3)毛细凝聚,(4)过饱与溶液、过饱与蒸汽、过冷液体等过饱与现象,(5)重量分析中的“陈化”过程,(6)喷洒农药时为何常常要在药液中加少量表面活性剂。 答:都用开尔文公式RTlnP/P 0=2 r m/ρR’或RTlnP 1/P 2=(2 r m/ρ)*(1/R 1′-1/ R 2′)或RTlnS/S 0=2 r m/ρR’或 RTlnS 1/S 2=(2 r m/ρ)*(1/R 1′-1/ R 2′)来解释。 3、如图所示,在三通活塞的两端涂上肥皂液,关断右端通路,在左端吹一个大泡;然后关闭左端,在右端吹一个小泡,最后让左右两端相通,试问接通后两泡的大小有何变化?到何时达到平衡?讲出 变化的原因及平衡时两泡的曲率半径的比值。 答:接通后小泡变小,大泡变大,即小气泡的附加压力Ps 大于大气泡的附加压力,当达平衡时两气泡的曲 率半径相等。 4、因吉布斯自由能越低,体系越稳定,所以物体总有降低本身表面吉布斯自由能的趋势。请说说纯液体、溶液、固体就是如何降低自己的表面吉布斯自由能的。 答:纯液体通过缩小表面积来降低表面吉布斯自由能。溶液通过减小表面积与表面吸附两种途径来降低 表面吉布斯自由能,对表面活性剂产生正吸附(Pi= -a i /RT(dr/da i ),对非表面活性剂产生负吸附。固体通过 吸附气体分子或液体分子来降低体系吉布斯自由能。 5、为什么小晶粒的熔点比大块的固体的熔点略低而溶解度却比大晶粒大? 答:根据开尔文公式RTlnS 1/S 2=2 r m/ρR’说明小晶粒的溶解度大于大块固体的溶解度(因为相同质量的 小晶粒的表面吉布斯自由能大于大晶体的表面吉布斯自由能。因为熔点就是三相平衡点 , ∵RTlnP 小/P 大=(2 r m/ρ)*(1/R 小-1/ R 大),小晶体的蒸汽压大于大晶体的蒸汽压,所以小晶体的熔点比大晶

哈工大材料学院-材料表界面复习资料

复习内容: 一液体表面 1研究液体结构的基本假设。 (1)组成液体的原子(或分子)分布均匀、连贯、无规则;(2)液体中没有晶态区域和能容纳其他原子或分子的孔洞;(3)液体的结构主要由原子间形成的排斥力决定。 2间隙多面体,径向分布函数。 液体结构的刚性球自由密堆可以用间隙多面体来表示,其中原子处在多面体间隙的顶点。液体自由密堆结构的5种理想间隙:(a)四面体间隙;(b) 八面体间隙;(c)三棱柱的侧表面被覆盖3个半八面体间隙;(d)阿基米德反棱柱被覆盖2个半八面体间隙;(e)正方十二面体 四面体间隙占了主要地位,所以四面体间隙配位是液体结构的另一特征,四面体配位中的各相邻原子的间距就成为液体结构的最近邻原子间距。 随着温度升高(低于材料熔点Tm),原子间距增加,原子震动幅度提高,但仍然保持有序结构。这时的原子数量的变化不再是一系列离散的线,所以再用原子数量(N(r))来表示不同径向距离(r)处原子的分布就显得不太合适,而通常采用的方法是用在不同径向距离(r)处原子出现的密度来表示。用密度分布函数ρ(r)来代替离散的数量值N(r)时,分布函数的峰值就代表了在距离中心原子r处原子出现的概率。 3液体原子结构的主要特征。 (1)液体结构中近邻原子数一般为5~11个(呈统计分布),平均为6个,与固态晶体密排结构的12个最近邻原子数相比差别很大; (2)在液体原子的自由密堆结构中,四面体间隙占了主要地位。 (3)液体原子结构在几个原子直径范围内是短程有序的,而长程是无序的。 4 液体表面张力的概念及影响因素。 液体表面分子或原子受到内部分子或原子的吸引,趋向于挤入液体内部,使液体表面积缩小,因而在液体表面切向方向始终存在一种使液体表面积缩小的力,液体表面这种沿着切向方向,合力指向液体内部的作用力,就称为液体表面张力。 液体表面张力影响因素很多,如果不考虑液体内部分子或原子向液体表面的偏聚和外部原子或分子对液体表面的吸引,影响液体表面张力的因素主要有: (1)液体自身结构:液体的表面张力来源于液体内部原子或分子间的吸引力,因此液体内部原子或分子间的结合能的大小直接影响到液体的表面张力的大小。一般来说,液体中原子或分子的结合能越大,液体表面张力越大,一般液体表面张力随结构不同变化趋势是:金属键结合物质>离子键结合物质>极性共价键结合物质>非极性共价键结合物质 (2)表面所接触的介质:液体的表面张力的产生是由于处于表面层的原子或分子一方面受到液体内部原子或分子的吸引,另一方面受到液体外部原子或分子的吸引。当液体处在不同介质环境时,液体表面的原子或分子与不同物质接触所受的作用力不同,因此导致液体表面张力的不同。一般来说,介质物质的原子或分子与液体表面原子或分子结合能越大,液体表面能越小,反之越大 (3)温度:随着温度的升高,液体密度下降,液体内部原子或分子间的作用力降低,液体内部原子或分子对表面原子或分子的吸引力减弱,液体表面张力下降。最早给出的预测液体表面张力与温度关系的半经验表达式为: γ= γ0(1-T/T c)n 式中T c为液体的气化温度,γ0为0K时液体的表面张力。 5液体表面偏聚。 液体中溶质原子向液体表面偏聚可以降低液体的表面能,因此是自发进行的过程。表面能随组成液体的比例变化越大,产生表面偏聚倾向性越大。

材料表面界面考试知识点整理

1.原子间的键合方式及性能特点 原子间的键合方式包括化学键和物理键,其中化学键又分为离子键,共价键和金属键,物理键又包括分子键和氢键. 2.原子的外层电子结构,晶体的能带结构。 3.晶体(单晶、多晶)的基本概念,晶体与非晶体的区别。 单晶:质点按同一取向排列,由一个核心(晶核)生长而成的晶体;多晶:由许多不同位向的小晶体(晶粒)所组成的晶体.

4.空间点阵与晶胞、晶面指数、晶面间距的概念,原子的堆积方式和典型的晶体结构。 空间点阵:呈周期性的规律排列的阵点所形成的具有等同的周围环境的三维阵列; 晶胞:在空间点阵中,能代表空间点阵结构特点的最小平行六面体,反应晶格特性的最小几何单元; 晶面指数: 在晶格中,通过任意三个不在同一直线上的格点作一平面,称为晶面,描写晶面方位的一组数称为晶面指数.一般选取晶面在三个坐标轴上的截距,取倒数作为晶面指数; 晶面间距:两近邻晶面间的垂直距离; 原子的堆积方式:六角堆积和立方堆积; 典型的晶体结构:面心立方结构,体心立方结构,密排六方结构. 5.表面信息获取的主要方式及基本原理 可以通过光子,电子,离子,声,热,电场和磁场等与材料表面作用,来获取表面的各种信息,或者利用原子线度的极细探针与被测材料的表面近距离接近,探测探针与材料之间的信号,来获取表面信息. 电子束技术原理: 离子束技术原理:离子比光子电子都重,它轰击表面时产生的效应非常明显.离子不但具有电荷还有电子结构和原子结构,当离子与表面接近时,除具有静电场和接触电势差作用外,它本身还可以处于不同的激发电离态,离子还可以与表面产生各种化学反应,总之,离子与表面作用后,提供的信息非常丰富. 光电子能谱原理: 扫描探针显微镜技术原理: 6.为什么XPS可获得表面信息,而X射线衍射只能获得体信息? [略] X射线衍射(XRD)是利用晶体形成X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法.将具有一定波长的X射线照射到晶体上时,X射线因在晶体内遇到规则排列的原子或离子而发生散射,

第10章 界面现象

第10章界面现象 10.1 请回答下列问题: (1)常见的亚稳定状态有哪些?为什么会产生亚稳定状态?如何防止亚稳定状态的产生? 解:常见的亚稳定状态有:过饱和蒸汽、过热或过冷液体和过饱和溶液等。 产生亚稳定状态的原因是新相种子难生成。如在蒸气冷凝、液体凝固和沸腾以及溶液结晶等过程中,由于要从无到有生产新相,故而最初生成的新相,故而最初生成的新相的颗粒是极其微小的,其表面积和吉布斯函数都很大,因此在系统中产生新相极其困难,进而会产生过饱和蒸气、过热或过冷液体和过饱和溶液等这些亚稳定状态。 为防止亚稳定态的产生,可预先在系统中加入少量将要产生的新相种子。 (2)在一个封闭的钟罩内,有大小不等的两个球形液滴,问长时间恒温放置后,会出现什么现象? 解:若钟罩内还有该液体的蒸气存在,则长时间恒温放置后,出现大液滴越来越大,小液滴越来越小,并不在变化为止。 其原因在于一定温度下,液滴的半径不同,其对应的饱和蒸汽压不同,液滴越小,其对应的饱和蒸汽压越大。当钟罩内液体的蒸汽压达到大液滴的饱和蒸汽压时。该蒸汽压对小液滴尚未达到饱和,小液滴会继续蒸发,则蒸气就会在大液滴上凝结,因此出现了上述现象。 (3)物理吸附和化学吸附最本质的区别是什么? 解:物理吸附与化学吸附最本质的区别是固体与气体之间的吸附作用力不同。 物理吸附是固体表面上的分子与气体分子之间的作用力为范德华力,化学吸附是固体表面上的分子与气体分子之间的作用力为化学键力。 (4)在一定温度、压力下,为什么物理吸附都是放热过程? 解:在一定温度、压力下,物理吸附过程是一个自发过程,由热力学原理可知,此过程系统的ΔG<0。同时气体分子吸附在固体表面,有三维运动表为二维运动,系统的混乱度减小,故此过程的ΔS<0。根据ΔG=ΔH-TΔS可得,物理吸附过程的ΔH<0。在一定的压力下,吸附焓就是吸附热,故物理吸附过程都是放热过程。 10.2 在293.15K及101.325kPa下,把半径为1×10-3m的汞滴分散成半径为1×10-9m小汞滴,试求此过程系统的表面吉布斯函数变为多少?已知汞的表面张力为0.4865N·m-1。

界面现象 复习题解答

第十二章界面现象复习题解答 1、为什么气泡、液滴、肥皂泡等等都呈圆形玻璃管口加热后会变的光滑并缩小(俗称圆口),这些现象 的本质是什么 答:这些现象的本质是:表面层分子总是受到本体内部分子的拉力,有进入本体内部的趋势,即总是使表面积缩小到最小的趋势,因为相同体积的球形表面积最小,所以都成球形,而玻璃管口加热后变为圆口也是减小曲率半径((缩小表面积)。 2、用学到的关于界面现象的知识解释以下几种做法或现象的基本原理:(1)人工降雨,(2)有机蒸馏中加沸石,(3)毛细凝聚,(4)过饱和溶液、过饱和蒸汽、过冷液体等过饱和现象,(5)重量分析中的“陈化”过程,(6)喷洒农药时为何常常要在药液中加少量表面活性剂。 答:都用开尔文公式RTlnP/P0=2 r m/ρR’或RTlnP1/P2=(2 r m/ρ)*(1/R1′-1/ R2′)或RTlnS/S0=2 r m/ρR’或RTlnS1/S2=(2 r m/ρ)*(1/R1′-1/ R2′)来解释。 3、如图所示,在三通活塞的两端涂上肥皂液,关断右端通路,在左端吹一个大泡;然后关闭左端,在右端吹一个小泡,最后让左右两端相通,试问接通后两泡的大小有何变化到何时达到平 衡讲出变化的原因及平衡时两泡的曲率半径的比值。 答:接通后小泡变小,大泡变大,即小气泡的附加压力Ps大于大气泡的附加压力,当达平衡时两气泡的曲率半径相等。 4、因吉布斯自由能越低,体系越稳定,所以物体总有降低本身表面吉布斯自由能的趋势。请说说纯液体、溶液、固体是如何降低自己的表面吉布斯自由能的。 答:纯液体通过缩小表面积来降低表面吉布斯自由能。溶液通过减小表面积和表面吸附两种途径来降低表面吉布斯自由能,对表面活性剂产生正吸附(Pi= -a i/RT(dr/da i),对非表面活性剂产生负吸附。 固体通过吸附气体分子或液体分子来降低体系吉布斯自由能。 5、为什么小晶粒的熔点比大块的固体的熔点略低而溶解度却比大晶粒大 答:根据开尔文公式RTlnS1/S2=2 r m/ρR’说明小晶粒的溶解度大于大块固体的溶解度(因为相同质量的小晶粒的表面吉布斯自由能大于大晶体的表面吉布斯自由能。因为熔点是三相平衡点, ∵RTlnP小/P大=(2 r m/ρ)*(1/R小-1/ R大),小晶体的蒸汽压大于大晶体的蒸汽压,所以小晶体的熔点

江苏大学_材料表界面_期末知识点——wjl版

1.表面能:系统增加单位面积时所需做的可逆功J/m*m 2.吸附热:吸附过程中的热效应。物理吸附热效应相当于气体的凝聚热, 化学相当于化学键能 3.物理吸附:吸附作用力为范德瓦尔分子力,由表面原子和吸附原子之间 的极化作用而产生。 4.化学吸附:静电库仑力,发生电子转移,改变吸附分子结构。 5.毛细现象:吸附压力引起的毛细管内外页面的高度差的现象 6.超疏水:表面与水的接触角大于150,滚动角小于10 7.润湿:固体表面上的气体或液体被液体或另一种液体取代的现象,原因, 接触后吉布斯自由能小于0 8.亲水物质:能被水润湿的物质,如玻璃、石英 9.疏水物质:不能被水润湿的物质,如石墨、硫磺 10.接触角:三相交界处自固液界面经过液体内部到气液界面的夹角叫接触 角 11.粘附功:液柱由两液体构成,拉开后原来AB 界面消失,出现新的A\B,消耗的能量称为粘 附功 12.内聚能:均相物质分离成两部分,产生两个新界面,消耗的能量称为内

聚能 13.接触角滞后现象:于粗糙或不均匀表面上,液滴可以处于稳定平衡态或 者亚稳定平衡态。 14.粘附润湿:液体接触固体,变气液表面和气固表面为液固表面的过程。 15.浸湿过程:气固为液固所取代的过程 16.铺展润湿:液体于固体表面接触后,于固体表面上排除空气而自行铺展 的过程,也是一个以液固界面取代气固界面同时液体表面随之扩展的过程。 17.静接触角:当液体在固体表面达到平衡时,气液的界线与液固的界线之 间的夹角称为接触角,此时为静态接触角 18.动态接触角:液体在固体表面接触角随时间变化而变化的过程,是动态 接触角 19.表面活性剂:加入少量时能显著降低溶液表面张力并改变体系界面状态 的物质。 20.Krafft 温度:离子型表面活性剂的溶解度随温度变化的特点是在足够低 的温度下,溶解度随温度升高而慢慢增大,当温度达到某一定值后,溶解度会突然增大。溶解度开始突然增大的温度叫Krafft 温度。 21.表面接枝:表面接枝是通过紫外光、高能辐射、电子束、等离子体等技 术,是聚合物表面产生活性中心,引发乙烯基单体在聚合物表面接枝聚合,或利用聚合物表面的活性基团通过化学反应接枝。表面接枝聚合,大分子偶合反应,以及添加接枝共聚物。 22.金属的腐蚀:金属及合金在外围介质的化学或电化学作用下发生破坏的 过程称为金属腐蚀。 23.玻璃相:陶瓷配料中除主晶相以外的其他组分(有时包括)在一定温度 下共熔,然后“冻结”成非晶态固体。 24.复合材料:复合材料是以两种或两种以上不同材料通过一定的工艺复合 而成的多相材料。 25.增强材料:在复合材料中,凡能提高机体的机械强度、弹性模量等力学 性能的材料称为增强材料。

物理化学第十章界面现象

第十章界面现象 10.1 界面张力 界面:两相的接触面。 五种界面:气—液、气—固、液—液、液—固、固—固界面。(一般常把与气体接触的界面称为表面,气—液界面=液体表面,气—固界面=固体表面。) 界面不是接触两相间的几何平面!界面有一定的厚度, 有时又称界面为界面相(层)。 特征:几个分子厚,结构与性质与两侧体相均不同 比表面积:αs=A s/m(单位:㎡·㎏-1) 对于一定量的物质而言,分散度越高,其表面积就越大,表面效应也就越明显,物质的分散度可用比表面积αs来表示。 与一般体系相比,小颗粒的分散体系有很大的表面积,它对系统性质的影响不可忽略。 1. 表面张力,比表面功及比表面吉布斯函数 物质表面层的分子与体相中分子所处的力场是不同的——所有表面现象的根本原因! 表面的分子总是趋向移往内部,力图缩小表面积。液体表面如同一层绷紧了的富有弹性的橡皮膜。 称为表面张力:作用于单位界面长度上的紧缩力。单位:N/m, 方向:表面(平面、曲面)的切线方向 γ可理解为:增加单位表面时环境所需作的可逆功,称比表面功。单位:

J · m-2。 恒温恒压: 所以: γ等于恒温、恒压下系统可逆增加单位面积时,吉布斯函数的增加,所以,γ也称为比表面吉布斯函数或比表面能。单位J · m-2 表面张力、比表面功、比表面吉布斯函数三者的数值、量纲和符号等同,但物理意义不同,是从不同角度说明同一问题。(1J=1N·m故1J·m-2=1N·m-1,三者单位皆可化成N·m-1) 推论:所有界面——液体表面、固体表面、液-液界面、液-固界面等,由于界面层分子受力不对称,都存在界面张力。 2. 不同体系的热力学公式 对一般多组分体系,未考虑相界面面积时:

第十章界面现象InterfacePhenomena

第十章 界面现象 Interface Phenomena 界面(相界面/界面相):密切接触的两相之间的过渡区(约几个分子的厚度) 界面的类型:气—液、气—固、液—液、液—固、固—固 表面 surface 界面现象的原因:“表里不一” 分散度:比表面 s A m V s a =表面积质量或体积 多孔硅胶 300~700 ,活性炭 1000~2000 m 2 . g –1 §10.1 表面吉布斯自由能和表面张力 一、表面功、表面吉布斯自由能、表面张力 液体都有自动缩小其表面积的趋势 γ dA s = δW ?r = dG T,P 表面功 ,,B s T P n G A γ???= ??? ? γ 称为比表面吉布斯自由能,单位:J . m –2 ,物理意义:定温定压定组成条件下,系统增加单位表面积时所增加的吉布斯自由能,也即单位面积表面层的分子比相同数量的内部分子所多出来的那部分能量。如:20℃的纯水,γ = 0.07275 1g (10 –6 m 3) 球形水滴 半径 1 nm 的小水滴 半径 0.62 cm 1 nm 个数 1 2.39 × 1020 表面积 4.83 × 10 – 4 m 2 3.01 × 103 m 2 ΔG = γ ΔA s = 219 J (相当于使这1g 水升温52.4 K)

系统比表面越大,能量越高,越不稳定。 粉尘爆炸极限:淀粉/硫磺7mg/L 空气,面粉/糖粉10,煤粉17。 δW ?r = γ dA s = γ . 2l d x F δW ?r = F d x 2F l γ==力总长 γ 称为表面张力 surface tension ,单位:N . m –1 ,物理意义:垂直作用于单位长度相界面上的表面紧缩张力。 任意形状自由移动 张开成圆(面积最大) 单位面积的表面功、比表面吉布斯自由能、表面张力:数值、量纲相同,物理意义、单位不同。 二、热力学基本方程(考虑表面功) dU = T dS – p dV + ∑ μB d n B + γ d A s dH = T dS + V dp + ∑ μB d n B + γ d A s dA = – S dT – p dV + ∑ μB d n B + γ d A s dG = – S dT + V dp + ∑ μB d n B + γ d A s ,,,,,,,,B B B B s s s s S V n S p n T V n T p n U H A G A A A A γ????????????==== ? ? ? ?????????????

界面现象

第十二章界面现象 一、选择题 1.下列叙述不正确的是( ) A比表面自由能的物理意义是,在定温定压下,可逆地增加单位表面 积引起系统吉布斯自由能的增量 B表面张力的物理意义是,在相表面的功面上,垂直作用于表面上任 意单位长度功线的表面紧缩力 C比表面自由能与表面张力量纲相同,单位不同 D比表面自由能单位为J·m2,表面张力单位为N·m-1时,两者数值不 同 2.在液面上,某一小面积S周围表面对S有表面张力,下列叙述不正确的是( ) A表面张力与液面垂直 B表面张力与S的周边垂直垂直 C表面张力沿周边与表面相切 D表面张力的合力在凸液面指向液体内部(曲面球心),在凹液面指向液体外部3.同一体系,比表面自由能和表面张力都用γ表示,它们( ) A物理意义相同,数值相同 B量纲和单位完全相同 C物理意义相同D前者是标量,后者是矢量相同,单位不同 4.一个玻璃毛细管分别插入25oC和75oC的水中,则毛细管中的水在两不同温度水中上升的高度( ) A相同B无法确定C25oC水中高于75oC水中D75oC水中高于25oC水中 5.纯水的表面张力是指恒温恒压组成时水与哪类相接触的界面张力( ) A饱和水蒸汽B饱和了水蒸气的空气C空气D含有水蒸气的空气 6.已知20oC时水~空气的界面张力为 7.27×10-2N·m-1,当在20oC下可逆地增加水的表面积4cm2,则系统的ΔG为( ) A2.91×10-5J B2.91×10-1J C-2.91×10-5J D-2.91×10-1J 7.对处于平衡状态的液体,下列叙述不正确的是( ) A凸液面内部分子所受压力大于外部压力 B凹液面内部分子所受压力小于外部压力 C水平液面内部分子所受压力大于外部压力 D水平液面内部分子所受压力等于外部压力 8.弯曲液面下的附加压力与表面张力的联系与区别在于( ) A产生的原因与方向相同,而大小不同 B作用点相同,而方向和大小不同 C产生的原因相同,而方向不同 D作用点相同,而产生的原因不同 9.在一个密闭容器中,有大小不同的两个水珠,长期放置后会发生( ) A大水珠变大,小水珠变小 B大水珠变大,小水珠变大 C大水珠变小,小水珠变大 D大水珠、小水珠均变小

天津工业大学材料表界面作业题汇总解答

课后习题解答 第一次作业 1、表面张力产生的原因? 液体表面层的分子所受的力不均匀而产生的。液体表面层即气液界面中的分子受到指向液体内部的液体分子的吸引力,也受到指向气相的气体分子的吸引力,由于气相吸引力太小,这样,气液界面的分子净受到指向液体内部并垂直于表面的引力作用,即为表面张力。这里的分子间作用力为范德华力。 2、毛细管插入汞中,管中汞柱表面呈凸形,管中液面比管外液面低。若在常压下,气温降低了,此时毛细管中汞面是上升、不变、还是下降?为什么? (提示:表面张力随温度的降低而升高) 毛细管中汞面是下降。因为气温降低,表面张力将升高,根据Laplace 方程,r p /2σ=?,对于凸液面,表面张力增大,液面下降。下降高度pgh h ?=σ2。 第二次作业 1、请解释下列现象中的任一个: (1)过冷水 (2)过热液体 (3)过饱和液体 (1)根据Kelvin 公式,微小晶体的蒸气压要比大晶体的蒸气压大,故小晶

体的蒸气压曲线在上方,它与过冷水曲线的交点即为小晶体的熔点。小晶体的熔点低于O点对应的温度,所以对液态水来说,温度到达O点对应的温度不会结晶,形成虚线所示的过冷水。 (2)沸腾时,气泡的形成必须经过从无到有,从小到大的过程。而最初形成的半径极小的气泡内的饱和蒸汽压远小于外压, 液体中的小气泡,其曲率半径是负的,根据Kelvin公式,其半径越小,气泡内的饱和蒸气压越小。 小气泡内部承受的压力=p外+?p = p外+2γ/r 因此在外压的压迫下,小气泡难以形成,液体不能沸腾,要想沸腾,必须过热,使小气泡的饱和蒸气压等于外压而沸腾。过热较多沸腾时,容易暴沸。 (3)根据Kevlin公式,微小晶体颗粒的饱和浓度大于普通晶体的饱和浓度,晶体颗粒越小,溶解度越大。当溶液在恒温下浓缩时,溶质的浓度逐渐增大,达到普通晶体的饱和度时,对微小晶体仍未达到饱和,所以不析出微小晶体,溶液称为过饱和溶液。 在一个饱和溶液中,若有大小不同的粒子存在,对于大粒子已饱和的溶液,对小粒子仍未达到饱和,所以陈放一段时间,小粒子将消失,大粒子略有增大,这就是重量分析中的陈化过程。 第三次作业 1

物理化学界面现象知识点

界面现象 1. 表面张力、表面功及表面吉布斯函数 表面张力γ:引起液体或固体表面收缩的单位长度上的力,单位为N·m -1。 表面功:'δ/d r s W A ,使系统增加单位表面所需的可逆功,单位为J·m -2。 表面吉布斯函数:B ,,()(/)s T p n G A α??,恒温恒压下系统增加单位表面时所增加的吉布斯 函数,单位为J·m -2。 表面吉布斯函数的广义定义: B()B()B()B(),,,,,,,,( )()()()S V n S p n T V n T p n s s s s U H A G A A A A ααααγ????====???? ',r s T p s W dA dG dA γδ== 表面张力是从力的角度描述系统表面的某强度性质,而表面功及表面吉布斯函数则是从能量角度和热力学角度描述系统表面的某一性质。三者虽为不同的物理量,但它们的数值及量纲等同的,均可化为N·m -1。 在一定温度、压力下,若系统有多个界面,其总界面吉布斯函数: s i i s i G A γ=∑ 2. 弯曲液面的附加压力、拉普拉斯方程 附加压力:Δp =p 内-p 外 拉普拉斯方程:2p r γ?= 规定弯曲液面凹面一侧压力位p 内,凸面一侧压力位p 外;γ为表面张力;r 为弯曲液面的曲率半径,△p 一律取正值;附加压力方向总指向凹面曲率半径中心。 3. 毛细现象 毛细管内液体上升或下降的高度 2cos h r g γθρ= 式中:γ为表面张力;ρ为液体密度;g 为重力加速度;θ为接触角;r 为毛细管半径。当液体不能润湿管壁,θ>90°即0cos θ<时,h 为负值,表示管内凸液体下降的深度。 4. 微小液滴的饱和蒸汽压——开尔文公式

胶体界面现象问题答案修改版

?胶体界面现象问题答案 1.为什么自然界中液滴、气泡总是圆形的为什么气泡比液滴更容易破裂?同样体 积的水,以球形的表面积为最小,亦即在同样条件下,球形水滴其表面吉布斯自由能相对为最小。气泡同理。半径极小的气泡内的饱和蒸气压远小于外压,因此在外压的挤压下,小气泡更容易破裂。 2.毛细凝结现象为什么会产生?根据Kelvin公式RTln(pr/po)=2Vγ/r, 曲率半径极小 的凹液面蒸气压降低,低于正常饱和蒸气压,即可以在孔性固体毛细孔中的凹液面上凝结。因毛细管曲率半径极小,所以会产生毛细凝结现象。 3.天空为什么会下雨人工降雨依据什么原理向高空抛撒粉剂为什么能人工降雨 天上的雨来自空中的云,空中的云其实就是水的气溶胶,它来自地面的水汽蒸发。当 水蒸气压大于水的饱和蒸汽压,云中水滴增大,达到一定程度,也就是不能被上升 的气流顶托住的时候,水滴(冰滴、雪花)就会落到地面上,即是我们所见的雨、雹、雪。 ?只有过饱和水蒸气的云才能实施人工增雨。雾状小水滴的半径很小,根据开尔文公式,由于小水滴的饱和蒸气压p r*大于水的饱和蒸汽压,水滴难以长大,可以添加碘化银、干冰,增大粒径(干冰还降低温度),降低p r* ,使水滴凝结。 ?实施人工隆雨时就是向空中撒入凝结核心,使最初的小水滴的曲率半径加大,这时小水滴的饱和蒸气压小于高空中的蒸气压,从而形成降雨。 4.为什么会产生液体过热现象加入沸石为什么能消除过热现象 ?液体中的小气泡,r <0, p r*

材料表界面知识点总结

第九章玻璃表界面 4 玻璃的表面反应 玻璃成型后一段时间就容易被周围环境介质所侵蚀,侵蚀情况主要取决于玻璃的本质(组成)和介质的种类。 4.1 水对玻璃的侵蚀 开始于水中的H+和玻璃中的Na+进行离子交换: 离子交换反应停止的真正原因: ?Na+含量的降低; R n+(n>1)抑制效应 4.2酸对玻璃的侵蚀 除氢氟酸外,一般酸并不直接与玻璃起反应,而是通过水的作用侵蚀玻璃。 浓酸对玻璃的侵蚀能力低于稀酸。 酸对玻璃的作用与水对玻璃作用又有所不同。 高碱玻璃的耐酸性小于耐水性,高硅玻璃的耐酸性大于耐水性。 4.3 碱对玻璃的侵蚀 硅酸盐玻璃一般不耐碱。 碱对玻璃的侵蚀是通过OH-破坏硅氧骨架(≡Si-O-Si ≡),使Si-O键断裂,SiO2溶解在碱液中。 碱的大量存在使得中和反应能够不断进行,所以,侵蚀不是形成硅酸凝胶薄膜,而是玻璃表面层不断脱落。

碱对玻璃的侵蚀程度与下列因素有关: 侵蚀时间 OH-离子的浓度 阳离子的种类 侵蚀后玻璃表面的硅酸盐在碱溶液中的溶解度 玻璃受碱侵蚀分为以下三个阶段: ?第一阶段,碱溶液中的阳离子首先吸附在玻璃表面; ?第二阶段,阳离子束缚周围的OH-离子,OH-离子攻击玻璃表面的硅氧键。 ?第三阶段,硅氧骨架破坏后变成硅酸离子,和吸附在玻璃表面的阳离子形成 硅酸盐,并逐渐溶解在碱溶液中。 碱性溶液对玻璃的侵蚀机理与水或酸不同 ?水或酸(包括中性盐或酸性盐)对玻璃的侵蚀只是改变、破坏或溶解(沥滤) 玻璃结构组成中R2O、RO等网络外体物质。 ?碱性溶液不仅对网络外体氧化物起作用,而且也对玻璃结构中的硅氧骨架起 溶蚀作用。 大气对玻璃的侵蚀 先是以离子交换为主的释碱过程后逐步过渡到以破坏网络为主的溶蚀过程。 4.4 影响玻璃表面反应性的因素 1) 化学组成的影响 硅酸盐玻璃的耐水性和耐酸性主要取决于硅氧和碱金属氧化物的含量。 玻璃中同时存在两种碱金属氧化物时,由于“混合碱效应”使玻璃的化学稳定性出现极值。

第十一章 界面现象

第十一章界面现象 一、基本要求 (1)理解表面张力和表面吉布斯自由能函数的概念。 (2)理解弯曲界面的附加压力概念和拉普拉斯公式及其应用。 (3)理解弯曲液面的饱和蒸汽压与平面液体的饱和蒸汽压的不同;掌握开尔文方程及其应用。 (4)了解铺展和铺展系数。了解润式、接触角和杨氏方程;了解毛细管现象。 (5)理解压稳状态及新相生成。 (6)了解溶液界面上的吸附现象,正吸附和负吸附,吉布斯模型及其表面过剩物质的量的概念。 (7)了解物理吸附和化学吸附的含义和区别。 (8)了解表面活性剂的特征及其应用。 (9)理解吉布斯吸附等温式。 (10)掌握兰缪尔单分子层吸附模型和吸附等温式。 (11)了解B.E.T.多分子层吸附定温式及其内容。 二、主要概念、定理与公式 1.界面 存在于两相之间的厚度约为几个分子大小(纳米级)的一薄层,称为界面层,简称界面。 通常有液-气、固-气、固-液、液-液、固-固等界面,对固-气界面及液-气界面亦称为表面。

2.分散度 把物质分散成细小微粒的程度,称为分散度。通常采用体积表面或质量表面来表示分散度的大小。 )表示多相分散体系的分散程度。其定义为:单位 通常用比表面( 体积或单位质量的物质所具有的表面积,分别用符号 或 式中 ,V,m分别为物质的总表面积、体积和质量。 3.界面现象 凡物质处于凝聚状态,界面上发生的一切物理化学现象均称为界面现象。如毛细管现象、润湿作用、液体过热、蒸汽过饱和、吸附作用等,同称为界面现象。 4.表面自由能和表面张力 (1)表面功:由于分子在界面上与在体相中所处的环境不同,所以表面组成、结构、能量和受力情况与体相都不相同。如果把一个分子从内部移到界面(或者说增大表面积)时,就必须克服分子体系内部分子之间的吸引力而 所需要 对体系做功。在温度、压力和组成恒定时,可逆的使表面积增加 对体系做的功叫表面功。 (2)表面自由能:高分散体系具有巨大的表面积,所以具有巨大的表面能。表面自由能的广义定义为:

相关主题
文本预览
相关文档 最新文档