当前位置:文档之家› 二次函数特殊四边形解题思路,二次函数解特殊四边形的典型例题及答案解析

二次函数特殊四边形解题思路,二次函数解特殊四边形的典型例题及答案解析

二次函数特殊四边形解题思路,二次函数解特殊四边形的典型例题及答案解析
二次函数特殊四边形解题思路,二次函数解特殊四边形的典型例题及答案解析

二次函数与等腰三角形

以二次函数与等腰三角形问题为背景的解答题 【学习目标】 这类问题主要是以一点(或以一条线段)为依托,动点和函数思想相结合以几何图形为背景,以动点为元素,构造动态型几何问题。解此类题目,应从相关图形的性质和数量关系分类讨 论来解决。此类问题较多地关注学生对图形性质的理解,用动态的观点去看待一般函数和图形结合的问题,具有较强的综合性. 【教学过程】解题思路:等腰三角形的存在性的解题方法:①几何法三步:先分类;再画图;后计算.② 代数法三步:先罗列三边;再分类列方程;后解方程、检验.再以二次函数与等腰三角形问题为背景的解答题中,这两种方法往往结合使用. 一、考点突破 12 例1、如图,已知抛物线y=﹣x2+bx+4 与x 轴相交于A、B两点,与y 轴相交于点C,若 4 已知 A 点的坐标为(﹣2,0). (1)求抛物线的解析式; 2)连接AC、BC,求线段BC 所在直线的解析式; P,使△ACP为等腰三角形?若存在,求出符合条件的(3)在抛物线的对称轴上是否存在 点P 点坐标;若不存在,请说明理

【例2】如图,在平面直角坐标系中,直线y=﹣2x+10与x 轴,y 轴相交于A,B 两点,点C 的坐标是(8,4),连接AC,BC. (1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状; (2)动点P从点O出发,沿OB以每秒 2 个单位长度的速度向点 B 运动;同时,动点Q 从点 B 出发,沿BC以每秒 1 个单位长度的速度向点C运动.规定其中一个动点到达端点时, 另一个动点也随之停止运动.设运动时间为t 秒,当t 为何值时,PA=QA? (3)在抛物线的对称轴上,是否存在点M ,使以A,B,M 为顶点的三角形是等腰三角形? 若存在,求出点M 的坐标;若不存在,请说明理由.

2018四边形特殊四边形经典习题(附答案)

2018年暑假作业精编《四边形》 第一部分 基础题 1.如图,在平行四边形ABCD 中,AD =2AB ,CE 平分∠BCD 交AD 边 于点E ,且AE =3,则AB 的长为( )A .4 B .3 C . 2 5 D .2 2.如图所示,如果 ABCD 的对角线AC ,BD 相交于点O ,?那么图中的全等三角形共有( ) A .1对 B .2对 C .3对 D .4对 3.如图所示,点E 在AC 的延长线上,下列条件中能判断AB ∥CD 的是( ) A . ∠3=∠4 B . ∠1=∠2 C . ∠D =∠DCE D . ∠D +∠ACD =180° 4.如图,△ABC 中,AB =AC =10,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE , 则△CDE 的周长为( ) A.20 B.12 C.14 D.13 5.如果三角形的两条边分别为4和6,那么连接该三角形三边中点所得三角形的周长可能是( ) A.6 B.8 C.10 D.12 6.如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点,已知BC =10,则DE 的长为( ) A .3 B .4 C .5 D .6 7.矩形各内角的平分线围成一个( ) A .平行四边形 B .正方形 C .矩形 D .菱形 8.下列命题中正确的是( ) A .对角线相等的四边形是矩形 B .对角线互相垂直的四边形是矩形

C .对角线相等的平行四边形是矩形 D .对角线互相垂直的平行四边形是矩形 9.下列命题中错误的是( ) A .对角线相等的平行四边形是矩形 B .对角线互相垂直的矩形是正方形 C .对角线互相平分的菱形是正方形 D .对角线平分一组对角的矩形是正方形 10.下列命题中,错误的是( ) A .矩形的对角线互相平分且相等 B .对角线互相垂直的四边形是菱形 C .三角形的三条角平分线相交于一点,并且这点到三条边的距离相等 D .到一条线段两个端点距离相等的点在这条线段的垂直平分线上 11.在菱形ABCD 中,∠ABC =60o,AC =4,则BD 的长为 . 12.若点O 为□ABCD 的对角线AC 与BD 交点,且AO +BO =11cm ,则AC +BD = cm . 13.在平行四边形ABCD 中, ∠A =40o,则∠B = o. 14.如图, 四边形 ABCD 的对角线互相平分,要使它变为菱形,需要添加的条件是___________ ____.(只需写出一个) 15. 如图, 口ABCD 中,AE ⊥ BD 于 E .∠EAC =30°,AE =3 则AC 的长等于 16.如图, ABCD 中,DB =DC ,∠C =70°,AE ⊥BD 于E ,则∠DAE =_____度. 17.如图,在□ABCD 中,∠A =120°,则∠D =_ _°. 18. 顺次连接菱形四边中点所得四边形是_________. 19.20. 已知菱形的两对角线长分别为6和8,则菱形的面积为

初二数学.典型中点构造.学生版

题型切片(三个)对应题目 题型目标三角形中位线例1,例2,例7,练习1,练习2,练习3;中点四边形例3,练习4; 直角三角形斜边中线例4,例5,例6,练习5. 题型切片 知识互联网 典型中点构造

E D C B A F A B C E G E D C B A F E D C B A 三角形中位线 定义:连接三角形两边中点的线段; 定理:三角形中位线平行于三角形的第三边且等于第三边的一半. 如图:若DE 为ABC △的中位线,则DE BC ∥,且1 2 DE BC = 三角形中位线中隐含的重要性质: ①一个三角形有三条中位线. ②三角形的三条中位线将原三角形分割成四个全等的三角形. ③三角形的三条中位线将原三角形划分出三个面积相等的平行四边形. ④三角形的三条中位线组成一个三角形,其周长为原三角形周长的一半,其面积为原三角形面积的四分之一. 如图:EF 、GE 、GF 是ABC △的三条中位线,则有 ①AEG EBF GFC FGE △≌△≌△≌△ ②AEFG EBFG EFCG S S S ==平行四边形平行四边形平行四边形 ③12EFG ABC C C =△△,1 4 EFG ABC S S =△△ 【引例】 如图,已知ABC △,D E 、分别是AB AC 、的中点,求证:DE BC ∥且1 2 DE BC =. 【解析】 延长DE 到点F ,使EF=DE ,连接FC ,DC ,AF . ∵AE=EC ∴四边形ADCF 是平行四边形 ∴CF//DA 且CF=DA , CF //BD 且CF=BD 例题精讲 思路导航 题型一:三角形中位线

二次函数与三角形综合

二次函数综合提升卷 【类型一】二次函数之面积最值 求与函数图像相关的三角形的面积: (1)结合方程组用待定系数法求函数的解析式; (2)根据坐标求出三角形面积; ①公式法:三角形一边与坐标轴平行或重合时可以直接根据三角形面积公式求解; ②割补法:公式法无法使用是,把三角形补成矩形或梯形或直角三角形,然后根据矩形或梯形或直角三角形的面积公式解决; ③等积转化法; ④铅锤法;利用S=铅垂高?水平宽÷2,可以避免求一些比较复杂的点的坐标; ⑤特殊情况下可以利用反比例函数的几何意义进行解答。 *遇到动点最值问题时,需要利用未知数将实际问题中的情形代数化,利用二次函数性质解答 1.如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从 这些边角料上截取矩形(阴影部分)铁皮备用,当截取的矩形面积最大时,矩形两边长x,y应分别为() A.x=10,y=14 B.x=14,y=10 C.x=12 ,y=15 D.x=15 ,y=12 (第1题)(第2题) 2.如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4). (1)求过O、B、A三点的抛物线的解析式.

(2)在第一象限的抛物线上存在点M ,使以O 、A 、B 、M 为顶点的四边形面积最大,求点M 的坐标. (3)作直线x=m 交抛物线于点P ,交线段OB 于点Q ,当△PQB 为等腰三角形时,求m 的值. 3. 如图,在平面直角坐标系中,点A 的坐标为(m ,m ),点B 的坐标为(n ,﹣n ),抛物线 经过A 、O 、B 三点,连接OA 、OB 、AB ,线段AB 交y 轴于点C .已知实数m 、n (m <n )分别是方程x 2﹣2x ﹣3=0的两根. (1)求抛物线的解析式; (2)若点P 为线段OB 上的一个动点(不与点O 、B 重合),直线PC 与抛物线交于D 、E 两点 (点D 在y 轴右侧),连接OD 、BD . ①当△OPC 为等腰三角形时,求点P 的坐标; ②求△BOD 面积的最大值,并写出此时点D 的坐标. 【类型二】二次函数与全等三角形 在实际考试中会出现全等三角形点的存在性问题,解题的关键在于全等三角形对应边相等或对应角相等,利用某一个特殊角度角展开分类讨论,将所有的情形都讨论到位. 4. ★如图,在第一象限内作射线OC,与x 轴的夹角为?30,在射线OC 上取一点A,过点A 作AH ⊥ x 轴于点H.在抛物线2x y =)0(>x 上取点P,在y 轴上取点Q,使得以P,O,Q 为顶点的三角形与?AOH 全等,则符合条件的点A 的坐标是_____. 5. (1)求b 、c 的值; (2)过C 作CE x //轴交抛物线于点E,直线DE 交x 轴于点F,且F )0,4(,求抛物线的解析式; (3)在(2)条件下,抛物线上是否存在点M,使得?CDM ??CEA 若存在,求出点M 的坐标;若不存在,请说明理由. 6. 如图,抛物线)0(2≠+=a c ax y 与y 轴交于点A,与x 轴交于B,C 两点(点C 在x 轴正半轴上), ?ABC 为等腰直角三角形,且面积为4,现将抛物线沿BA 方向平移,平移后的抛物线过点C 时,与x 轴的另一点为E,其顶点为F,对称轴与x 轴的交点为H.

必用平行四边形知识点及典型例题

平行四边形知识点及典型例题 一、知识点讲解:. 定义:两组对边分别平行的四边形是平行四边形. 1.平行四边形的性质: 四边形ABCD 是平行四边形?????? ????. 54321)邻角互补()对角线互相平分;()两组对角分别相等; ()两组对边分别相等;()两组对边分别平行;( 2.平行四边形的判定: . 3. 矩形的性质: 因为四边形ABCD 是矩形??? ? ??.3; 2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所( (4)是轴对称图形,它有两条对称轴. 4矩形的判定: (1)有一个角是直角的平行四边形; (2)有三个角是直角的四边形; (3)对角线相等的平行四边形; (4)对角线相等且互相平分的四边形. ?四边形ABCD 是矩形. 两对角线相交成60°时得等边三角形。 5. 菱形的性质: 因为ABCD 是菱形??? ? ??.321角)对角线垂直且平分对()四个边都相等; (有通性;)具有平行四边形的所( 6. 菱形的判定: ?? ? ?? +边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321?四边形ABCD 是菱形. 菱形中有一个角等于60°时,较短对角线等于边长; 菱形中,若较短对角线等于边长,则有等边三角形; 菱形中,两对角线把菱形分成4个全等的直角三角形,每个直角三角形的斜边是菱形的边,两直角边分别是两对角线的一半。 菱形的面积等于两对角线长积的一半。 A B D O C A B D O C A D B C A D B C O C D B A O C D B A O

C D A B A B C D O 7.正方形的性质: 四边形ABCD 是正方形??? ? ??.321分对角)对角线相等垂直且平(角都是直角; )四个边都相等,四个(有通性;)具有平行四边形的所( 8. 正方形的判定: ???? ? ? ? ?? ++++++对角线互相垂直矩形)(一组邻边等 矩形)(对角线相等)菱形(一个直角)菱形(一个直角一组邻边等)平行四边形(54321?四边形ABCD 是正方形. 9. 三角形中位线 (1)定义:连接三角形两边中点的线段叫做三角形的中位线.每个三角形都有三条中位线. (2)三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半. 10. 直角三角形特殊性质 (1)斜边上的中线等于斜边的一半。 (2)300所对的直角边等于斜边的一半。 (3)射影定理,勾股定理,面积不变定理 特殊的、平行四边形知识点 学生记住

初中八年级数学经典四边形习题60道(附答案)

赵老师 经典四边形习题50道(附答案) 1.已知:在矩形ABCD 中,AE ⊥BD 于E , ∠DAE=3∠BAE ,求:∠EAC 的度数。 2.已知:直角梯形ABCD 中,BC=CD=a 且∠BCD=60?,E 、F 分别为梯形的腰AB 、 DC 的中点,求:EF 的长。 3、已知:在等腰梯形ABCD 中,AB ∥DC , AD=BC ,E 、F 分别为AD 、BC 的中点,BD 平分∠ABC 交EF 于G ,EG=18,GF=10 求:等腰梯形ABCD 的周长。 4、已知:梯形ABCD 中,AB ∥CD ,以AD , AC 为邻边作平行四边形ACED ,DC 延长线 交BE 于F ,求证:F 是BE 的中点。 5、已知:梯形ABCD 中,AB ∥CD ,AC ⊥CB , AC 平分∠A ,又∠B=60?,梯形的周长是 20cm, 求:AB 的长。 6、从平行四边形四边形ABCD 的各顶点作对角线的垂线AE 、BF 、CG 、DH ,垂足分别是E 、F 、G 、H ,求证:EF ∥GH 。 7、已知:梯形ABCD 的对角线的交点为E _ D _ C _B _ C _ A _ B _ A _ B _ E _A _ B

赵老师 若在平行边的一边BC 的延长线上取一点F , 使S ABC ?=S EBF ?,求证:DF ∥AC 。 8、在正方形ABCD 中,直线EF 平行于 对角线AC ,与边AB 、BC 的交点为E 、F , 在DA 的延长线上取一点G ,使AG=AD , 若EG 与DF 的交点为H , 求证:AH 与正方形的边长相等。 9、若以直角三角形ABC 的边AB 为边, 在三角形ABC 的外部作正方形ABDE , AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。 10、正方形ABCD ,E 、F 分别是AB 、AD 延长线 上的一点,且AE=AF=AC ,EF 交BC 于G ,交AC 于K ,交CD 于H ,求证:EG=GC=CH=HF 。 11、在正方形ABCD 的对角线BD 上,取BE=AB , 若过E 作BD 的垂线EF 交CD 于F , 求证:CF=ED 。 12、平行四边形ABCD 中,∠A 、∠D 的平分线相交于E ,AE 、 DE 与DC 、AB 延长线交于G 、F ,求证:AD=DG=GF=FA 。 13、在正方形ABCD 的边CD 上任取一点E , _B _ C _B _ F _ B _ C _ F _ C _ D _ B _ F _ F _ G _ B _A _ E

中考数学(平行四边形提高练习题)压轴题训练附答案

一、平行四边形真题与模拟题分类汇编(难题易错题) 1.如果两个三角形的两条边对应相等,夹角互补,那么这两个三角形叫做互补三角形,如图2,分别以△ABC的边AB、AC为边向外作正方形ABDE和ACGF,则图中的两个三角形就是互补三角形. (1)用尺规将图1中的△ABC分割成两个互补三角形; (2)证明图2中的△ABC分割成两个互补三角形; (3)如图3,在图2的基础上再以BC为边向外作正方形BCHI. ①已知三个正方形面积分别是17、13、10,在如图4的网格中(网格中每个小正方形的边长为1)画出边长为、、的三角形,并计算图3中六边形DEFGHI的面积.②若△ABC的面积为2,求以EF、DI、HG的长为边的三角形面积. 【答案】(1)作图见解析(2)证明见解析(3)①62;②6 【解析】 试题分析:(1)作BC边上的中线AD即可. (2)根据互补三角形的定义证明即可. (3)①画出图形后,利用割补法求面积即可. ②平移△CHG到AMF,连接EM,IM,则AM=CH=BI,只要证明S△EFM=3S△ABC即可. 试题解析:(1)如图1中,作BC边上的中线AD,△ABD和△ADC是互补三角形. (2)如图2中,延长FA到点H,使得AH=AF,连接EH.

∵四边形ABDE,四边形ACGF是正方形, ∴AB=AE,AF=AC,∠BAE=∠CAF=90°, ∴∠EAF+∠BAC=180°, ∴△AEF和△ABC是两个互补三角形. ∵∠EAH+∠HAB=∠BAC+∠HAB=90°, ∴∠EAH=∠BAC, ∵AF=AC, ∴AH=AB, 在△AEH和△ABC中, ∴△AEH≌△ABC, ∴S△AEF=S△AEH=S△ABC. (3)①边长为、、的三角形如图4所示. ∵S△ABC=3×4﹣2﹣1.5﹣3=5.5, ∴S六边形=17+13+10+4×5.5=62. ②如图3中,平移△CHG到AMF,连接EM,IM,则AM=CH=BI,设∠ABC=x, ∵AM∥CH,CH⊥BC, ∴AM⊥BC, ∴∠EAM=90°+90°﹣x=180°﹣x, ∵∠DBI=360°﹣90°﹣90°﹣x=180°﹣x, ∴∠EAM=∠DBI,∵AE=BD, ∴△AEM≌△DBI, ∵在△DBI和△ABC中,DB=AB,BI=BC,∠DBI+∠ABC=180°, ∴△DBI和△ABC是互补三角形, ∴S△AEM=S△AEF=S△AFM=2,

二次函数综合(动点与三角形)问题方法与解析

二次函数综合(动点与三角形)问题 一、知识准备: 抛物线与直线形的结合表现形式之一是,以抛物线为载体,探讨是否存在一些点,使其能构成某些特殊三角形,有以下常见的基本形式。 (1)抛物线上的点能否构成等腰三角形; (2)抛物线上的点能否构成直角三角形; (3)抛物线上的点能否构成相似三角形; 解决这类问题的基本思路:假设存在,数形结合,分类归纳,逐一考察。 二、例题精析 ㈠【抛物线上的点能否构成等腰三角形】 例一.(2013?地区)如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c 经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合). (1)求抛物线的解析式; (2)求△ABC的面积; (3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标. 分析:(1)根据直线解析式求出点A及点B的坐标,然后将点A及点B的坐标代入抛物线解析式,可得出b、c的值,求出抛物线解析式; (2)由(1)求得的抛物线解析式,可求出点C的坐标,继而求出AC的长度,代入三角形的面积公式即可计算; (3)根据点M在抛物线对称轴上,可设点M的坐标为(﹣1,m),分三种情况讨论, ①MA=BA,②MB=BA,③MB=MA,求出m的值后即可得出答案. 解:(1)∵直线y=3x﹣3分别交x轴、y轴于A、B两点, ∴可得A(1,0),B(0,﹣3), 把A、B两点的坐标分别代入y=x2+bx+c得:,

解得:. ∴抛物线解析式为:y=x2+2x﹣3. (2)令y=0得:0=x2+2x﹣3, 解得:x1=1,x2=﹣3, 则C点坐标为:(﹣3,0),AC=4, 故可得S△ABC=AC×OB=×4×3=6. (3)抛物线的对称轴为:x=﹣1,假设存在M(﹣1,m)满足题意: 讨论: ①当MA=AB时,, 解得:, ∴M1(﹣1,),M2(﹣1,﹣); ②当MB=BA时,, 解得:M3=0,M4=﹣6, ∴M3(﹣1,0),M4(﹣1,﹣6), ③当MB=MA时,, 解得:m=﹣1, ∴M5(﹣1,﹣1), 答:共存在五个点M1(﹣1,),M2(﹣1,﹣),M3(﹣1,0),M4(﹣1,﹣6),M5(﹣1,﹣1)使△ABM为等腰三角形. 点评:本题考查了二次函数的综合题,涉及了待定系数法求二次函数解析式、等腰三角形的性质及三角形的面积,难点在第三问,注意分类讨论,不要漏解. ㈡【抛物线上的点能否构成直角三角形】 例二.(2013)如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c 的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.

四边形经典试题50题及答案

经典四边形习题50道(附答案) 1.已知:在矩形ABCD中,AE?BD于E, ∠DAE=3∠BAE ,求:∠EAC的度数。 2.已知:直角梯形ABCD中,BC=CD=a 且∠BCD=60?,E、F分别为梯形的腰AB、 DC的中点,求:EF的长。 3、已知:在等腰梯形ABCD中,AB∥DC, AD=BC,E、F分别为AD、BC的中点,BD 平分∠ABC交EF于G,EG=18,GF=10 求:等腰梯形ABCD的周长。 4、已知:梯形ABCD中,AB∥CD,以AD, AC为邻边作平行四边形ACED,DC延长线 交BE于F,求证:F是BE的中点。 5、已知:梯形ABCD中,AB∥CD,AC?CB, AC平分∠A,又∠B=60?,梯形的周长是 20cm, 求:AB的长。 6、从平行四边形四边形ABCD的各顶点作对角线的垂线AE、BF、CG、DH,垂足分别是E、F、G、H,求证:EF∥GH。 7、已知:梯形ABCD的对角线的交点为E 若在平行边的一边BC的延长线上取一点F, _B_C _A_B _A_B _E _A _B _B _B

使S ABC ?=S EBF ?,求证:DF ∥AC 。 8、在正方形ABCD 中,直线EF 平行于 对角线AC ,与边AB 、BC 的交点为E 、F , 在DA 的延长线上取一点G ,使AG=AD , 若EG 与DF 的交点为H , 求证:AH 与正方形的边长相等。 9、若以直角三角形ABC 的边AB 为边, 在三角形ABC 的外部作正方形ABDE , AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。 10、正方形ABCD ,E 、F 分别是AB 、AD 延长线 上的一点,且AE=AF=AC ,EF 交BC 于G ,交AC 于K ,交CD 于H ,求证:EG=GC=CH=HF 。 11、在正方形ABCD 的对角线BD 上,取BE=AB , 若过E 作BD 的垂线EF 交CD 于F , 求证:CF=ED 。 12、平行四边形ABCD 中,∠A 、∠D 的平分线相交于 E ,AE 、DE 与DC 、AB 延长线交于G 、F ,求证:AD=DG=GF=FA 。 13、在正方形ABCD 的边CD 上任取一点E , 延长BC 到F ,使CF=CE , 求证:BE?DF _C _B _F _B _C _F _C _D _B _F _ F _G _B _D _A _E

平行四边形综合性质及经典例题

一对一个性化辅导教案

平行四边形的性质与判定 平行四边形及其性质(一) 一、 教学目标: 1. 理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质. 2. 会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证. 3. 培养学生发现问题、解决问题的能力及逻辑推理能力. 二、 重点、难点 1. 重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用. 2. 难点:运用平行四边形的性质进行有关的论证和计算. 三、 课堂引入 1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象 平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗 你能总结出平行四边形的定义吗 (1)定义:两组对边分别平行的四边形是平行四边形. (2)表示:平行四边形用符号“ ”来表示. 如图,在四边形ABCD 中,AB∥DC,AD∥BC,那么四边形ABCD 是平行四边形.平行四边形ABCD 记作“ ABCD”,读作“平行四边形ABCD”. ①∵AB ?50?360?360?180行 四边形的面积计算 六、随堂练习 1.在平行四边形中,周长等于48, ① 已知一边长12,求各边的长 ② 已知AB=2BC ,求各边的长 ③ 已知对角线AC 、BD 交于点O ,△AOD 与△AOB 的周长的差是10,求各边的长 2.如图,ABCD 中,AE⊥BD,∠EAD=60°,AE=2cm ,AC+BD=14cm ,则△OBC 的周长是____ ___cm .

3.ABCD 一内角的平分线与边相交并把这条边分成cm 5,cm 7的两条线段,则ABCD 的周长是__ ___cm . 七、课后练习 1.判断对错 (1)在ABCD 中,AC 交BD 于O ,则AO=OB=OC=OD . ( ) (2)平行四边形两条对角线的交点到一组对边的距离相等. ( ) (3)平行四边形的两组对边分别平行且相等. ( ) (4)平行四边形是轴对称图形. ( ) 2.在 ABCD 中,AC =6、BD =4,则AB 的范围是_ ____ __. 3.在平行四边形ABCD 中,已知AB 、BC 、CD 三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是 . 4.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB =15cm ,AD =12cm ,AC ⊥BC ,求小路BC ,CD ,OC 的长,并算出绿地的面积. (一) 平行四边形的判定 一、教学目标: 1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法. 2.会综合运用平行四边形的判定方法和性质来解决问题. 3.培养用类比、逆向联想及运动的思维方法来研究问题. 二、重点、难点 重点:平行四边形的判定方法及应用. 难点:平行四边形的判定定理与性质定理的灵活应用. 四、课堂引入 1.欣赏图片、提出问题. 展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形你是怎样判断的 2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗

二次函数与相似三角形结合问题

琢玉教育个性化辅导讲义 教师学科上课时间年月日学生年级讲义序号 课题名称 教学目标1.会根据题目条件求解相关点的坐标和线段的长度; 2.掌握用待定系数法求解二次函数的解析式; 3.能根据题目中的条件,画出与题目相关的图形,继而帮助解题; 教学重点 难点1.体会利用几何定理和性质或者代数方法建立方程求解的方法; 2.会应用分类讨论的数学思想和动态数学思维解决相关问题。 课前检查上次作业完成情况:优□良□中□差□建议_______________________________ 教学容知识结构: 一.二次函数知识点梳理:下图中0 a≠二.特殊的二次函数:下图中0 a≠

3 4 y x =与BC边交于D点. (1)求D点的坐标; (2)若抛物线2 y ax bx =+经过A、D两点,求此抛物线的表达式; (3)设(2)中的抛物线的对称轴与直线OD交于点M,点P是对称轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求出符合条件的点P. 方法总结: 1.已知:如图,在平面直角坐标系xOy中,二次函数c bx x y+ + - =2 3 1 的图像经过点 A(-1,1)和点B(2,2),该函数图像的对称轴与直线OA、OB分别交于点C和点D.二次函数背景下相似三角形的解题方法和策略: 1.根据题意,先求解相关点的坐标和相关线段的长度; 2.待定系数法求解相关函数的解析式; 3.相似三角形中,注意寻找不变的量和相等的量(角和线段); 4.当三角形的三边不能用题目中的未知量表示时,注意利用相似三角形的转化求解; 5.根据题目条件,注意快速、正确画图,用好数形结合思想; 6.注意利用好二次函数的对称性; 7.利用几何定理和性质或者代数方法建立方程求解都是常用方法。

四边形经典题型整理

四边形经典题型 1、下列条件中,能确定一个四边形是平行四边形的是() A、一组对边相等 B、一组对角相等 C、两条对角线相等 D、两条对角线互相平分 2、(2017?温州)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线, 围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2 EF,则正方形ABCD的面积 为() 2题图3题图 A、12S B、10S C、9S D、8S 3、在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图,该图中,四边形ABCD是矩形,E是BA 延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA。若∠ACB=21°,则∠ECD的度数是() A、7° B、21° C、23° D、24° 4、(2017·嘉兴)一张矩形纸片,已知,,小明按所给图步骤折叠纸片,则线段 长为() A、B、C、D、 5、(2017·嘉兴)如图,在平面直角坐标系中,已知点,.若平移点到点, 使以点,,,为顶点的四边形是菱形,则正确的平移方法是() 5题图6题图 A、向左平移1个单位,再向下平移1个单位 B、向左平移个单位,再向上平移1个单位 C、向右平移个单位,再向上平移1个单位 D、向右平移1个单位,再向上平移1个单位 6、(2017·丽水)如图,在□ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长是() A、B、2 C、2 D、4

7、下列条件不能判定四边形ABCD是平行四边形的是() A、AB∥CD,AD∥BC B、AD=BC,AB=CD C、AB∥CD,AD=BC D、∠A=∠C,∠B=∠D 8、如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边 形ABCD的面积为() 8题图9题图 A、6 B、12 C、20 D、24 9、能判定四边形ABCD是平行四边形的题设是() A、AD=BC,AB∥CD B、∠A=∠B,∠C=∠D C、AB=BC,AD=DC D、AB∥CD,CD=AB 10、已知四边形ABCD,下列说法正确的是() A、当AD=BC,AB∥DC时,四边形ABCD是平行四边形 B、当AD=BC,AB=DC时,四边形ABCD是平行四边形 C、当AC=BD,AC平分BD时,四边形ABCD是矩形 D、当AC=BD,AC⊥BD时,四边形ABCD是正方形 11、四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是() 12题图13题图14题图15题图 A、AB∥DC,AD∥BC B、AB=DC,AD=BC C、AO=CO,BO=DO D、AB∥DC,AD=BC 12、(2017?宁波)如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD、CD于G、F两点.若M、N分别是DG、CE的中点,则MN的长为() A、3 B、 C、 D、4 13、(2017·台州)如图,矩形EFGH四个顶点分别在菱形ABCD的四条边上,BE=BF,将△AEH,△CFG分 别沿边EH,FG折叠,当重叠部分为菱形且面积是菱形ABCD面积的时,则为() A、B、2 C、D、4 14、(2017·衢州)如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE 交AD于点F,则DF的长等于()A、B、C、D、 15、如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪得行走的路线为B→A→D→E→F.若小敏行走的路程为3100m,则小聪行走的路程为________m.

(完整)初中数学经典四边形习题50道(附答案)

经典四边形习题 50道(附答案) 1.已知:在矩形ABCD 中,A E ⊥BD 于E , ∠DAE=3∠BAE ,求:∠EAC 的度数。 2.已知:直角梯形ABCD 中,BC=CD=a 且∠BCD=60度,E 、F 分别为梯形的腰AB 、 DC 的中点,求:EF 的长。 3、已知:在等腰梯形ABCD 中,AB ∥DC , AD=BC ,E 、F 分别为AD 、BC 的中点,BD 平分∠ABC 交EF 于G ,EG=18,GF=10 求:等腰梯形ABCD 的周长。 4、已知:梯形ABCD 中,AB ∥CD ,以AD , AC 为邻边作平行四边形ACED ,DC 延长线 交BE 于F ,求证:F 是BE 的中点。 5、已知:梯形ABCD 中,AB ∥CD ,AC ⊥CB , AC 平分∠A ,又∠B=60度,梯形的周长是 20cm, 求:AB 的长。 6、从平行四边形四边形ABCD 的各顶点作对角线的垂线AE 、BF 、CG 、DH ,垂足分别是E 、F 、G 、H ,求证:EF ∥GH 。 7、已知:梯形ABCD 的对角线的交点为E _ D _ C _B _ C _ A _ B _ A _ B _ E _A _ B

若在平行边的一边BC 的延长线上取一点F , 使S ABC ?=S EBF ?,求证:DF ∥AC 。 8、在正方形ABCD 中,直线EF 平行于 对角线AC ,与边AB 、BC 的交点为E 、F , 在DA 的延长线上取一点G ,使AG=AD , 若EG 与DF 的交点为H , 求证:AH 与正方形的边长相等。 9、若以直角三角形ABC 的边AB 为边, 在三角形ABC 的外部作正方形ABDE , AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。 10、正方形ABCD ,E 、F 分别是AB 、AD 延长线 上的一点,且AE=AF=AC ,EF 交BC 于G ,交AC 于K ,交CD 于H ,求证:EG=GC=CH=HF 。 11、在正方形ABCD 的对角线BD 上,取BE=AB , 若过E 作BD 的垂线EF 交CD 于F , 求证:CF=ED 。 12、平行四边形ABCD 中,∠A 、∠D 的平分线相交于E ,AE 、 DE 与DC 、AB 延长线交于G 、F ,求证:AD=DG=GF=FA 。 13、在正方形ABCD 的边CD 上任取一点E , _B _ C _B _ F _ B _ C _ F _ C _ D _ B _ F _ F _ G _ B _A _ E

四边形经典例题(配套习题)

四边形经典例题 (配套习题) 【例题精选】: 例1:如图1,已知:□ABCD 中, AE BD CF BD ⊥⊥,,垂足为E 、F ,G 、 H 分别为AD 、BC 的中点,连结GE 、 EH 、HF 、FG 。 求证:EF 和GH 互相平分。 证明一: AE BD G AD ⊥,为中点 ∴==GE GD AD 12(直角三角形斜边上的中线等于斜边的一半) ∴∠=∠GED GDE (等边对等角) 同理可证:HF HB BC HFB HBF ==∠=∠12, □ABCD ∴∠=∠∴=∠=∠∴AD BC GDE HBF GE HF GED HFB GE HF ////,,且 ∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形) ∴EF 和GH 互相平分(平行四边形的对角线互相平分) 证明二: 连结BG 、DH ,如图2 □ABCD ,G 、H 分别为AD 、BC 中点 ∴DG BH // ∴四边形BHDG 是平行四边形 ∴BD 和GH 互相平分,设BD 、GH 交于O 即OG=OH ,OB=OD 又 AB=CD ∠ABE=∠CDF ∠AEB=∠CFD=90? ∴?∴=∴-=-==??ABE CDF AAS BE DF OB BE OD DF OE OF OG OH ()即,又 ∴EF 和GH 互相平分。

小结:平行四边形问题,并不都是以求证某一个四边形为平行四边形的形式出现的。往往更多的是求证线段相等、角相等、直线平行、线段互相平分等等。要灵活地根据题中已知条件,以及定义、定理等。先判定某一四边形为平行四边形,然后再应用平行四边形的性质加以证明。当然,特殊的平行四边形也不例外。 例2:如图3,已知:菱形ABCD ,E 、F 分别 是BC 、CD 上的点, ∠=∠=?∠=?B EAF BAE 6018, 求:∠CEF 的度数 分析:由菱形ABCD , ∠=?B ABC 60,可得?是等边三角形,所以∠=∠=?BAC ACD 60,∠=?EAF 60,得出∠BAE=∠CAF ,从而可证??ABE ACF ?,进而推出?AEF 是等边三角形,求出∠CEF 的度数。 解:连结AC ∵菱形ABCD ∴BA=BC ,∠ACB=∠ACD ∵∠=?B 60 ∴?ABC 是等边三角形 ∴∠=∠=?=∴∠=∠=? ∠=∠=?∴∠=∠∴?BAC ACB AB AC ACF B EAF BAC BAE CAF ABE ACF AAS 606060,() ?? ∴=∴∴∠=? AE AF AEF AEF ?是等边三角形60 ∠+∠=∠+∠∠=? ∴∠=?AEF CEF B BAE BAE CEF 1818 例3:如图4,已知:正方形ABCD ,E 、F 为AB 、 BC 上两点,且EF=AE+FC 求证:∠=?EDF 45 证明:延长BC 至G ,使CG=AE ,连结DG

平行四边形知识点及典型例题

一、知识点讲解: 1.平行四边形的性质: 四边形ABCD 是平行四边形?????? ????. 54321)邻角互补()对角线互相平分;()两组对角分别相等; ()两组对边分别相等;()两组对边分别平行;( 2.平行四边形的判定: . 3. 矩形的性质: 因为四边形ABCD 是矩形??? ? ??.3; 2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所( (4)是轴对称图形,它有两条对称轴. 4矩形的判定: (1)有一个角是直角的平行四边形; (2)有三个角是直角的四边形; (3)对角线相等的平行四边形; (4)对角线相等且互相平分的四边形. ?四边形ABCD 是矩形. 两对角线相交成60°时得等边三角形。 5. 菱形的性质: 因为ABCD 是菱形??? ? ??.321角)对角线垂直且平分对()四个边都相等; (有通性;)具有平行四边形的所( 6. 菱形的判定: ?? ? ?? +边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321?四边形ABCD 是菱形. 菱形中有一个角等于60°时,较短对角线等于边长; 菱形中,若较短对角线等于边长,则有等边三角形; 菱形中,两对角线把菱形分成4个全等的直角三角形,每个直角三角形的斜边是菱形的边,两直角边分别是两对角线的一半。 菱形的面积等于两对角线长积的一半。 A B D O C A B D O C A D B C A D B C O C D B A O C D B A O

C D A B A B C D O 7.正方形的性质: 四边形ABCD 是正方形??? ? ??.321分对角)对角线相等垂直且平(角都是直角; )四个边都相等,四个(有通性;)具有平行四边形的所( 8. 正方形的判定: ???? ? ? ? ?? ++++++对角线互相垂直矩形)(一组邻边等 矩形)(对角线相等)菱形(一个直角)菱形(一个直角一组邻边等)平行四边形(54321?四边形ABCD 是正方形. 9. 1.三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三 遍的一半。 2.由矩形的性质得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半。 二、例题 例1:如图1,平行四边形ABCD 中,AE⊥BD,CF⊥BD,垂足分别为E 、F. 求证:∠BAE =∠DCF. 例2如图2,矩形ABCD 中,AC 与BD 交于O 点,BE⊥AC 于E ,CF⊥BD 于F. 求证:BE = CF. 例3.已知:如图,在△ABC 中,中线BE ,CD 交于点O ,F ,G 分别是OB ,OC 的中点.求证:四边形DFGE 是平行四边形. 例4如图7 的对角线AC 的垂直平分线与边AD ,BC 分别相交于点E ,F. 求证:四边形AFCE 是菱形. (图1) O A B C D E F (图2) B

(完整版)特殊四边形经典例题

特殊四边形经典例题 1.在下列命题中,是真命题的是() A.两条对角线相等的四边形是矩形 B.两条对角线互相垂直的四边形是菱形 C.两条对角线互相平分的四边形是平行四边形 D.两条对角线互相垂直且相等的四边形是正方形 2.下列四个命题: ①一组对边平行且一组对角相等的四边形是平行四边形; ②对角线互相垂直且相等的四边形是正方形; ③顺次连接矩形四边中点得到的四边形是菱形; ④正五边形既是轴对称图形又是中心对称图形.其中真命题共有() A.1个B.2个C.3个D.4个 3.下列命题中正确的是() A.对角线相互垂直的平行四边形是矩形 B.对角线相等的平行四边形是菱形 C.对角线相等的梯形是等腰梯形 D.对角线相等的四边形是平行四边形 4.如图,在平行四边形ABCD中,E,F分别是边AD,BC的中点,AC分别交BE,DF 于点M,N.给出下列结论: ①△ABM≌△CDN;②AM=AC;③DN=2NF;④S四边形BFNM=S平行四边形ABCD. 其中正确的结论有() A.1个B.2个C.3个D.4个 5.如图,已知正方形ABCD中,点E、N是对角线BD上两动点,过这两个动点作矩形EFCH,MNQP,分别内接于△BCD和△ABD,设矩形EFCH,MNQP的周长分别为m1,m2,则 m1,m2的大小关系为() A.m1>m2B.m1<m2 C.m1=m2D.m1,m2的大小不确定 6.如图,已知AD是三角形纸片ABC的高,将纸片沿直线EF折叠,使点A与点D重合,给出下列判断: ①EF是△ABC的中位线; ②△DEF的周长等于△ABC周长的一半; ③若四边形AEDF是菱形,则AB=AC; ④若∠BAC是直角,则四边形AEDF是矩形, 其中正确的是()

人教版八年级数学下册第十八章四边形典型中点构造专题

1 E D C B A F A B C E G E D C B A F E D C B A 四边形典型中点构造 题型一:三角形中位线 思路导航 三角形中位线 定义:连接三角形两边中点的线段; 定理:三角形中位线平行于三角形的第三边且等于第三边的一半. 如图:若DE 为ABC △的中位线,则DE BC ∥,且1 2 DE BC = 三角形中位线中隐含的重要性质: ①一个三角形有三条中位线. ②三角形的三条中位线将原三角形分割成四个全等的三角形. ③三角形的三条中位线将原三角形划分出三个面积相等的平行四边形. ④三角形的三条中位线组成一个三角形,其周长为原三角形周长的一半,其面积为原三角形面积的四分之一. 如图:EF 、GE 、GF 是ABC △的三条中位线,则有 ①AEG EBF GFC FGE △≌△≌△≌△ ②AEFG EBFG EFCG S S S ==平行四边形平行四边形平行四边形 ③12EFG ABC C C =△△,1 4 EFG ABC S S =△△ 例题精讲 【引例】 如图,已知ABC △,D E 、分别是AB AC 、的中点,求证:DE BC ∥且1 2 DE BC =. 【解析】 延长DE 到点F ,使EF=DE ,连接FC ,DC ,AF . ∵AE=EC ∴四边形ADCF 是平行四边形 ∴CF//DA 且CF=DA , CF //BD 且CF=BD ∴四边形DBCF 是平行四边形

2 G 图2 F E D C B A 图1 F E D C B A ∴DF //BC 且DF=BC 又1 2 =DE DF ∴DE //BC ,且1 2 =DE BC 【点评】 教师可以让学生尝试不同方法证明三角形中位线,并复习了平行四边形的判定与性质. 下面方法请做参考. 方法一:如图1,过点C 作AB 的平行线交DE 延长线于点F ,证明ADE CFE △≌△,再证四边形DBCF 为平行四边形. 方法二:如图2,分别过点A E 、作平行线交于点F ,证明AEF CEG △≌△,再证ABGF 与DBGE 均为平行四边形即可. 典题精练 【例1】 已知四边形ABCD 是梯形,AD BC ∥. ⑴ 如图1,E 、F 是AB 、CD 的中点.求证:EF AD BC ∥∥且1 ()2 EF AD BC =+. ⑵ 如图2,E 、F 是BD 、AC 的中点.试写出EF 与AD 、BC 之间的关系. ⑶ 如图3,若梯形满足90B C ∠+∠=?.E 、F 是AD 、BC 的中点.试写出EF 与AD 、 BC 之间的数量关系 图1 F E D C B A A B C D E F 图2 图3 F E D C B A 【分析】 此题设计目的是突显这一讲中的经典辅助线,总结梯形中的几个经典几何模型.同时告 诉学生梯形中位线可以转化为三角形中位线来研究.证明不难,记住结论对解答填空选择有帮助,在解答题中最好通过添加辅助线转化为三角形中位线来解答.⑴⑵可以转化为三角形中位线;⑶可以转化为直角三角形斜边上的中线等于斜边的一半这一重要结论. 【解析】 ⑴ 方法一:连接DE 并延长交CB 的延长线于G . ∵AD BC ∥,E 是AB 的中点 易证ADE BGE △≌△ ∴BG AD =,DE GE = ∴GC AD BC =+ ∵F 是DC 的中点 ∴EF 是DGC △的中位线 ∴EF GC ∥且1 2 EF GC = G A B C D E F

相关主题
文本预览
相关文档 最新文档