当前位置:文档之家› 北邮校园无线信号场强特性分析实验报告

北邮校园无线信号场强特性分析实验报告

北邮校园无线信号场强特性分析实验报告
北邮校园无线信号场强特性分析实验报告

校园内无线信号场强

特性研究

班级:

姓名:

学号:

序号:

日期:

北京邮电大学B e i j i n g U n i v e r s i t y o f P o s t s a n d T e l e c o m m u n i c a t i o n s

一、实验目的

1.掌握在移动环境下阴影衰落的概念以及正确的测试方法

2.研究校园内各种不同环境下阴影衰落的分布规律

3.掌握在室内环境下场强的正确测试方法,理解建筑物穿透损耗的概念

4.通过实地测量,分析建筑物穿透损耗随频率的变化关系

5.研究建筑物穿透损耗与建筑材料的关系。

二、实验原理

无线通信系统有发射机、发射天线、无线信道、接收机、接收天线所组成。对于接收者,只有处在发射信号的覆盖区域内,才能保证接收机正常接收信号,此时,电波场强大于等于接收机的灵敏度。因此,基站的覆盖区的大小,是无限工程师所关心的。决定覆盖区的大小的主要因素有:发射功率、馈线及接头损耗、天线增益、天线架设高度、路径损耗、衰落、接收机高度、人体效应、接收机灵敏度、建筑物的穿透损耗、同波、同频干扰。

无线

信道

发射接收

发射机接收机

2.1大尺度路径损耗

在移动通信系统中,路径损耗是影响通信质量的一个重要因素。

大尺度平均路径损耗:用于测量发射机与接收机之间信号的平均衰落,即定义为有效发射功率和平均接收功率之间的(dB)差值,根据理论和测试的传播模型,无论室内还是室外信道,平均接收信号功率随距离对数衰减,这种模型已被广泛使用。对于任意的传播距离,大尺度平均路径损耗表示为:

()[]()10l g (/)

o o PL d dB PL d n d d =+ (n 依赖于具体的传输环境) 即平均接收功率为:

0000()[][]()10lg(/)()[]10lg(/)r t r P d dBm P dBm PL d n d d P d dBm n d d =--=- 其中,n 为路径损耗指数,表明路径损耗随距离增长的速度;d0为近地参考距离;d 为

发射机与接收机(T-R )之间的距离。公式中的横岗表示给定值d 的所有可能路径损耗的综合平均。坐标为对数—对数时,平均路径损耗或平均接收功率可表示为斜率10ndB/10倍程的直线。n 值依赖于特定的传播环境。例如在自由空间,n 为2,当有阻挡物时,n 比2大。

决定路径损耗大小的首要因素是距离,此外,它还与接收点的电波传播条件密切相关。为此,我们引进路径损耗中值的概念。中值是使实测数据中一半大于它而另一半小于它的一个数值(对于正态分布中值就是均值)。人们根据不同的地形地貌条件,归纳总结出各种电波传输模型。下边介绍几种常用的描述大尺度衰落的模型。

2.2 常用的电波传播模型 2.2.1自由空间模型

自由空间模型假定发射天线和接收台都处在自由空间。我们所说的自由空间一是指真空,二是指发射天线与接收台之间不存在任何可能影响电波传播的物体,电波是以直射线的方式到达移动台的。

自由空间模型计算路径损耗的公式是:

()10lg /32.420lg 20lg p t r L P P d f ==++

其中p L 是以B d 为单位的路径损耗,d 是以公里为单位的移动台和基站之间的距离,f 是以MHz 为单位的移动工作频点或工作频段的频率。

空气的特性近似为真空,因此当发射天线和接收天线距离地面都比较高时,可以近似使用自由空间模型来估计路径损耗。

2.2.2布灵顿模型

布灵顿模型假设发射天线和移动台之间是理想平面大地,并且两者之间的距离d 远大于发射天线的高度ht 或移动台的高度hr 。

布灵顿模型的出发角度是接收信号来自于电波的直射和一次反射,也被叫做“平面大地模型”。

该模型的路径损耗公式为:

12040lg 20lg 20lg p t r L d h h =+--

单位: d (km ) ht (m )hr (m )Lp (dB )

G

f hr ht d Lp -+--+=)lg(20)lg(20)lg(20)lg(4088系统设计时一般把接收机高度按典型值hr=1.5m 处理,这时的路径损耗计算公式为: 116.540l

g 20lg p t L d

h =+-

按自由空间模型计算时,距离增加一倍时对应的路径损耗增加6dB ,按布灵顿模型计算时,距离增加一倍时对应的路径损耗要增加12dB 。

2.2.3 EgLi 模型

前述的2个模型都是基于理论计算分析得出的计算公式。EgLi 模型则是从大量实测结果中归纳出来的中值预测模型,属于经验模型。

其路径损耗公式为:

单位: d (km ) ht (m ) hr (m ) f (MHz )G (dB ) Lp (dB ) 其中G 是地下修复因子,G 反映了地形因素对路径损耗的影响。EgLi 模型认为路径损耗同接收点的地形起伏程度h ?有关,地形起伏越大,则路径损耗也越大。当h ?用米来测量时,可按下式近似的估计地形的影响:

0 152.43(1) 15 150152.43(1) 15 15015h m h G h m MHz h h m MHz ???

??

=-?>??

??

-?>??

频段频段

若将移动台的典型高度值hr=1.5m ,代入EgLi 模型则有:

84.540lg 20lg 20lg p t L d h f G =+-+-

2.2.4 Hata-Okumura 模型

该模型也是依据实测数据建立的模型,属于经验模型。当hr=1.5m 时,按此模型计算的路径损耗为:

市区: 169.5526.2lg 13.82lg (44.9 6.55lg )lg p t t L f h h d =+-+- 开阔地: 221 4.78(lg )18.33lg 40.94p p L L f f =-+- 单位: d (km ) ht (m )f (MHz )Lp (dB )

一般情况下,开阔地的路径损耗要比市区小。

2.3阴影衰落

在无线信道里,造成慢衰落的最主要原因是建筑物或其他物体对电波的遮挡。在测量过程中,不同测量位置遇到的建筑物遮挡情况不同,因此接收功率不同,这样就会观察到衰落现象,由于这种原因造成的衰落也叫“阴影衰落”或“阴影效应”。在阴影衰落的情况下,

∑∑==-=

?N

i M

j inside j

outside i

P M

P N

P 11)

()

(11移动台被建筑物遮挡,它收到的信号是各种绕射、反射、散射波的合成。所以,在距基站距离相同的地方,由于阴影效应的不同,它们收到的信号功率有可能相差很大,理论和测试表明,对任意的d 值,特定位置的接收功率为随机对数正态分布即:

σσX d d n dBm d P X dBm d P dBm d P o o r r r +-=+=)/log(10][)(][)(])[(

其中,X σ为均值为0的高斯分布随机变量,单位为dB ,标准差为σ,单位也是dB 。 对数正态分布描述了在传播路径上,具有相同T-R 距离时,不同的随机阴影效应。这样利用高斯分布可以方便地分析阴影的随机效应。正态分布的概率密度函数是:

22

()22

1()2x m f x e

σπσ

--

=

应用于阴影衰落时,上式的x 表示某一次测量得到的接收功率,m 表示以dB 表示的接收功率的均值或中值,σ表示接收功率的标准差,单位为dB 。阴影衰落的标准差同地形、建筑物类型、建筑物密度有关,在市区的150MHz 频段其典型值是5dB .

除了阴影衰落外,大气变化也会导致慢衰落。比如一天中的白天、夜晚,一年中的春夏秋冬,天晴时、下雨时,即使在同一地点上,也会观察到路径损耗的变化。但在测量的无线信道中,大气变化造成的影响要比阴影效应小的多。下表列出了阴影衰落分布的标准差,其中的()s dB σ是阴影效应的标准差。

表1 阴影衰落分布的标准差

s σ(dB )

频率(MHZ )

准平坦地形 不规则地形h ?(米)

城市

郊区 50 150 300 150 3.5~5.5 4~7 9 11 13 450 6 7.5 11 15 18 900 6.5

8

14

18

21

2.4建筑物的穿透损耗

建筑物的穿透损耗的大小对于研究室内无线信道具有重要意义。穿透损耗也称为大楼效应,一般是指建筑物一楼内的中值电场强度和室外附近街道上中值电场强度dB 之差。

发射机位于室外,接收机位于室内,电波从室外进入室内,产生建筑物的穿透损耗,由于建筑物存在屏蔽和吸收作用,室内场强一定小于室外的场强,造成传输损耗。室外至室内建筑物的穿透损耗定义为:室外测量的信号平均场强减去在同一位置室内测量的信号平均场强。用公式表示为:

P ?是穿透损耗,单位dB ,j P 是在室内所测得每一点的功率,单位dB V μ,共M

个点,P 是在室外所测得每一点的功率,单位dB V μ,共N 个点。

三、实验内容

利用DS1131场强仪,实地测量信号场强

1. 研究具体现实环境下阴影衰落分布规律,以及具体的分布参数如何; 2. 研究在校园内电波传播规律与现有模型的吻合程度,测试值与模型预测值的预测误

差如何;

3. 研究建筑物穿透损耗的变化规律。

四、实验步骤

4.1选择实验对象

北邮南北主干道鸟瞰图

这次实验数据采集地点我们选择了开阔同时无论何时人口都较为密集的南北主干道。选择测量的频段为广播调频190.75MHz 。当时测量的时间为2013年5月7号下午5:30—8:00,天气晴朗,风速为2-3级。

N

根据测定要求,每半个波长测定一次数据,则对于190.75MHz而言,每个波长约为1.6m,半个波长为0.8m,而我们粗略计算了下,一小步的距离为0.3-0.4米,故实验时选定每两小步测定一个数据。

4.2数据采集

利用场强仪对无线信号的电平值进行测量,对于室外的信号的测量,均为每隔半个波长(约0.8米,大约两小步)记录一个数据;记录多组数据。在实验中,我们在主干道由北向南方向进行测量并记录数据。

s

测量行进方向图

4.3测量注意事项

(1)对于场强仪而言,由于其天线的长度、方向等对于接收信号的强度值是有影响的,故在使用时要保证天线始终处于全伸直状态,并且尽量在测定一个区域时保证其方向不变。

(2)在测量时尽量保持身体的姿势是不变的,这样就可以减少由于身体的姿势的不同而导致的对于测量的干扰的不同。

(3)在读数时应该注意,由于短期快衰落导致测量到的信号强度变化较快,有时甚至在一个比较的动态范围内跳变,这时需要根据实际情况,在评估一段时间后选取其中的平均值进行记录。

(4)由于测量位置一直改变,接收天线是移动的,所以不能在移动到一个点后马上读数,故移动到某个点后,隔一段时间后再进行读数。

4.4数据录入

将测量得到的数据填入Excel表格,字段排列为地点、电平值、状态。数据录入时舍弃了电平绝对值大于72dbmw的无效数据。

4.5数据处理流程

采集到的数据有大约800组,需要对数据进行细致的处理以便得到明确的结论。下图所

示为数据处理的流程图。

数据采集数据整理和录

场强空间分布

统计分析、拟合、作

场强概率分布

统计分析、拟合、作

穿透损耗计算和结论

实验结论整理与分析导入MATLAB

五、实验结果

地点:南北主干道

磁场强度统计分布和概率累计分布图

数据1~199

数据200~399

数据400~599

数据600~791

matlab源程序:

clear all;

close all;

%-------------读取文件---------------%

w2e=xlsread('data.xls','sheet1');

%-------------转换成矩阵------------%

w2e2=reshape(w2e,1,791);

%---------为画平面场强图作准备----------% w2e3=[w2e2,zeros(1,791),[1:791]];

w2e3=reshape(w2e3,791,3);

%-----------南北主干道-----------%

figure(11)

subplot(1,2,1);

histfit(w2e2);%画柱状图

axis([40,75,0,75]);

grid on;

str={'南北主干道'; '信号电平概率分布'}; title(str);

xlabel('电平值(-dBmw)');

ylabel('样本数量(个)');

legend('实际样本分布','理想概率分布线'); subplot(1,2,2);

[h1,s1] = cdfplot(w2e2)%画累积概率分布图axis([40,75,0,1]);

hold on;

w2emean=num2str(s1.mean);

w2estd=num2str(s1.std);

text(56,0.23,['最小值= ',num2str(s1.min)]); text(56,0.18,['最大值= ',num2str(s1.max)]); text(56,0.13,['均值= ',num2str(s1.mean)]); text(56,0.08,['中值= ',num2str(s1.median)]); text(56,0.03,['标准差= ',num2str(s1.std)]); title(' 对应累积概率分布');

figure(12)

surf(w2e3');%画衰落强度图

title('南北主干道信号电平分布图');

ylabel('<--西东-->');

xlabel('<--北南-->');

axis([600,791,1,2]);

caxis([40 75]);

colorbar('horiz');

地点:主干道—学十部分磁场强度统计分布和概率累计分布图

matlab源程序:

clear all;

close all;

%-------------读取文件---------------%

w2e=xlsread('data.xls','学10');

%-------------转换成矩阵------------%

w2e2=reshape(w2e,1,81);

%---------为画平面场强图作准备----------%

w2e3=[w2e2,zeros(1,81),[1:81]];

w2e3=reshape(w2e3,81,3);

%-----------主干道——学十部分-----------%

figure(11)

subplot(1,2,1);

histfit(w2e2);%画柱状图

axis([40,75,0,20]);

grid on;

str={'主干道——学十部分'; '信号电平概率分布'};

title(str);

xlabel('电平值(-dBmw)');

ylabel('样本数量(个)');

legend('实际样本分布','理想概率分布线');

subplot(1,2,2);

[h1,s1] = cdfplot(w2e2)%画累积概率分布图

axis([40,75,0,1]);

hold on;

w2emean=num2str(s1.mean);

w2estd=num2str(s1.std);

text(56,0.23,['最小值= ',num2str(s1.min)]);

text(56,0.18,['最大值= ',num2str(s1.max)]);

text(56,0.13,['均值= ',num2str(s1.mean)]);

text(56,0.08,['中值= ',num2str(s1.median)]);

text(56,0.03,['标准差= ',num2str(s1.std)]);

title(' 对应累积概率分布');

figure(12)

surf(w2e3');%画衰落强度图

title('主干道——学十部分信号电平分布图');

ylabel('<--西东-->');

xlabel('<--北南-->');

axis([1,81,1,2]);

caxis([40 75]);

colorbar('horiz');

地点:主干道—食堂部分磁场强度统计分布和概率累计分布图

matlab源程序:

clear all;

close all;

%-------------读取文件---------------%

w2e=xlsread('data.xls','食堂');

%-------------转换成矩阵------------%

w2e2=reshape(w2e,1,50);

%---------为画平面场强图作准备----------%

w2e3=[w2e2,zeros(1,50),[1:50]];

w2e3=reshape(w2e3,50,3);

%-----------主干道——学十部分-----------%

figure(11)

subplot(1,2,1);

histfit(w2e2);%画柱状图

axis([40,75,0,20]);

grid on;

str={'主干道——食堂部分'; '信号电平概率分布'};

title(str);

xlabel('电平值(-dBmw)');

ylabel('样本数量(个)');

legend('实际样本分布','理想概率分布线');

subplot(1,2,2);

[h1,s1] = cdfplot(w2e2)%画累积概率分布图

axis([40,75,0,1]);

hold on;

w2emean=num2str(s1.mean);

w2estd=num2str(s1.std);

text(56,0.23,['最小值= ',num2str(s1.min)]);

text(56,0.18,['最大值= ',num2str(s1.max)]);

text(56,0.13,['均值= ',num2str(s1.mean)]);

text(56,0.08,['中值= ',num2str(s1.median)]);

text(56,0.03,['标准差= ',num2str(s1.std)]);

title(' 对应累积概率分布');

figure(12)

surf(w2e3');%画衰落强度图

title('主干道——食堂部分信号电平分布图');

ylabel('<--西东-->');

xlabel('<--北南-->');

axis([1,50,1,2]);

caxis([40 75]);

colorbar('horiz');

地点:主干道—学八部分磁场强度统计分布和概率累计分布图

matlab源程序:

clear all;

close all;

%-------------读取文件---------------%

w2e=xlsread('data.xls','学8');

%-------------转换成矩阵------------%

w2e2=reshape(w2e,1,100);

%---------为画平面场强图作准备----------%

w2e3=[w2e2,zeros(1,100),[1:100]];

w2e3=reshape(w2e3,100,3);

%-----------主干道——学八部分-----------%

figure(11)

subplot(1,2,1);

histfit(w2e2);%画柱状图

axis([40,75,0,25]);

grid on;

str={'主干道——学八部分'; '信号电平概率分布'};

title(str);

xlabel('电平值(-dBmw)');

ylabel('样本数量(个)');

legend('实际样本分布','理想概率分布线');

subplot(1,2,2);

[h1,s1] = cdfplot(w2e2)%画累积概率分布图

axis([40,75,0,1]);

hold on;

w2emean=num2str(s1.mean);

w2estd=num2str(s1.std);

text(56,0.23,['最小值= ',num2str(s1.min)]);

text(56,0.18,['最大值= ',num2str(s1.max)]);

text(56,0.13,['均值= ',num2str(s1.mean)]);

text(56,0.08,['中值= ',num2str(s1.median)]);

text(56,0.03,['标准差= ',num2str(s1.std)]);

title(' 对应累积概率分布');

figure(12)

surf(w2e3');%画衰落强度图

title('主干道——学八部分信号电平分布图');

ylabel('<--西东-->');

xlabel('<--北南-->');

axis([1,100,1,2]);

caxis([40 75]);

colorbar('horiz');

地点:主干道—花园部分磁场强度统计分布和概率累计分布图

matlab源程序:

clear all;

close all;

%-------------读取文件---------------%

w2e=xlsread('data.xls','花园');

%-------------转换成矩阵------------%

w2e2=reshape(w2e,1,116);

%---------为画平面场强图作准备----------%

w2e3=[w2e2,zeros(1,116),[1:116]];

w2e3=reshape(w2e3,116,3);

%-----------主干道——花园部分-----------%

figure(11)

subplot(1,2,1);

histfit(w2e2);%画柱状图

axis([40,75,0,25]);

grid on;

str={'主干道——花园部分'; '信号电平概率分布'};

title(str);

xlabel('电平值(-dBmw)');

ylabel('样本数量(个)');

legend('实际样本分布','理想概率分布线');

subplot(1,2,2);

[h1,s1] = cdfplot(w2e2)%画累积概率分布图

axis([40,75,0,1]);

hold on;

w2emean=num2str(s1.mean);

w2estd=num2str(s1.std);

text(56,0.23,['最小值= ',num2str(s1.min)]);

text(56,0.18,['最大值= ',num2str(s1.max)]);

text(56,0.13,['均值= ',num2str(s1.mean)]);

text(56,0.08,['中值= ',num2str(s1.median)]);

text(56,0.03,['标准差= ',num2str(s1.std)]);

title(' 对应累积概率分布');

figure(12)

surf(w2e3');%画衰落强度图

title('主干道——花园部分信号电平分布图');

ylabel('<--西东-->');

xlabel('<--北南-->');

axis([1,116,1,2]);

caxis([40 75]);

colorbar('horiz');

地点:教二教三之间部分磁场强度统计分布和概率累计分布图

北邮 通信网实验报告

北京邮电大学实验报告通信网理论基础实验报告 学院:信息与通信工程学院 班级:2013211124 学号: 姓名:

实验一 ErlangB公式计算器 一实验内容 编写Erlang B公式的图形界面计算器,实现给定任意两个变量求解第三个变量的功能: 1)给定到达的呼叫量a和中继线的数目s,求解系统的时间阻塞率B; 2)给定系统的时间阻塞率的要求B和到达的呼叫量a,求解中继线的数目s,以实现网络规划; 3)给定系统的时间阻塞率要求B以及中继线的数目s,判断该系统能支持的最大的呼叫量a。 二实验描述 1 实验思路 使用MA TLAB GUITOOL设计图形界面,通过单选按钮确定计算的变量,同时通过可编辑文本框输入其他两个已知变量的值,对于不同的变量,通过调用相应的函数进行求解并显示最终的结果。 2程序界面 3流程图 4主要的函数 符号规定如下: b(Blocking):阻塞率; a(BHT):到达呼叫量;

s(Lines):中继线数量。 1)已知到达呼叫量a及中继线数量s求阻塞率b 使用迭代算法提高程序效率 B s,a= a?B s?1,a s+a?B(s?1,a) 代码如下: function b = ErlangB_b(a,s) b =1; for i =1:s b = a * b /(i + a * b); end end 2)已知到达呼叫量a及阻塞率b求中继线数量s 考虑到s为正整数,因此采用数值逼近的方法。采用循环的方式,在每次循环中增加s的值,同时调用B s,a函数计算阻塞率并与已知阻塞率比较,当本次误差小于上次误差时,结束循环,得到s值。 代码如下: function s = ErlangB_s(a,b) s =1; Bs = ErlangB_b(a,s); err = abs(b-Bs); err_s = err; while(err_s <= err) err = err_s; s = s +1; Bs = ErlangB_b(a,s); err_s = abs(b - Bs); end s = s -1; end 3)已知阻塞率b及中继线数量s求到达呼叫量a 考虑到a为有理数,因此采用变步长逼近的方法。采用循环的方式,在每次循环中增加a的值(步长为s/2),同时调用B s,a函数计算阻塞率并与已知阻塞率比较,当本次误差小于预设阈值时,结束循环,得到a值。 代码如下: function a = ErlangB_a(b,s)

北京邮电大学数电实验一实验报告

北京邮电大学数字电路与逻辑 设计实验 学院: 班级: 作者: 学号:

实验一 Quartus II原理图输入法设计 一、实验目的: (1)熟悉Quartus II原理图输入法进行电路设计和仿真 (2)掌握Quartus II 图形模块单元的生成与调 (3)熟悉实验板的使用 二、实验所用器材: (1)计算机 (2)直流稳压电源 (3)数字系统与逻辑设计实验开发板 三、实验任务要求 (1)用逻辑门设计实现一个半加器,仿真验证其功能,并生成新的半加器图形模 块单元。 (2)用(1)中生成的半加器模块和逻辑门设计实现一个全加器,仿真验证其功能, 并下载到实验板测试,要求用拨码开关设定输入信号,发光二极管显示输出信号。 (3)用3线-8线译码器(74LS138)和逻辑门设计实现函数 ,仿真验证其功能,并下载到实验板测试。要求用拨码开关设定输入信号,发光二极管显示输出信号。 四、设计思路和过程 (1)半加器的设计 半加器电路是指对两个输入数据位进行加法,输出一个结果位和进位,不产生进位输入的加法器电路。是实现两个一位二进制数的加法运算电路。数据输入AI被加数、BI加数,数据输出SO和数(半加和)、进位C0。 在数字电路设计中,最基本的方法是不管半加器是一个什么样的电路,按组合数字电路的分析方法和步骤进行。 1.列出真值表 半加器的真值表见下表。表中两个输入是加数A0和B0,输出有一个是和S0,另一个是进位C0。

2 该电路有两个输出端,属于多输出组合数字电路,电路的逻辑表达式如下函数的逻辑表达式为:SO=AI⊕BI CO=AB 所以,可以用一个两输入异或门和一个两输入与门实现。

北邮通电实验报告

实验3 集成乘法器幅度调制电路 信息与通信工程学院 2016211112班 苏晓玥杨宇宁 2016210349 2016210350

一.实验目的 1.通过实验了解振幅调制的工作原理。 2.掌握用MC1496来实现AM和DSB的方法,并研究已调波与调制信号,载波之间的关系。3.掌握用示波器测量调幅系数的方法。 二.实验准备 1.本实验时应具备的知识点 (1)幅度调制 (2)用模拟乘法器实现幅度调制 (3)MC1496四象限模拟相乘器 2.本实验时所用到的仪器 (1)③号实验板《调幅与功率放大器电路》 (2)示波器 (3)万用表 (4)直流稳压电源 (5)高频信号源 三.实验内容 1.模拟相乘调幅器的输入失调电压调节。 2.用示波器观察正常调幅波(AM)波形,并测量其调幅系数。 3.用示波器观察平衡调幅波(抑制载波的双边带波形DSB)波形。 四.实验波形记录、说明 1.DSB信号波形观察

2.DSB信号反相点观察 3.DSB信号波形与载波波形的相位比较 结论:在调制信号正半周期间,两者同相;负半周期间,两者反相。

4.AM正常波形观测 5.过调制时的AM波形观察(1)调制度为100%

(2)调制度大于100% (3)调制度为30% A=260.0mv B=140.0mv

五.实验结论 我们通过实验了解振幅调制的工作原理是:调幅调制就是用低频调制信号去控制高频振荡(载波)的幅度,使其成为带有低频信息的调幅波。目前由于集成电路的发展,集成模拟相乘器得到广泛的应用,为此本实验采用价格较低廉的MC1496集成模拟相乘器来实现调幅之功能。 DSB信号波形与载波波形的相位关系是:在调制信号正半周期间,两者同相;负半周期间,两者反相。 通过实验了解到了调制度的计算方法 六.课程心得体会 通过本次实验,我们了解了振幅调制的工作原理并掌握了实现AM和DSB的方法,学会计算调制度,具体见实验结论。我们对集成乘法器幅度调制电路有了更好的了解,对他有了更深入的认识,提高了对通信电子电路的兴趣。 和模电实验的单独进行,通电实验增强了团队配合的能力,两个人的有效分工提高了实验的效率,减少了一个人的独自苦恼。

北邮通信原理实验 基于SYSTEMVIEW通信原理实验报告

北京邮电大学实验报告 题目:基于SYSTEMVIEW通信原理实验报告 班级:2013211124 专业:信息工程 姓名:曹爽 成绩:

目录 实验一:抽样定理 (3) 一、实验目的 (3) 二、实验要求 (3) 三、实验原理 (3) 四、实验步骤和结果 (3) 五、实验总结和讨论 (9) 实验二:验证奈奎斯特第一准则 (10) 一、实验目的 (10) 二、实验要求 (10) 三、实验原理 (10) 四、实验步骤和结果 (10) 五、实验总结和讨论 (19) 实验三:16QAM的调制与解调 (20) 一、实验目的 (20) 二、实验要求 (20) 三、实验原理 (20) 四、实验步骤和结果 (21) 五、实验总结和讨论 (33) 心得体会和实验建议 (34)

实验一:抽样定理 一、 实验目的 1. 掌握抽样定理。 2. 通过时域频域波形分析系统性能。 二、 实验要求 改变抽样速率观察信号波形的变化。 三、 实验原理 一个频率限制在0f 的时间连续信号()m t ,如果以0 12S T f 的间隔进行等间隔均匀抽样,则()m t 将被所得到的抽样值完全还原确定。 四、 实验步骤和结果 1. 按照图1.4.1所示连接电路,其中三个信号源设置频率值分别为10Hz 、15Hz 、20Hz ,如图1.4.2所示。 图1.4.1 连接框图

图1.4.2 信号源设置,其余两个频率值设置分别为15和20 2.由于三个信号源最高频率为20Hz,根据奈奎斯特抽样定理,最低抽样频率应 为40Hz,才能恢复出原信号,所以设置抽样脉冲为40Hz,如图1.4.3。 图1.4.3 抽样脉冲设置 3.之后设置低通滤波器,设置数字低通滤波器为巴特沃斯滤波器(其他类型的 低通滤波器也可以,影响不大),截止频率设置为信号源最高频率值20Hz,如图1.4.4。

北邮微波实验报告整理版

北京邮电大学信息与通信工程学院 微波实验报告 班级:20112111xx 姓名:xxx 学号:20112103xx 指导老师:徐林娟 2014年6月

目录 实验二分支线匹配器 (1) 实验目的 (1) 实验原理 (1) 实验内容 (1) 实验步骤 (1) 单支节 (2) 双支节 (7) 实验三四分之一波长阻抗变换器 (12) 实验目的 (12) 实验原理 (12) 实验内容 (13) 实验步骤 (13) 纯电阻负载 (14) 复数负载 (19) 实验四功分器 (23) 实验目的 (23) 实验原理 (23) 实验内容 (24) 实验步骤 (24) 公分比为1.5 (25) 公分比为1(等功分器) (29) 心得体会 (32)

201121111x 班-xx 号-xx ——电磁场与微波技术实验报告 实验二 分支线匹配器 实验目的 1.熟悉支节匹配器的匹配原理 2.了解微带线的工作原理和实际应用 3.掌握Smith 图解法设计微带线匹配网络 实验原理 支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。 单支节匹配器,调谐时主要有两个可调参量:距离d 和由并联开路或短路短截线提供的电纳。匹配的基本思想是选择d ,使其在距离负载d 处向主线看去的导纳Y 是Y0+jB 形式。然后,此短截线的电纳选择为-jB ,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。 双支节匹配器,通过增加一个支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(但是双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。 微带线是有介质εr (εr >1)和空气混合填充,基片上方是空气,导体带条和接地板之间是介质εr ,可以近似等效为均匀介质填充的传输线,等效介质电常数为 εe ,介于1和εr 之间,依赖于基片厚度H 和导体宽度W 。而微带线的特性阻抗与其等效介质电常数为εe 、基片厚度H 和导体宽度W 有关。 实验内容 已知:输入阻抗Z 75in ,负载阻抗Z (6435)l j ,特性阻抗0Z 75 ,介质基片 2.55r ,1H mm 。 假定负载在2GHz 时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离114d ,两分支线之间的距离为21 8 d 。画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz 至2.2GHz 的变化。 实验步骤 1.根据已知计算出各参量,确定项目频率。 2.将归一化阻抗和负载阻抗所在位置分别标在Smith 圆上。 3.设计单枝节匹配网络,在图上确定分支线与负载的距离以及分支线的长度,根据给定的介质基片、特性阻抗和频率用TXLINE 计算微带线物理长度和宽度。此处应该注意电长度和实际长度的联系。 4.画出原理图,在用微带线画出基本的原理图时,注意还要把衬底添加到图中,将各部分的参数填入。注意微带 分支线处的不均匀性所引起的影响,选择适当的模型。 5.负载阻抗选择电阻和电感串联的形式,连接各端口,完成原理图,并且将项目的频率改为1.8—2.2GHz 。 6.添加矩形图,添加测量,点击分析,测量输入端的反射系数幅值。 7.同理设计双枝节匹配网络,重复上面的步骤。

北邮信号与系统复习资料介绍

北邮信号与系统复习资料介绍(适合803) 雪山灰虎 撰写 2010-2-23 考虑到804信号与系统和803信息与通信工程学科专业基础综合大纲中信号与系统的参考书目不同,并且实际考查的范围也不相同,难度也不相同,因此一下介绍的内容不能同时适应这两科,仅适合准备803的同学。 一,必备复习资料 1,信号与系统第二版上下册(书籍) 作者:郑君里等 出版:高等教育出版社 日期:2000年5月 内容简评:北邮考研803信号与系统部分指定参考书,也是北邮本科信号与系统的教学用书。作用就意义就不用多介绍了。 特别说明:803中所考查的信号与系统部分并没有覆盖信号与系统教材上下册这两本书,下册只涉及某些章节,因此在复习时不要盲目,应该先对照大纲看看考查范围再复习,以免浪费宝贵的复习时间。 获取方式:在书店或者网上购买。 2,信号与系统考研指导(书籍) 作者:张金玲等 出版:北京邮电大学出版社 内容简评:信号与系统考研指导是复习北邮信号与系统最为重要的资料之一,其作用甚至大于信号与系统教材。主要是该书为北邮信号与系统命题老师编写,历年信号与系统考研真题也多出于该书,因此作用很大,是复习北邮信号与系统必备的资料。 特别说明:不知道由于何种原因,2009年北京邮电大学出版社停止发行这本书,也就是说市面上已经买不到这本书,但是其价值仍然还是在的。 另外,该书自2002年出版以来,一直没有再版,也没有修订,书中有很多细小的错误,因此在复习中应该注意,要逐渐学会甄别其中的错误。 获取方式:如果出版社不再发行,那就无法买到原版了。灰虎网提供这本书的电子版下载,地址是https://www.doczj.com/doc/184168395.html,/Web_Main/mat.asp。当然,如果周围同学有这本书的话,也可以复印。 3,北邮信号与系统历年真题(电子资料) 内容简评:历年真题的重要性就不用多说了。

北京邮电大学数字电路实验报告

北京邮电大学 数字电路与逻辑设计实验 实验报告 实验名称:QuartusII原理图输入 法设计与实现 学院:北京邮电大学 班级: 姓名: 学号:

一.实验名称和实验任务要求 实验名称:QuartusII原理图输入法设计与实现 实验目的:⑴熟悉用QuartusII原理图输入法进行电路设计和仿真。 ⑵掌握QuartusII图形模块单元的生成与调用; ⑶熟悉实验板的使用。 实验任务要求:⑴掌握QuartusII的基础上,利用QuartusII用逻辑 门设计实现一个半加器,生成新的半加器图像模 块。 ⑵用实验内容(1)中生成的半加器模块以及逻辑门 实现一个全加器,仿真验证其功能,并能下载到实 验板上进行测试,要求用拨码开关设定输入信号, 发光二级管显示输出信号。 ⑶用3线—8线译码器(74L138)和逻辑门实现要求 的函数:CBA F+ C + =,仿真验证其 + B C B A A A B C 功能,,并能下载到实验板上进行测试,要求用拨 码开关设定输入信号,发光二级管显示输出信号。二.设计思路和过程 半加器的设计实现过程:⑴半加器的应有两个输入值,两个输出值。 a表示加数,b表示被加数,s表示半加和, co表示向高位的进位。

⑵由数字电路与逻辑设计理论知识可知 b a s ⊕=;b a co ?= 选择两个逻辑门:异或门和与门。a,b 为异 或门和与门的输入,S 为异或门的输出,C 为与门的输出。 (3)利用QuartusII 仿真实现其逻辑功能, 并生成新的半加器图形模块单元。 (4)下载到电路板,并检验是否正确。 全加器的设计实现过程:⑴全加器可以由两个半加器和一个或门构 成。全加器有三个输入值a,b,ci ,两个输 出值s,co :a 为被加数,b 为加数,ci 为低 位向高位的进位。 ⑵全加器的逻辑表达式为: c b a s ⊕⊕= b a ci b a co ?+?⊕=)( ⑶利用全加器的逻辑表达式和半加器的逻 辑功能,实现全加器。 用3线—8线译码器(74L138)和逻辑门设计实现函数 CBA A B C A B C A B C F +++= 设计实现过程:⑴利用QuartusII 选择译码器(74L138)的图形模块

北邮《现代通信技术》实验报告一

现代通信技术实验报告 班级: 2012211110 学号: 2012210299 姓名:未可知

在学习现代通信技术实验课上,老师提到的一个词“通信人”警醒了我,尽管当初填报志愿时选择了通信工程最终也如愿以偿,进入大三,身边的同学忙着保研、考研、出国、找工作,似乎大家都为了分数在不懈奋斗。作为一个北邮通信工程的大三学生,我也不断地问自己想要学习的是什么,找寻真正感兴趣的是什么,通信这个行业如此之大,我到底适合什么。本学期,现代通信技术这本书让我了解到各种通信技术的发展和规划,也让我对“通信人”的工作有了更深刻的认识。 一、通信知识的储备 《现代通信技术》第一页指出,人与人之间通过听觉、视觉、嗅觉、触觉等感官,感知现实世界而获取信息,并通过通信来传递信息。所谓信息,是客观事物状态和运动特征的一种普遍形式,客观世界中大量地存在、产生和传递着以这些方式表示出来的各种各样的信息。信息的目的是用来“消除不可靠的因素”,它是物质运动规律总和。因此,我们通信人的任务就是利用有线、无线等形式来将信息从信源传递到信宿,在传输过程中保证通信的有效性和可靠性。 而具体来讲,要实现信息传递,通信网是必需的通信体系,其中通信网分层的结构形式需要不同的支撑技术,包括业务网技术,向用户提供电话、电报、数据、图像等各种电信业务的网络;介入与传送网技术,实现信息由一个点传递到另一个点或一些点的功能。对此,我们通信工程专业学习课程的安排让我们一步步打下基础,建立起知识储备。 知识树如下: 如知识树所述,通信工程课程体系可以大致分为一下6类基础:

数学基础:工科数学分析,线性代数,复变函数,概率论基础,随机过程; 电路基础:电路分析,模拟电子技术,数字逻辑电路,通信电子电路; 场与波基础:电磁场与电磁波,微波技术,射频与天线; 计算机应用能力:C 语言程序设计,微机原理与接口技术,计算机网络,数据结构,面向对象程序设计,实时嵌入式系统 信号处理类课程:信号与系统,信号处理,图像处理,DSP 原理及应用; 通信类课程:通信原理,现代通信技术,信息论基础,移动通信,光纤通信等。 从大一开始学习的工科数学分析,大学物理,大学计算机基础等课程为基础类课程,旨在培养我们的语言能力,数学基础,物理基础,计算机能力,然后逐步加大难度,细化课程,方向逐渐明朗详细。同时,课程中加入了各种实验,锻炼了我们的动手能力。 二、通信知识的小小应用 实验课上老师说过,以我们所学的知识已经可以制作简单通信的手机的草图了,我对此跃跃欲试。经过思考和调研,以下是我对于简单手机设计的原理框图和思考结果。 一部手机的结构包括接收机、发射机、中央控制模块、电源和人机界面部分,如下图 手机结构设计图 电路部分包括射频和逻辑音频电路部分,射频电路包括从天线到接收机的解调输出,与发射的I/O 调制到功率放大器输出的电路。其中,射频接收电路完成接收信号的滤波、信号放大、解调等功能;射频发射电路完成语音基带信号的调制、变频、功率放大等功能。要用到的超外差接收机、混频器、鉴相器等在《通信电子电路》书本中的知识。逻辑音频包括从接收解调到接收音频输出、送话器电路到发射I/O 调制器及逻辑电路部分的中央处理单元、数字语音处理及各种存储器电路。由核心控制模块CPU 、EEPROM 、 FLASH 、SRAM 等部分组成,一个基本 天线 接收机 发射机 频率合成 电源 逻 辑 音 频 人 机 交 互

北京邮电大学信号与系统历年考研真题模拟08A

北京邮电大学信号与系统历年考研真题08A

北京邮电大学 硕士研究生入学试题 考试科目:信号与系统(A ) 请考生注意:所有答案(包括判断题、选择题和填空题)一律写在答题纸上,写清题号,否则不计成绩。计算题要算出具体答案,能够用计算器,但不能互相借用。 一、 判断题(本大题共5小题,每题2分共10分)判断下列说法是否正确,正确的打√,错误的打× 1. 若()()()t h t x t y *=,则()()()t h t x t y --=-*。 2. 若[]K n h <(对每一个n ),K 为某已知数,则以[]n h 作为单位样值响 应的线性时不变系统是稳定的。 3. 一个非因果线性时不变系统与一个因果线性时不变系统级联,必定是非因果的 4. 两个线性时不变系统的级联,其总的输入输出关系与它们在级联中的次序没有关系。 5. 实偶函数信号的傅里叶变换也是实偶函数。 二、 单项选择题(本大题共5小题,每题2分共10分)在每小题列出的四 个选项中只有一个是符合题目要求的,错选、多选或未选均无分。 1.信号()t u e t j )52(+-的傅里叶变换为 A : ωω521j e j + , B :ω ω251j e j + , C :)5(21-+-ωj , D :)5(21 ++ωj 。 2. 信号 ()()λ λλd t h t f -=?∞ 的单边拉普拉斯变换为 A :()S H S 1 , B :()S H S 21 C :()S H S 31, D :()S H S 4 1。 3. 信号()()2--t u t u 的拉普拉斯变换及收敛域为 A :()s e s s F s 21--=[]0Re >S , B :()s e s s F s 21-- = []2Re >S C :()s e s s F s 21--= 全s 平面, D : ()s e s s F s 21-- = []2Re 0<

北邮数电实验报告

北京邮电大学实验报告 实验名称:数字电路与逻辑设计实验报告 学院:信息与通信工程学院 班级: 姓名: 学号: 序号: 日期:

实验三:用VHDL语言设计与实现逻辑电路 一、实验内容 1. 用VHDL语言设计实现一个带异步复位的8421码十进制计数器,仿真验证其功能,并下载到实验版测试。要求用按键设定输入信号,发光二极管显示输出信号; 2.用VHDL语言设计实现一个分频系数为12,分频输出信号占空比为50%的分频器,仿真验证其功能; 3.将(1),(2)和数码管译码器3个电路进行连接,并下载到实验板显示计数结果。 二、模块端口说明及连接图 1.分频器 2. 计数器 clk: 时钟输入信号 clk: 时钟信号输入 clear: 复位信号输入 clear: 复位信号输入 clk_out: 时钟分频后的信号输出 q: 计数器的输出 3.数码管显示 b: 数码管的输入信号 seg: 译码显示输出 onoff: 数码管的输出控制

4.连接图 三、实验分析 1.设计思路 本实验将之前的分频器和计数器以及数码管显示模块组合起来,实现了单个数码管现显示0~9,每隔0.5s切换一次显示内容。 COMPONENT div_12实现了时钟分频,将50MHz的单片机晶振时钟进行分频,输出频率2HZ占空比50%的方波时钟,以此时钟作为内部时钟驱动计数器。 COMPONENT jishuqi是一个十进制计数器,NUM从“0000”到“1001”循环变化,模为10。计数器的输出传递给数码管译码显示电路。 COMPONENT seg7_1是数码管译码显示电路,将收到的信号NUM译码并控制数码管的段锁存来控制数码管的显示。 整体来看,div-12提供了分频后2Hz的时钟,驱动计数器计数,计数的结果作为数码管译码显示模块的输入,根据计数器实时的数进行数码管的显示。综合起来就实现了设计的功能。 在进行电路的连接时,可直接在代码中分成三个进程来实现,也可通过为每个模块建立符号,连接电路图来实现。 2. 具体代码如下: LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY fenpinjishu IS PORT( clear2 :IN STD_LOGIC; clk1:IN STD_LOGIC; b1:OUT STD_LOGIC_VECTOR(6 downto 0); CAT:OUT STD_LOGIC_VECTOR(7 downto 0) );

北邮arduino实验报告

电子电路综合实验设计 实验名称: 基于 Arduino 的电压有效值测量电路设计与实现 学院: 班级: 学号: 姓名: 班内序号:

实验 基于Arduino 的电压有效值测量电路设计与实现 一. 摘要 Arduino是一个基于开放原始码的软硬件平台,可用来开发独立运作、并具互动性的电子产品,也可以开发与PC 相连的周边装置,同时能在运行时与PC 上的软件进行交互。为了测量正弦波电压有效值,首先我们设计了单电源供电的半波整流电路,并进行整流滤波输出,然后选择了通过Arduino设计了读取电压有效值的程序,并实现使用此最小系统来测量和显示电压有效值。在频率和直流电压幅度限定在小范围的情况下,最小系统的示数基本和毫伏表测量的值相同。根据交流电压有效值的定义,运用集成运放和设计的Arduino最小系统的结合,实现了运用少量元器件对交流电压有效值的测量。 关键字:半波整流整流滤波 Arduino最小系统读取电压有效值 二. 实验目的 1、熟悉Arduino 最小系统的构建和使用方法; 2、掌握峰值半波整流电路的工作原理; 3、根据技术指标通过分析计算确定电路形式和元器件参数; 4、画出电路原理图(元器件标准化,电路图规范化); 5、熟悉计算机仿真方法; 6、熟悉Arduino 系统编程方法。 三. 实验任务及设计要求 设计实现 Arduino 最小系统,并基于该系统实现对正弦波电压有效值的测量和显示。 1、基本要求 (1)实现Arduino 最小系统,并能下载完成Blink 测试程序,驱动Arduino 数字13 口LED 闪烁; (2)电源部分稳定输出5V 工作电压,用于系统供电; (3)设计峰值半波整流电路,技术指标要求如下:

北邮通信原理实验报告

北京邮电大学通信原理实验报告 学院:信息与通信工程学院班级: 姓名: 姓名:

实验一:双边带抑制载波调幅(DSB-SC AM ) 一、实验目的 1、了解DSB-SC AM 信号的产生以及相干解调的原理和实现方法。 2、了解DSB-SC AM 信号波形以及振幅频谱特点,并掌握其测量方法。 3、了解在发送DSB-SC AM 信号加导频分量的条件下,收端用锁相环提取载波的原理及其实现方法。 4、掌握锁相环的同步带和捕捉带的测量方法,掌握锁相环提取载波的调试方法。 二、实验原理 DSB 信号的时域表达式为 ()()cos DSB c s t m t t ω= 频域表达式为 1 ()[()()]2 DSB c c S M M ωωωωω=-++ 其波形和频谱如下图所示 DSB-SC AM 信号的产生及相干解调原理框图如下图所示

将均值为零的模拟基带信号m(t)与正弦载波c(t)相乘得到DSB—SC AM信号,其频谱不包含离散的载波分量。 DSB—SC AM信号的解调只能采用相干解调。为了能在接收端获取载波,一种方法是在发送端加导频,如上图所示。收端可用锁相环来提取导频信号作为恢复载波。此锁相环必须是窄带锁相,仅用来跟踪导频信号。 在锁相环锁定时,VCO输出信号sin2πf c t+φ与输入的导频信号cos2πf c t 的频率相同,但二者的相位差为φ+90°,其中很小。锁相环中乘法器的两个 输入信号分别为发来的信号s(t)(已调信号加导频)与锁相环中VCO的输出信号,二者相乘得到 A C m t cos2πf c t+A p cos2πf c t?sin2πf c t+φ =A c 2 m t sinφ+sin4πf c t+φ+ A p 2 sinφ+sin4πf c t+φ 在锁相环中的LPF带宽窄,能通过A p 2 sinφ分量,滤除m(t)的频率分量及四倍频载频分量,因为很小,所以约等于。LPF的输出以负反馈的方式控制VCO,使其保持在锁相状态。锁定后的VCO输出信号sin2πf c t+φ经90度移相后,以cos2πf c t+φ作为相干解调的恢复载波,它与输入的导频信号cos2πf c t 同频,几乎同相。 相干解调是将发来的信号s(t)与恢复载波相乘,再经过低通滤波后输出模拟基带信号 A C m t cos2πf c t+A p cos2πf c t?cos2πf c t+φ =A c 2 m t cosφ+cos4πf c t+φ+ A p 2 cosφ+cos4πf c t+φ 经过低通滤波可以滤除四倍载频分量,而A p 2 cosφ是直流分量,可以通过隔直

北邮-数电实验报告

北邮-数电实验报告

数字电路实验报告 学院:信息与通信工程 专业:信息工程 班级:2013211125 学号:2013210681 姓名:袁普

②:仿真波形图以及分析 波形图: 波形分析:通过分析ab ci三个输入在8中不同组合下的输出,发现与全加器的真值表吻合,说明实现了全加器的逻辑功能。同时看见波形中出现了毛刺(冒险),这也与事实一致。 ③:故障及问题分析 第一次在做全加器的时候发现找不到已经生成的半加器模块,后来发现是因为在建立工程时这两个项目没有建在同一个文件夹里,在调用的时候就找不到。后来我将全加器工程建在同一个文件夹里解决了此问题。

实验二:用VHDL设计和实现组合逻辑电路 一:实验要求 ①:用VHDL设计一个8421码转换为格雷码的代码转换器,仿真验证其功能。 ②:用VHDL设计一个4位二进制奇校验器,要求在为奇数个1时输出为1,偶数个1时输出为0,仿真验证其功能。 ③:用VHDL设计一个数码管译码器,仿真验证其功能,下载到实验板测试,要求用拨码开关设定输入信号,数码管显示输出信号,并且只使一个数码管有显示,其余为熄灭状态。 二:故障及问题分析 在刚开始实现让一个数码管显示的时候,我本来准备再设置6个输入和输出,通过实验板上的拨码来输入信息分别控制不同的数码管的的开闭状态,但是后来发现这样效率很低而且实验板上的拨码开关数量根本不够。在老师的提醒下,我最终在VHDL里直接增加了一个向量输出”011111”来直接控制cat0~5六个管脚,从而达到了实验的要求。

实验三:用VHDL设计和实现时序逻辑电路 一:实验要求 ①:用VHDL语言设计实现一个8421十进制计数器,要求有高电平复位功能,仿真验证其功能。 ②:用VHDL语言设计实现一个分频系数为12,输出为占空比50%方波的分频器,有高电平复位功能,仿真验证其功能。 ③:将(1),(2)和数码管译码器三个电路进行连接,仿真验证其功能,并下载到实验板进行测试,要求第三个数码管显示数字。二:报告内容 ①实验三(3)模块端口说明及模块代码 模块一:div12为一个有高电平复位功能的分频系数为12的分屏器,其输出是一个占空比50%的方波。此模块输入连接一个时钟输入,即可在输出端得到一个周期更大的方波输出。 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; entity div12 is port( clear,clk:in std_logic; clk_out:out std_logic ); end div12; architecture struct of div12 is signal temp:integer range 0 to 5; signal clktmp:std_logic; begin process(clk,clear) begin if(clear='1') then

北邮 信号与系统 期中试题

《信号与系统》期中考试试题 一.填空题(每空2分,共20分) 1. ()()cos (1)d t u t t t δ∞?∞ ?=∫ ;()()cos d t u τττ?∞ =∫ ;()(21)d t τδττ?∞ ′+=∫ 2. 某连续时间系统,其输入()x t 和输出()y t 的关系为()()(sin )y t x t =则该系统是否为线性 ,是否为因果系统 ; 3. 已知某信号()f t 的傅立叶变换为()F ω,则()[23]f t ??的傅里叶变换为 ; 4. 信号()11 [()(2)]2f t u t u t =??的傅里叶变换为 ;信号 ()()2e ()为正实数at f t A u t a ?=的傅里叶变换为 ; 5. 帕斯瓦尔定理内容是 ; 6. 若调制信号()f t 的频带宽度为W ,设已调信号为()0sin 4f t t πω? ?+????,且0W ω>>,则 已调信号的频带宽度为 二.判断题(每题2分,共14分) 1. 根据傅里叶变换的对称性质,若信号()f t 的频谱为()F ω,则若有时域信号可表示为 ()F t ,则其对应的傅里叶变换必为()2f πω。 2. 信号()sinc t 是功率信号,而信号()cos t 是能量信号。 3. 已知()1()()s t f t f t =?,则()11(1)(1)s t f t f t ?=???。 4. 对于某LTIS 的单位冲激响应()h t ,因为激励单位冲激信号()t δ是在0t =时刻加入的,所以响应将出现在该时刻之后,因此响应可表示为()()h t u t ?。 5.傅里叶变换的诸多性质中,有很多可以反映出信号时域和频域的内在联系。其中由尺 度变换特性,我们可以知道,信号的脉宽(持续时间)和其带宽(频带宽度)一定是成反比关系。 6.傅里叶变换反映了信号的时域表示()f t 及其频谱()F ω的一一对应的关系,对于不同的信号其傅里叶变换也是不同的,因而我们可以用定义式()j ()e d t F f t t ωω∞??∞ =∫来求任何 信号的频谱。 7. 信号()Sa t 是带宽受限信号,其频带宽度为2。

北邮数电实验报告

北京邮电大学 实验报告实验名称:数电电路与逻辑设计实验 学院:信息与通信工程学院 班级: 姓名: 学号: 班内序号: 日期:

一. 实验一:Quartus II 原理图输入法设计 1. 实验名称和实验任务要求 (1)用逻辑门设计实现一个半加器,仿真验证其功能,并生成新的半加器图形模块 元。 (2)用(1)中生成的半加器模块和逻辑门设计实现一个全加器,仿真验证其功能,并下载到实验板测试,要求用拨码开关设定输入信号,发光二极管显示输出信号入信号。 (3)用3线-8线译码器(74LS138)和逻辑门设计实现函数 F=A B C +A B C +A B C + A B C 。 2. 实验原理图及波形图 (1)半加器 (2)全加器

(3)74LS38 3.仿真波形图分析 (1)半加器: 输入为a,b,输出S,CO(进位)。 当ab都为0时,半加和s=0,进位端co=0。 当ab都为1时,半加和s=0,进位端co=1。 当a=1,b=0 或a=0,b=1时,半加和s=1,进位端co=0。 (2)全加器:

输入a,b,输出S,CO(进位),ci(低进位)。 当a=0,b=0,ci=0,输出s=0,co=0。 当a=0,b=1或a=1,b=0又 ci=0,输出s=1,co=0。 当a=0,b=0,ci=1,输出s=1,co=0。 (3)74LS138 输入A,B,C,输出为3。 四个输出对应F中的四个最小项,Y0、Y2、Y4、Y7,以实现函数功能。 二.实验二:用 VHDL 设计与实现组合逻辑电路 1.实验名称和实验任务要求 (1)用VHDL语言设计实现一个共阴极7段数码管译码器,仿真验证其功能。要求用拨码开关设定输入信号,7段数码管显示输出信号。 (2) 用VHDL语言设计实现一个8421码转换为余3码的代码转换器,仿真验证其功能。要求用拨码开关设定输入信号,发光二极管显示输出信号。 (3) 用VHDL语言设计实现一个4位二进制奇校验器,输入奇数个’1’时,输出为’1’,否则输出’0’,仿真验证其功能。要求用拨码开关设定输入信号,发光二极管显示输出信号。 2.实验代码及波形图 (1)共阴极7段数码管译码器 LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY GUAN IS PORT(A:IN STD_LOGIC_VECTOR(3 DOWNTO 0); B:OUT STD_LOGIC_VECTOR(6 DOWNTO 0); C:OUT STD_LOGIC_VECTOR(5 DOWNTO 0)); END GUAN; ARCHITECTURE encoder_arch OF GUAN IS BEGIN PROCESS(A) BEGIN C<="011111"; CASE A IS WHEN"0000"=> B<="1111110";--0 WHEN"0001"=> B<="0110000";--1 WHEN"0010"=> B<="1101101";--2 WHEN"0011"=> B<="1111001";--3 WHEN"0100"=> B<="0110011";--4 WHEN"0101"=> B<="1011011";--5 WHEN"0110"=> B<="1011111";--6 WHEN"0111"=> B<="1110000";--7 WHEN"1000"=> B<="1111111";--8 WHEN"1001"=> B<="1111011";--9

北邮程序设计实验报告

程序设计实践 设 计 报 告 课题名称:邮件客户端学生姓名: 班级: 2 班内序号:16 学号: 2 日期:2014.6.4

1.课题概述 1.1课题目标和主要内容 本课题主要通过MFC的方式,利用SOCKET以及SMTP相关知识,来实现邮件(可携带附件)的定向发送,借此来复习和巩固C++编程的基本思想;学习SOCKET以及SMTP的相关知识,了解复杂网络应用程序的设计方法,并独立完成一个网络应用。 1.2系统的主要功能 1.邮件的发送(不携带附件) 2.邮件的发送(携带附件) 3.邮件接收 2. 系统设计 2.1 系统总体框架 程序的功能由MyEmailClientDlg.cpp,SMTP.cpp,MailMessage.cpp,Base64.cpp, MIMECode.cpp,MIMEContentAgent.cpp,MIMEMessage.cpp,AppOctetStream.cpp, MyEmailClient.cpp,StdAfx.cpp,TextPlain.cpp来实现。其中MIMECode.cpp, MIMEContentAgent.cpp,MIMEMessage.cpp, AppOctetStream.cpp, TextPlain.cpp来对MIME 协议进行封装,Base64.cpp来对Base64编码进行封装,SMTP.cpp是对SMTP协议进行封装,MailMessage.cpp是利用MIME协议对邮件内容的一个处理,最终通过MyEmailClientDlg.cpp 来实现邮件的发送的功能。 2.2 系统详细设计 [1] 模块划分图及描述 协议模块:包括网络应用程序中的各种协议,包括STMP协议,MIME协议等。 处理模块:主要实现对数据的进行编码以及解码。 实现模块:主要内容为邮件发送的具体步骤,相关按钮操作。 [2] 类关系图及描述 协议类:CSMTP, CTEXTPlai, CMIMECode,C MIMEContentAgent,C MIMEMessage, CAppOctetStream, CTextPlain.主要为协议中信息处理的中作用 编码类:Base64, MailMessage.主要为对邮件信息的处理

北邮信号考研2003年(A卷)真题及答案

北京邮电大学2003年硕士研究生入学试题(A) 考试科目:信号与系统 请考生注意:所有答案(包括选择题和填空题)一律写在答题纸上,写清题号,否则不计成绩。计算题要算出具体答案,可以用计算器,但不能互相借用。 一、单项选择题(本大题共7小题,每题3分共21分)在每小题列出的四个选项中只有一个是符合题目要求的,错选、多选或未选均无分。 1. 设()f t 的频谱函数为()F j ω,则 +?32t f 的频谱函数等于 【 】 A :ω ω23 221j e F ? ? , B : ωω23 221j e F , C :()ωω622j e F ? , D :()ωω622j e F ?? 。 2. 信号()t f 的频谱密度函数()ωj F = +34cos πω,则()t f 为 【 】 A :() +3421πδj e t , B :()() ?+++334421 ππδδj j e t e t , C :()() ?+++?334421ππδδj j e t e t , D :()() ?++?334421 ππδδj j e t e t 。 3. 信号()()λλλd t u t f ?=∫∞ 的拉普拉斯变换为 【 】 A :S 1, B : 21S , C :31S , D :41S 。 4. ()()t u e t f t 2=的拉氏变换及收敛域为 【 】 A: ()[]2Re 2 1 ?>+= S S S F , B: ()[]2Re 2 1?

C: ()[]2Re 2 1>?= S S S F , D: ()[]2Re 2 1<+= S S S F 。 5. 已知某信号的拉氏变换式为()()α α+= +?s e s F T s ,则该信号的时间函数为 【 】 A: ()()T t u e T t ???α , B: ()T t u e t ??α , C: ()αα??t u e t , D:()()T t u e t ???αα 。 6. 序列()()n u n f n =31的单边Z 变换()F Z 等于 【 】 A: 131 ??z z , B: 13?z z , C: 133?z z , D:1 33+z z 。 7. 求信号()ππn j n j e e n x 3.02.0?+= 的周期。 【 】 A :10 , B :20 , C :0.2π , D :0.3π 。 二、填空题(本大题共8小题,每题3分共24分)不写解答过程,写出每小题空格内的正确答案。 1. 已知(){} 6,5,4,3↑ =n x ,()n g =()=?12n x 。 2. 帕塞瓦尔定理说明,一信号(电压或电流)所含有的功率恒等于此信号在 各分量功率之总和 。 3. 已知冲激序列()∑∞ ?∞ =?= n T nT t t δδ)(,其三角函数形式的傅里叶级数 为 。 4. 若连续线性时不变系统的输入信号为()t f ,响应为()t y ,则系统无崎变传 输的系统传输函数必须满足:()ωj H = 。 5. 设()t f 为一有限频宽信号,频带宽度为B Hz ,试求()t f 2的奈奎斯特抽样 率=N f 和抽样间隔=N T 。

相关主题
文本预览
相关文档 最新文档